
1

Concurrent Multipath Transfer Using SCTP
Multihoming Over Independent End-to-End Paths

Janardhan R. Iyengar, Paul D. Amer, and Randall Stewart

Abstract— Concurrent Multipath Transfer (CMT) uses the
Stream Control Transmission Protocol’s (SCTP) multihoming
feature to distribute data across multiple end-to-end paths in
a multihomed SCTP association. We identify three negative side-
effects of reordering introduced by CMT that must be managed
before full performance gains of parallel transfer can be achieved:
(i) unnecessary fast retransmissions by a sender, (ii) overly
conservative cwnd growth at a sender, and (iii) increased ack
traffic due to fewer delayed acks by a receiver. We propose
three algorithms which augment and/or modify current SCTP
to counter these side-effects. Presented with several choices as
to where a sender should direct retransmissions of lost data, we
propose five retransmission policies for CMT. We demonstrate
spurious retransmissions in CMT with all five policies, and
propose changes to CMT to allow the different policies. CMT is
evaluated against AppStripe, an idealized application that stripes
data over multiple paths using multiple SCTP associations. The
different CMT retransmission policies are then evaluated with
varied constrained receive buffer sizes. In this foundation work,
we operate under the strong assumption that the bottleneck
queues on the end-to-end paths used in CMT are independent.

Index Terms— Load balancing, load sharing, multipath, SCTP,
transport layer, end-to-end.

I. I NTRODUCTION

A host is multihomed if it can be addressed by multiple IP
addresses, as is the case when the host has multiple network in-
terfaces. Though feasibility alone does not determine adoption
of an idea, multihoming is increasingly economically feasible
and can be expected to be the rule rather than the exception
in the near future, particularly when fault tolerance is crucial.
Multihomed nodes may be simultaneously connected through
multiple access technologies, and even multiple end-to-end
paths to increase resilience to path failure. For instance, a
mobile user could have simultaneous Internet connectivity via
a wireless local area network using 802.11b and a wireless
wide area network using GPRS.

We propose usingConcurrent Multipath Transfer (CMT)
between multihomed source and destination hosts to increase
an application’s throughput. CMT is the concurrent transfer of

J. Iyengar and P. Amer are with the Protocol Engineering Lab, CIS
Dept., University of Delaware, Newark, DE 19716 USA (email: iyen-
gar@cis.udel.edu; amer@cis.udel.edu).

R. Stewart is with the Internet Technologies Division at Cisco Systems
(email: rrs@cisco.com).

Prepared through collaborative participation in the Communications and
Networks Consortium sponsored by the U. S. Army Research Laboratory un-
der the Collaborative Technology Alliance Program, Cooperative Agreement
DAAD19-01-2-0011. The U. S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright
notation thereon.

Supported in part by University Research Program of Cisco Systems, Inc.

new data from a source to a destination host via two or more
end-to-end paths.

The current transport protocol workhorses, TCP and UDP,
do not support multihoming; TCP allows binding to only
one network address at each end of a connection. At the
time TCP was designed, network interfaces were expensive
components, and hence multihoming was beyond the ken of
research. Changing economics and an increased emphasis on
end-to-end fault tolerance have brought multihoming within
the purview of the transport layer. While concurrency can be
arranged at other layers (as discussed in Sections IV-D and
VI), the transport layer has the best knowledge to estimate
end-to-end paths’ characteristics.

The Stream Control Transmission Protocol (SCTP) [1], [2]
is an IETF standards track protocol that natively supports
multihoming at the transport layer. SCTP multihoming allows
binding of one transport layerassociation(SCTP’s term for
a connection) to multiple IP addresses at each end of the
association. This binding allows a sender to transmit data to a
multihomed receiver through different destination addresses.
Simultaneous transfer of new data to multiple destination
addresses is currently not allowed in SCTP due primarily to
insufficient research. This research attempts to provide that
needed work.

Though CMT uses SCTP in our analysis, our goal is to
study CMT at the transport layer in general. The issues
and algorithms considered in this research would apply to
any multihome-aware transport protocol. We chose SCTP
primarily due to lack of mature multihoming mechanisms in
any other practical transport layer protocol1, and partly due to
our expertise with it.

Following preliminary concepts and terminology in Sec-
tion II, Section III specifies three algorithms resulting in
CMTscd - a protocol that uses SCTP’s multihoming feature
for correctly transferring data between multihomed end hosts
using multiple independent end-to-end paths. A CMT sender
can direct retransmissions to one of several destinations that
are receiving new transmissions. In Section IV, we present an
evaluation of CMT versus an “idealized” hypothetical appli-
cation which stripes data across multiple SCTP associations
(AppStripe). We also propose and evaluate five retransmission
policies for CMT. We conclude our discussion of CMT in
Section V, and discuss related work in Section VI.

1The Datagram Congestion Control Protocol (DCCP) [3] does provide
“primitive multihoming” at the transport layer, but only for mobility support.
DCCP multihoming is useful only for connection migration, and cannot be
leveraged for CMT.

2

II. PRELIMINARIES

We first overview several ideas and mechanisms used by
SCTP relevant to this research; some are compared with TCP
to highlight similarities and differences. SCTP is defined in
RFC2960 [2] with changes and additions included in the
Implementer’s Guide [1]. An SCTP packet, or protocol data
unit (PDU), consists of one or more concatenated building
blocks calledchunks: either control or data. For the purposes
of reliability and congestion control, each data chunk in
an association is assigned a unique Transmission Sequence
Number (TSN). Since SCTP is message-oriented and chunks
are atomic, TSNs are associated with chunks of data, as
opposed to TCP which associates a sequence number with
each data octet in the bytestream. In our simulations, we
assume one data chunk per PDU for ease of illustration; each
PDU thus carries, and is associated with a single TSN.

SCTP uses a selective ack scheme similar to SACK TCP [4].
SCTP’s congestion control algorithms are based on RFC
2581 [5], and include SACK-based mechanisms for better per-
formance. Similar to TCP, SCTP uses three control variables:
a receiver’s advertised window (rwnd), a sender’s congestion
window (cwnd), and a sender’s slow start threshold (ssthresh).
However, unlike TCP’s cwnd which reflects which data to
send, SCTP’s cwnd dictates only how much data can be sent.
SCTP’s cwnd is similar in function to SACK TCP’spipe
variable [6]. In SCTP, rwnd is shared across an association.
Since an SCTP association allows multihomed source and
destination endpoints, a source maintains several parameters
on aper destinationbasis: cwnd, ssthresh, and roundtrip time
(RTT) estimates. An SCTP sender also maintains a separate
retransmission timer per destination. RFC 2960 does not allow
a sender to simultaneously sendnew data on multiple paths.
New data must be sent to a singleprimary destination, while
retransmissions may be sent to any alternate destination.

In this work, we operate under the assumption that the
bottleneck queues on the end-to-end paths used in CMT are
independent of each other. Overlap in the paths is acceptable,
but again bottlenecks are assumed independent. We recognize
that this strong assumption certainly will not hold for all multi-
homed associations. Continued work [7] will investigate CMT
without this assumption using end-to-end shared bottleneck
detection techniques [8]–[11].

A note on language and terminology. A reference to “cwnd
for destination X” means the cwnd maintained at the sender
for destination X, and “timeout on destination X” refers to
the expiration of a sender’s retransmission timer maintained
for destination X. Since bottleneck queues on the end-to-
end paths are assumed independent, each destination in our
topology uniquely maps to an independent path. Thus, “cwnd
for destination X” may be used interchangeably with “cwnd
for path Y”, where path Y ends in destination X. SCTP
acks carry cumulative and selective ack (also calledgap ack)
information and are called SACKs. In the paper, sometimes
“SACK” is used rather than “ack” to emphasize when an ack
carries both cumulative and selective acks.

The simulations presented in this paper use the University
of Delaware’s SCTP module for ns-2 [12], [13].

III. CMT A LGORITHMS

As is the case with TCP [14]–[17], reordering introduced
in an SCTP flow degrades performance. When multiple paths
being used for CMT have different delay and/or bandwidth
characteristics, significant packet reordering can be introduced
in the flow by a CMT sender. Reordering is a natural conse-
quence of CMT, and is difficult to eliminate in an environment
where the end-to-end path characteristics are changing or
unknown apriori, as in the Internet. In this section, we identify
and resolve the negative side-effects of sender-introduced
reordering by CMT in SCTP.

To demonstrate the effects of reordering introduced in SCTP
by CMT, we use a simple simulation setup. Two dualhomed
hosts, senderA with local addressesA1; A2, and receiverB
with local addressesB1; B2, are connected by two separate
paths: Path 1 (A1�B1), and Path 2 (A2�B2) having end-to-
end available bandwidths 0.2 Mbps and 1 Mbps, respectively.
The roundtrip propagation delay on both paths is 90 ms,
roughly reflecting the U. S. coast-to-coast delay. CMT sender
A sends data to destinationsB1 andB2 concurrently, and uses
a scheduling algorithm that sends new data to a destination
when allowed by the corresponding cwnd.

The simulation results described in this section (Figures 1
and 5) both show cwnd evolution with time. The figures
have four curves, which show the CMT sender’s (1) observed
cwnd evolution for destinationB1 (+), (2) observed cwnd
evolution for destinationB2 (�), (3) calculated aggregate
cwnd evolution (sum of (1) and (2)) (4), and (4) expected
aggregate cwnd evolution (–). This last curve represents our
initial performance goal for CMT - the sum of the cwnd
evolution curves of two independent SCTP runs, usingB1

andB2 as the primary destination, respectively.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 2 4 6 8 10 12 14 16

cw
nd

 (
by

te
s)

time (seconds)

CMT(B1)
CMT(B2)
CMT(B1+B2)
Expected [SCTP(B1) + SCTP(B2)]

Fig. 1. CMT with SCTP: Evolution of the different cwnds

Figure 1 shows how, when using SCTP without any mod-
ifications, CMT reordering significantly hinders bothB1 and
B2’s cwnd growth. (Normally cwnd reductions are seen when
a sender detects loss, but for Figure 1, no packet loss was
simulated.) The aggregate cwnd evolution (4) is significantly
below the expected aggregate cwnd evolution (–).

3

To explain our algorithms which enable correct CMT using
SCTP, we first introduce some notation. CMT refers to a host
performing concurrent multipath transfer using current SCTP.
CMTs, CMTc, and CMTd refer to a host performing CMT
with the Split Fast Retransmit (SFR) algorithm (Section III-A),
the Cwnd Update for CMT (CUC) algorithm (Section III-B)
and the Delayed Ack for CMT (DAC) algorithm (Section III-
C), respectively. Using more than one subscript means inclu-
sion of more than one algorithm. For instance, CMTsc refers
to a host performing CMT with the SFR and CUC algorithms.

We identify and resolve three negative side-effects of re-
ordering introduced by CMT that must be managed before the
full performance gains of parallel transfer can be achieved: (i)
unnecessary fast retransmissions at the sender (Section III-A),
(ii) reduced cwnd growth due to fewer cwnd updates at the
sender (Section III-B), and (iii) increased ack traffic due to
fewer delayed acks (Section III-C) [18].

A. Preventing Unnecessary Fast Retransmissions

When reordering is observed, a receiver sends gap reports
(i.e., gap acks) to the sender which uses the reports to
detect loss through a fast retransmission procedure similar
to the one used by TCP [2], [5]. With CMT, unnecessary
fast retransmissions can be caused due to reordering [19],
with two negative consequences: (1) since each retransmission
is assumed to occur due to a congestion loss, the sender
reduces its cwnd for the destination on which the retransmitted
data was outstanding, and (2) a cwnd overgrowth problem
explained in [20] causes a sender’s cwnd to grow aggressively
for the destination on which the retransmissions are sent, due
to acks received for original transmissions. In Figure 1, each
cwnd reduction observed forB1 andB2 is due to an unnec-
essary fast retransmission by the sender. These unnecessary
retransmissions seen by CMT are due to sender-introduced
reordering, and not spurious retransmissions due to network
effects [21], [22].

Conventional interpretation of a SACK chunk in SCTP (or
ack with SACK option in TCP) is that gap reports imply
possible loss due to congestion. The probability that a TSN is
lost, as opposed to being reordered, increases with the number
of gap reports received for that TSN. Due to reordering, a
CMT sender needs additional information to infer loss. Gap
reportsalonedo not (necessarily) imply loss; but a sender can
infer loss using gap reportsand knowledge of each TSN’s
destination.

Algorithm Details: The proposed solution to address the
side-effect of incorrect cwnd evolution due to unnecessary fast
retransmissions is the Split Fast Retransmit (SFR) algorithm,
shown in Figure 2. This algorithm extends a previous incar-
nation which could not handlecycling changeover[19]. SFR
introduces avirtual queueper destination within the sender’s
retransmission queue. A sender then deduces missing reports
for a TSN correctly using SACK information in conjunction
with state maintained about the transmission destination for
each TSN in the retransmission queue. Thus, SFR enables a
multihomed sender to correctly apply the fast retransmission
procedure on a per destination basis. An advantage of SFR is
that only the sender’s behavior is affected.

The SFR algorithm introduces two additional variables per
destination at a sender:

1) highestin sackfor dest- stores the highest TSN acked
per destination by the SACK being processed.

2) sawnewack - a flag used during the processing of a
SACK to infer the causative TSN(s)’s destination(s).
Causative TSNs for a SACK are those TSNs which
caused the SACK to be sent (or TSNs that are being
acked in this SACK for the first time).

In Figure 2, step (2) infers the destinations that the newly
acknowledged TSNs were sent to, and setssawnewack to
TRUE for those destinations. Step (3) tracks on a per des-
tination basis, the highest TSN that was being acked. Step
(4) uses information gathered in steps (2) and (3) to aid in
inferring missing TSNs. Two conditions in step (4) ensure
correct missing reports: (a) TSNs to be marked should be
outstanding on the same destination(s) as TSNs which have
been newly acked, and (b) at least one TSN, sent later than
the missing TSN, should have reached the receiveron the same
destination address.

B. Avoiding Reduction in Cwnd Updates

The cwnd evolution algorithm for SCTP [2] (and analo-
gously for SACK TCP [4], [5]) allows growth in cwnd only
when a new cum ack is received by a sender. When SACKs
with unchanged cum acks are generated (say due to reordering)
and later arrive at a sender, the sender does not modify its
cwnd. This mechanism again reflects the conventional view
that a SACK which does not advance the cum ack indicates
possibility of loss due to congestion.

Since a CMT receiver naturally observes reordering, many
SACKs are sent containing new gap reports but not new cum
acks. When these gaps are later acked by a new cum ack, cwnd
growth occurs, but only for the data newly acked in the most
recent SACK. Data previously acked through gap reports will
not contribute to cwnd growth. This behavior prevents sudden
increases in the cwnd resulting in bursts of data being sent.
Even though data may have reached the receiver “in-order per
destination”, without changing the current handling of cwnd,
the updated cwnd will not reflect this fact.

This inefficiency can be attributed to the current design
principle that the cum ack in a SACK, which tracks the latest
TSN received in-order at the receiver, applies to an entire
association, not per destination. TCP and current SCTP use
only one destination address at any given time to transmit
new data to, and hence, this design principle works fine. Since
CMT uses multiple destinations simultaneously, cwnd growth
in CMT demands tracking the latest TSN received in-order
per destination, information not coded directly in a SACK.

We propose a cwnd growth algorithm to track the earliest
outstanding TSNper destinationand update the cwnd, even
in the absence of new cum acks. The algorithm uses SACKs
and knowledge of transmission destination for each TSN to
deduce in-order delivery per destination. The crux of the
CUC algorithm is to track the earliest outstanding dataper
destination, and use SACKs which ack this data to update the
corresponding cwnd. In understanding our proposed solution,

4

On receipt of a SACK containing gap reports [Sender side behavior]:
1) 8 destination addressesdi initialize di:saw newack = FALSE;
2) for each TSNta being acked that has not been acked in any SACK thus fardo

let da be the destination to whichta was sent;
setda:saw newack = TRUE;

3) 8 destinationsdn, setdn:highest in sack for dest to highest TSN being newly acked ondn;
4) to determine whether missing report count for a TSNtm should be incremented:

let dm be the destination to whichtm was sent;
if (dm:saw newack = TRUE) and (dm:highest in sack for dest > tm) then

increment missing report count fortm;
elsedo not increment missing report count fortm;

Fig. 2. SFR Algorithm – Eliminating unnecessary fast retransmissions

At beginning of an association [Sender side behavior]:
8 destinations d, reset

d.findpseudocumack= TRUE;
On receipt of a SACK [Sender side behavior]:

1) 8 destinations d, resetd.newpseudocumack= FALSE;
2) if the SACK carries a new cum ackthen

for each TSNtc being cum acked for the first time, that was not acked through prior
gap reportsdo

(i) let dc be the destination to whichtc was sent;
(ii) set dc:find pseudo cumack = TRUE;
(iii) set dc:new pseudo cumack = TRUE;

3) if gap reports are present in the SACKthen
for each TSNtp being processed from the retransmission queuedo

(i) let dp be the destination to whichtp was sent;
(ii) if (dp:find pseudo cumack = TRUE) and tp was not acked in the pastthen

dp:pseudo cumack = tp;
dp:find pseudo cumack = FALSE;

(iii) if tp is acked via gap reports for first timeand (dp:pseudo cumack = tp) then
dp:new pseudo cumack = TRUE;
dp:find pseudo cumack = TRUE;

4) for each destinationd do
if (d.newpseudocumack= TRUE) then update cwnd [1], [2];

Fig. 3. Cwnd Update for CMT (CUC) Algorithm – Handling side-effect of reduced cwnd growth due to fewer cwnd updates

we remind the reader that gap reports alone do not (necessar-
ily) imply congestion loss; SACK information is treated only
as a concise description of the TSNs received thus far by the
receiver.

Algorithm Details: Figure 3 shows the proposed Cwnd
Update for CMT (CUC) algorithm. Apseudo-cumacktracks
the earliest outstanding TSN per destination at the sender. An
advance in a pseudo-cumack is used by a sender to trigger a
cwnd update for the corresponding destination, even when the
actual cum ack is not advanced. The pseudo-cumack is used
only for cwnd updates; only the actual cum ack can dequeue
data in the sender’s retransmission queue since a receiver can
reneg on data that has been acked through gap reports, but
not cumulatively acked. An advantage of CUC is that only
the sender’s behavior is affected.

The CUC algorithm introduces three variables per destina-

tion at a sender:

1) pseudocumack - maintains next pseudo-cumack ex-
pected at a sender.

2) newpseudocumack - flag used to indicate if a new
pseudo-cumack has been received.

3) find pseudocumack- flag used to find a new pseudo-
cumack. This flag is set after a new pseudo-cumack has
been received and indicates that the sender should find
the next pseudo-cumack expected for the corresponding
destination.

In Figure 3, step (1) initializes the variable
newpseudocumack. Step (2) initiates a search for a
new pseudocumackby settingfind pseudocumackto TRUE
for the destinations on which TSNs cumulatively acked were
outstanding. Step (2) also triggers a cwnd update by setting

5

newpseudocumack to TRUE for those destinations. Step
(3) then processes the outstanding TSNs at a sender, and
tracks on a per destination basis, the TSN expected to be
the nextpseudocumack. Step (4) finally updates the cwnd
for a destination if a new pseudo cumack was seen for that
destination.

C. Curbing Increase in Ack Traffic

Sending an ack after receiving every 2 data PDUs (i.e.,
delayed acks) in SCTP (and TCP) reduces ack traffic in the
Internet, thereby saving processing and storage at routers on
the ack path. SCTP specifies that a receiver should use the
delayed ack algorithm as given in RFC 2581, where acks
are delayed only as long as the receiver receives data in
order. Reordered PDUs should be acked immediately [5]. With
CMT’s frequent reordering, this rule causes an SCTP receiver
to frequentlynot delay acks. Hence a negative side-effect of
reordering with CMT is increased ack traffic.

To prevent this increase, we propose that a CMT receiver
ignore the rule mentioned above. That is, a CMT receiver
does not immediately ack an out-of-order PDU, but delays the
ack. Thus, a CMT receiver always delays acks, irrespective
of whether or not data is received in order2. Though this
modification at the receiver eliminates the increase in ack
traffic, RFC 2581’s rule has another purpose which gets
hampered.

An underlying assumption that pervades SCTP’s (and
TCP’s) design is that data in general arrives in order; data
received out-of-order indicates possible loss. According to
RFC 2581, “Out-of-order data segments SHOULD be ac-
knowledged immediately, in order to accelerate loss recovery.
To trigger the fast retransmit algorithm, the receiver SHOULD
send an immediate ... ACK when it receives a data segment
above a gap in the sequence space” [5]. In SCTP, four acks
with gap reports for a missing TSN (i.e., four missing reports
for a TSN) indicate that a receiver received at least four data
PDUs sent after the missing TSN. Receipt of four missing
reports for a TSN triggers the fast retransmit algorithm at the
sender. In other words, the sender has areordering threshold
(or dupack thresholdin TCP terminology) of four PDUs. Since
a CMT receiver cannot distinguish between loss and reordering
introduced by a CMT sender, the modification suggested above
by itself would cause the receiver to delay acks even in the
face of loss. When a loss does occur with our modification
to a receiver, fast retransmit would be triggered by a CMT
sender only after the receiver receives eight(!) data PDUs sent
after a lost TSN - an overly conservative behavior.

The effective increase in reordering threshold at a sender can
be countered by reducing the actual number of acks required
to trigger a fast retransmit at the sender, i.e., by increasing the
number of missing reports registered per ack. In other words,
if a sender can increment the number of missing reports more
accurately per ack received, fewer acks will be required to be

2We are concerned with only the case where acks are not delayed due to
reordered data. We do not modify a receiver’s behavior when an ack being
delayed can be piggybacked on reverse path data, or when the delayed ack
timer expires.

received by the sender to trigger a fast retransmit. A receiver
can provide more information in each ack to assist the sender
in accurately inferring the number of missing reports per ack
for a lost TSN. We propose that in each ack, a receiver report
the count of data PDUs received since the previous ack was
sent. A sender then infers the number of missing reports per
TSN based on the TSNs being acked in a SACK, number of
PDUs reported by the receiver, and knowledge of transmission
destination for each TSN. We note that additionally, heuristics
(as proposed in [15]) may be used at a CMT sender to address
network induced reordering.

Algorithm Details: The proposed Delayed Ack for CMT
(DAC) algorithm (Figure 4) specifies a receiver’s behavior on
receipt of data, and also a sender’s behavior when the missing
report count for a TSN needs to be incremented3. Since SCTP
(and TCP) acks are cumulative, loss of an ack will result in loss
of the data PDU count reported by the receiver, but the TSNs
will be acknowledged by the following ack. Receipt of this
following ack can cause ambiguity in inferring missing report
count per destination. Our algorithm conservatively assumes a
single missing report count per destination in such ambiguous
cases. The DAC algorithm requires modifications to both the
sender and the receiver.

No new variables are introduced in this algorithm, as we
build on the SFR algorithm. There is an additional number to
be reported in the SACKs for which we use the first 2 bits of
the flags field in the SACK chunk header.

In Figure 4, at the receiver side, steps (1) and (2) are self
explanatory. The sender side algorithm modifies step (4) of
SFR, which determines whether missing report count should
be incremented for a TSN. The DAC algorithm dictateshow
manyto increment by. Step (4-i) checks if only one destination
was newly acked, and allows incrementing missing reports
by more than one for TSNs outstanding to that destination.
Further, all newly acked TSNs should have been sent later
than the missing TSN. If there are newly acked TSNs that
were sent before the missing TSN, step (4-i-a) conservatively
allows incrementing by only one. If more than one destinations
are newly acked, step (4-ii) conservatively allows incrementing
by only one.

Figure 5 shows cwnd evolution for CMT after including
the SFR, CUC and DAC algorithms, i.e., CMTscd. With the
negative side-effects addressed, we hoped to see CMTscd’s
cwnd growth to come close to the expected aggregate cwnd
growth. In fact, we observed that CMTscd cwnd growth
exceededthe expected aggregate cwnd growth!

To explain this surprising result, we remind the reader that
the expected aggregate cwnd is the sum of the cwnd growth
of two independent SCTP runs, each using one of the two
destination addresses as its primary destination. In each SCTP
run, one delayed ack can increase the cwnd by at most one
MTU during slow start, even if the ack acks more than one
MTU worth of data. On the other hand, we observe in the
CMTscd run that if a delayed ack simultaneously acks an
MTU of data on each of the two destinations, the sender

3The DAC algorithm can also be used in scenarios where ack traffic lesser
than with delayed acks is desirable, such as in data center environments [23].

6

On receipt of a data PDU [Receiver side behavior]:
1) delay sending an ack as given in [2], with the additional change that

acks should be delayed even if reordering is observed.
2) in each ack, report number of data PDUs received since sending of previous ack.

When incrementing missing report count through SFR:Step (4) (Figure 2) [Sender side behavior]:
4) to determine whether missing report count for a TSNtm should be incremented:

let dm be the destination to whichtm was sent;
if (dm:saw newack = TRUE) and (dm:highest in sack for dest > tm) then

(i) if (8 destinationsdo such thatdo 6= dm, do:saw newack = FALSE) then
/** all newly acked TSNs were sent to the same destination astm **/
(a) if (9 newly acked TSNstb, ta such thattb < tm < ta) then

(conservatively) increment missing report count fortm by 1;
(b) else if (8 newly acked TSNsta, ta > tm) then

increment missing report count fortm by number of PDUs reported by receiver;
(ii) else

/** Mixed SACK - newly acked TSNs were sent to multiple destinations **/
(conservatively) increment missing report count fortm by 1;

Fig. 4. Delayed Ack for CMT (DAC) Algorithm – Handling side-effect of increased ack traffic

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 2 4 6 8 10 12 14 16

cw
nd

 (
by

te
s)

time (seconds)

CMT_scd (B1)
CMT_scd (B2)
CMT_scd(B1+B2)
Expected[SCTP(B1) + SCTP(B2)]

Fig. 5. CMTscd: Evolution of the different cwnds

simultaneously increases each of two cwnds by one MTU.
Thus, a single delayed ack in CMTscd that acks data flows
on two paths causes an aggregate cwnd growth of two MTUs.
With delayed acks during slow start, each SCTP association
grows its cwnd by 1.5 times each RTT, whereas CMTscd

increases its cwnd by twice each RTT. We conclude that such
delayed acks which simultaneously contribute to the cwnd
growth of two destinations helped the aggregate cwnd growth
of CMTscd to exceed the expected aggregate cwnd growth.

This phenomenon occurs in slow start, therefore benefiting
CMTscd initially and during some timeout recovery periods.
Though the aggregate cwnd growth exceeds expected aggre-
gate cwnd growth, we argue that the sender is not overly
aggressive, i.e., not TCP-unfriendly. The sender is able to
clock out more data due to delayed acks that acknowledge data
flows on multiple paths. The sender does not create bursts of

data during slow start, and builds up the ack clock as expected.
Though it does not improve CMTscd’s performance signifi-
cantly, this phenomenon demonstrates a benefit ofsequence
space sharingamong flows on different paths that occurs
within a CMTscd association.

IV. CMT PERFORMANCEEVALUATION

With correct behavior ensured by CMTscd, we now evaluate
its performance4. In Section IV-A, we discuss our method-
ology for evaluating CMT. In Section IV-B, we present five
retransmission policies for CMT. In Section IV-C, we identify
two modifications that must be made to CMT to accomodate
the different retransmission policies. In Section IV-D, we
evaluate CMT against AppStripe - our reference application
for performance evaluation of CMT. In Section IV-E, we
compare and analyze the different retransmission policies to
decide upon a recommended policy for CMT.

A. Evaluation Methodology

As a reference for performance, we useAppStripe - a
hypothetical multihome-aware application that achieves the
highest throughput achievable by an application that distributes
data across multiple SCTP associations (see Figure 6). We
emphasize that AppStripe performs idealized scheduling at
the application layer, and is not doable in practice5. End-
to-end load sharing is performed at the application layer by
AppStripe, and at the transport layer by CMT [24].

The simulation topology (see Figure 7) is simple - the edge
links represent the last hop, and the core links represent end-
to-end conditions on the Internet. This simulation topology
does not account for effects seen in the Internet and other real
networks such as network induced reordering, delay spikes,

4Henceforth, we refer to CMTscd as simply CMT.
5We simulate AppStripe by post-processing simulation traces.

7

CMTscdAssoc

AppStripe
(distributes data) Bulk transfer application

transport
layer

application
layer

AppStripe CMTscd

(distributes data)

new data
sent

to dest1

new data
sent

to destn

new data
sent

to dest2

SCTP
Assoc1

SCTP
Assocn

SCTP
Assoc2

new data
sent

to dest1

new data
sent

to destn

new data
sent

to dest2

Fig. 6. Schematic - AppStripe and CMT

etc.; these effects are beyond the scope of this study. Our
simulation evaluation provides insight into the fundamental
differences between AppStripe and CMT, and between the
different retransmission policies in a constrained environment.
We chose a simple topology to avoid influence of other effects,
and to focus on performance differences which we believe
should hold true in a real environment as well6. The loss rate
on Path 1 is maintained at 1%, and on Path 2 is varied from
1 to 10%. A loss rate of 1% means a forward path loss rate
of 1%, and a reverse path loss rate of 1%.

A B

Sender ReceiverR1,0

R2,0

R1,1

R2,1

100Mbps 1
us

100Mbps 1us

100Mbps 1us

100Mbps 1
us

10 Mbps, 45 ms

1 % uniform loss

10 Mbps, 45 ms

1 – 10 % uniform loss

A1

A2

B1

B2

Path 1

Path 2
Fig. 7. Simulation topology used for evaluation

B. CMT Retransmission Policies

Multiple paths present an SCTP sender with several choices
where to send a retransmission of a lost transmission. But
these choices are not well-informed since SCTP restricts
sending new data, which can act as probes for information
(such as available bandwidth, loss rate and RTT), to only
one primary destination. Consequently, an SCTP sender has
minimal information about other paths to a receiver. On the
other hand, a CMT sender maintains more current and more
accurate information about all paths to a receiver, since new

6The simulation topology is clearly simplistic. Unfortunately, more realistic
complex topologies involving variable cross-traffic required too much time to
simulate. We believe that the relative performance of the evaluated policies
will be the same for our simple topology as well as a more complex one.

data is regularly being sent to all destinations concurrently.
This information allows a CMT sender to make a more
informed decision where to send a retransmission. We now
investigate how CMT should make this decision in a realistic
lossy environment.

We present five retransmission policies for CMT [25]. For
four policies, a retransmission may be sent to a destination
other than the one used for the original transmission. Previous
work on retransmission policies for SCTP [26] shows that
sending retransmissions to an alternate destination degrades
performance primarily because of the lack of sufficient traffic
on alternate paths. With CMT, data is concurrently sent on all
paths, thus rendering the results in [26] not applicable. The
five different retransmission policies for CMT are:

� RTX-SAME - Once a new data chunk is scheduled and
sent to a destination, all retransmissions of the chunk
thereafter are sent to the same destination (until the
destination is deemedinactivedue to failure [2]).

� RTX-ASAP - A retransmission of a data chunk is sent
to any destination for which the sender has cwnd space
available at the time the retransmission needs to be
sent. If the sender has available cwnd space for multiple
destinations, one is chosen randomly.

� RTX-CWND - A retransmission of a data chunk is sent
to the destination for which the sender has the largest
cwnd. A tie is broken by random selection.

� RTX-SSTHRESH - A retransmission of a data chunk is
sent to the destination for which the sender has the largest
ssthresh. A tie is broken by random selection.

� RTX-LOSSRATE - A retransmission of a data chunk
is sent to the destination with the lowest loss rate path.
If multiple destinations have the same loss rate, one is
selected randomly.

Of the policies, RTX-SAME is simplest. RTX-ASAP is a
“hot-potato” retransmission policy - the goal is to retransmit
as soon as possible without regard to loss rate. RTX-CWND
and RTX-SSTHRESH practically track, and attempt to move
retransmissions onto the path with the estimated lowest loss
rate. Since ssthresh is a slower moving variable than cwnd,
the values of ssthresh may better reflect the conditions of
the respective paths. RTX-LOSSRATE uses information about
loss rate provided by an “oracle” - information that RTX-
CWND and RTX-SSTHRESH estimate. This policy represents
a “hypothetically” ideal case; hypothetical since in practice, a
sender typically does not know apriori which path has the
lowest loss rate; ideal since the path with the lowest loss rate
has highest chance of having a packet delivered. We initially
hypothesized that retransmission policies that take loss rate
into account would outperform ones that do not.

C. Modifications to Protocol Mechanisms

Two protocol modifications are needed in CMT to allow
redirecting retransmissions to a different destination than the
original transmission.

1) CUCv2: Modified CUC Algorithm:The CUC algo-
rithm (Figure 3) enables correct cwnd updates in the face

8

At beginning of an association [Sender side behavior]:
8 destinations d, reset

d.find pseudocumack= TRUE;
d.find rtx pseudocumack= TRUE;

On receipt of a SACK [Sender side behavior]:
1) 8 destinations d, reset

d.newpseudocumack= FALSE;
d.newpseudocumack= FALSE;

2) if the ack carries a new cum ackthen
for each TSNtc being cum acked for the first time, that was not acked through prior
gap reportsdo

(i) let dc be the destination to whichtc was sent;
(ii) set dc:find pseudo cumack = TRUE;
(iii) set dc:new pseudo cumack = TRUE;
(iv) set dc:find rtx pseudo cumack = TRUE;
(v) setdc:new rtx pseudo cumack = TRUE;

3) if gap reports are present in the ackthen
for each TSNtp being processed from the retransmission queuedo

(i) let dp be the destination to whichtp was sent;
(ii) if (dp:find pseudo cumack = TRUE) and tp was not acked in the past

and tp was not retransmittedthen
dp:pseudo cumack = tp;
dp:find pseudo cumack = FALSE;

(iii) if tp is acked via gap reports for first timeand (dp:pseudo cumack = tp) then
dp:new pseudo cumack = TRUE;
dp:find pseudo cumack = TRUE;

(iv) if (dp:find rtx pseudo cumack = TRUE) and tp was not acked in the past
and tp was retransmittedthen

dp:rtx pseudo cumack = tp;
dp:find rtx pseudo cumack = FALSE;

(v) if tp is acked via gap reports for first timeand (dp:rtx pseudo cumack = tp) then
dp:new rtx pseudo cumack = TRUE;
dp:find rtx pseudo cumack = TRUE;

4) for each destinationd do
if (d.newpseudocumack= TRUE) or (d.newrtx pseudocumack= TRUE) then

Update cwnd [1], [2];

Fig. 8. CUCv2 Algorithm - Modified Cwnd Update for CMT (CUC) Algorithm

of increased reordering due to CMT. To recap, this algo-
rithm recognizes a set of TSNs outstanding per destination,
and the per-destinationpseudocumack traces the left edge
of this list of TSNs, per destination. The CUC algorithm
though, assumes that retransmissions are sent to the same
destination as the original transmission. The per-destination
pseudocumacktherefore moves whenever the corresponding
left edge is acked; the TSN on the left edge being acked may
or may not have been retransmitted.

If the assumption about the retransmission destination is
violated, and a retransmission is made to a different destination
from the original, the CUC algorithm cannot faithfully track
the left edge on either destination. We modify the CUC
algorithm to permit the different retransmission policies. The
modified CUC algorithm, named CUCv2 is shown in Figure 8.

The crux of the modification is in recognizing that of the
TSNs outstanding on a destination, a distinction can be made -

those that have been retransmitted, and those that have not. The
CUCv2 algorithm maintains two left edges for these two sets
of TSNs - rtx-pseudo-cumackandpseudo-cumack. Whenever
either of the left edges moves, a cwnd update is triggered. In
CUCv2, lines 2(iv), 2(v), 3(iv) and 3(v) have been added, and
lines 3(ii) and 4 have been modified from the CUC algorithm.

2) Spurious Timeout Retransmissions:When a timeout
occurs, an SCTP sender is expected to bundle and send as
many of the earliest TSNs outstanding on the destination for
which the timeout occurred as can fit in an MSS (Maximum
Segment Size) PDU. As per RFC 2960, if more TSNs are
outstanding on that destination, these TSNs “should be marked
for retransmission and sent as soon as cwnd allows (normally
when a SACK arrives)”. This rule is intuitive - while sending,
retransmissions are generally given priority over new trans-
missions. As in TCP, the cwnd is also collapsed to 1 MSS for
the destination on which a timeout occurs, allowing only one

9

MSS sized PDU in flight.

Timeout on dest B2
- TSN X is rtxd
- TSNs Y+2 & Y+3
incorrectly marked
for rtx !

TSN Y+2

B1
A1 A2 B2Sender

A
Receiver

B
Receiver

B

SACK X-1 (X+1 to Y)

SACK X-1 (X+1 to Y+1)

TSN Y+3TSN X (rtx)

Incoming
SACKs

SACKsthat will
free up cwnd space
for destination B1

SACKs

TSN Y+2

TSN Y+3

Spurious rtxs !!

LEGEND:

- SACK X-1 (X+1 to Y) indicates a SACK with a cumack of X-1 carrying gap acks for TSNs from X+1
through Y. This SACK indicates that TSN X has not been received.

- TSN Y+2 indicates a packet containing one data chunk with TSN Y+2. A data chunk is the smallest
indivisible unit of data in an SCTP packet.

Fig. 9. Example of spurious retransmissions after timeout in CMT

A timeout retransmission can occur in SCTP (as in TCP) for
several reasons. One reason is loss of the fast retransmission
of a TSN7. Consider Figure 9. When a timeout occurs due
to loss of a fast retransmission, some TSNs that were just
sent to the destination on which the timeout occurred are
likely awaiting acks (in Figure 9, TSNs Y+2 and Y+3)8.
These TSNs get incorrectly marked for retransmission on
timeout. With the different retransmission policies in CMT,
the retransmissions may be sent to a different destination
than the original transmission; if cwnd space for a destination
is available, possibly due to receipt of an ack from that
destination, TSNs marked for retransmission may be sent
to that destination. In Figure 9, spurious retransmissions of
TSNs Y+2 and Y+3 are sent to destinationB1, on receipt
of acks freeing up cwnd space for destinationB1. Spurious
retransmissions are exacerbated in CMT, as shown through this
illustration, due to the possibility of sending data (including
retransmissions) to multiple destinations concurrently.

We simulated the occurrence of such spurious retransmis-
sions with the different retransmission policies in CMT. The
simulation topology used is the one described in Section IV-A.
Figure 10(a) shows the ratio of retransmissions relative to the
number of actual packet drops at the router. Ideally, the two
numbers should be equal; all curves should be straight lines at
y = 1. Figure 10(a) shows that spurious retransmissions occur
commonly in CMT with the different retransmission policies.

We propose a heuristic to avoid these spurious retransmis-
sions. Our heuristic assumes that a timeout cannot be triggered
on a TSN until the TSN has been outstanding for at least one
Round-Trip Time (RTT). Thus, if a timeout is triggered, TSNs
which were sent within an RTT in the past are not marked for

7The Multiple Fast Retransmit (MFR) algorithm allows recovery using fast
retransmission multiple times on the same TSN [27], but has not been ported
to CMT. The only recovery mechanism from the loss of a fast retransmission
in CMT, as is the case currently in SCTP and TCP, is a timeout recovery.

8This figure illustrates the point. Discrepancies in scale may be overlooked.

retransmission. We use an average measure of the RTT for this
purpose - the smoothed RTT, which is maintained at a sender.
This heuristic requires the sender to maintain a timestamp for
each TSN indicating the time at which the TSN was last
transmitted (or retransmitted). Figure 10(b) shows how the
application of this heuristic drastically reduces the number of
spurious retransmissions for all retransmission policies.

D. Performance of CMT vs. AppStripe

Figure 11 compares the time taken to transfer an 8MB file
using CMT with the five retransmission policies, vs. using
AppStripe. The x-axis represents different loss rates on Path
2. Each plotted value is the mean of at least 30 simulation
runs. Overall, AppStripe (� in Figure 11) performs worst,
and CMT using any of the retransmission policies performs
better than AppStripe; some policies better than others. At
a 7% loss rate on Path 2, AppStripe takes 40.4 seconds to
transfer an 8 MB file, whereas CMT using RTX-SAME or
RTX-CWND takes 35.5 or 33.2 seconds, respectively. We first
discuss the performance difference between CMT in general
and AppStripe.

CMT using any retransmission policy performs better than
AppStripe, particularly as the loss rate on Path 2 increases.
Note that our AppStripe representsthe best possible perfor-
manceexpected by an application that stripes data over multi-
ple SCTP associations. AppStripe is an idealized case; CMT’s
performance gain over a practical AppStripe implementation
would be even larger. A practical implementation has to also
address issues such as striping data across paths that have
different and changing delays and loss rates. Such issues may
require information from the transport layer (such as current
cwnd and RTT), that may not be readily available to the
application.

CMT performs better than AppStripe for two reasons. First,
and more significant, CMT is more resilient to reverse path
loss than AppStripe. CMT uses a single sequence space
(TSN space, used for congestion control and loss detection
and recovery) across an association’s multiple paths, whereas
AppStripe by design uses an independent sequence space per
path. Since acks are cumulative, sharing of sequence spaces
across paths helps a CMT sender receive ack info on either
of the return paths. Thus, CMT effectively usesboth return
paths for communicating ack info to the sender, whereas each
association in AppStripe cannot help the other “ack-wise”.
These results demonstrate the significant result that CMT’s
sharing of sequence space across paths isan inherent benefit
that performing load sharing at the transport layer has over
performing it at the application layer.

Second, CMT gets faster overall cwnd growth than App-
Stripe in slow start (See Section III-C). As loss increases,
number of timeouts increases, and since the sender enters slow
start after each timeout, the sender spends more time overall
in slow start.

E. Performance of different retransmission policies for CMT

Of the retransmission policies for CMT in Figure 11, RTX-
SAME () performs marginally but consistently worse than

10

0.95

1

1.05

1.1

1.15

1.2

1.25

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

N
um

be
r

of
 R

et
ra

ns
m

is
si

on
s

/ N
um

be
r

of
 P

ac
ke

t D
ro

ps

Path 2 Loss Rate

Path 1 Loss Rate: 1%

RTX-SAME
RTX-ASAP

RTX-SSTHRESH
RTX-CWND

RTX-LOSSRATE

0.95

1

1.05

1.1

1.15

1.2

1.25

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

N
um

be
r

of
 R

et
ra

ns
m

is
si

on
s

/ N
um

be
r

of
 P

ac
ke

t D
ro

ps

Path 2 Loss Rate

Path 1 Loss Rate: 1%

RTX-SAME
RTX-ASAP

RTX-SSTHRESH
RTX-CWND

RTX-LOSSRATE

(a) (b)

Fig. 10. Spurious retransmissions in CMT: (a) Without RTT heuristic (b) With RTT heuristic

 20

 25

 30

 35

 40

 45

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Path 2 Loss Rate

Path 1 Loss Rate: 1%

 AppStripe
 RTX-SAME
 RTX-ASAP
 RTX-SSTHRESH
 RTX-CWND
 RTX-LOSSRATE

Fig. 11. With Path 1 loss rate = 1%, performance of AppStripe vs. CMT
with different retransmission policies

RTX-ASAP (�), which in turn performs almost as well as
the loss rate based policies - RTX-SSTHRESH (4), RTX-
CWND (5), and RTX-LOSSRATE (�). Of the loss rate
based policies, RTX-CWND outperforms RTX-SSTHRESH
and RTX-LOSSRATE, although marginally. While the per-
formance difference between the retransmission policies in
Figure 11 are not significant, these results use an 8MB
receiver’s buffer (rbuf) that does not constrain the sender -
an unrealistic assumption which we will now drop [28].

Figure 12(a) shows the time taken for a CMT sender to
transfer an 8MB file when the rbuf is set to 64KB, using the
five retransmission policies. RTX-SAME is the simplest to
implement, but performs worst. The performance difference
between RTX-SAME and other policies increases as the loss
rate on Path 2 increases. RTX-ASAP performs better than
RTX-SAME, but still worse than RTX-LOSSRATE, RTX-
SSTHRESH and RTX-CWND. The three loss rate based
policies perform equally.

Figure 12(b) shows the number of retransmission time-
outs experienced when using the different policies. This
figure shows that performance improvement in using RTX-
LOSSRATE, RTX-CWND, and RTX-SSTHRESH is due to
the reduced number of timeouts. A lost transmission may
be recovered via a fast retransmission, but a lost fast re-
transmission can be recovered only through a timeout. RTX-
SAME does not consider loss rate in choosing a retransmission
destination and consequently experiences the largest number
of timeouts due to increased loss of retransmissions.

RTX-ASAP does not consider loss rate, and performs
better than RTX-SAME. This improved performance with
RTX-ASAP is attributed to cwnd space availability on both
destinations most of the times a retransmission is triggered
- (i) one retransmission is normally allowed to be sent to
the destination that has just suffered loss, and (ii) the ack
that triggers a retransmission (in case of fast retransmission)
may have created cwnd space for the other destination. From
(i) and (ii), RTX-ASAP has cwnd space availability on both
destinations to send a retransmission. Consequently, RTX-
ASAP randomly chooses a destination causing a reduction
in timeouts over RTX-SAME which pins its TSNs to the
same destination. The three loss rate based policies effectively
choose the better destination to redirect retransmissions to, and
thus show fewer timeouts than RTX-ASAP.

Figures 13(a) and (b) show performance of the retransmis-
sion policies with rbuf sizes of 32KB and 128KB respectively.
Together with Figure 12(a), we can see that the smaller the
rbuf, the more important the choice of retransmission policy.
These results show thata retransmission policy that considers
loss outperforms policies that do not, particularly in the
practical reality where rbuf is constrained.

Figures 12 and 13 suggest that any retransmission policy
that takes loss rate into account will likely improve load
distribution for both new transmissions and retransmissions.
Retransmissions will be redirected to a lower loss rate path,
avoiding inactive timeout recovery periods, and allowing new
transmissions to be sent on the higher loss rate path, thus

11

 20

 30

 40

 50

 60

 70

 80

 90

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
ra

ns
fe

r
tim

e
(s

ec
)

Path 2 Loss Rate

RTX-SAME
RTX-ASAP
RTX-SSTHRESH
RTX-CWND
RTX-LOSSRATE

 0

 5

 10

 15

 20

 25

 30

 35

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

R

et
ra

ns
m

is
si

on
 T

im
eo

ut
s

Path 2 Loss Rate

RTX-SAME
RTX-ASAP
RTX-SSTHRESH
RTX-CWND
RTX-LOSSRATE

(a) (b)

Fig. 12. With rbuf = 64KB, and Path 1 loss rate = 1%,: (a) Time taken by CMT to transfer an 8MB file, (b) Number of retransmission timeouts for CMT
with different retransmission policies

 40

 60

 80

 100

 120

 140

 160

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
ra

ns
fe

r
tim

e
(s

ec
)

Path 2 Loss Rate

RTX-SAME
RTX-ASAP
RTX-SSTHRESH
RTX-CWND
RTX-LOSSRATE

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
ra

ns
fe

r
tim

e
(s

ec
)

Path 2 Loss Rate

RTX-SAME
RTX-ASAP
RTX-SSTHRESH
RTX-CWND
RTX-LOSSRATE

(a) (b)

Fig. 13. With Path 1 loss rate = 1%, time taken to transfer an 8MB file using: (a) rbuf=32KB, (b) rbuf=128KB

maintaining a flow of data on both paths. Policies that take loss
rate into account avoid repeated retransmissions and timeouts
- thus also improving the timeliness of data.

Of three loss rate based policies, the practical ones to
implement are RTX-CWND and RTX-SSTHRESH. Both per-
form equally under all conditions considered. ssthresh, being
a slower moving variable, may better reflect the condition of a
path.We therefore select RTX-SSTHRESH as the recommended
retransmission policy for CMT.

V. SUMMARY AND DISCUSSION

We identified three negative side-effects of introducing
CMT with SCTP, and proposed algorithms to avoid these side-
effects. We compared CMT against AppStripe, an idealized
data striping application, and showed thata shared sequence
space in CMT improves performance and increases resilience
to reverse path loss. We also presented and evaluated five
retransmission policies for CMT. Our results reveal that a

retransmission policy that considers loss rate performs better
than one that does not, particularly in the practical reality
where rbuf is constrained.We recommend the RTX-SSTHRESH
retransmission policy for CMT.

CMT also inherently adds to SCTP’s fault tolerance, which
is a major motivation for, and benefit of multihoming. An
SCTP sender sends data (which act as implicit probes) to a
primary destination, and gathers information about paths to
all other destination addresses (oralternate paths) through
explicit probes. Since explicit probes are infrequent, a sender
usually has inadequate information about alternate paths to a
receiver. Consequently, a sender is unable to make informed
decisions about a new destination to use when the primary
destination is unreachable due to a network failure. A CMT
sender avoids this problem because data sent concurrently on
all paths act as frequent implicit probes, reflecting current con-
ditions of paths to all destination addresses. This information
will better assist a CMT sender in detecting and responding

12

to network failure events.
We emphasize that though CMT uses SCTP, our goal was

to study CMT at the transport layer in general. The reordering
issues and solutions (Section III), and the retransmission
policies and their evaluation (Section IV) should be relevant
even if CMT used a different transport protocol.

VI. RELATED WORK

This section discusses load balancing efforts at the appli-
cation (Section VI-A), transport (Section VI-B) and network
(Section VI-C) layers, a classification also suggested in [29].

A. Load Balancing at the Application Layer

Several applications have been proposed to use multiple
concurrent transport layer connections to a receiver. Some
proposals [30], [31] use multiple TCP connections to increase
throughput in high bandwidth networks. These applications
load balance over the same path to a receiver, whereas CMT
distributes data over multiple independent paths to a receiver.

Mao et al. [32] extend RTP (Realtime Transport Protocol) to
support use of multiple paths inMulti-path Realtime Trans-
port Protocol (MRTP), an application layer protocol which
could use any of TCP, SCTP or UDP as transport. MRTP
specifies session establishment and maintenance mechanisms
and scheduling mechanisms over multiple paths. The authors
propose, as one option, to use SCTP multihoming for simulta-
neously using multiple paths. [32] is complementary to CMT
work, since it provides motivation and an application that
would benefit from using CMT in a multipath environment.

Content Networks [33], [34] provide an infrastructure for
connection level load balancingat the granularity of TCP
connections. Connection level load balancing is useful for
short TCP connections such as web requests and responses,
but can be suboptimal for long transfers such as bulk data
transfers, where the server is constrained to a single path
throughout the transfer. In CMT, we consider load balancing
within a transport connection.

Load balancing at the transport layer is desirable since the
transport layer, being the lowest end-to-end layer, has the
most accurate information about the end-to-end path(s). CMT
maintains loss and delay information which are of significant
value when redirection of retransmissions needs to be made -
such decisions are best made in the transport layer. Besides the
performance benefits with CMT discussed in Section IV-D, we
believe that load balancing at the application layer increases
code redundancy and room for error by requiring independent
implementations in each application rather than coded once in
the transport layer.

B. Load Balancing at the Transport Layer

Hsieh et al. [29] propose a transport protocol calledpTCP
(parallel TCP) which provides an infrastructure for data
striping within the transport layer. pTCP has two components
- Striped connection Manager (SM) and TCP-virtual (TCP-
v). The TCP-v’s are separate connections that are managed
by the SM. TCP-v probes the path and performs congestion

control and loss detection/recovery, while the SM decides
which data is sent on which TCP-v. This important decoupling
of functionality avoids some pitfalls of the application layer
approaches, and allows for intelligent scheduling of transmis-
sions and retransmissions. A significant issue with pTCP is its
complexity. As the authors note themselves, maintenance of
multiple Transmission Control Blocks (TCBs) at a sender can
be a resource sink [35]. The complexity of implementation is
also non-trivial, since pTCP replicates a lot of transport layer
functionality such as connection establishment/teardown and
checksum calculations. pTCP has several unresolved issues as
well. For instance, if both sender and receiver are multihomed
with two IP addresses each, pTCP does not address how
a sender decides which sender-receiver pairs to establish
TCP connections on - a complex problem. Plugging transport
protocols into pTCP also requires non-trivial modifications
to the transport protocols themselves. CMT, on the other
hand, uses and proposes modifications to SCTP, a transport
protocol which already has built-in mechanisms for handling
multihoming.

Al et al. [36] suggest ideas forload sharing with SCTP.
Their solutions require additional metadata in the SCTP PDUs.
We believe that the SCTP (and TCP-SACK) PDUs already
contain sufficient information for the data sender to infer the
per-path ordering information that [36] explicitly codes as
metadata. [36] fails to suggest modified procedures for mech-
anisms which are immediately affected, such as initialization
of the per-path sequence numbers, association initialization
and shutdown procedures with multiple sequence numbering
schemes, and response to reneging by a receiver. We have
also seen that sharing sequence number space across paths
improves performance - [36] uses a separate sequence number
space per path, and will therefore not see CMT’s performance
benefits. Further, [36] assumes that the rbuf does not constrain
a sender which is unrealistic in practice.

Argyriou et al. [37] provide techniques forbandwidth
aggregation with SCTP, but do not present and analyze their
protocol modifications to SCTP. The modification to the fast
retransmission algorithm that is presented is simplistic and
assumes information that will likely not be available to an
SCTP receiver. For instance, the implicit assumption that
a receiver will be able to differentiate a packet loss from
reordering is a strong and unrealistic assumption. [37] also
ignores the impact of a bounded rbuf.

C. Load Balancing at the Network Layer

Phatak and Goff [38] propose distributing data at the
network (IP) layer transparent to the higher layers using IP-
in-IP encapsulation. The authors identify conditions under
which this mechanism would work without triggering incorrect
retransmission timeouts. [38] assumes that end-to-end delays
are dominated by fixed transmission delay, and fails to address
propagation delay dominated paths, and paths with dynami-
cally changing bandwidths and delays.

Several proposals exist formultipath routing - routing
packets from a source to a destination network over multiple
paths [39]–[41]. However, different paths are likely to exhibit

13

different RTTs, thus introducing packet reordering. TCP’s per-
formance degrades in the presence of increased reordering. To
enable optimal load balancing at intermediate routers without
affecting end-to-end TCP performance, modifications to TCP
have also been proposed [15]–[17], [42]. These proposals
augment and/or modify TCP’s congestion control mechanisms
to cope with reordering introduced by network layer load
balancing; the burden of actually using multiple paths in the
network is left to the intermediate routers.

In the Internet, the end user has knowledge of, and control
over, only the multihomed end hosts, not the intermediate
routers. In such cases the end host cannot dictate or govern
use of multiple paths in the network. But the end host can use
multiple end-to-end paths available to the host [43], [44], thus
motivating CMT at the transport layer.

DISCLAIMER

The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the Army Research Laboratory or the U.S. Government.

REFERENCES

[1] R. Stewart, I. Arias-Rodriguez, K. Poon, A. Caro, and M. Tuexen,
“Stream Control Transmission Protocol (SCTP) Implementer’s Guide,”
draft-ietf-tsvwg-sctpimpguide-12.txt, Oct. 2004, (work in progress).

[2] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor,
I. Rytina, M. Kalla, L. Zhang, and V. Paxson, “Stream Control
Transmission Protocol,” RFC2960, Oct. 2000.

[3] E. Kohler, M. Handley, and S. Floyd, “Designing DCCP: Congestion
Control Without Reliability,” Tech. Rep., ICIR, 2004.

[4] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, “An Extension to
the Selective Acknowledgement (SACK) Option for TCP,” RFC2883,
IETF, July 2000.

[5] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control,”
RFC2581, IETF, Apr. 1999.

[6] E. Blanton, M. Allman, K. Fall, and L. Wang, “A Conservative Selective
Acknowledgment (SACK) Based Loss Recovery Algorithm For TCP,”
RFC3517, IETF, Apr. 2003.

[7] J. Iyengar, End-to-end Load Balancing using Transport Layer Multi-
homing, PhD Dissertation, CISC Dept, University of Delaware, (in
progress).

[8] M. S. Kim, T. Kim, Y. Shin, S. S. Lam, and E. J. Powers, “A Wavelet-
based Approach to Detect Shared Congestion,” inACM SIGCOMM,
Portland, Oregon, Aug. 2004.

[9] D. Rubenstein, J. Kurose, and D. Towsley, “Detecting Shared Congestion
of Flows Via End-to-End Measurement,”IEEE/ACM Transactions on
Networking, vol. 10, no. 3, June 2002.

[10] D. Katabi, I. Bazzi, and X. Yang, “A Passive Approach for Detecting
Shared Bottlenecks,” inIEEE ICCCN 2001, Oct. 2001.

[11] K. Harfoush, A. Bestavros, and J. Byers, “Robust Identification of
Shared Losses Using End-to-End Unicast Probes,” inICNP 2000, Osaka,
Japan, Oct. 2000.

[12] UC Berkeley, LBL, USC/ISI, and Xerox Parc, “ns-2 documentation and
software,” Version 2.1b8, 2001, http://www.isi.edu/nsnam/ns.

[13] A. Caro and J. Iyengar, “ns-2 SCTP module,” Version 3.2, December
2002, http://pel.cis.udel.edu.

[14] J. C. R. Bennett, C. Partridge, and N. Shectman, “Packet Reordering
is Not Pathological Network Behavior,”IEEE/ACM Transactions on
Networking, vol. 7, no. 6, Dec. 1999.

[15] E. Blanton and M. Allman, “On Making TCP More Robust to Packet
Reordering,” ACM Computer Communication Review, vol. 32, no. 1,
Jan. 2002.

[16] M. Zhang, B. Karp, S. Floyd, and L. Peterson, “RR-TCP: A Reordering-
Robust TCP with DSACK,” Tech. Rep. TR-02-006, ICSI, July 2002.

[17] S. Bohacek, J. P. Hespanha, J. Lee, C. Lim, and K. Obraczka, “TCP-PR:
TCP for Persistent Packet Reordering,” inIEEE ICDCS 2003, Rhode
Island, May 2003.

[18] J. Iyengar, K. Shah, P. Amer, and R. Stewart, “Concurrent Multipath
Transfer Using SCTP Multihoming,” inSPECTS 2004, San Jose,
California, July 2004.

[19] J. Iyengar, A. Caro, P. Amer, G. Heinz, and R. Stewart, “Making SCTP
More Robust to Changeover,” inSPECTS 2003, Montreal, Canada, July
2003.

[20] J. Iyengar, A. Caro, P. Amer, G. Heinz, and R. Stewart, “SCTP
Congestion Window Overgrowth During Changeover,” inSCI 2002,
Orlando, FL, July 2002.

[21] R. Ludwig and R. Katz, “The Eifel Algorithm: Making TCP Robust
Against Spurious Retransmissions,” inACM Computer Communications
Review, Jan. 2000.

[22] S. Ladha, S. Baucke, R. Ludwig, and P. Amer, “On Making SCTP
Robust to Spurious Retransmissions,”ACM SIGCOMM Computer
Communication Review, vol. 34, no. 2, pp. 123–135, Apr. 2004.

[23] N. Jani and Krishna Kant, “SCTP Performance in Data Center Envi-
ronments,” Tech. Rep., Intel Corporation, 2005.

[24] J. Iyengar, P. Amer, and R. Stewart, “Concurrent Multipath Transfer
Using Transport Layer Multihoming: Performance Under Varying Band-
width Proportions,” inMILCOM 2004, Monterey, CA, Oct. 2004.

[25] J. Iyengar, P. Amer, and R. Stewart, “Retransmission Policies For
Concurrent Multipath Transfer Using SCTP Multihoming,” inICON
2004, Singapore, Nov. 2004.

[26] A. Caro, P. Amer, and R. Stewart, “Transport Layer Multihoming for
Fault Tolerance in FCS Networks,” inMILCOM 2003, Boston, MA,
Oct. 2003.

[27] A. Caro, P. Amer, J. Iyengar, and R. Stewart, “Retransmission Policies
with Transport Layer Multihoming,” inICON 2003, Sydney, Australia,
Sept. 2003.

[28] J. Iyengar, P. Amer, and R. Stewart, “Receive Buffer Management
For Concurrent Multipath Transport Using SCTP Multihoming,” Tech
Report TR2005-10, CIS Dept, University of Delaware, Jan. 2005.

[29] H.Y. Hsieh and R. Sivakumar, “A Transport Layer Approach for Achiev-
ing Aggregate Bandwidths on Multihomed Mobile Hosts,”ACM/Kluwer
Mobile Networks and Applications Journal (MONET), vol. 11, no. 1,
Jan. 2005.

[30] T. Hacker and B. Athey, “The End-to-End Performance Effects of
Parallel TCP Sockets on a Lossy Wide-Area Network,” inIEEE IPDPS,
Ft. Lauderdale, FL, Apr. 2002.

[31] H. Sivakumar, S. Bailey, and R. Grossman, “PSockets: The Case For
Application-Level Network Striping For Data Inttensive Applications
Using High Speed Wide Area Networks,” inIEEE Supercomputing
(SC), Dallas, TX, Nov. 2000.

[32] S. Mao, D. Bushmitch, S. Narayanan, and S. S. Panwar, “MRTP: A
Multi-Flow Realtime Transport Protocol for Ad Hoc Networks,” in
IEEE Vehicular Technology Conference, Orlando, Florida, Oct. 2003.

[33] M. Day, B. Cain, G. Tomlinson, and P. Rzewski, “A Model For Content
Internetworking (CDI),” RFC3466, IETF, Feb. 2003.

[34] A. Barbir, B. Cain, R. Nair, and O. Spatscheck, “Known Content
Network (CN) Request-Routing Mechanisms,” RFC3568, IETF, July
2003.

[35] H.Y. Hsieh and R. Sivakumar, “A Transport Layer Approach for
Achieving Aggregate Bandwidths on Multihomed Mobile Hosts,” in
ACM International Conference on Mobile Computing and Networking
(MOBICOM), Atlanta, Georgia, Sept. 2002.

[36] A. Abd El Al, T. Saadawi, and M. Lee, “LS-SCTP: A Bandwidth
Aggregation Technique For Stream Control Transmission Protocol,”
Computer Communications, vol. 27, no. 10, 2004.

[37] A. Argyriou and V. Madisetti, “Bandwidth Aggregation With SCTP,”
in IEEE Globecom 2003, San Fransisco, CA, Dec. 2003.

[38] D. S. Phatak and T. Goff, “A Novel Mechanism for Data Streaming
Across Multiple IP Links for Improving Throughput and Reliability in
Mobile Environments,” inIEEE INFOCOM 2002, New York, NY, June
2002.

[39] R. Krishnan and J. A. Silvester, “Choice of Allocation Granularity in
Multi-Path Source Routing Schemes,” inIEEE INFOCOM, 1993.

[40] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin, “Highly-Resilient,
Energy-Efficient Multipath Routing in Wireless Sensor Networks,”ACM
SIGMOBILE Mobile Computing and Communications Review, vol. 5,
no. 4, pp. 11–25, Oct. 2001.

[41] H. Suzuki and F. A. Tobagi, “Fast Bandwidth Reservation Scheme
With Multilink And Multipath Routing In ATM Networks,” in IEEE
INFOCOM, 1992.

[42] M. Gerla, S. S. Lee, and G. Pau, “TCP Westwood Simulation Studies
in Multiple-Path Cases,” inSPECTS 2002, San Diego, California, July
2002.

14

[43] R. Teixeira, K. Marzullo, S. Savage, and G.M. Voelker, “Character-
izing and Measuring Path Diversity in Internet Topologies,” inACM
SIGMETRICS (extended abstract), San Diego, CA, June 2003.

[44] R. Teixeira, K. Marzullo, S. Savage, and G.M. Voelker, “In Search of
Path Diversity in ISP Networks,” inUSENIX/ACM Internet Measurement
Conference, Miami, FL, Oct. 2003.

