
END-TO-END CONCURRENT MULTIPATH TRANSFER

USING TRANSPORT LAYER MULTIHOMING

by

Janardhan R. Iyengar

A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment
of the requirements for the degree of Doctor of Philosophy in Computer Science

Summer 2006

c© 2006 Janardhan R. Iyengar
All Rights Reserved

END-TO-END CONCURRENT MULTIPATH TRANSFER

USING TRANSPORT LAYER MULTIHOMING

by

Janardhan R. Iyengar

Approved:
B. David Saunders, Ph.D.
Chair of the Department of Computer and Information Sciences

Approved:
Thomas M. Apple, Ph. D.
Dean of the College of Arts and Sciences

Approved:
Daniel Rich, Ph.D.
Provost

To Anna (Sudarshan)

ii

ACKNOWLEDGMENTS

I am fortunate to have had Professor Paul Amer as my Ph.D. advisor. His ability to ask the

right questions and his attention to detail have never ceased to surprise me. He was always

able to make time for me, even if I just walked into his office without any notice. His

constant emphasis on clear communication and presentation have helped me significantly.

Over the years, as I have gained a deeper appreciation of an advisor’s responsibilities, my

respect for Prof. Amer has only grown. I have a lot to thank him for.

I thank my dissertation committee members: Prof. Adarshpal Sethi, Prof. Stephan Bo-

hacek, Prof. Phillip Conrad, and Randall Stewart for providing valuable direction and

feedback. I specifically want to thank Randy for travelling great distances to be on my

committee, and spending much time with me over the years. His inputs and insights have

been invaluable.

I have had the good fortune of interacting and working with some really wonderful people

in the Protocol Engineering Lab (PEL) and in the CIS department, and I thank them all.

Armando Caro, Jerry Heinz, Sourabh Ladha, Keyur Shah, Len Armstrong, Mark Hufe,

Preethi Natarajan and Jon Leighton have all made my years at PEL a very enjoyable time.

Two people stand out in my tenure at UD, for whose friendships I am thankful. Armando

Caro, a wonderful person and researcher, and my friend of several years, has always been

great to be around and work with. I’ve enjoyed our innumerable long discussions and

intense brainstorming / coding / debugging / racing-for-the-paper-deadline sessions. I

could always count on him as a friend (and chauffeur!), especially so in times of need.

iii

Phill Conrad, my friend, philosopher and guide, has enriched my life in many significant

ways. From helping me immensely with my job search and interviews to discussing my

life’s sketches and dilemmas, he was always there to help out despite his busy schedule. I

thank Phill from the bottom of my heart for being him. Phill and Bob have been wonderful

friends to my family, and I thank them for the wonderful times they have spent with us.

I am very grateful to have a very loving and understanding family. Amma and Appa have

somehow managed the incredible patience to hang on to the hope that I will, some day,

take my “final exams” and graduate. I hope to make up the time that I have been unable

to spend with them and with my lovely sister, Vanu. I also thank my Anna and Manni for

always being with me, especially in difficult times.

My closest friend and wife, Laura, and my son, Achintya, have both been blessings. I

am deeply thankful to them for putting up with me, including my consistently predictable

“I’m sorry I haven’t left yet” each evening. I could not ask for more than to have them

(and the one about to join us) as the center of my life.

A special note for my darling older brother (Anna), Sudarshan, who, in incredibly difficult

times, made certain that I continued on with my Ph.D. I cannot express my gratitude or

my love for him in mere words. This dissertation is dedicated to him.

All the dear friends who have been with me during this period have made all these years

wonderful and memorable.

Finally, my doctoral work was funded by: (i) the U.S. Army Research Laboratory under

the Federated Laboratory Program and the Collaborative Technology Alliance Program,

(ii) the University of Delaware through two Competitive Fellowships and one Dissertation

Fellowship, and (iii) the University Research Program of Cisco Systems, Inc. My thanks

to all for their generous funding that made this research possible.

iv

TABLE OF CONTENTS

ABSTRACT . viii

Chapter

1 INTRODUCTION . 1

1.1 Problem Statement . 1
1.2 Motivation . 2
1.3 An SCTP Primer . 3
1.4 Assuming Independent Bottlenecks . 5
1.5 Research Overview . 6

2 CMT ALGORITHMS . 10

2.1 Naı̈ve CMT: Reordering concerns . 10
2.2 Preventing Unnecessary Fast Retransmissions - SFR Algorithm 13
2.3 Avoiding Reduction in Cwnd Updates - CUC Algorithm 15
2.4 Curbing Increase in Ack Traffic - DAC Algorithm 18

3 RETRANSMISSION POLICIES FOR CMT 23

3.1 CMT Retransmission Policies . 23
3.2 Evaluation Methodology . 25
3.3 Modifications to Protocol Mechanisms 28

3.3.1 CUCv2: Modified CUC Algorithm 28
3.3.2 Spurious Timeout Retransmissions 28

3.4 Evaluation of CMT vs. AppStripe . 32

v

4 IMPLICATIONS OF A CONSTRAINED RECEIVE BUFFER 36

4.1 Receive Buffer Blocking in CMT: Problem Description 37
4.2 Choosing a Retransmission Policy . 42

4.2.1 Evaluation with rbuf=64KB . 42
4.2.2 Evaluation with Different rbufs 46

4.3 Performance Impact of Receive Buffer Blocking 49

4.3.1 Performance Under Different Equal End-to-end Delays 49
4.3.2 CMT vs. UnawareApp . 51
4.3.3 CMT vs. AwareApp . 55

4.4 Evaluation With Cross-traffic Based Losses 59
4.5 Discussion . 63

5 CMT IMPLEMENTATION IN BSD . 65

5.1 Implementation Details . 65
5.2 Concerns with Stale Acks . 67
5.3 Evaluation . 69

6 CONGESTION WINDOW OVERGROWTH IN SCTP CHANGEOVER . 74

6.1 Preliminaries . 74
6.2 Congestion Window Overgrowth Problem 75
6.3 General Model . 79
6.4 Estimation of Congestion Window Overgrowth 81
6.5 Analytical Results: Validation and Visualization 84

6.5.1 Analytical Results: Validation 84
6.5.2 Analytical Results: Visualization 86

6.6 Solutions . 90

vi

7 DISCUSSION, FUTURE WORK AND RELATED WORK 92

7.1 Discussion . 92

7.1.1 Alternative Design – Separate Sequence Spaces 92
7.1.2 Retransmission Timer Calculations 93
7.1.3 Applicability With a Shared Bottleneck 95
7.1.4 CMT in Other Environments 96

7.2 Future Work . 97

7.2.1 Considerations For Path Failures 98
7.2.2 Shared Bottleneck Detection and Response 99

7.3 Related Work . 101

7.3.1 Load Balancing at the Application Layer 101
7.3.2 Load Balancing at the Transport Layer 102
7.3.3 Load Balancing at the Network Layer 104
7.3.4 Load Balancing at the Link Layer 105

7.4 Summary . 106

BIBLIOGRAPHY . 107

vii

ABSTRACT

Transport layer multihoming binds a single transport layer association to multiple net-

work addresses at each endpoint, thus allowing the two end hosts to communicate over

multiple network paths. This dissertation investigates end-to-end Concurrent Multipath

Transfer (CMT) using transport layer multihoming for increased application throughput.

CMT is the simultaneous transfer of new data from a source host to a destination host

via two or more end-to-end paths. We investigate and evaluate design considerations in

implementing CMT at the transport layer using the Stream Control Transmission Proto-

col (SCTP) as an example of a multihome-capable transport layer protocol. Specifically,

we explore (i) algorithms for CMT at the transport layer, (ii) retransmission policies for

CMT, and (iii) performance implications of a bounded receive buffer on CMT.

We identify three negative side-effects of reordering due to CMT that must be managed

before the full performance gains of CMT’s parallel transfer can be achieved. We pro-

pose three algorithms to eliminate these side-effects: the Split Fast Retransmit algorithm

(SFR) to handle unnecessary fast retransmissions by a sender, the Cwnd Update for CMT

algorithm (CUC) to counter overly conservative congestion window growth at a sender,

and the Delayed Ack for CMT algorithm (DAC) to curb an increase in ack traffic due to

fewer delayed acks by a receiver. These algorithms demonstrate that a single sequence

space within a transport layer association is sufficient for CMT; separate sequence spaces

per path are not required.

viii

We propose and evaluate five retransmission policies for CMT. Introducing these retrans-

mission policies causes two side-effects: occurrence of spurious retransmissions and in-

accurate congestion window estimation. We propose two protocol modifications to elim-

inate these side-effects. Using simulation, we evaluate CMT against AppStripe, a sim-

ulated idealized application that stripes data over multiple paths using multiple SCTP

associations. The results of this evaluation demonstrate that CMT’s sharing of sequence

space across paths improves performance—an inherent benefit that load sharing at the

transport layer has over that at the application layer.

We study the performance of CMT in the presence of a bounded receive buffer (rbuf).

Simulation results show that if two paths are used for CMT, the lower quality (i.e., higher

loss rate) path degrades overall throughput of an rbuf-constrained CMT association by

blocking the rbuf. We argue that rbuf blocking is not specific to the transport layer, but

applies to multipath transfers at other layers as well. We present and discuss CMT per-

formance using the proposed retransmission policies and various constrained rbuf values.

We also study the impact of rbuf blocking with different combinations of end-to-end loss

rate and delay on the two paths and show that when large differences exist in path delays

and loss rates, using only the better path outperforms using two paths concurrently. While

rbuf blocking cannot be eliminated, we show that it can be reduced by choice of retrans-

mission policy—a mechanism available to only the transport layer. We recommend the

loss-rate-based policies, which are the best performing ones, for CMT.

We discuss our implementation of CMT in the reference SCTP implementation, which

is written for the BSD family of operating systems. This implementation effort was

funded by Cisco Systems, with the goal of potentially migrating CMT into their sys-

tems. While we test our implementation in the FreeBSD operating system, other BSD

and BSD-derived systems such as NetBSD, OpenBSD and Darwin should be able to use

the CMT implementation. A major goal of our implementation is to encourage wider use

ix

and experimentation with CMT in different environments and under different constraints,

contributing to a better understanding of CMT and to uncovering of hitherto unknown

issues.

This dissertation operates under the strong assumption that the bottleneck queues used

in CMT are independent. We identify two classes of networks where this assumption is

valid, and thus the results in this dissertation can be of immediate application. We also

explain how this dissertation lays the foundation for further exploration of CMT for the

Internet, where this assumption does not hold.

x

Chapter 1

INTRODUCTION

1.1 Problem Statement

This dissertation proposes and investigates transport layer techniques to exploit end host

multihoming using end-to-end Concurrent Multipath Transfer (CMT) for improved ap-

plication throughput. CMT is the concurrent transfer of new data from a source to a

destination host via two or more end-to-end paths. A host is multihomed if it can be

addressed by multiple IP addresses [15], as is the case when the host has multiple net-

work interfaces. Transport layer support of multihoming can allow, transparent to the

application (or users), dynamic redirection of data within a transport layer connection to

a reachable destination address during network congestion and/or failure. With the inclu-

sion of multihoming support in new and practical transport protocols being standardized

by the IETF, the need to research new techniques to meaningfully and correctly leverage

multihoming has become immediate. Towards this end, we propose to extend the benefits

of transport layer multihoming by distributing data over the multiple end-to-end paths

between a multihomed source and destination, and discuss the different issues therein.

1

1.2 Motivation

Multihoming among networked machines and devices is a technologically feasible and

increasingly economical proposition. Though feasibility alone does not determine adop-

tion of an idea, multihoming can be expected to be the rule rather than the exception in

the near future, particularly for applications where fault tolerance is crucial. Multihomed

nodes may be simultaneously connected through multiple access technologies, and even

multiple end-to-end paths to increase resilience to path failure. For instance, users may be

simultaneously connected through dial-up/broadband, or via multiple wireless technolo-

gies such as 802.11b and GPRS. (For a more detailed motivation of end host multihoming,

see Chapter 1 in [16].)

Although transport layer multihoming is an old concept (splitting/recombining or downward-

multiplexing for providing added resilience against network failure and/or potentially in-

creasing throughput [32, 66, 69]), the current transport protocol workhorses, UDP and

TCP, do not support multihoming; UDP does not bind or connect endpoints, and TCP

allows binding to only one network address at each end of a connection. At the time

TCP was designed, network interfaces were expensive components, and hence multihom-

ing of end hosts was beyond the ken of research. Changing economics and an increased

emphasis on end-to-end fault tolerance have brought multihoming within the purview of

the transport layer, thus transforming transport layer multihoming into a feature worth

supporting and investigating.

Two recent IETF transport layer protocols, the Stream Control Transmission Protocol

(SCTP) [63, 65], and the Datagram Congestion Control Protocol (DCCP) [49] natively

support multihoming at the transport layer. While DCCP provides “primitive multihom-

ing” [48] at the transport layer for mobility support, SCTP multihoming is driven by a

broader and more generic application base, which includes fault tolerance and mobility.

DCCP multihoming, by design, is useful only for connection migration and not CMT.

2

Simultaneous transfer of new data to multiple destination addresses is inherent in SCTP’s

design, but currently not allowed due primarily to insufficient research. This dissertation

attempts to provide that needed research.

In this dissertation, we focus on SCTP for our investigation of CMT primarily due to lack

of mature multihoming mechanisms in any other practical transport layer protocol, and

partly due to this author’s expertise with it. While concurrency can be arranged at other

layers (as discussed in Chapters 3 and 7), we propose CMT at the transport layer because

being the first end-to-end layer, the transport layer has the best knowledge to estimate

end-to-end paths’ characteristics. Though CMT uses SCTP in our analysis, our goal is

to study CMT at the transport layer in general. We believe that the issues and algorithms

considered in this research will provide insight in incorporating multihome-awareness in

other transport protocols.

1.3 An SCTP Primer

We overview several ideas and mechanisms used by SCTP relevant to this dissertation;

some are compared with TCP to highlight similarities and differences. SCTP was origi-

nally developed to carry telephony signaling messages over IP networks. With continued

work, SCTP evolved into a general purpose transport protocol that includes advanced de-

livery options. SCTP is defined in RFC2960 [65] with changes and additions included

in the Specification Errata Internet draft1 [63]. Similar to TCP, SCTP provides a reli-

able, full-duplex connection, called an association. An SCTP packet, or more generally,

protocol data unit (PDU), consists of one or more concatenated building blocks called

chunks: either control or data. For the purposes of reliability and congestion control,

each data chunk in an association is assigned a unique Transmission Sequence Number

1 RFC2960 and the Specification Errata are expected to soon be combined into a single
“RFC2960-bis” document.

3

(TSN). Since chunks are atomic, TSNs are associated with chunks of data, as opposed

to TCP which associates a sequence number with each data octet in the bytestream. In

our simulations, we assume one data chunk per PDU for ease of illustration; each PDU

thus carries, and is associated with a single TSN. SCTP uses a selective ack scheme sim-

ilar to SACK TCP [26]; SCTP acks carry cumulative and selective ack (also called gap

ack) information and are called SACKs. In this dissertation, sometimes “SACK” is used

rather than “ack” to emphasize when an ack carries both cumulative and selective ack

information.

Host A

A1

A2

Host B

B1

B2

Internet
ISP

ISP

ISP

ISP

Figure 1.1: Example Multihomed Topology

Unlike TCP, SCTP supports multihoming at the transport layer to provide redundancy

at the path level, thus increasing association survivability in the case of a network path

failure. An SCTP endpoint may bind to multiple IP addresses during association initial-

ization. Referring to Figure 1.1, let us contrast SCTP with TCP to further explain SCTP’s

multihoming feature. Four distinct TCP connections are possible between Hosts A and B:

(A1, B1), (A1, B2), (A2, B1), (A2, B2). SCTP, on the other hand, is not forced to choose

a single IP address on each host. Instead, a single SCTP association could consist of two

sets of IP addresses, which in our example would be: ({A1, A2}, {B1, B2}). An SCTP

endpoint may bind to a proper subset of its available IP addresses. This binding allows

an SCTP sender to send data to a multihomed receiver through different destination ad-

dresses. Currently, SCTP uses multihoming for redundancy purposes only; the RFC2960

4

specification does not allow simultaneous transfer of new data to multiple destination ad-

dresses. New data must be sent to a single primary destination, while retransmissions

may be sent to any alternate destination. Note that a single port number is used at each

endpoint regardless of the number of IP addresses.

SCTP’s congestion control algorithms are based on RFC 2581 [8], and include SACK-

based mechanisms for better performance. Similar to TCP, SCTP uses three control vari-

ables: a receiver’s advertised window (rwnd), a sender’s congestion window (cwnd), and

a sender’s slow start threshold (ssthresh). However, unlike TCP’s cwnd which reflects

which and how much data can be sent, SCTP’s cwnd dictates only how much data can

be sent. Since an SCTP association allows multihomed source and destination endpoints,

a source maintains several parameters on a per destination basis: cwnd, ssthresh, and

roundtrip time (RTT) estimates. An SCTP sender also maintains a separate retransmis-

sion timer per destination, but rwnd is shared across an association.

A note on language and terminology. A reference to “cwnd for destination X” means the

cwnd maintained at the sender for destination X, and “timeout on destination X” refers to

the expiration of a sender’s retransmission timer maintained for data sent to destination

X. Also, “cwnd for destination X” may be used interchangeably with “cwnd for path Y”,

where path Y ends in destination X.

For the interested reader, more information on SCTP is available in [20, 43, 62–65].

1.4 Assuming Independent Bottlenecks

This dissertation operates under the assumption that the bottleneck queues (in other words,

points of congestion) on the end-to-end paths used in CMT are independent. Overlap in

the paths is acceptable as long as the paths’ bottlenecks are independent. Two motivating

examples where this assumption holds are telephony networks and battlefield networks.

5

• Signaling communication in telephony networks is being migrated to IP, and uses

SCTP for transport. Given the stringent availability requirements on these net-

works, signaling devices are multihomed and are inter-connected via multiple, in-

dependent end-to-end paths for reasons of fault tolerance. The end-to-end paths

share no network resource, thus avoiding any single point of failure [28].

• The US Army’s proposed Future Combat System for battlefield networks will equip

mobile hosts with multiple interfaces, often connecting to independent wireless net-

works, for example, a terrestrial short-range radio, and a long-range communica-

tion to either low-flying or geostationary satellites. These different communication

technologies will provide multiple independent paths between nodes [1].

We recognize that our assumption of independent paths is a strong one. A CMT sender

that can deal with shared bottlenecks must be able to detect them and respond appro-

priately. In Section 7.2.2, we discuss how related work on end-to-end shared bottleneck

detection can be applied to CMT. In Section 7.1.3, we examine how the results of this

dissertation are applicable to the further study of CMT in the presence of a shared bottle-

neck.

1.5 Research Overview

This dissertation proposes mechanisms for CMT using SCTP multihoming and investi-

gates performance gains to be had with CMT. A structural outline of this dissertation is

shown in Figure 1.2. The references cited for each chapter represent the author’s publica-

tions for each topic.

A naı̈ve form of CMT can be obtained by simply modifying the SCTP sender to transmit

new data to all destinations. However, transmitting new data over multiple paths with

different network characteristics introduces reordering in the data stream. We identify

6

three negative side-effects of reordering that need to be addressed, and propose three al-

gorithms as solutions for a “correct” CMT—the Split Fast Retransmit algorithm (SFR)

to handle unnecessary fast retransmissions by a sender, the Cwnd Update for CMT algo-

rithm (CUC) to counter overly conservative congestion window growth at a sender, and

the Delayed Ack for CMT algorithm (DAC) to curb an increase in ack traffic due to fewer

delayed acks by a receiver. Details of the algorithms are presented in Chapter 2.

Though an SCTP sender can choose from one of several destinations to retransmit lost

transmissions, a sender has limited feedback about the different paths to the receiver

since new data is sent to only one destination. A CMT sender, on the other hand, has

more frequent feedback about all paths to the receiver, and can leverage this informa-

tion in making a better decision when retransmitting. A CMT sender can also choose

the retransmission destination for each loss recovery independently using the most recent

information for its decision. We explore several retransmission policies for CMT, and

evaluate their performance against an idealized application that stripes data across multi-

ple paths. Unexpectedly, we observe that a key benefit with CMT is increased resilience

to reverse path loss due to the use of multiple reverse paths. These results are presented

and discussed in Chapter 3.

We study the implications of a bounded receive buffer (rbuf)—a constraint often ignored

in transport layer research—on CMT’s performance. We observe that a bounded rbuf

has significant impact on CMT’s performance; if two paths are used for CMT, the lower

quality (i.e., higher loss rate) path degrades the overall throughput of an rbuf-constrained

CMT association. We study the impact and extent of this degradation, and observe that

when large differences exist in path delays and loss rates, using only the better path out-

performs using two paths concurrently. We argue that this degradation is not specific

to the transport layer, but applies to multipath transfers at other layers as well. While

7

this degradation cannot be eliminated, it can be reduced by intelligent choice of retrans-

mission policy—a mechanism available to only the transport layer. These results are

presented in Chapter 4.

We discuss our implementation of CMT in the reference SCTP implementation, which is

written for the BSD family of operating systems, and evaluate it over an emulated net-

work. Our experimental results demonstrate the correctness of the implementation, and

help validate our simulation results. Chapter 5 carries a discussion of the implementa-

tion and the experiments. While our implementation is tested in the FreeBSD operating

system, other BSD and BSD-derived systems such as NetBSD, OpenBSD and Darwin

should be able to use the CMT implementation. This implementation effort was funded

by Cisco Systems, with the goal of potentially migrating CMT into their IOS operating

system. This implementation should also encourage wider use and experimentation with

CMT in varied environments; for instance, this author has been in touch with a group at

the University of British Columbia who are interested in using the CMT implementation

in grid networks. Such varied use will contribute to a better understanding of CMT and

to uncovering of hitherto unknown issues.

In Chapter 6, we change topics to explore changeover with SCTP, where a sender redi-

rects traffic from one reachable destination to another, only once in an association. We

uncover a problem in SCTP that results in unnecessary retransmissions and excessively

aggressive growth of the sender’s congestion window (cwnd) during certain changeover

conditions. Since CMT can be viewed as repeated changeover, we see similarity between

this problem and one negative side-effect of reordering with CMT; indeed, the same algo-

rithm (SFR) is proposed as a solution to both problems. To gain insight into the ambient

conditions under which cwnd overgrowth can be observed with SCTP, we develop an

analytical model of this behavior and analyze the results.

8

Chapter 7 concludes this dissertation. We first present a discussion of some design con-

siderations for CMT and applicability of CMT in various settings. We then identify and

present thoughts on areas for continued exploration of CMT, some of which are currently

being pursued. Finally, we conclude with a summary of related work on load sharing in

computer networking.

[20]

[33, 36, 41] [33, 36]

[33, 35, 36] [34, 37]

[38–40]

Figure 1.2: Dissertation structure

9

Chapter 2

CMT ALGORITHMS

As is the case with TCP [13, 14, 71], reordering introduced in an SCTP flow degrades

throughput. When multiple paths being used for CMT have different delay and/or band-

width characteristics, significant packet reordering can be introduced in the flow by a

CMT sender. Reordering is a natural consequence of CMT, and is difficult to eliminate

in an environment where the end-to-end path characteristics are changing or unknown

a priori, as in the Internet. In this chapter, we identify and resolve the negative side-

effects of sender-introduced reordering by CMT in SCTP. The results have been published

in [33, 36, 41].

2.1 Naı̈ve CMT: Reordering concerns

To illustrate the effects of reordering introduced in SCTP by CMT, we use the simple

simulation setup in Figure 2.1. Two dualhomed hosts, sender A with local addresses

A1, A2, and receiver B with local addresses B1, B2, are connected by two independent

paths: Path 1 (A1 − B1), and Path 2 (A2 − B2) having end-to-end available bandwidths

0.2 Mbps and 1 Mbps, respectively. The roundtrip propagation delay on both paths is

90 ms, roughly reflecting the U. S. coast-to-coast delay. CMT sender A sends new data to

destinations B1 and B2 concurrently, as bandwidth becomes available on corresponding

paths, i.e., as corresponding cwnds allow. When cwnd space is available simultaneously

10

for two or more destinations, data is sent to these destinations in arbitrary order—a rea-

sonable transmission policy when the CMT sender has no a priori knowledge of the paths’

characteristics.

A

A1

A2

B

B1

B2

Bandwidth = 0.2 Mbps
Prop delay = 45ms

Bandwidth = 1 Mbps
Prop delay = 45ms

Figure 2.1: Simulation topology to illustrate reordering effects

The simulation results described in this chapter (Figures 2.2 and 2.6) both show cwnd

evolution over time. The figures show the CMT sender’s (1) observed cwnd evolution for

destination B1 (+), (2) observed cwnd evolution for destination B2 (×), (3) calculated

aggregate cwnd evolution (sum of (1) and (2)) (4), and (4) expected aggregate cwnd

evolution (–). This last curve represents our initial performance goal for CMT—the sum

of the cwnd evolution curves of two independent SCTP runs, using B1 and B2 as the

primary destination, respectively.

Figure 2.2 shows how, when performing CMT using SCTP without any modifications

(i.e., Naı̈ve CMT), reordering significantly hinders both B1 and B2’s cwnd growth. Note

11

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 2 4 6 8 10 12 14 16

cw
nd

 (
by

te
s)

time (seconds)

CMT(B1)
CMT(B2)
CMT(B1+B2)
Expected [SCTP(B1) + SCTP(B2)]

Figure 2.2: CMT with SCTP: Evolution of the different cwnds

the several cwnd reductions for both B1 and B2, for instance, the cwnd for B2 is cut in

half at times 1.8 sec., 7.8 sec., and 12.7 sec. Normally cwnd reductions are seen when a

sender detects loss, but for Figure 2.2, no packet loss was simulated! The aggregate cwnd

evolution (4) is significantly below the expected aggregate cwnd evolution (–).

We identify and resolve three negative side-effects of reordering introduced by CMT that

must be managed before the performance gains of parallel transfer can be fully achieved:

(i) unnecessary fast retransmissions at the sender (Section 2.2), (ii) reduced cwnd growth

due to fewer cwnd updates at the sender (Section 2.3), and (iii) increased ack traffic due

to fewer delayed acks (Section 2.4).

A note on notation used in this chapter. CMT refers to a host performing concurrent

multipath transfer using current SCTP. CMTs, CMTc, and CMTd refer to a host perform-

ing CMT with Split Fast Retransmit (SFR) (Section 2.2), Cwnd Update for CMT (CUC)

(Section 2.3) and Delayed Ack for CMT (DAC) (Section 2.4) algorithms, respectively.

12

Multiple subscripts indicates use of more than one algorithm.

2.2 Preventing Unnecessary Fast Retransmissions - SFR Algorithm

When reordering is observed, a receiver sends gap reports (i.e., gap acks) to the sender

which uses the reports to detect loss through a fast retransmission procedure similar to

TCP’s Fast Retransmit [8,65]. With CMT, unnecessary fast retransmissions can be caused

due to reordering [40], with two negative consequences: (1) since each retransmission is

assumed to occur due to a congestion loss, the sender reduces its cwnd for the destina-

tion on which the retransmitted data was outstanding, and (2) a cwnd overgrowth problem

(discussed later in Chapter 6) causes a sender’s cwnd to grow aggressively for the destina-

tion on which the retransmissions are sent, due to acks received for original transmissions.

In Figure 2.2, each cwnd reduction observed for B1 and B2 is due to an unnecessary fast

retransmission. These unnecessary retransmissions are due to sender-introduced reorder-

ing, and are not spurious retransmissions due to network effects [50, 52].

Conventional interpretation of a SACK chunk in SCTP (or SACK options in TCP) is that

gap reports imply possible loss. The probability that a TSN is lost, as opposed to being

reordered, increases with the number of gap reports received for that TSN. Due to sender-

induced reordering, a CMT sender needs additional information to infer loss. Gap reports

alone do not (necessarily) imply loss; but a sender can infer loss using gap reports and

knowledge of each TSN’s destination.

Algorithm Details: The proposed solution to address the side-effect of incorrect cwnd

evolution due to unnecessary fast retransmissions is the Split Fast Retransmit (SFR) algo-

rithm (Figure 2.3). SFR extends a previous incarnation which could not handle cycling

changeover [40]. SFR introduces a virtual queue per destination within the sender’s re-

transmission queue. A sender deduces missing reports for a TSN using SACK informa-

tion in conjunction with state maintained about the transmission destination for each TSN

13

in the retransmission queue. With SFR, a multihomed sender correctly applies the fast

retransmission procedure on a per destination basis. An advantage of SFR is that only the

sender’s behavior is affected; the SCTP receiver is unchanged.

SFR introduces two additional variables per destination at a sender:

1. highest in sack for dest - stores the highest TSN acked per destination by the SACK

being processed.

2. saw newack - a flag used during the processing of a SACK to infer the causative

TSN(s)’s destination(s). Causative TSNs for a SACK are those TSNs which caused

the SACK to be sent (i.e., TSNs that are acked in this SACK, and are acked for the

first time).

On receipt of a SACK containing gap reports [Sender side behavior]:
1) ∀ destination addresses di, initialize di.saw newack = FALSE;
2) for each TSN ta being acked that has not been acked

in any SACK thus far do
let da be the destination to which ta was sent;
set da.saw newack = TRUE;

3) ∀ destinations dn, set dn.highest in sack for dest to highest TSN
being newly acked on dn;

4) to determine whether missing report count for a TSN tm should be incremented:
let dm be the destination to which tm was sent;
if (dm.saw newack == TRUE) and

(dm.highest in sack for dest > tm) then
increment missing report count for tm;

else do not increment missing report count for tm;

Figure 2.3: Split Fast Retransmit (SFR) Algorithm – Eliminating unnecessary fast re-
transmissions

14

In Figure 2.3, step (2) sets saw newack to TRUE for the destinations to which the newly

acked TSNs were sent. Step (3) tracks, on a per destination basis, the highest TSN being

acked. Step (4) uses information gathered in steps (2) and (3) to infer missing TSNs. Two

conditions in step (4) ensure correct missing reports: (a) TSNs to be marked should be

outstanding on the same destination(s) as TSNs which have been newly acked, and (b)

at least one TSN, sent later than the missing TSN, but to the same destination address,

should be newly acked.

2.3 Avoiding Reduction in Cwnd Updates - CUC Algorithm

The cwnd evolution algorithm for SCTP [65] (and analogously for SACK TCP [8, 26])

allows growth in cwnd only when a new cum ack is received by a sender. When SACKs

with unchanged cum acks are generated (say due to reordering) and later arrive at a sender,

the sender does not modify its cwnd. This mechanism again reflects the conventional

view that a SACK which does not advance the cum ack indicates possibility of loss due

to congestion.

Since a CMT receiver naturally observes reordering, many SACKs are sent containing

new gap reports but not new cum acks. When these gaps are later acked by a new cum

ack, cwnd growth occurs, but only for the data newly acked in the most recent SACK.

Data previously acked through gap reports will not contribute to cwnd growth. This

behavior prevents sudden increases in the cwnd resulting in bursts of data being sent. Even

though data may have reached the receiver “in-order per destination,” without changing

the current handling of cwnd, the updated cwnd will not reflect this fact.

This inefficiency can be attributed to the current design principle that the cum ack in a

SACK, which tracks the latest TSN received in-order at the receiver, applies to an en-

tire association, not per destination. TCP and current SCTP (i.e., SCTP without CMT)

use only one destination address at any given time to transmit new data to, and hence,

15

this design principle works fine. Since CMT uses multiple destinations simultaneously,

cwnd growth in CMT demands tracking the latest TSN received in-order per destination,

information not coded directly in a SACK.

We propose a cwnd growth algorithm to track the earliest outstanding TSN per destina-

tion and update the cwnd, even in the absence of new cum acks. The proposed Cwnd

Update for CMT (CUC) algorithm uses SACKs and knowledge of transmission desti-

nation for each TSN to deduce in-order delivery per destination. The crux of the CUC

algorithm is to track the earliest outstanding data per destination, and use SACKs which

ack this data to update the corresponding cwnd. In understanding our proposed solution,

we remind the reader that gap reports alone do not (necessarily) imply congestion loss;

SACK information is treated only as a concise description of the TSNs received by the

receiver.

Algorithm Details: Figure 2.4 shows the proposed CUC algorithm. A pseudo-cumack

tracks the earliest outstanding TSN per destination at the sender. An advance in a pseudo-

cumack triggers a cwnd update for the corresponding destination, even when the actual

cum ack is not advanced. The pseudo-cumack is used for cwnd updates; only the actual

cum ack can dequeue data in the sender’s retransmission queue since a receiver can renege

on data that is not cumulatively acked. An advantage of CUC is that only the sender’s

behavior is affected; the SCTP receiver is unchanged.

The CUC algorithm introduces three variables per destination at a sender:

1. pseudo cumack - maintains earliest outstanding TSN.

2. new pseudo cumack - flag to indicate if a new pseudo-cumack has been received.

3. find pseudo cumack - flag to trigger a search for a new pseudo-cumack. This flag

is set after a new pseudo-cumack has been received.

16

At beginning of an association [Sender side behavior]:
∀ destinations d, reset

d.find pseudo cumack = TRUE;
On receipt of a SACK [Sender side behavior]:

1) ∀ destinations d, reset d.new pseudo cumack = FALSE;
2) if the SACK carries a new cum ack then

for each TSN tc being cum acked for the first time, that was not acked
through prior gap reports do

(i) let dc be the destination to which tc was sent;
(ii) set dc.f ind pseudo cumack = TRUE;
(iii) set dc.new pseudo cumack = TRUE;

3) if gap reports are present in the SACK then
for each TSN tp being processed from the retransmission queue do

(i) let dp be the destination to which tp was sent;
(ii) if (dp.f ind pseudo cumack == TRUE) and

tp was not acked in the past then
dp.pseudo cumack = tp;
dp.f ind pseudo cumack = FALSE;

(iii) if tp is acked via gap reports for first time and
(dp.pseudo cumack == tp) then

dp.new pseudo cumack = TRUE;
dp.f ind pseudo cumack = TRUE;

4) for each destination d do
if (d.new pseudo cumack == TRUE) then update cwnd as per [63, 65];

Figure 2.4: Cwnd Update for CMT (CUC) Algorithm – Handling side-effect of reduced
cwnd growth due to fewer cwnd updates

17

In Figure 2.4, step (2) initiates a search for a new pseudo cumack by setting

find pseudo cumack to TRUE for the destinations on which TSNs newly acked were out-

standing. A cwnd update is also triggered by setting new pseudo cumack to TRUE for

those destinations. Step (3) then processes the outstanding TSNs at a sender, and tracks on

a per destination basis, the TSN expected to be the next pseudo cumack. Step (4) finally

updates the cwnd for a destination if a new pseudo cumack was seen for that destination.

2.4 Curbing Increase in Ack Traffic - DAC Algorithm

Sending an ack after receiving every two data PDUs (i.e., delayed acks) in SCTP (and

TCP) reduces ack traffic in the Internet, thereby saving processing and storage at routers

on the ack path. SCTP specifies that a receiver should use the delayed ack algorithm as

given in RFC 2581 [8], where acks are delayed only as long as the receiver receives data in

order. Reordered PDUs should be acked immediately. With CMT’s frequent reordering,

this rule causes an SCTP receiver to frequently not delay acks. Hence a negative side-

effect of reordering with CMT is increased ack traffic.

To prevent this increase, we propose that a CMT receiver ignore the rule mentioned above.

That is, a CMT receiver does not immediately ack an out-of-order PDU, but delays the

ack. Thus, a CMT receiver always delays acks, irrespective of whether or not data is

received in order1. Though this modification eliminates the increase in ack traffic, RFC

2581’s rule has another purpose which gets hampered.

An underlying assumption that pervades SCTP’s (and TCP’s) design is that data in general

arrives in order; data received out-of-order indicates possible loss. According to RFC

2581, a receiver should immediately ack data received above a gap in the sequence space

to accelerate loss recovery with the fast retransmit algorithm [8]. In SCTP, four acks with

1 We do not modify a receiver’s behavior when an ack being delayed can be piggy-
backed on reverse path data, or when the delayed ack timer expires.

18

missing reports for a TSN indicate that a receiver received at least four data PDUs sent

after the missing TSN. Receipt of four missing reports for a TSN triggers the sender’s fast

retransmit algorithm. In other words, the sender has a reordering threshold (or dupack

threshold) of four PDUs. Since a CMT receiver cannot distinguish between loss and

reordering introduced by a CMT sender, the modification suggested above by itself would

cause the receiver to delay acks even in the face of loss. When a loss does occur with our

modification to a receiver, fast retransmit would be triggered by a CMT sender only after

the receiver receives eight(!) data PDUs sent after a lost TSN - an overly conservative

behavior.

The effective increase in reordering threshold at a sender can be countered by reducing

the actual number of acks required to trigger a fast retransmit at the sender, i.e., by in-

creasing the number of missing reports registered per ack. In other words, if a sender can

increment the number of missing reports more accurately per ack received, fewer acks

will be required to trigger a fast retransmit. A receiver can provide more information in

each ack to assist the sender in accurately inferring the number of missing reports per ack

for a lost TSN. We propose that in each ack, a receiver report the number of data PDUs

received since the previous ack was sent. A sender then infers the number of missing

reports per TSN based on the TSNs being acked in a SACK, number of PDUs reported

by the receiver, and knowledge of transmission destination for each TSN. We note that

additionally, heuristics (as proposed in [13]) may be used at a CMT sender to address

network induced reordering.

Algorithm Details: The proposed Delayed Ack for CMT (DAC) algorithm (Figure 2.5)

specifies a receiver’s behavior on receipt of data, and also a sender’s behavior when the

missing report count for a TSN needs to be incremented. Since SCTP (and TCP) acks

are cumulative, loss of an ack will result in loss of the data PDU count reported by the

receiver, but the TSNs will be acked by the following ack. Receipt of this following

19

On receipt of a data PDU [Receiver side behavior]:
1) delay sending ack as given in [65], with the additional rule that

the ack should be delayed even if reordering is observed.
2) in ack, report number of data PDUs received since sending of previous ack.

When incrementing missing report count through SFR:Step (4)
4) to determine whether missing report count for a TSN tm should be incremented:

let dm be the destination to which tm was sent;
if (dm.saw newack = TRUE) and (dm.highest in sack for dest > tm) then

(i) if (∀ destinations do where do 6= dm, do.saw newack == FALSE) then
(all newly acked TSNs were sent to the same destination as tm)
(a) if (∃ newly acked TSNs ta, tb such that ta < tm < tb) then

(conservatively) increment missing report count for tm by 1;
(b) else if (∀ newly acked TSNs ta, ta > tm) then

increment missing report count for tm by number of PDUs
reported by receiver;

(ii) else
(Mixed SACK - newly acked TSNs were sent to multiple destinations)
(conservatively) increment missing report count for tm by 1;

Figure 2.5: Delayed Ack for CMT (DAC) Algorithm – Handling side-effect of increased
ack traffic

ack can cause ambiguity in inferring missing report count per destination. Our algorithm

conservatively assumes a single missing report count per destination in such ambiguous

cases. The DAC algorithm requires modifications to both the sender and the receiver.

No new variables are introduced in DAC, as we build on the SFR algorithm. An additional

number is reported in the SACKs for which we propose using the first bit of the flags field

in the SACK chunk header - 0 indicates a count of one PDU (default SCTP behavior),

and 1 indicates two PDUs.

In Figure 2.5, at the receiver side, steps (1) and (2) are self explanatory. The sender side

algorithm modifies step (4) of SFR, which determines whether the missing report count

20

should be incremented for a TSN. DAC dictates how many to increment by. Step (4-i)

checks if only one destination was newly acked, and allows incrementing missing reports

by more than one for TSNs outstanding to that destination. Further, all newly acked TSNs

should have been sent later than the missing TSN. If there are newly acked TSNs that

were sent before the missing TSN, step (4-i-a) conservatively increments missing reports

by only one. If more than one destinations are newly acked, step (4-ii) conservatively

increments by only one.

Figure 2.6 shows cwnd evolution for CMT after including the SFR, CUC and DAC al-

gorithms, i.e., CMTscd. With the negative side-effects addressed, we expected to see

CMTscd’s cwnd growth to come close to the expected aggregate cwnd growth. In fact, we

observed that CMTscd cwnd growth exceeded the expected aggregate cwnd growth!

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 2 4 6 8 10 12 14 16

cw
nd

 (
by

te
s)

time (seconds)

CMT_scd (B1)
CMT_scd (B2)
CMT_scd(B1+B2)
Expected[SCTP(B1) + SCTP(B2)]

Figure 2.6: CMTscd: Evolution of the different cwnds

To explain this surprising result, we remind the reader that the expected aggregate cwnd

is the sum of the cwnd growth of two independent SCTP runs, each using one of the two

destination addresses as its primary destination. In each SCTP run, one delayed ack can

21

increase the cwnd by at most one MSS during slow start, even if the ack acks more than

one MSS worth of data. On the other hand, we observe with CMTscd that if a delayed

ack simultaneously acks an MSS of data on each of the two destinations, the sender can

simultaneously increase each of two cwnds by one MSS. Thus, a single delayed ack in

CMTscd that acks data flows on two paths causes an aggregate cwnd growth of two MSS.

With delayed acks during slow start, each SCTP association grows its cwnd by 1.5 times

each RTT, whereas CMTscd can increase its cwnd by more than 1.5 times in each RTT

(up to two times in the best case where every delayed ack acks an MSS on each path).

Delayed acks which simultaneously contribute to the cwnd growth of two destinations

helped the aggregate cwnd growth of CMTscd exceed expected aggregate cwnd growth.

This phenomenon occurs in slow start, therefore benefiting CMTscd initially and during

some timeout recovery periods. Though the aggregate cwnd growth exceeds expected

aggregate cwnd growth, we argue that the sender is not overly aggressive, i.e., not TCP-

unfriendly. The sender is able to clock out more data due to delayed acks that ack data

flows on multiple paths. The sender does not create bursts of data during slow start, and

builds up the ack clock as expected. Though it does not improve CMTscd’s performance

significantly, this phenomenon demonstrates a benefit of sequence space sharing among

flows on different paths that occurs within a CMTscd association.2

2 Henceforth, we will refer to CMTscd as simply CMT.

22

Chapter 3

RETRANSMISSION POLICIES FOR CMT

In this chapter, we explore several retransmission policies for CMT (Section 3.1). We

motivate and present two modifications to CMT mechanisms that are needed to allow

redirecting retransmissions to a different destination than the original (Section 3.3). We

then evaluate CMT’s performance using the different retransmission policies against App-

Stripe, an idealized application that stripes data across multiple paths (Sections 3.2 and

3.4).

3.1 CMT Retransmission Policies

Multiple paths present an SCTP sender with several options where to send a retransmis-

sion. But the choice is not well-informed since SCTP restricts sending new data, which

can act as probes for information (such as available bandwidth, loss rate and RTT), to

only one primary destination. Consequently, an SCTP sender has minimal information

about paths to a receiver other than the path to the primary destination.

On the other hand, a CMT sender maintains accurate information about all paths, since

new data is being sent to all destinations concurrently. This information allows a CMT

sender to better decide where to retransmit. That is, a CMT sender can choose the retrans-

mission destination for each loss recovery independently using the most recent informa-

tion for its decision.

23

We present five retransmission policies for CMT [36]. In four policies, a retransmission

may be sent to a destination other than the one used for the original transmission. Pre-

vious research on SCTP retransmission policies shows that sending retransmissions to

an alternate destination degrades performance primarily because of the lack of sufficient

traffic on alternate paths [19]. With CMT, data is concurrently sent on all paths, thus the

results in [19] are not applicable. The five retransmission policies for CMT are:

• RTX-SAME - Once a new data chunk is scheduled and sent to a destination, all

retransmissions of that chunk are sent to the same destination (until the destination

is deemed inactive due to failure [65]).

• RTX-ASAP - A retransmission of a data chunk is sent to any destination for which

the sender has cwnd space available at the time of retransmission. If multiple des-

tinations have available cwnd space, one is chosen randomly.

• RTX-CWND - A retransmission is sent to the destination for which the sender has

the largest cwnd. A tie is broken by random selection.

• RTX-SSTHRESH - A retransmission is sent to the destination for which the sender

has the largest ssthresh. A tie is broken by random selection.

• RTX-LOSSRATE - A retransmission is sent to the destination with the lowest loss

rate path. If multiple destinations have the same loss rate, one is selected randomly.

Of the policies, RTX-SAME is simplest. RTX-ASAP is a “hot-potato” policy - retrans-

mit as soon as possible without regard to loss rate. RTX-CWND and RTX-SSTHRESH

practically track, and attempt to move retransmissions onto the path with the estimated

lowest loss rate. Since ssthresh is a slower moving variable than cwnd, the values of

ssthresh may better reflect the conditions of the respective paths. RTX-LOSSRATE uses

information about loss rate provided by an “oracle” - information that RTX-CWND and

24

RTX-SSTHRESH estimate. This policy represents a hypothetically ideal case; hypothet-

ical since in practice, a sender typically does not know a priori path loss rates; ideal since

the path with the lowest loss rate has highest chance of having a packet delivered. We hy-

pothesized that retransmission policies that take loss rate into account would outperform

ones that do not.

We do not propose different policies for new transmissions - we assume that a sender

does not know path properties a priori and can therefore only react to network events

such as congestion losses (see Chapter 2, Section 2.1 for our transmission policy). This

assumption holds true particularly in the Internet where the path properties are changing.

3.2 Evaluation Methodology

CMT Assoc

AppStripe
(distributes data) Bulk transfer application

transport
layer

application
layer

AppStripe CMT

(distributes data)

new data
sent

to dest1

new data
sent

to destn

new data
sent

to dest2

SCTP
Assoc1

SCTP
Assocn

SCTP
Assoc2

new data
sent

to dest1

new data
sent

to destn

new data
sent

to dest2

Figure 3.1: Schematic - AppStripe and CMT

As a reference, we use AppStripe - a hypothetical multihome-aware application that

achieves the highest throughput possible by an application that distributes data across

multiple SCTP associations (see Figure 3.1). We emphasize that AppStripe performs

25

idealized scheduling at the application layer, and is not doable in practice. AppStripe per-

forms end-to-end load sharing at the application layer; CMT performs it at the transport

layer.

We simulate AppStripe by post-processing simulation traces. We simulate separate file

transfers over multiple separate SCTP associations, each on a separate path to the re-

ceiver. These SCTP associations use the Retransmit to Same Destination policy, where

all retransmissions are sent to the same destination as the original transmission, as recom-

mended in [17]. To find an “optimal” transfer time, we use these multiple traces to extract

the time when the total amount of data transferred, across the multiple associations, equals

the desired transfer size.

AppStripe hypothetically assumes the ability of an application to schedule data to each

transport association immediately when a transport association is able to send data to a

receiver. Such an ability requires a complex application-transport interface, which to our

knowledge, is not realized in practice today. A typical application distributing data over

multiple associations would have to use a heuristic to decide the fraction of data to be

scheduled on each association. Thus AppStripe’s performance in our experiments repre-

sents better achievable separation of data over multiple paths than is doable in practice.

The simulation topology (see Figure 3.2) is simple - edge links represent the last hop,

and core links represent end-to-end conditions on the Internet. This simulation topol-

ogy does not account for some effects seen in the Internet and other real networks such

as network induced reordering, delay spikes, etc.; these effects are beyond the scope of

this study. Our simulation evaluation provides insight into the fundamental differences

between AppStripe and CMT, and between the different retransmission policies in a con-

strained environment. We chose a simple topology to avoid influence of other effects, and

to focus on performance differences which we believe should hold true in a real environ-

ment as well. The loss rate on Path 1 is maintained at 1%, and on Path 2 is varied from

26

A B

Sender ReceiverR1,0

R2,0

R1,1

R2,1

100Mbps 1
us

100Mbps 1us

100M
bps 1us

100Mbps 1
us

10 Mbps, 45 ms

1 % loss

10 Mbps, 45 ms

1 – 10 % loss

A1

A2

B1

B2

Path 1

Path 2
Figure 3.2: Simulation topology used for evaluation

1 to 10%. A loss rate of 1% means a forward path loss rate of 1%, and a reverse path

loss rate of 1%. The loss events are independent per packet (i.e., we use a Bernoulli loss

model).

Our choice of simulation parameters was based on our understanding that end-to-end

throughput is most influenced by loss rate and delay. We focus on loss rate differences

since we believe loss rate has a more significant impact on the retransmission policy. The

influence of different delays and delay combinations on CMT is studied in Chapter 4.

The bandwidths were chosen to be high enough so that end-to-end delays are dominated

by propagation delay. The relative bandwidths of the links were chosen so that any queu-

ing happens at intermediate routers where packets are dropped with an independent and

fixed loss probability. End-to-end delay was chosen as 45ms to represent a typical US

coast-to-coast delay.

27

3.3 Modifications to Protocol Mechanisms

Two modifications are needed to allow redirecting retransmissions to a different destina-

tion than the original.

3.3.1 CUCv2: Modified CUC Algorithm

The CUC algorithm (Figure 2.4) enables correct cwnd updates in the face of increased

reordering due to CMT. To recap Section 2.3, the CUC algorithm recognizes a set of

TSNs outstanding per destination, and the per-destination pseudo cumack traces the left

edge of this list of TSNs, per destination. CUC assumes that retransmissions are sent

to the same destination as the original transmission. The per-destination pseudo cumack

therefore moves whenever the corresponding left edge is acked; the TSN on the left edge

being acked may or may not have been retransmitted.

If the assumption about the retransmission destination is violated, and a retransmission is

made to a different destination from the original, CUC cannot faithfully track the left edge

on either destination. We modify CUC to permit the different retransmission policies. The

modified algorithm, named CUCv2 is shown in Figure 3.3.

CUCv2 recognizes that a distinction can be made about the TSNs outstanding on a desti-

nation - those that have been retransmitted, and those that have not. CUCv2 maintains two

left edges for these two sets of TSNs - rtx pseudo cumack and pseudo cumack. Whenever

either of the left edges moves, a cwnd update is triggered.

3.3.2 Spurious Timeout Retransmissions

When a timeout occurs, an SCTP sender is expected to bundle and send as many of the

earliest TSNs outstanding on the destination for which the timeout occurred as can fit in

an MSS (Maximum Segment Size) PDU. Per RFC 2960, more TSNs that are outstanding

28

At beginning of an association [Sender side behavior]:
∀ destinations d, reset

d.find pseudo cumack = d.find rtx pseudo cumack = TRUE;
On receipt of a SACK [Sender side behavior]:

1) ∀ destinations d, reset
d.new pseudo cumack = d.new rtx pseudo cumack = FALSE;

2) if the ack carries a new cum ack then
for each TSN tc being cum acked for the first time, that was not acked
through prior gap reports do

(i) let dc be the destination to which tc was sent;
(ii) set dc.f ind pseudo cumack, dc.f ind rtx pseudo cumack,

dc.new pseudo cumack, dc.new rtx pseudo cumack to TRUE;
3) if gap reports are present in the ack then

for each TSN tp being processed from the retransmission queue do
(i) let dp be the destination to which tp was sent;
(ii) if (dp.f ind pseudo cumack == TRUE)

and tp was not acked in the past
and tp was not retransmitted then

dp.pseudo cumack = tp;
dp.f ind pseudo cumack = FALSE;

(iii) if tp is acked via gap reports for first time
and (dp.pseudo cumack == tp) then

dp.new pseudo cumack = TRUE;
dp.f ind pseudo cumack = TRUE;

(iv) if (dp.f ind rtx pseudo cumack == TRUE)
and tp was not acked in the past and tp was retransmitted then

dp.rtx pseudo cumack = tp;
dp.f ind rtx pseudo cumack = FALSE;

(v) if tp is acked via gap reports for first time
and (dp.rtx pseudo cumack == tp) then

dp.new rtx pseudo cumack = TRUE;
dp.f ind rtx pseudo cumack = TRUE;

4) for each destination d do
if (d.new pseudo cumack == TRUE)
or (d.new rtx pseudo cumack == TRUE) then

update cwnd as per [63, 65];

Figure 3.3: CUCv2 Algorithm - Modified Cwnd Update for CMT (CUC) Algorithm

29

Timeout on dest B2
- TSN X is rtxd
- TSNs Y+2 & Y+3
incorrectly marked
for rtx !

TSN Y+2

B1
A1 A2 B2Sender

A
Receiver

B
Receiver

B

SACK X-1 (X
+1 to Y)

SACK X-1 (X
+1 to Y+1)

TSN Y+3TSN X (rtx)

Incoming
SACKs

SACKs that will
free up cwnd space
for destination B1

SACKs

TSN Y+2

TSN Y+3

Spurious rtxs !!

LEGEND:

- SACK X-1 (X+1 to Y) indicates a SACK with a cumack of X-1 carrying gap acks for TSNs from X+1
through Y. This SACK indicates that TSN X has not been received.

- TSN Y+2 indicates a packet containing one data chunk with TSN Y+2. A data chunk is the smallest
indivisible unit of data in an SCTP packet.

Figure 3.4: Example of spurious retransmissions after timeout in CMT

30

on that destination “should be marked for retransmission and sent as soon as cwnd allows

(normally when a SACK arrives)”. This rule is intuitive. While sending, retransmissions

are generally given priority over new transmissions. As in TCP, the cwnd is also collapsed

to 1 MSS for the destination on which a timeout occurs.

A timeout retransmission can occur in SCTP (as in TCP) for several reasons. One reason

is loss of the fast retransmission of a TSN. Consider Figure 3.4. When a timeout occurs

due to loss of a fast retransmission, some TSNs that were just sent to the destination on

which the timeout occurred are likely awaiting acks (in Figure 3.4, TSNs Y+2 and Y+3).

These TSNs get incorrectly marked for retransmission on timeout. With the different

CMT retransmission policies, these retransmissions may be sent to a different destination

than the original transmission. In Figure 3.4, spurious retransmissions of TSNs Y+2 and

Y+3 are sent to destination B1, on receipt of acks freeing up cwnd space for destination

B1. Spurious retransmissions are exacerbated in CMT, as shown through this illustration,

due to the possibility of sending data (including retransmissions) to multiple destinations

concurrently.

We simulated the occurrence of such spurious retransmissions with the different retrans-

mission policies in CMT. The simulation topology used was the one described in Sec-

tion 3.2. Figure 3.5 shows the ratio of retransmissions relative to the number of actual

packet drops at the router. Ideally, the two numbers should be equal; all curves should be

straight lines at y = 1. Figure 3.5 shows that spurious retransmissions occur commonly

in CMT with the different retransmission policies.

We propose a heuristic to avoid these spurious retransmissions. Our heuristic assumes

that a timeout cannot be triggered on a TSN until the TSN has been outstanding for at

least one RTT. Thus, if a timeout is triggered, TSNs which were sent within one RTT are

not marked for retransmission. We use an average measure of the RTT for this purpose

- the smoothed RTT, which is maintained at a sender. This heuristic requires the sender

31

0.95

1

1.05

1.1

1.15

1.2

1.25

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

N
um

be
r

of
 R

et
ra

ns
m

is
si

on
s

/ N
um

be
r

of
 P

ac
ke

t D
ro

ps

Path 2 Loss Rate

Path 1 Loss Rate: 1%

RTX-SAME
RTX-ASAP

RTX-SSTHRESH
RTX-CWND

RTX-LOSSRATE

Figure 3.5: Spurious retransmissions in CMT without RTT heuristic

to maintain a timestamp for each TSN indicating the time at which the TSN was last

transmitted (or retransmitted). Figure 3.6 shows how the application of this heuristic

dramatically reduces spurious retransmissions.

3.4 Evaluation of CMT vs. AppStripe

Figure 3.7(a) compares the time taken to transfer an 8MB file using CMT with the five

retransmission policies, vs. using AppStripe. The x-axis represents different loss rates

on Path 2. Each plotted value is the mean of at least 30 simulation runs. Overall, App-

Stripe (× in Figure 3.7(a)) performs worst. That is, CMT using any of the retransmission

policies performs better than AppStripe; some policies better than others. At a 7% loss

rate on Path 2, AppStripe takes 40.4 seconds to transfer an 8 MB file, whereas CMT us-

ing RTX-SAME or RTX-CWND takes roughly 35 or 33 seconds, respectively. We first

discuss the performance difference between CMT in general and AppStripe.

32

0.95

1

1.05

1.1

1.15

1.2

1.25

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

N
um

be
r

of
 R

et
ra

ns
m

is
si

on
s

/ N
um

be
r

of
 P

ac
ke

t D
ro

ps

Path 2 Loss Rate

Path 1 Loss Rate: 1%

RTX-SAME
RTX-ASAP

RTX-SSTHRESH
RTX-CWND

RTX-LOSSRATE

Figure 3.6: Spurious retransmissions in CMT with RTT heuristic

CMT using any retransmission policy performs better than AppStripe, particularly as the

loss rate on Path 2 increases. Note that our AppStripe represents the best possible per-

formance expected by an application that stripes data over multiple SCTP associations.

AppStripe is an idealized case; CMT’s performance gain over a practical AppStripe im-

plementation would be even larger since a practical implementation has to optimally stripe

data across paths that have different and changing delays and loss rates. Such striping may

require information from the transport layer (such as current cwnd and RTT), that may

not be readily available to the application.

CMT performs better than AppStripe for two reasons. First, and significant, CMT is

more resilient to reverse path loss than AppStripe. CMT uses a single sequence space

(TSN space, used for congestion control and loss detection and recovery) across an as-

sociation’s multiple paths, whereas AppStripe by design uses an independent sequence

space per path. Since acks are cumulative, sharing of sequence spaces across paths helps

33

 20

 25

 30

 35

 40

 45

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Path 2 Loss Rate

Path 1 Loss Rate: 1%

 AppStripe
 RTX-SAME
 RTX-ASAP
 RTX-SSTHRESH
 RTX-CWND
 RTX-LOSSRATE

(a)

 28

 30

 32

 34

 36

 38

 40

 42

 44

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Path 2 Loss Rate

Path 1 Loss Rate: 1%

Appstripe
RTX-SAME
RTX-ASAP
RTX-SSTHRESH
RTX-CWND
RTX-LOSSRATE

(b)

Figure 3.7: Path 1 loss rate = 1%, performance of AppStripe vs. CMT with different
policies, under (a) equal path delays (Path 1 = 45ms, Path 2 = 45ms), and (b)
unequal path delays (Path 1 = 45 ms, Path 2 = 90 ms)

34

a CMT sender receive ack info on either of the return paths. Thus, CMT effectively uses

both return paths for communicating ack info to the sender, whereas each association

in AppStripe cannot help the other “ack-wise”. These results demonstrate the signifi-

cant result that CMT’s sharing of sequence space across paths is an inherent benefit that

performing load sharing at the transport layer has over performing it at the application

layer.

We emphasize that ack loss can cause throughput degradation, especially at higher loss

rates. Ack loss can delay fast retransmissions by one or more RTTs, thus delaying cwnd

increase. Increased ack loss can also increase the number of timeout retransmissions when

the window is small (say during the initial part of an association, or after timeout recov-

ery). These performance penalties accumulate over the lifetime of an association [36].

Second, CMT gets faster overall cwnd growth than AppStripe in slow start (see Sec-

tion 2.4). As loss increases, the number of timeouts increases, and since slow start follows

a timeout, the sender spends more time overall in slow start.

Extensive simulations show that unequal path delays do not impact the relative perfor-

mance of AppStripe and CMT with the different policies. Figure 3.7(b) demonstrates this

consistent behavior with unequal path delays of 45 ms on Path 1, and 90 ms on Path 2.

Note that these results are consistent with Figure 3.7(a) which has equal delays of 45 ms

on both paths.

While the performance differences between the retransmission policies in Figure 3.7 are

negligible, these results use an 8MB receiver’s buffer (rbuf) that does not constrain the

sender—an unrealistic assumption which we will now drop as we further evaluate CMT

in the following chapter.

35

Chapter 4

IMPLICATIONS OF A CONSTRAINED RECEIVE BUFFER

In Chapters 2 and 3, we operated under the strong and limiting assumptions that (1) the

receive buffer (rbuf) was infinite, and (2) the bottleneck queues on the end-to-end paths

used in CMT were independent of each other. In this chapter, we drop assumption (1)

and investigate how a bounded rbuf affects CMT performance [34,37] (assumption (2) is

retained, and is discussed further in Chapter 7). While this chapter discusses performance

considerations in the context of CMT, we note that these considerations apply to multipath

transfer at other layers as well.

We present and describe the rbuf blocking problem (Section 4.1) and evaluate the different

retransmission policies with different rbuf sizes to select a retransmission policy for CMT

(Section 4.2). We then consider the impact of rbuf blocking with different loss rate and

end-to-end delay combinations on the paths used for CMT (Section 4.3). We also verify

a subset of our results in a realistic simulation topology with cross-traffic (Section 4.4).

While SCTP supports unordered data delivery and multistreaming in an association [65],

this chapter focuses on ordered data delivery over a single stream. A discussion on the

insights gained through our evaluation of CMT concludes this chapter (Section 4.5).

The simulations in this chapter (except Section 4.4) use the same topology as described

in Chapter 3 (Section 3.2). The topology is repeated in Figure 4.1 for convenience.

36

A B

Sender ReceiverR1,0

R2,0

R1,1

R2,1

100Mbps 1
us

100Mbps 1us

100M
bps 1us

100Mbps 1
us

10 Mbps, 45 ms

1 % loss

10 Mbps, 45 ms

1 – 10 % loss

A1

A2

B1

B2

Path 1

Path 2
Figure 4.1: Simulation topology used for evaluation of retransmission policies

4.1 Receive Buffer Blocking in CMT: Problem Description

A transport layer receiver maintains rbuf space for incoming data for two reasons: (i)

to handle out-of-order data, and (ii) to receive data at a rate higher than that of the re-

ceiving application’s consumption. In SCTP (and TCP), a receiver advertises currently

available rbuf space through window advertisements (normally accompanying acks) to a

data sender. This value is the advertised receive window (adv-rwnd). A sender computes

a peer-rwnd to deduce how much more data can be buffered at the receiver. Beside the

latest adv-rwnd received, the peer-rwnd takes into account data that has been sent but not

yet acked by the receiver.

An SCTP receiver maintains a single rbuf across all sub-association flows in an associ-

ation. We define a sub-association flow as the set of transport PDUs within an SCTP

association that have the same destination address. For instance, in Figure 4.1, an SCTP

37

association from the sender to the receiver spanning the two paths will have two sub-

association flows—one consisting of PDUs with destination B1, and the other with desti-

nation B2.

Consequent to a single rbuf at a receiver, an SCTP sender maintains a single peer-rwnd per

association. Note that sender-side estimates such cwnd, ssthresh and RTT are maintained

per destination—they represent the state of different network paths from a sender to each

destination address. A sender has no reason to maintain separate rbufs or peer-rwnds per

path since a receiver can consume data only in sequence, irrespective of the destination

address they are sent to. An SCTP sender’s sending rate is bound by both the peer-rwnd

and the pertinent destination’s cwnd, i.e., min(peer-rwnd, cwnd).

A CMT receiver maintains a single rbuf which is shared across all sub-association flows

in an association1. Irrespective of the layer at which multipath transfer is performed,

a similar shared buffer would exist at a receiver (likely at the transport or application

layer). This buffer sharing degrades overall throughput. To help explain this degradation,

Figure 4.2 shows an excerpt from a simulation of a CMT association using the topology

shown in Figure 4.1. In this illustrative example, the rbuf is 16384 bytes (16KB), Path

1 (A1 to B1) has a loss rate of 1% and Path 2 (A2 to B2) has a loss rate of 10%, and

RTX-SAME retransmission policy is used.

Figures 4.2(a) and (c) show TSN progression over Path 1 and Path 2, respectively, and

Figure 4.2(b) shows peer-rwnd evolution at the sender (endpoint A) during the time inter-

val from 110 to 130 seconds. Figure 4.2(a) shows that data transmission over the better

(i.e., lower loss rate) path stops abruptly around 114.5 seconds and resumes around 128

seconds. This 13.5 second pause can be explained with the help of Figure 4.2(b). At

1 SCTP supports unordered data delivery and multistreaming in an association [65],
the impact of which we discuss further in Section 4.5. In the rest of this chapter, we
assume ordered data delivery over a single stream.

38

(a)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 110 115 120 125 130

pe
er

-r
w

nd
 a

t s
en

de
r A

 (b
yt

es
)

Time (sec)

(b)

(c)

Figure 4.2: Instantiation of rbuf blocking: (a) Progression of data sent to destination
B1 over Path 1 (loss rate 1%) over a select interval; (b) peer-rwnd value
maintained at sender (endpoint A) over same interval; (c) Progression of
data sent to destination B2 over Path 2 (loss rate 10%) over same interval.

39

114.5 seconds, the peer-rwnd at the sender abruptly reduces from 16384 bytes to 236

bytes, constraining the sender from transmitting any new data. The cause for this abrupt

rbuf reduction is explained as follows.

During the same time interval from 114.5 seconds to 128 seconds, Figure 4.2(c) shows

that the lower quality (i.e., higher loss rate) path undergoes congestion, and recovers

from losses through repeated retransmission timeouts - the longest recovery time being

8 seconds for TSN 2304. During this entire period of 13.5 seconds while loss recovery

repeatedly occurs on Path 2, the receiver waits for retransmissions to come through, and is

unable to deliver subsequent TSNs to the application (some of which were sent over Path

1). These subsequent TSNs are held in the transport layer rbuf until the retransmissions

are received, thus blocking the rbuf and the peer-rwnd. Path 2 thus causes blocking of the

rbuf, preventing data from being sent on either path and reducing overall throughput.

This example demonstrates how a shared rbuf causes a sub-association flow on a higher

quality path to get lower throughput than expected. We note that the exact numbers used

in this example do not hold special relevance. This example presents a phenomenon

which occurs, in lesser or greater degree, throughout a CMT association.

Figure 4.3 shows the time taken to transfer an 8MB file using (i) CMT (with RTX-SAME

retransmission policy) with a 16KB rbuf, and (ii) a single SCTP association which uses

only the better path (Path 1 with loss rate 1%). Intuitively, using two paths should provide

higher overall throughput than using one path. However, Figure 4.3 demonstrates that

using two paths performs worse than using only the better path if a finite rbuf is shared

across the paths2. This performance difference is due to rbuf blocking that occurs in

CMT—an rbuf of 16KB does not constrain a single SCTP association (which uses one

2 Presumably an SCTP sender does not have a priori knowledge about the better path
and hence cannot always achieve best performance. We discuss expected SCTP per-
formance later in Section 4.3.

40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
ra

ns
fe

r
tim

e
(s

ec
)

Path 2 Loss Rate

CMT (with RTX-SAME policy)
SCTP assoc (Path 1 only, 1% loss)

Figure 4.3: Rbuf blocking in CMT causes throughput degradation

lower loss rate path) as much as it constrains CMT (which uses two paths with different

loss rates).

We emphasize that rbuf blocking is not unique to the transport layer; it applies to multi-

path transfer at other layers as well. Rbuf blocking cannot be eliminated or avoided by

moving CMT’s parallelism to a different layer. For example, if the application layer dis-

tributes a single logical flow across multiple end-to-end paths, and the application layer

receiver (the final destination) has finite buffer space, then rbuf blocking will occur.

After analyzing several traffic flows, we observe that chances of rbuf blocking are higher

during periods of timeout recovery. A larger timeout recovery period due to back-to-

back timeouts with exponential backoff results in an even higher probability that a finite

rbuf blocks a sender. We therefore hypothesize that reducing (i) the number of timeouts,

and/or (ii) the number of back-to-back timeout retransmissions will reduce the rbuf block-

ing problem. Consequently, we hypothesize that using a retransmission policy that will

41

reduce timeout periods will help reduce rbuf blocking.

4.2 Choosing a Retransmission Policy

We now evaluate our five retransmission policies for CMT (Section 3.1) operating under

a constrained rbuf. Default rbuf values in commonly used operating systems today vary

from 16KB to 64KB and beyond. We believe that today, when a desktop computer can

have gigabytes of memory, having an rbuf of at least 64KB is reasonable. We first study

and analyze performance of the different policies with an rbuf of 64KB in Section 4.2.1.

This section provides insight into the causes of the performance differences between the

retransmission policies. We then summarize performance of the different policies under

more and less constraining rbufs varying from 16KB to 256KB in Section 4.2.2. This

analysis provides an understanding of rbuf blocking impact on the different policies.

4.2.1 Evaluation with rbuf=64KB

Figure 4.4 shows the time taken for a CMT sender to transfer an 8MB file when the rbuf

is set to 64KB, using the five retransmission policies. Each plotted value is the mean of

at least 100 simulation runs. RTX-SAME, the simplest to implement, performs worst.

Its performance gap with the other policies increases as the loss rate on Path 2 increases.

RTX-ASAP performs better than RTX-SAME, but still considerably worse than the three

loss-rate-based policies. We present two causes for these differences.

Cause 1: Figure 4.5 shows the number of retransmission timeouts experienced when

using the different policies. One may conclude that improvement in using the loss-rate-

based policies is due partly to fewer timeouts (and hence, timeout recovery periods).

RTX-SAME does not consider loss rate and experiences the largest number of timeouts.

RTX-ASAP does not consider loss rate and does better than RTX-SAME, but still experi-

ences more timeouts than the loss-rate-based policies. This analysis supports our intuitive

42

 20

 30

 40

 50

 60

 70

 80

 90

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
ra

ns
fe

r
tim

e
(s

ec
)

Path 2 Loss Rate

RTX-SAME
RTX-ASAP
RTX-SSTHRESH
RTX-LOSSRATE
RTX-CWND

Figure 4.4: Time taken by CMT to transfer an 8MB file (rbuf: 64K, Path 1 loss rate: 1%)

hypothesis - taking path loss rate into consideration while deciding the retransmission des-

tination improves the chances of a retransmission getting through, and improves overall

performance due to reduction of rbuf blocking.

Cause 2: Figure 4.6(a) shows the average time taken to successfully communicate a TSN.

This time is measured as the time taken from the first transmission of a TSN to the time

when that TSN or one of its retransmissions finally reaches the receiver. RTX-SAME

shows the highest average, suggesting that more transmissions may be needed for a suc-

cessfully communicating a TSN. Since recovery via fast retransmission can happen only

once for a given TSN, the number of consecutive timeouts may be higher with RTX-

SAME than with the other policies. Each consecutive timeout causes a sender’s retrans-

mission timeout value to double, thus doubling the timeout recovery period. Recall that

the longer the timeout recovery period, the higher the probability and longer the duration

for rbuf blocking to occur. Thus, more consecutive timeouts will degrade performance.

43

 0

 5

 10

 15

 20

 25

 30

 35

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

R

et
ra

ns
m

is
si

on
 T

im
eo

ut
s

Path 2 Loss Rate (%)

RTX-SAME
RTX-ASAP
RTX-SSTHRESH
RTX-LOSSRATE
RTX-CWND

Figure 4.5: Number of retransmission timeouts for CMT with different retransmission
policies (rbuf: 64K, Path 1 loss rate: 1%)

Figure 4.6(b) shows average number of timeouts that take r seconds (for r = 1, 2, 4 and

8) using the different retransmission policies with Path 1 loss rate = 1%, and Path 2 loss

rate = 10%. Using SCTP’s (and TCP’s) default parameter values, these values of r are

caused by consecutive timeouts: r = 2 seconds corresponds to 2 consecutive timeouts,

r = 4 seconds corresponds to 3 consecutive timeouts, etc. Though the occurrences of

2 and 4 second timeouts are few, we note that their impact is significant due to rbuf

blocking during these periods. Overall, loss-rate-based policies experience about half

the consecutive timeouts that RTX-SAME does. Thus, performance degradation due to

consecutive timeouts can be significantly reduced by taking loss rate into account for

making retransmission decisions.

44

 0.048

 0.05

 0.052

 0.054

 0.056

 0.058

 0.06

 0.062

 0.064

 0.066

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

A
vg

 ti
m

e
ta

ke
n

to
 c

om
m

un
ic

at
e

a
T

S
N

 (
se

co
nd

s)

Path 2 Loss Rate

RTX-SAME
RTX-ASAP
RTX-SSTHRESH
RTX-LOSSRATE
RTX-CWND

(a)

 0

 5

 10

 15

 20

 25

 30

1 2 4 8

A
vg

 n
um

be
r

of
 r

 s
ec

on
d

tim
eo

ut
s

RTO timer interval, r (seconds)

RTX-SAME
RTX-ASAP

RTX-CWND
RTX-SSTHRESH
RTX-LOSSRATE

(b)

Figure 4.6: With rbuf = 64K, and Path 1 loss rate = 1%,: (a) Time taken to successfully
communicate a TSN with different retransmission policies, (b) Consecutive
timeouts with different retransmission policies (Path 2 loss rate = 10%)

45

4.2.2 Evaluation with Different rbufs

Figures 4.7 and 4.8 show the performance of the five retransmission policies using rbuf

sizes of 16KB, 32KB, 128KB, and 256KB. The performance ranking of the different

policies with these rbufs remains the same as with an rbuf of 64KB (Figure 4.4). We

discuss a few salient points.

• With a large (i.e., minimally constraining) rbuf of 256KB, RTX-SAME still per-

forms poorly due to a high number of timeouts, and the consequent throughput

degradation. Each timeout causes cwnd reduction at a sender and entails idle time

(i.e., the sender not transmitting data), causing throughput reduction.

• As the rbuf size decreases and becomes more of a constraint, degradation in CMT

throughput occurs due to increased rbuf blocking. All retransmission policies suffer

in the face of an increasingly constraining rbuf. Even with a reasonably large rbuf

of 128KB, some performance degradation occurs; i.e., even with large rbufs, rbuf

blocking is not eliminated.

• As the rbuf size decreases and blocking increases, a decreasing fraction of data is

sent on the better path since a sender can send lesser data on the better path during

periods of loss recovery on the worse path. Consequently, an increasing fraction of

data is sent on the worse path, causing an increasing number of losses and further

degrading CMT throughput.

• As the rbuf becomes more constraining, degradation in throughput of RTX-SAME

policy is markedly more than with the other retransmission policies. The reasons

for this degradation are the same as described in Section 4.2.1. Degradation is least

in the loss-rate-based policies even with an increasingly constraining rbuf.

46

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
ra

ns
fe

r
tim

e
(s

ec
)

Path 2 Loss Rate

RTX-SAME
RTX-ASAP
RTX-SSTHRESH
RTX-LOSSRATE
RTX-CWND

(a)

 40

 60

 80

 100

 120

 140

 160

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
ra

ns
fe

r
tim

e
(s

ec
)

Path 2 Loss Rate

RTX-SAME
RTX-ASAP
RTX-SSTHRESH
RTX-LOSSRATE
RTX-CWND

(b)

Figure 4.7: With Path 1 loss rate = 1%, time taken by CMT to transfer an 8MB file using:
(a) rbuf = 16K (b) rbuf = 32K

47

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
ra

ns
fe

r
tim

e
(s

ec
)

Path 2 Loss Rate

RTX-SAME
RTX-ASAP
RTX-SSTHRESH
RTX-LOSSRATE
RTX-CWND

(a)

 20

 25

 30

 35

 40

 45

 50

 55

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
ra

ns
fe

r
tim

e
(s

ec
)

Path 2 Loss Rate

RTX-SAME
RTX-ASAP
RTX-SSTHRESH
RTX-LOSSRATE
RTX-CWND

(b)

Figure 4.8: With Path 1 loss rate = 1%, time taken by CMT to transfer an 8MB file using:
(a) rbuf = 128K (b) rbuf = 256K

48

In summary, retransmission policies that take loss rate into account perform better, in-

creasingly better as rbuf size decreases. Of the loss rate based policies, the practical

ones (RTX-CWND and RTX-SSTHRESH) perform similarly under all conditions con-

sidered. Therefore, we recommend the loss-rate-based policies, RTX-SSTHRESH and

RTX-CWND, for CMT. We arbitrarily choose RTX-SSTHRESH as CMT’s retransmis-

sion policy in further evaluations.

4.3 Performance Impact of Receive Buffer Blocking

In this section, we study the impact of rbuf blocking on CMT under different network con-

ditions. We explore the effect of different end-to-end delays (Section 4.3.1), and different

combinations of delays and loss rates (Sections 4.3.2 and 4.3.3) on CMT’s throughput.

4.3.1 Performance Under Different Equal End-to-end Delays

Figure 4.9 shows relative throughput degradation of CMT under different end-to-end de-

lays - 10ms, 25ms, 45ms, 90ms, 180ms, and 360ms, yielding RTTs of 20ms, 50ms, 90ms,

180ms, 360ms, and 720ms, respectively. The delays on both paths to the receiver are sym-

metric (rbuf blocking with asymmetric paths is studied later in Sections 4.3.2 and 4.3.3).

These values cover a range of RTTs experienced by majority of flows on the Internet [58].

Relative throughput degradation is computed as the ratio

CMT throughput with infinite (INF) rbuf

CMT throughput with rbuf = X
(4.1)

as X varies from 16KB to 256KB along the X-axis (Note that along the Y-axis, smaller

values are better). The largest degradation (i.e., worst throughput) occurs with the shortest

delay of 10ms. At 10ms, throughput with infinite rbuf space is roughly 10 times what it

would be with a 16KB rbuf. As the end-to-end delay increases, CMT’s relative throughput

49

degradation decreases. We now explain why associations with smaller delays are more

sensitive to a constrained rbuf.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 50 100 150 200 250 300

C
M

T
 R

el
at

iv
e

D
eg

ra
da

tio
n

(T
hr

ou
gh

pu
t_

IN
F

 /
T

hr
ou

gh
pu

t_
rb

uf
=

X
)

rbuf (KB)

 CMT Using RTX-SSTHRESH, Path 1 Loss Rate: 1%, Path 2 Loss Rate: 10%

One Way Delay = 10ms
One Way Delay = 25ms
One Way Delay = 45ms
One Way Delay = 90ms

One Way Delay = 180ms
One Way Delay = 360ms

Figure 4.9: Relative throughput degradation of CMT with different end-to-end delays

Overall SCTP throughput, similar to TCP throughput, varies inversely with delay. This

relationship holds true for large rbuf conditions. Thus, in the relative throughput degra-

dation measure, the numerator (CMT throughput with infinite rbuf) increases as delay

decreases.

As the rbuf size increasingly becomes a bottleneck, a different dynamic dominates. Ac-

cording to the SCTP specification [65] and the specification for computing TCP’s re-

transmission timer [54], retransmission timeouts (RTOs) should have a (conservative)

minimum value of 1 second to avoid spurious timeouts. These timeout recovery periods

are thus independent of the end-to-end delays considered, since the delays are far less

than 1 second. As rbuf increasingly constrains the traffic flow, the number of timeouts

increases. Consequently, total time spent in timeout recovery (which is roughly the same

50

irrespective of the end-to-end delay) increasingly dominates association lifetime. Thus,

with decreasing end-to-end delay, the denominator in equation (4.1) does not increase

as fast as the numerator, since the denominator is largely dictated by (constant) timeout

recovery periods. Therefore, the influence of a constrained rbuf increases as end-to-end

delay decreases. In summary, CMT is more sensitive to rbuf constraints in environments

with shorter end-to-end delay (such as data centers [42]). Or, from a network engineering

point of view, the shorter the end-to-end delay, the more important it is to have a larger

rbuf to fully exploit CMT.

We can thus see that rbuf blocking has a larger impact on associations with shorter end-to-

end delay due to a minimum RTO value which is recommended [54,65] and largely in use.

We note that shorter minimum RTOs together with better RTT estimation algorithms [14,

25] may lessen the bias against shorter delay associations.

4.3.2 CMT vs. UnawareApp

The potential parallelism gains of CMT decrease as the rbuf size decreases. In this section

we attempt to quantify the gains, if any, in using CMT with a limited rbuf. We introduce a

reference for comparison called UnawareApp and compare it to CMT. UnawareApp rep-

resents the expected throughput seen by an application using a single SCTP association to

transfer data. UnawareApp sends data to one destination selected from the set of receiver

destinations with equal probability.

It might seem unintuitive to compare CMT against UnawareApp, since UnawareApp uses

just one path for the transfer (unlike CMT which sends data to all destinations). To address

this concern, we point out that this evaluation explores the impact of the rbuf blocking

problem on CMT—a goal in this evaluation is to see if rbuf blocking can degrade CMT’s

throughput to the extent that UnawareApp outperforms CMT. The rbuf blocking problem

does not exist for data transfers that use only one path, and therefore, does not affect

51

UnawareApp. Further, without prior knowledge of path conditions, and without CMT, an

application would arbitrarily pick one destination to send data. UnawareApp captures the

expected throughput when such a decision is made.

We do not compare CMT with application level load sharing such as AppStripe (Sec-

tion 3.2) because with a constrained receive buffer, AppStripe ceases to be an ideal case

to compare against. Ideal scheduling decisions are needed to use the finite buffer space

ideally. We believe that devising such an ideal scheduler at the application layer is im-

practical. If practical, then the same scheduling decisions can be used in CMT. Further,

rbuf blocking is caused by a shared finite receive buffer, and equally affects any data strip-

ing application such as AppStripe. An application that stripes data across multiple paths

requires a finite rbuf at the application layer for reassembly and ordering of incoming

data. This rbuf will cause analogous degradation at the application layer as a bounded

transport layer rbuf causes for CMT. Therefore, we do not use a data striping application

as a reference in this evaluation since the rbuf blocking problem exists for such an ap-

plication as well. On the other hand, CMT will have performance gains over AppStripe

due to sharing of sequence space across paths (Section 3.4) and intellgent redirection of

retransmissions. Therefore, we argue that CMT will perform better than an Appstripe

implementation with finite receive buffer.

Figures 4.10 and 4.11 shows throughput gains in using CMT vs. UnawareApp, measured

as a ratio of CMT throughput to UnawareApp throughput, for different rbuf values, dif-

ferent loss rates on the two paths, and different delay combinations on the two paths. We

explored loss rate combinations in the range [0.1%, 10%], end-to-end delay combinations

in the range [25ms, 360ms], and rbuf sizes from 32K to 256K. These loss rate and de-

lay combinations reflect network conditions experienced by flows on the Internet [58].

UnawareApp uses the same rbuf size as CMT in these evaluations.

52

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01C
M

T
 g

ai
ns

 o
ve

r
U

na
w

ar
eA

pp
 (

T
hr

ou
gh

pu
t_

C
M

T
 /

T
hr

ou
gh

pu
t_

U
na

w
ar

eA
pp

)

Path 2 Loss Probability

rbuf = INF
rbuf = 256K
rbuf = 128K
rbuf = 64K
rbuf = 32K

(a)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1C
M

T
 g

ai
ns

 o
ve

r
U

na
w

ar
eA

pp
 (

T
hr

ou
gh

pu
t_

C
M

T
 /

T
hr

ou
gh

pu
t_

U
na

w
ar

eA
pp

)

Path 2 Loss Probability

rbuf = INF
rbuf = 256K
rbuf = 128K
rbuf = 64K
rbuf = 32K

(b)

Figure 4.10: CMT throughput gains over UnawareApp with a constraining rbuf:
(a) Path 1 loss probability = 0.001, Path 1 end-to-end delay = 45ms, Path 2
end-to-end delay = 45ms
(b) Path 1 loss probability = 0.01, Path 1 end-to-end delay = 45ms, Path 2
end-to-end delay = 45ms

53

 1

 2

 3

 4

 5

 6

 7

 8

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1C
M

T
 g

ai
ns

 o
ve

r
U

na
w

ar
eA

pp
 (

T
hr

ou
gh

pu
t_

C
M

T
 /

T
hr

ou
gh

pu
t_

U
na

w
ar

eA
pp

)

Path 2 Loss Probability

rbuf = INF
rbuf = 256K
rbuf = 128K
rbuf = 64K
rbuf = 32K

(a)

 2

 4

 6

 8

 10

 12

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1C
M

T
 g

ai
ns

 o
ve

r
U

na
w

ar
eA

pp
 (

T
hr

ou
gh

pu
t_

C
M

T
 /

T
hr

ou
gh

pu
t_

U
na

w
ar

eA
pp

)

Path 2 Loss Probability

rbuf = INF
rbuf = 256K
rbuf = 128K
rbuf = 64K
rbuf = 32K

(b)

Figure 4.11: CMT throughput gains over UnawareApp with a constraining rbuf:
(a) Path 1 loss probability = 0.01, Path 1 end-to-end delay = 45ms, Path 2
end-to-end delay = 90ms
(b) Path 1 loss probability = 0.01, Path 1 end-to-end delay = 45ms, Path 2
end-to-end delay = 180ms

54

The ratio plotted in Figures 4.10 and 4.11 is

Throughput CMT

Throughput UnawareApp
(4.2)

Values greater than 1 imply that CMT performs better than UnawareApp; a value less than

1 means that UnawareApp performs better than CMT. All results show similar trends in

throughput with CMT performing better; representative results are shown in Figures 4.10

and 4.11. The throughput gains with CMT are chiefly attributed to two reasons:

• Since our topology has two paths between the sender and the receiver, UnawareApp

chooses the worse path for transferring data half the time. Transfer times over the

worse path increase significantly as loss rate on that path increases, thereby increas-

ing the average transfer time for UnawareApp significantly. CMT uses both paths

concurrently, and using RTX-SSTHRESH ensures that most of the retransmitted

data is sent over the better path, thus reducing overall transfer time for CMT.

• CMT is more resilient to reverse path loss than UnawareApp. CMT uses a single

sequence space across the one association’s multiple paths. Since CMT’s acks are

cumulative, sharing of sequence spaces across paths helps a CMT sender receive

ack info on either of the return paths.

These results demonstrate that though rbuf blocking degrades CMT’s throughput, using

CMT is still beneficial, even with the most constrained rbuf of 32KB; this benefit increases

as the rbuf size increases.

4.3.3 CMT vs. AwareApp

By using UnawareApp as a reference, we assumed that a sender has no prior knowledge of

path conditions. This assumption causes UnawareApp to suffer throughput degradation,

55

since UnawareApp picks and uses the higher loss rate path half the time (in our simula-

tions, two paths are used). We now drop this assumption, and introduce AwareApp, an

application which has a priori path information, and uses always the lowest loss rate path

for data transfer. AwareApp represents an application’s throughput when using a single

SCTP association over the best path to the destination. AwareApp avoids the rbuf block-

ing problem (as does UnawareApp), and also avoids throughput degradation due to using

the higher loss rate path. A goal in this evaluation is to see if rbuf blocking can degrade

CMT’s throughput to the extent that using only the better path (AwareApp) outperforms

using both paths (CMT).

As in Section 4.3.2, we explored different combinations of loss rate in the range from

0.1% to 10%, and end-to-end delays in the range from 25ms to 360ms with rbuf values

ranging from 32KB to 256KB. Representative results from our exhaustive set of simula-

tions are shown in Figures 4.12 and 4.13. The ratio plotted in these figures is

Throughput CMT

Throughput AwareApp
(4.3)

A value greater than 1 implies that CMT performs better than AwareApp; a value less

than 1 means that AwareApp performs better than CMT. Salient points are as follows:

• In some cases, AwareApp performs better than CMT. These cases can be seen in

Figures 4.12 and 4.13 whenever the curves drop below 1. This result is significant—

rbuf blocking can degrade throughput to the point that when large differences exist

in path delays and loss rates, using only the better path outperforms using two paths

concurrently.

• CMT’s throughput benefit over AwareApp decreases as the loss rate difference be-

tween the two paths increases for two — increased losses, and increased rbuf block-

ing. On the other hand, AwareApp, which uses only the lower loss rate path (i.e.,

Path 1), does not experience either of these throughput degradations.

56

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

C
M

T
 g

ai
ns

 o
ve

r
A

w
ar

eA
pp

 (
T

hr
ou

gh
pu

t_
C

M
T

 /
T

hr
ou

gh
pu

t_
A

w
ar

eA
pp

)

Path 2 Loss Probability

rbuf = INF
rbuf = 256K
rbuf = 128K
rbuf = 64K
rbuf = 32K

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

C
M

T
 g

ai
ns

 o
ve

r
A

w
ar

eA
pp

 (
T

hr
ou

gh
pu

t_
C

M
T

 /
T

hr
ou

gh
pu

t_
A

w
ar

eA
pp

)

Path 2 Loss Probability

rbuf = INF
rbuf = 256K
rbuf = 128K
rbuf = 64K
rbuf = 32K

(b)

Figure 4.12: CMT throughput gains over AwareApp with a constraining rbuf:
(a) Path 1 loss probability = 0.001, Path 1 end-to-end delay = 45ms, Path 2
end-to-end delay = 45ms
(b) Path 1 loss probability = 0.01, Path 1 end-to-end delay = 45ms, Path 2
end-to-end delay = 45ms

57

 0

 0.5

 1

 1.5

 2

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

C
M

T
 g

ai
ns

 o
ve

r
A

w
ar

eA
pp

 (
T

hr
ou

gh
pu

t_
C

M
T

 /
T

hr
ou

gh
pu

t_
A

w
ar

eA
pp

)

Path 2 Loss Probability

rbuf = INF
rbuf = 256K
rbuf = 128K
rbuf = 64K
rbuf = 32K

(a)

 0

 0.5

 1

 1.5

 2

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

C
M

T
 g

ai
ns

 o
ve

r
A

w
ar

eA
pp

 (
T

hr
ou

gh
pu

t_
C

M
T

 /
T

hr
ou

gh
pu

t_
A

w
ar

eA
pp

)

Path 2 Loss Probability

rbuf = INF
rbuf = 256K
rbuf = 128K
rbuf = 64K
rbuf = 32K

(b)

Figure 4.13: CMT throughput gains over AwareApp with a constraining rbuf:
(a) Path 1 loss probability = 0.01, Path 1 end-to-end delay = 45ms, Path 2
end-to-end delay = 90ms
(b) Path 1 loss probability = 0.01, Path 1 end-to-end delay = 45ms, Path 2
end-to-end delay = 180ms

58

• CMT’s throughput benefit over AwareApp decreases, although not significantly, as

the delay difference between the two paths increases. See Figures 4.12(b), 4.13(a),

and 4.13(b), where Path 2 delay is 45ms, 90ms, and 180ms, respectively (Path 1

delay is maintained at 45ms). As the delay of Path 2 increases, more data can

be sent on Path 1 within one roundtrip time on Path 2 filling up the rbuf, thereby

causing more rbuf blocking even when no loss occurs. An increase in Path 2’s

end-to-end delay also increases occurrences and periods of rbuf blocking due to

increased loss recovery time on Path 2, for fast retransmit based recovery. This

increased rbuf blocking degrades CMT’s throughput.

We conclude that rbuf blocking degrades performance increasingly with increasing dif-

ference in path loss rate and delay. Therefore, the larger the difference between the paths,

the larger the rbuf required to avoid degradation due to rbuf blocking.

Though the conditions studied represent Internet conditions [58], we acknowledge that

we are using limited and simplistic simulations to extract an exact value for use in real

complex networks; we therefore suggest with caution that a minimum rbuf of 128KB

is required to exploit CMT’s parallelism. This suggestion is only meant to provide a

“ballpark” value when using CMT, and is not a strong conclusion. We strongly encourage

CMT users to experiment with rbuf sizes in their deployment scenarios—more experience

with CMT will provide a better understanding of what rbuf size should be used in specific

deployment scenarios.

4.4 Evaluation With Cross-traffic Based Losses

A valid criticism of the results thus far is that they have been based on the simple topol-

ogy in Figure 4.1. We now verify a subset of our results using a more realistic simulation

59

topology with cross-traffic3. Our goal is to observe the relative performance of the differ-

ent retransmission policies with a traffic model that better resembles observed traffic on

today’s Internet [51].

Figure 4.14 shows the network topology: a dual-dumbbell topology whose core links

have a bandwidth of 10Mbps and a one-way propagation delay of 25ms. Each router, R,

is attached to five edge nodes. One of these five nodes is a dual-homed node for a SCTP

endpoint, while the other four are single-homed and introduce cross-traffic.

R

R

R

R

10Mbps 25ms

10Mbps 25ms

100Mbps 5-20ms

100Mbps 5
-20ms

100Mbps 5-20ms

100Mbps 5-20ms

P1 P2 P8

P1 P2 P8

SCTP
Sender

P1 P2 P8

P2 P8

SCTP
Receiver

A

1

2

3

4

1

2

3

4

B

1

2

3

4

1

2

3

4

P1

Path 1

Path 2

100M
bps 10ms

10
0M

bp
s

10
ms 100M

bps 10ms

100M
bps

10ms

Figure 4.14: Simulation network topology with bursty cross-traffic and congestion loss

The links to the dual-homed nodes have a bandwidth of 100Mbps and a one-way propaga-

tion delay of 10ms. The single-homed nodes also have 100Mbps links, but their propaga-

tion delays are randomly chosen from a uniform distribution between 5-20ms to simulate

3 We note that the full set of simulations performed for the results thus far presented in
this chapter using the model in Figure 4.1 would have taken too long to achieve.

60

end-to-end one-way propagation delays between 35ms and 65ms. These delays approxi-

mate Internet delays for distances such as coast-to-coast of the continental US, and eastern

US to/from western Europe. Also, each link (both edge and core) has a buffer size twice

the link’s bandwidth-delay product, which is a reasonable setting in practice.

Figure 4.14 has two SCTP endpoints with CMT (sender A, receiver B) on either side of

the network, which are attached to the dual-homed edge nodes. A has two paths, labeled

Path 1 and Path 2, to B. The observed nature of aggregate traffic on data networks is self-

similar [51], and can be modeled as an aggregation of ON/OFF sources with durations

drawn from distributions with heavy tails (e.g., Pareto) [70]. Therefore, each single-

homed edge node has eight traffic generators, each exhibiting ON/OFF patterns with ON-

periods and OFF-periods drawn from a Pareto distribution. The cross-traffic packet sizes

are chosen to roughly resemble the distribution found on the Internet: 50% are 44 bytes,

25% are 576 bytes, and 25% are 1500 bytes [3, 22].

We simulate a 32MB file transfer with different network conditions, controlled by varying

the load introduced by cross-traffic. We increase the filesize from the 8MB used in pre-

vious experiments because transfer time with crosstraffic, due to increased burstiness in

loss events, shows greater variance than when using a Bernoulli loss model. Compensat-

ing for this increased variance by increasing the number of simulation runs is expensive,

since some runs take on the order of 10s of minutes to finish. A larger filesize reduces the

observed variance in measured file transfer time, at little additional cost. All loss expe-

rienced is due to congestion at the routers. The aggregate levels of cross-traffic on Path

1 are maintained at 4Mbps, and on Path 2, range from 4Mbps to 10Mbps. Although we

independently control the levels of cross-traffic on each of the core links, the controls for

the cross-traffic on each forward-return path pair are set the same. The rbuf is sized at

64KB. All results are averages over 60 runs.

Figure 4.15 shows time taken to transfer a 32MB file using the different retransmission

61

policies under varying loads on Path 2. Our goal in this simulation is to observe the

relative performance of the different retransmission policies using different rbuf sizes

under increasing cross-traffic load (and consequently, increasing loss rate).

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 6000 6500 7000 7500 8000 8500 9000 9500 10000

T
ra

ns
fe

r
tim

e
(s

ec
)

Cross traffic on path 1 (kbps)

 RTX-SAME
 RTX-ASAP

 RTX-SSTHRESH
 RTX-LOSSRATE

 RTX-CWND

Figure 4.15: Transfer time for a 32MB file with bursty cross-traffic
(Path 1 load = 4Mbps, rbuf = 64KB)

Performances of the policies differ clearly for cross-traffic load on Path 2 greater than

7Mbps, i.e., when bottleneck link utilization is 70% or more. Generally, high levels of

congestion are needed for RTOs to occur in SCTP (and TCP); therefore, performance

differences (due to rbuf blocking) occur only at medium/high levels of bottleneck link

utilization. The results agree with our previous conclusions about the retransmission

policies—loss-rate-based policies are equally the best performing policies.

62

4.5 Discussion

As just discussed, a constrained rbuf can cause significant throughput degradation when

multiple paths are used concurrently. One might expect that blocking can be avoided by

multiplexing over paths at a different layer, but we note that the rbuf blocking problem

cannot be eliminated at any layer; it can only be reduced. This problem equally affects

an application layer (or network layer) data striping mechanism. Reservation of rbuf

space per path will also not reduce blocking due to the need for in-order delivery to the

application. As we have shown, use of an intelligent retransmission policy, which is

possible in only the transport layer, and/or using a larger rbuf reduces rbuf blocking.

In addition to a receive buffer (rbuf) at the receiver, a transport sender maintains a send

buffer (sbuf) for two reasons: (i) to buffer data received from a sending application that

sends faster than can be transmitted into the network, and (ii) to maintain data that has

been sent, but not cumulatively acked, for possible retransmission. While we discuss only

rbuf throughout this chapter, we note that these evaluations, analyses and recommenda-

tions apply to both sender and receiver socket buffers. If the sbuf is blocked by a higher

loss rate path in a CMT association (as the rbuf can be), i.e., no data can be sent from

the sending application to the sending transport, then the CMT association will suffer

from the same degradation as described in this chapter. Our suggestion of using a mini-

mum rbuf size of 128KB, therefore, holds for the sbuf as well. Using multistreaming or

unordered data delivery will allow a transport receiver to deliver to the application data

that may not be globally in-order within an association. Such “out-of-order” delivery will

reduce rbuf blocking, but will not affect blocking of the sbuf, since loss recovery mecha-

nisms use global ordering within an association. In using a single ordered stream in our

evaluations, we capture the effective blocking (rbuf or sbuf) that will degrade any CMT

association.

With CMT, further gains can be had over UnawareApp and AwareApp (which use a single

63

SCTP association) in fault tolerance as well. Fault tolerance is a major motivation for,

and benefit of, the multihoming feature in SCTP. In case of a network or path failure,

an SCTP sender can failover to a different destination for sending data to a multihomed

receiver. An SCTP sender normally sends data to only one receiver destination (called

primary destination), and gathers information about paths to all other receiver destinations

(called alternate destinations) through infrequent probes called heartbeats. Since these

probes are infrequent, an SCTP sender may have stale or inadequate information about

the alternate paths to a receiver. Throughput degradation occurs when a sender uses such

information about alternate paths [19].

An SCTP sender sends new data to only a single primary destination, and is therefore

unable to make informed decisions about which destination to use for data transmission

in case of a network failure. A CMT sender avoids this problem because data sent con-

currently on all paths act as regular and frequent probes, reflecting current conditions of

all paths to a receiver. A CMT sender has more accurate information about all paths to a

receiver, which better assists a CMT sender in detecting and responding to network failure

events.

64

Chapter 5

CMT IMPLEMENTATION IN BSD

In this chapter, we discuss our incorporation of CMT in BSD-SCTP, which is the im-

plementation of SCTP for the BSD family of operating systems (FreeBSD, OpenBSD,

NetBSD, and Darwin). The CMT implementation work was a joint effort between this

author and Randall Stewart, the primary author of the SCTP specification (RFC2960) and

of BSD-SCTP.

We first outline changes that were made to BSD-SCTP to incorporate CMT (Section 5.1)

and discuss problems encountered in BSD-SCTP due to ack reordering introduced by

CMT (Section 5.2). We then evaluate our implementation over an emulated network

(Section 5.3).

5.1 Implementation Details

BSD-SCTP (with CMT) is freely available as part of the KAME project [2]. While BSD-

SCTP works with all BSD systems, our development and testing of CMT used only the

FreeBSD operating system. We implemented the SFR, CUCv2 and DAC algorithms, the

RTX-SSTHRESH retransmission policy, and the RTT heuristic in BSD-SCTP.

CMT can be turned ON (1) or OFF (0) using the net.inet.sctp.cmt on off sysctl switch.

To allow for continued experimentation, the DAC algorithm also can be turned ON or

OFF using the net.inet.sctp.cmt use dac sysctl switch. After spending about 200 hours,

65

we were able to incorporate CMT into BSD-SCTP with roughly 100 lines of integrated

code.

• The SFR algorithm (Section 2.2) is implemented primarily in

sctp indata.c:sctp handle segments(), where causative TSNs are identified, and in

sctp indata.c: sctp strike gap ack chunks(), where additional checks are

introduced when incrementing missing report counts for TSNs (as per Figure 2.3).

• The CUCv2 algorithm (Sections 2.3 and 3.3.1) is implemented primarily in

sctp indata.c:sctp handle segments(), where the pseudo cumacks are tracked.

Cwnd updates are handled according to the pseudo cumacks in

sctp indata.c:sctp handle sack().

• The DAC algorithm (Section 2.4) is incremental to the SFR algorithm, with the

sender side algorithm implemented primarily in

sctp indata.c:sctp strike gap ack chunks(), and delaying of acks, as per the

receiver side DAC algorithm, implemented in sctp indata.c:sctp sack check(). We

use the highest order bit in the flags field of the SACK chunk for communicating

number of data PDUs being acked to the data sender. At the data receiver, this bit

is set in sctp output.c:sctp send sack() as part of the receiver side DAC algorithm.

At the data sender, this bit is read from the SACK chunk in

sctp indata.c:sctp handle sack(), and used in sctp indata.c:sctp handle sack() and

sctp indata.c:sctp strike gap ack chunks().

• The RTX-SSTHRESH retransmission policy (Section 3.1) is implemented in

sctp timer.c:sctp find alternate net(), a function that finds an alternate destination

address for retransmissions. A boolean parameter to the function, highest ssthresh,

if 1, indicates that the destination to be returned is the one with the highest

ssthresh, and if 0, indicates that any active alternate destination can be returned.

66

• The RTT heuristic (Section 3.3.2) is applied in

sctp timer.c:sctp mark all for resend(), a function that is invoked on a timeout to

mark outstanding TSNs for retransmission.

• Round-robin scheduling is implemented at the data sender in

sctp output.c:sctp med chunk output(), which transmits pending retransmissions

and new data to different destinations via sctp output.c:sctp fill outqueue().

• CMT variables, constants, and sysctls are declared and defined in sctp.h, sctputil.c,

sctp structs.h, sctp usrreq.c, and sctp var.h.

5.2 Concerns with Stale Acks

Stale acks are acks received later than acks for later data. Figure 5.1 illustrates an example

which shows a stale ack being received by a CMT data sender. In the figure, the SACK

that is received at time t2 is stale because the SACK received at an earlier time t1 conveys

more recent SACK information. Stale acks occur in CMT due to delay differences in

the ack paths to a data sender. Such stale acks are not identified by a CMT data sender,

but commonly occur due to CMT-introduced reordering, and can cause unexpected side-

effects.

We discuss two instances of unexpected behavior with stale acks in BSD-SCTP:

• From the data sender’s point of view in Figure 5.1, TSN x is reneged (time t2). This

apparent renege causes the sender to assume that TSN x needs to be retransmitted

and wait for a fast retransmission to occur (i.e., wait for 3 missing reports). But

the subsequent ack that acks TSN x again (time t3) may cause unexpected behavior

because an SCTP sender does not expect to receive an ack for a reneged TSN with-

out a retransmission—the SCTP specification (RFC2960) does not specify sender

behavior in such a situation. In BSD-SCTP, such a renege causes a sender to lose

67

TSN x-2

A1 A2 B2
Sender

A
Receiver

B
B1

Receiver
B

TSN x+1

SACK

(gap acks x-1)

TSN x

SACK

(gap ac
ks x, x

-1)

TSN x-1

SACK

(gap ac
ks x, x

-1,x+2)

t2: TSN x reneged

t1: TSN x acked

t3: TSN x acked again

Since (x-2) is dropped,
all SACKs have
cumack = (x-3)

Stale ack!

Figure 5.1: Example timeline illustrating stale acks

track of the amount of data outstanding in the network, thus causing the sender to

send effectively uncontrolled amounts of data into the network. We resolved this

issue for CMT by turning OFF detection of reneged TSNs through gap reports—

truly reneged TSNs can be recovered through only a timeout when CMT is used.

While this change will increase the recovery time for reneged TSNs from roughly

one roundtrip time to one RTO, the change is conservative, and prevents spurious

reneges. Further, since reneging is expected to be an infrequent occurrence, perfor-

mance degradation due to this change will not be significant.

• When a TSN is newly acked, this TSN can be used to increment missing report

counts on missing TSNs. When an acked TSN is incorrectly assumed reneged

due to a stale ack and then subsequently acked again, the TSN may be incorrectly

considered as newly acked again. Consequently, this “newly acked” TSN may

allow incorrect increments of missing reports, causing early fast retransmissions.

68

We resolved this issue by checking if a newly acked TSN was reneged in the past

before allowing it to be used for incrementing missing report counts.

We point out that it is not uncommon for the network to reorder PDUs [11], which can

cause stale acks to be received with SCTP (or TCP-SACK) as well. A future work item

for this author is to evaluate the side-effects of ack reordering on SCTP and TCP-SACK.

5.3 Evaluation

Using dummynet, we emulate different path properties in a multihomed network config-

uration (see Figure 5.2). Two multihomed endpoints, reisling and fitou, are connected

through the dummynet router. The paths between the endpoints are maintained indepen-

dent by creating separate virtual networks (VLANs) for each path using a Cisco Catalyst

2950 SX switch. In our experiments, the receiver’s rbuf was set to 128KB, as suggested in

Section 4.3.3 to minimize the effects of rbuf blocking. Network parameters are the same

as with previous simulation experiments in Chapters 3 and 4 (described in Section 3.2).

Using dummynet, end-to-end delays on the two paths were set to 45ms, representing

roughly US coast-coast delays on the Internet. To observe the effects of increasing dif-

ference between path loss rates, loss rate on Path 1 was fixed at 1%, and on Path 2 was

varied between 1 to 10%.

We transferred an 8MB file using (i) 1 CMT association over both paths, (ii) 1 SCTP as-

sociation (denoted SCTP1) using fitou1 as primary and fitou2 as alternate destination, and

(iii) 1 SCTP association (denoted SCTP2) using fitou2 as primary and fitou1 as alternate

destination (these two SCTP transfers were sequential, and not concurrent). CMT uses

the RTX-SSTHRESH retransmission policy (see Section 3.1). The retransmission policy

used for SCTP is the FrSameRtoAlt policy (as recommended in [16, 63])—fast retrans-

missions are sent to the primary destination, and timeout retransmissions are sent to an

69

Path 2

Path 2

reisling
.pc.cis.udel.edu

(data sender)

fitou
.pc.cis.udel.edu

(data receiver)

Separate paths created as VLANs using Cisco 2950 SX Switch
Loss rate, bandwidth and delay using dummynet on

vouvray.pc.cis.udel.edu

reisling
1

reisling
2

fi
to

u 1
fi

to
u 2

10.1.104.2

10.1.105.2

10.1.204.2

10.1.205.2Path 2

Path 1

Figure 5.2: Network topology for evaluation of FreeBSD implementation

70

alternate destination. We note that this SCTP retransmission policy is different from the

Retransmit to Same Destination policy used in previous SCTP simulation experiments

(see Section 3.2), and is the current recommendation for SCTP [63].

Figure 5.3 shows average transfer rate when transferring an 8 MB file using CMT vs.

using individual SCTP associations on each path. Figure 5.3 shows the transfer rate using

the three modes of transfer discussed above. A fourth curve in the figure represents the

sum of SCTP transfer rates, i.e., the calculated sum of SCTP1’s and SCTP2’s measured

transfer rates. Each plotted point is averaged over 100 runs. CMT’s transfer rate closely

tracks the sum of SCTP transfer rates. We note two salient points:

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

A
ve

ra
ge

 T
ra

ns
fe

r
R

at
e

(k
bp

s)

Path 2 Loss Rate

CMT
SCTP assoc with Path 1 as primary
SCTP assoc with Path 2 as primary

Sum of SCTP transfer rates

Figure 5.3: FreeBSD implementation of CMT: Performance comparison with SCTP

• CMT performs slightly better than the sum of the SCTP throughputs when the paths

are symmetric, i.e., equal loss rates of 1%. Even for asymmetric paths, up to Path

2 having a loss rate of 5%, CMT does better. This improvement in CMT is due to

71

two reasons: (i) CMT is more resilient to ack loss than SCTP (as explained in Sec-

tion 3.4), and (ii) delayed acks in slow start simultaneously contribute to the cwnd

growth of both destinations in CMT. Cwnd increase in CMT occurs, therefore, at

a rate higher than when delayed acks increase cwnd for the two individual SCTP

associations (as explained in Section 2.4).

• As Path 2’s loss rate increases, CMT’s throughput gets increasingly degraded by

rbuf blocking (as explained in Section 4.2).

These experiments demonstrate that our CMT implementation in BSD-SCTP performs

as expected, i.e., better than the sum of individual SCTP associations when the paths are

symmetric, and increasingly degraded by rbuf blocking as the asymmetry between the

paths increases. This result is consistent with previous simulation results in Sections 3.4

and 4.2. We also tested CMT in BSD-SCTP with different combinations of end-to-end

delays on the two paths, and again, rbuf blocking increases as asymmetry between the

paths increases. The results from these experiments are consistent with simulation results

in Section 4.3.3. While we specifically tested CMT using the FreeBSD operating system,

we expect that other BSD and BSD-derived systems such as NetBSD, OpenBSD and

Darwin will perform similarly.

Our implementation effort to incorporate CMT in BSD-SCTP was funded and encouraged

by Cisco Systems, with the goal of potentially migrating CMT into their IOS operating

system. We expect that incorporating CMT in BSD-SCTP will encourage wider use and

experimentation with CMT in varied environments. At the time of this writing, Prof.

Alan Wagner’s group at the University of British Columbia, Canada, has downloaded our

CMT implementation, and plan to use it for grid applications. Prof. Wagner’s group is

investigating an SCTP-based solution for enabling grid applications over WAN environ-

ments. In these applications, data striping is currently performed in the application (in

user-space) to utilize the bandwidth of all possible network paths between hosts. CMT

72

enables this functionality at the transport layer (in kernel-space), and is desirable due to

better performance, and reduced complexity in the application [55].

We encourage such varied use and experimentation that will contribute to better a under-

standing of CMT and to uncovering of hitherto unknown issues.

73

Chapter 6

CONGESTION WINDOW OVERGROWTH IN SCTP

CHANGEOVER

In an SCTP association, a sender transmits new data to its peer’s primary destination ad-

dress. SCTP provides for application-initiated changeovers so that a sending application

can redirect outgoing traffic to another path by changing the the sender’s primary desti-

nation address. In this chapter, we change topics to discuss a problem discovered by this

author in the current SCTP (RFC2960) specification [65] that results in unnecessary re-

transmissions and overgrowth of the sender’s cwnd under certain changeover conditions.

We present the problem here in a specific case [39]. We then develop an analytical model

and discuss the results thereof [40].

This work was a precursor to this author’s work on CMT, and is closely related to CMT.

Since CMT can be viewed as “changeover being performed repeatedly across destina-

tions,” the changeover problem described here applies to CMT as well, as observed and

described in Section 2.2. This work directly contributed to, and strongly informed our

intuition, when resolving unnecessary retransmissions with CMT.

6.1 Preliminaries

The example uses a simple network topology. Endpoints A and B have an SCTP associ-

ation between them. Both endpoints are multihomed, A with network interfaces A1 and

74

A2, and B with interfaces B1 and B2. All four addresses are bound to the SCTP associ-

ation. For one of several possible reasons (e.g., path diversity, policy based routing, load

balancing), independent paths are assumed. Data traffic from A to B1 is routed through

A1, and from A to B2 is routed through A2. The end-to-end available bandwidth of path 1

is 10Mbps, and that of path 2 is 100Mbps. The propagation delay of both paths is 200ms,

and the path MTU for both paths is 1250 bytes. The numbers chosen help to clearly

illustrate the changeover problem.

Figure 6.1, shows a timeline of events for the described example. The vertical lines rep-

resent interfaces B1, A1, A2 and B2. The numbers along the lines represent times in

milliseconds. Each arrow depicts the departure of a packet from one interface and its

arrival at the destination. The labels on the arrows are either SCTP Transmission Se-

quence Numbers (TSN) or labels STC(TGS − TGE). Assuming one chunk per packet,

every packet in the example corresponds to one TSN. A number represents the TSN of

the chunk in the packet being transmitted. A label STC(TGS − TGE) represents a packet

carrying a SACK chunk with cumulative ack TC , and gap ack for TSNs TGS through TGE .

C1 is the cwnd at A for destination B1, and C2 is the cwnd at A for destination B2. C1

and C2 are denoted in terms of MTUs, not bytes.

6.2 Congestion Window Overgrowth Problem

The sender (host A) initially sends to the receiver (host B) using primary destination

address B1. This setting causes packets to leave through A1. Assume these packets leave

the transport/network layers, and get buffered at A’s link layer A1, whereupon they get

transmitted according to the channel’s availability. This initial condition is depicted in

Figure 6.1 at time t = 0, when in this example A has 50 packets buffered on interface A1.

At t = 1, as TSNs 1 - 50 are being transmitted through A1, the sender’s application

changes the primary destination to B2, thus, subsequent new data from the sender is sent

75

55(C2=2) 81.3

S2(51-52)

21
1

S1
21.1
21.2

(C2=2) 41.2

51

S41(51-53)

S41(51-54)

S1(51-51)

S1(51-52)

61.2
61.3

S3(51-52)

3
2

22

23

43, 44 (rtx)

(C2=3) 82

(C2=4) 83
45, 46 (rtx)

81

61
S41(51-52)

62
63

64 82
83
84

S42(51-54)S43(51-54)S44(51-54)

41

42

43

44

69

89

S49 (51-54)

49

70

90
S54

50

52

53
54

47, 48 (rtx)

B1
A1 A2 B2Sender

A
Receiver

B
Receiver

B

(C2=2) 2

41

42 (rtx)

* TSNs 1-50 have been buffered at the sender’s link
layer corresponding to A1 and are being sent.

101.3
101.4

102.1

104.1
49, 50 (rtx)56, 57

65

85

S45(51-54)

45

66

86

S46(51-54)

46

62, 63

103.1

1-50*

105.1

106.1

42
43

(C2=2) 41.1

(C2=2) 81.2

(C2=2) 1

(C2=5) 84

(C2=6) 85

(C2=7) 86

(C2=10) 89

(C2=11) 90

0

64, 65

Figure 6.1: Congestion Window Overgrowth: Timeline for the example

76

to B2. In the example, we assume C2 = 2 at the moment of changeover, and TSN 51 is

transmitted to the new primary at t = 1. We refer to this event as the changeover time.

This new primary destination causes new TSNs to leave the sender through A2. Concur-

rently, the packets buffered earlier at A1 are still being transmitted. Previous packets sent

through A1, and the packets sent through A2, can arrive at the receiver B in an interleaved

fashion on interfaces B1 and B2, respectively. In Figure 6.1, TSNs 1, 51, 52 and 2 ar-

rive at times 21, 21.1, 21.2, 22, respectively. This reordering is introduced as a result of

changeover.

The receiver starts reporting gaps as soon as it notices reordering. If the receiver commu-

nicates four missing reports to the sender before all of the original transmissions (TSNs

1 - 50) have been acked, the sender will start retransmitting the unacked TSNs. SCTP’s

Fast Retransmit algorithm [65] is based on TCP’s Fast Retransmit algorithm [8], with the

additional use of selective acks and a modification to handle some cases of reordering1.

Accordingly, the SACKs resulting from the receipt of TSNs 51-54 will be the only ones

generating missing reports. The SACKs received by A on A2 at t = 41.1 and t = 41.2

will be considered as the first and second missing reports for TSNs 2 - 50. Since these

SACKs do not carry new cumulative acks, they do not cause growth in C2. Between

t = 42 and t = 81, the cumulative ack in the SACKs received by A on A1 increases as a

consequence of the original transmissions to destination B1 reaching B. In this period, A

receives 40 SACKs which incrementally carry cumulative acks of 2 - 41.

The SACKs received by A on A2 at t = 81.2 and t = 81.3 carry a cumulative ack of 41,

and are considered as the third and the fourth missing reports for TSNs 42 - 50. On the

fourth missing report, A retransmits only TSN 42, since C2 permits only one more packet

1 [63] is an Internet Draft which goes hand-in-hand with RFC2960. The Implemen-
tor’s guide maintains all changes and additions to be included in RFC2960’s next
version. All implementations are expected to carry the specifications and modifica-
tions in this guide.

77

to be outstanding. At t = 82, the SACK for the original transmission of TSN 42 reaches A

on A1. Since the sender cannot distinguish between SACKs generated by transmissions

from SACKs generated by retransmissions, this SACK (arriving at t = 82) incorrectly

acks the retransmission of TSN 42, thereby increasing C2 by one, reducing the amount

of data outstanding on destination B2, and triggering the retransmission of TSNs 43 and

44. At t = 83, the SACK for the original transmission of TSN 43 arrives at A on A1. As

before, this SACK acks the retransmission (of TSN 43), further incorrectly increasing C2,

and triggering retransmission of TSNs 45 and 46. This behaviour of SACKs for original

transmissions incorrectly acking retransmissions continues until the SACKs of all the

original transmissions to B1 (up to TSN 50) are received by A. Thus, the SACKs from the

original transmissions cause C2 to grow (possibly drastically) from wrong interpretation

of the feedback.

Discussion

The values chosen in our example illustrate but a single case of the cwnd overgrowth

problem. Our investigation shows that the problem occurs for a range of {propagation

delay, bandwidth, MTU} settings. For example, with both paths having RTTs of 200ms

(bandwidth = 100Kbps, propagation delay = 40ms) and MTU = 1500 bytes, the incorrect

retransmission starts much earlier (at TSN 3), and the cwnd overgrowth is even more

dramatic.

The cwnd overgrowth problem exists even if the buffering occurs not at the sender’s link

layer, but in a router along the path. In essence, the transport layers at the endpoints can

be thought of as the sending and receiving entities, and the buffering could potentially be

distributed anywhere along the end-to-end path.

78

6.3 General Model

We develop a general model for the cwnd overgrowth problem based on the example in

Section 6.2. The goal of this model is to provide insight into the ambient conditions un-

der which cwnd overgrowth can be observed, thus helping us understand the extent to

which this problem can occur. This section presents a generalized timeline of SCTP be-

haviour during changeover, and the following sections present a derivation and discussion

of analytic results leading from this general model.

We use the same topology as used in Section 6.2. The general timeline for the problem is

shown in Figure 6.2. Some parameters used in the model are described below. The rest

of the notation is described when referenced in Section 6.4.

1 C
1

i+1

S1 ([C 1
i +1] - [C 1

i +1])

K+1 (rtx)

K+1

S C
1

i+4

C1
i

C
1

i+2

C
1

i (rtx)
(C2 = C1

i -K+1)

B1 A1 A2 B2

Sender
A

Receiver
B

Receiver
B

(C2=2) tc

K+2
SK+2 ([C

1
i+1] – [C

1
i+4])

K
SK ([C

1
i+1] - [C

1
i+X])*SK+1 ([C

1
i+1] - [C

1
i+4])

t1

(C2 = 2) t2

PD1 +
MTU1/BW1

(C2 = 3)

(C2 = 4)

2

0 (C1= C1
i)

1 (C1= C1
i)

SK ([C1
i +1] - [C 1

i +4])t1

C
1

i+4

C
1

i+3

C
1

i+5

K+2 (rtx)

K+3 (rtx)
C1

i - 1
S C

1
i-1 ([C

1
i+1] - [C

1
i+4])

New transmissions,
limited by Max.Burst

(C2 = C1
i -K+2)

t2

* X = 3 if TSN K is received after TSN (C1
i+ 3), i.e.,

PD1+K*MTU1/BW1 < tc+3PD2+2MTU2/BW2

2 otherwise

Figure 6.2: Congestion Window Overgrowth: General timeline for the problem

• C1, C2 : Congestion windows at A for B1 and B2, respectively

79

• tc : Changeover time - Moment after a changeover when sender A starts sending

packets to new primary destination B2

• t2 : Time when fast retransmission (incorrectly) starts.

• G1 : Number of Transmission Sequence Numbers (TSNs) sent in initial group trans-

mitted to destination B1 in the time interval {0, tc}.

• K + 1 : First TSN to be fast retransmitted (incorrectly) by A.

At t = 0, host A starts to transmit G1 TSNs (TSN 1 through G1) to destination address B1.

By time tc the transport layer at host A has G1 TSNs outstanding. This group of TSNs (1

through G1) is referred to as the initial group. Note that these TSNs are outstanding at the

transport entity at host A, and could be buffered anywhere along the end-to-end path, even

at interface A1. By time tc, A has changed its primary destination to B2. At the instant

t = tc, A starts transmitting new data to B2 through interface A2. tc can also be thought

of as the time elapsed from the transmission of the first outstanding TSN on destination

B1 to the time of transmission of the first TSN on destination B2 after changeover. Note

that the SCTP receiver normally responds with delayed SACKs, but immediately returns

a SACK whenever reordering is observed.

The critical instant in the scenario, denoted t2, occurs when A receives the fourth missing

report [63, 65]. At this instant, TSNs K + 1 through G1 get marked for retransmission.

Due to the receipt of a SACK acking TSN G1+4, (at t2) C2 allows one MTU sized chunk

to be transmitted, hence TSN K + 1 gets retransmitted to destination B2. According to

RFC2960, “... when its peer is multi-homed, an endpoint SHOULD try to retransmit a

chunk to an active destination transport address that is different from the last destination

address to which the DATA chunk was sent.” Since the original transmission of TSN

K + 1 went to B1, the retransmission of TSN K + 1 is sent to B2. The value of K is

estimated and its relevance to the cwnd overgrowth is explained in Section 6.4.

80

The retransmission of TSN K + 1 at t = t2 is a consequence of the fourth missing report

(SACK received on interface A2 at t = t2) carrying cumulative ack K. Since TSNs

G1 + 1 through G1 + 4 reached host B by time t1, the SACK also carries a gap ack for

TSNs G1 + 1 through G1 + 4, resulting in the marking of TSNs K + 1 through G1 for

retransmission. The cumulative ack K is an indication that the receiver B has received K

TSNs in-sequence by time t1. This in-sequence data is clearly the data received by B on

the interface B1 by time t1.

Following the retransmission of TSN K + 1, the SACK for the original transmission of

TSN K + 1 arrives at A. Since host A now considers TSN K + 1 to be outstanding

on destination B2, the receipt of this SACK incorrectly increases C2, and allows TSNs

K +2 and K +3 to be retransmitted. The receipt of a SACK for TSN K +1 immediately

after TSN K + 1 is retransmitted is not a coincidence. At time t1 when host B sends

a SACK with a cumulative ack of K acking the receipt of TSN G1 + 4, TSN K + 1 is

concurrently being received on interface B1. Immediately after the receipt of TSN K + 1

on interface B1, host B sends a SACK with cumulative ack K + 1. Consequently, the

sequence of events at host A is the receipt of a SACK with cumulative ack K (which is

also the fourth missing report for TSNs K + 1 through G1) followed by a SACK with

cumulative ack K + 1. As shown, this behaviour continues until the SACKs for all the

original transmissions to B1 (up to TSN G1) have been received at host A.

6.4 Estimation of Congestion Window Overgrowth

We will now estimate the cwnd overgrowth of C2, and the number of unnecessary retrans-

missions. The parameters used in the following analysis are:

L1F , L2F : Maximum Transmission Unit (MTU) sizes on forward paths A1 to B1 and A2

to B2, respectively

B1F , B2F : End-to-End available bandwidths on forward paths A1 to B1 and A2 to B2,

81

respectively

e : Delay experienced by a packet along a path, given by:

e =
∑

i = each hop

(prop)i + (proc)i + (queue)i + (trans)i (6.1)

where prop = propagation delay, proc = processing delay, queue = queueing delay, and

trans = transmission delay.

eF : Delay experienced by a data packet, along the forward path. Assumption: Each

data packet is MTU sized, therefore, eF is estimated by:

eF =
∑

i = each hop in forward path

(prop)i + (proc)i + (queue)i +
L

Bi
(6.2)

where, L is the MTU of the path, and Bi is available bandwidth at hop i.

e1F , e2F : Delays experienced by a data packet on forward paths A1 to B1 and A2 to B2,

respectively,

eR : Delay experienced by a pure SACK packet, along the reverse path. Assumption:

that transmission delays for pure SACK packets are negligible, therefore, eR is estimated

by:

eR =
∑

i = each hop in reverse path

(prop)i + (proc)i + (queue)i (6.3)

e1R, e2R : Delays experienced by a pure SACK packet on reverse paths B1 to A1 and B2

to A2, respectively.

d : Minimum delay observed between consecutive packets transmitted along a same path

by the receiver of the packets. This delay is dictated by end-to-end available bandwidth

of the path, which is determined by the hop with the minimum available bandwidth on

the path (in other words, the path bottleneck). d is given by:

d =
L

mini = each hop{Bi}
(6.4)

82

where, L is the MTU of the path, and Bi is available bandwidth at hop i.

d1F , d2F : Minimum delays between consecutive data packets from A1 to B1 observed

at B1, and from A2 to B2 observed at B2, respectively.

d1R, d2R : Minimum delays between consecutive SACK packets from B1 to A1 observed

at A1, and from B2 to A2 observed at A2, respectively.

Assumption: The reverse path does not change the delay between SACKs. In other words,

the forward path’s bottleneck dictates the rate at which SACKs are transmitted and then

received, not the reverse path’s bottleneck. Therefore, the delay observed between SACKs

is the same as the delay observed between the data packets. In other words,

d1R = d1F , and d2R = d2F (6.5)

Packet transmission on path 2 starts at time tc; it takes some time for the fourth legitimate

missing report to reach the sender A. This time instant is shown in figure 6.2 as t2, which

is given by:

t2 = tc + 2e2F + 2e2R + d2F (6.6)

t1 is the instant when this fourth legitimate missing report leaves the receiver B through

B2, and is given by:

t1 = t2 − e2R = tc + 2e2F + e2R + d2F (6.7)

As shown in figure 6.2, we assume that the SACK received at t2 on A2 contains the highest

cumulative ack received by A so far2.

2 This assumption is made for simplicity of analysis. If this assumption does not hold,
the cwnd overgrowth will be lesser by d e2R−e1R

d1F

e.

83

Let K be defined as the TSN that was most recently cumulatively acked at A prior to time

t2. In other words, K is the last TSN that reached the receiver B on B1 at t1, where,

K = d
t1 − e1F

d1F

e = d
tc + 2e2F + e2R + d2F − e1F

d1F

e (6.8)

The result is that TSNs (K + 1) through G1 will be retransmitted on Path 2 and the total

number of unnecessary retransmissions = max{0, G1−(K +1)+1} = max{0, G1−K}.

The cwnd overgrowth for C2 will be max{0, G1 − K}.

From equation (6.8), K decreases with an increase in d1F , or a decrease in d2F . Further,

K decreases with an increase in e1F , or a decrease in e2F . The relationships between

K and the characteristics of the two paths imply that when a changeover is made to a

higher quality path, there is a likelihood of TCP-unfriendly cwnd growth and unnecessary

retransmissions, and the bigger the improvement in quality that the new path provides, the

larger the TCP-unfriendly growth and number of incorrect retransmissions will be [40].

6.5 Analytical Results: Validation and Visualization

As seen from equation (6.8), cwnd overgrowth occurs if the sender has more than K pack-

ets outstanding at the time of changeover. The value of K is thus pivotal in quantifying

cwnd overgrowth. In this Section, we first validate this analytical value of K using ns-2

simulations and then estimate the value of K, using the model, under various network and

changeover conditions.

6.5.1 Analytical Results: Validation

We now validate the analytical value of K derived in Section 6.4 through simulations

using the ns-2 simulator. The goal in these simulations is to validate whether occurrence

and number of unnecessary retransmissions match model predictions. We discuss the

extent of the cwnd overgrowth problem further in Section 6.5.2.

84

A B

Sender ReceiverR1,0

R2,0

R1,1

R2,1

10Mbps 1
ms

10Mbps 1ms

10M
bps 1ms

10Mbps 1
ms

random {10 Kbps – 1 Mbps}

random {25 ms – 50 ms}

random {10 Kbps – 1 Mbps}

random {25 ms – 50 ms}

A1

A2

B1

B2

Path 1

Path 2

Figure 6.3: Simulation topology for validation of changeover model

We use the topology in Figure 6.3. Each of paths 1 and 2 has three links—two edge

links and one core link. The edge links have a capacity of 10Mbps and propagation delay

of 1ms. The available bandwidths of the paths, i.e., the capacities of the core links are

chosen randomly between 10Kbps and 1Mbps. The propagation delays of the core links

are chosen randomly between 25ms and 50ms. These parameters are meant to roughly

represent delays that are experienced on the Internet by hosts connected via low-speed

modems and/or high-speed broadband devices. The sender’s sending window is fixed at

20KB by setting the receiver’s advertised window to 20KB. We fix the sending window

to avoid loss due to buffer overflow at the routers, and to enable easier extraction of

parameters from the traces. Changeover occurs at time 5 seconds.

Of 1000 simulation runs, 511 runs showed the occurrence of incorrect fast retransmissions

due to changeover. Only the runs which showed these retransmissions could be used for

validation because to infer the value of K from a simulation run (denoted Ksim), at least

one such retransmission had to occur. The first incorrect retransmission would correspond

to TSN Ksim + 1.

85

We extracted the values of the parameters e1F , e1R, e2F , e2R, d1F , d2F and tc from the

traces for each of the 511 runs. Feeding these parameters into equation (6.8) gave us the

analytic value of K (denoted Kanal).

Simulation results show that of the 511 comparisons of Ksim and Kanal, 431 results agreed

exactly. In the remaining 80 results that did not agree, Kanal was equal to Ksim − 1. This

underestimation of K by the analytic model could be attributed to the assumption made

in the derivation of analytic expression for K in Section 6.4, or to approximations made

in extracting the parameters from the traces.

6.5.2 Analytical Results: Visualization

In graphing the analytically derived value of K, we reduce the number of independent

variables by making the following assumptions so as to visualize the graphs better:

• Forward paths 1 and 2 have the same MTU . Hence, L1F = L2F = L

• The forward and reverse paths have the same propagation, processing and queueing

delays. Using equations (6.2) and (6.3),

eF = eR +
∑

i = each hop in forward path

L

Bi
(6.9)

• The transmission delays at the other links along a path are assumed negligible in

comparison to the transmission delay at the bottleneck link. Using equation (6.4),

∑

for i = each hop

L

Bi
≈

L

mini = each hop{Bi}
= d (6.10)

• Combining the above two assumptions, we get

eF = eR + dF = eR +
L

BF

(6.11)

86

For the forward paths 1 and 2, the equation 6.11 can be rewritten as

e1F = e1R +
L

B1F

and e2F = e2R +
L

B2F

(6.12)

Figures 6.5.2 and 6.5.2 (left) graph K as a function of B2F , for fixed values of B1F , e1R

and e2R. In these 2-D graphs, the changeover time, tc, is fixed at 10ms. Each 3-D graph

in Figures 6.5.2 and 6.5.2 (right) picks one representative curve from the corresponding

2-D graph (left), and shows the influence of tc on K. These 3-D graphs thus show K as a

function of B2F and tc, for fixed values of B1F , e1R and e2R.

The graphs are organized as follows:

• The results in figure 6.5.2 use the range 10kbps - 100kbps for the available bot-

tleneck bandwidths B1F and B2F . tc is set to 10ms in the 2-D graphs. The curve

corresponding to B1F = 50kbps is used as a representative curve to show the influ-

ence of tc on K. tc varies over 10ms - 100ms in the 3-D graphs. Three combinations

of (e1R, e2R) are used: (50ms, 50ms), (50ms, 25ms), and (25ms, 50ms).

• The results in figure 6.5.2 use the range 100kbps - 1Mbps for the available bottle-

neck bandwidths B1F and B2F . tc is set to 10ms in the 2-D graphs. The curve

corresponding to B1F = 500kbps is used as a representative curve to show the influ-

ence of tc on K. tc varies over 10ms - 100ms in the 3-D graphs. Three combinations

of (e1R, e2R) are used: (50ms, 50ms), (50ms, 25ms), and (25ms, 50ms).

We split the range (10kbps - 1Mbps) into two subranges (10kbps - 100kbps and 100kbps -

1Mbps), because the variation observed in K with both B1F and B2F ranging from 10kbps

to 1Mbps is large. We are thus able to visualize the behavior of K over a large range of

available bandwidths, with the assumption that the available bandwidths of the two paths

are comparable. In these figures, if the sender has more than K packets outstanding at

87

0

5

10

15

20

25

30

10 20 30 40 50 60 70 80 90 100

K

B2F

B2F (in kbps) vs K (e1R = 50 ms, e2R = 50ms, tc = 10ms)

B1F=10kbps
B1F=30kbps
B1F=50kbps
B1F=70kbps

B1F=100kbps

K as a function of B2F and tc (e1R=50ms, e2R=50ms, B1F=50kbps)

K

10
20

30
40

50
60

70
80

90
100 10 20 30 40 50 60 70 80 90 100

0

5

10

15

B2F (kbps)

tc (ms)

K

0

5

10

15

20

25

30

10 20 30 40 50 60 70 80 90 100

K

B2F

B2F (in kbps) vs K (e1R = 50 ms, e2R = 25ms, tc = 10ms)

B1F=10kbps
B1F=30kbps
B1F=50kbps
B1F=70kbps

B1F=100kbps

K as a function of B2F and tc (e1R = 50ms, e2R = 25ms, B1F = 50kbps)

K

10
20

30
40

50
60

70
80

90
100 10 20 30 40 50 60 70 80 90 100

0

5

10

15

B2F (kbps)

tc (ms)

K

0

5

10

15

20

25

30

35

10 20 30 40 50 60 70 80 90 100

K

B2F

B2F (in kbps) vs K (e1R = 25 ms, e2R = 50ms, tc = 10ms)

B1F=10kbps
B1F=30kbps
B1F=50kbps
B1F=70kbps

B1F=100kbps

K as a function of B2F and tc (e1R = 25ms, e2R = 50ms, B1F = 50kbps)

K

10
20

30
40

50
60

70
80

90
100 10 20 30 40 50 60 70 80 90 100

0

5

10

15

B2F (kbps)

tc (ms)

K

Figure 6.4: Graphing K analytically: 10kbps ≤ B1F , B2F ≤ 100kbps

88

0

5

10

15

20

25

30

35

40

100 200 300 400 500 600 700 800 900 1000

K

B2F

B2F (in kbps) vs K (e1R = 50ms, e2R = 50ms, tc = 10ms)

B1F=100kbps
B1F=300kbps
B1F=500kbps
B1F=700kbps

B1F=1Mbps

100 200 300 400 500 600 700 800 9001000 10 20 30 40 50 60 70 80 90 1000

5

10

15

20

25

0

5

10

15

20

25

30

35

100 200 300 400 500 600 700 800 900 1000

K

B2F

B2F (in kbps) vs K (e1R = 50ms, e2R = 25ms, tc = 10ms)

B1F=100kbps
B1F=300kbps
B1F=500kbps
B1F=700kbps

B1F=1Mbps

K as a function of B2F and tc (e1R = 50ms, e2R = 25ms, B1F = 500kbps)

K

100
200

300
400

500
600

700
800

900
1000 10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

B2F (kbps)

tc (ms)

K

0

5

10

15

20

25

30

35

40

45

100 200 300 400 500 600 700 800 900 1000

K

B2F

B2F (in kbps) vs K (e1R = 25ms, e2R = 50ms, tc = 10ms)

B1F=100kbps
B1F=300kbps
B1F=500kbps
B1F=700kbps

B1F=1Mbps

K as a function of B2F and tc (e1R = 25ms, e2R = 50ms, B1F = 500kbps)

K

100
200

300
400

500
600

700
800

900
1000 10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

B2F (kbps)

tc (ms)

K

Figure 6.5: Graphing K analytically: 100kbps ≤ B1F , B2F ≤ 1Mbps

89

the time of changeover, there will be unnecessary retransmissions. Note that smaller the

value of K, the higher the possibility of unnecessary retransmissions, and vice-versa.

In Figure 6.5.2, K varies between 0 and 30, and mostly has a value below 10. Remember

that the smaller K is, the more unnecessary retransmissions will occur, and the more

cwnd grows when it should not. Changes in e1R, e2R and tc seem to have little influence

on K, as compared to the variation due to B1F , B2F . That is because in this set, since the

available bandwidths are low, the total delay is dominated by transmission delay.

In Figure 6.5.2, K varies between 0 and 40. The median value of K in this set has

increased from the first set. This increase can be attributed to the greater range of the bot-

tleneck bandwidths. Another important factor can be understood by considering equation

(6.8). With an increase in the bottleneck bandwidth, the value of d1F decreases, conse-

quently increasing K. We also observe the increased influence of e1R, e2R and tc in this

set of results, since the transmission delay is lesser dominant in this set.

In both sets, we note that K decreases with a decrease in B1F or an increase in B2F , as is

expected.

6.6 Solutions

The cwnd overgrowth and unnecessary retransmissions during changeover can be seen to

occur due to inadequacies of SCTP—either (i) the sender is unable to distinguish between

SACKs for transmissions and SACKs for retransmissions, or (ii) the congestion control

algorithm at the sender is unaware of the occurrence of a changeover, and hence is unable

to identify reordering introduced due to changeover. Addressing either of these inade-

quacies will solve the more important problem of cwnd overgrowth. In [39] and [40], we

proposed three solutions to solve the problem of cwnd overgrowth.

• The Rhein algorithm [39] addresses (i) above and proposes the addition of two new

90

chunks called the Retransmission Identifier (RTID) Chunk and the Retransmission

Identifier (RTID) Echo. The RTID chunk is added to every outgoing data packet at

the sender, and carries one bit per TSN in the packet. The bit is 0 if its respective

TSN is a first transmission, and is 1 if the TSN is a retransmission. The receiver

echoes back these bits in the RTID echo chunk in the corresponding ack. Care

is taken to ensure the RTID information is stored across delayed acks and such.

To avoid cwnd overgrowth due to ambiguity in the SACKs, Karn’s algorithm is

applied to cwnd growth. In other words, a TSN which has been retransmitted does

not cause any cwnd growth.

• Two kinds of Changeover Aware Congestion Control algorithms that address (ii)

above—the Conservative CACC (C-CACC), and the Split Fast Retransmit CACC

(SFR-CACC). The key idea in the CACC algorithms is to maintain state at a sender

on a per-destination basis when a changeover happens. On receipt of a SACK,

the sender uses this state to selectively increase missing report count for TSNs in

the retransmission queue. The key difference between the two variants is that C-

CACC is simpler but conservative about marking TSNs, while SFR-CACC is more

complex but allows marking over a wider range of TSNs.

Of these algorithms, we recommended the SFR-CACC algorithm in [40]. As CMT work

progressed, we discovered that the problems discussed in this chapter shared the same

cause as unnecessary retransmissions with CMT (Section 2.2). With additional insights

gained later, the SFR-CACC algorithm was significantly simplified and the new incarna-

tion was applied to CMT as the SFR algorithm (Figure 2.3).

We currently recommend the newer SFR algorithm as a solution to eliminate unnecessary

retransmissions and cwnd overgrowth during changeover. We are currently proposing

this algorithm modification to SCTP as an Internet Draft (draft-iyengar-sctp-cacc-03.txt)

at the IETF [38].

91

Chapter 7

DISCUSSION, FUTURE WORK AND RELATED WORK

In this concluding chapter, we first discuss CMT design and deployment considerations

in Section 7.1. We then present several ideas for continued research in CMT in Sec-

tion 7.2 followed by a discussion of related work in Section 7.3. Section 7.4 concludes

this dissertation.

7.1 Discussion

This section discusses considerations in CMT design and CMT’s potential impact in en-

vironments that are not explored in this dissertation.

7.1.1 Alternative Design – Separate Sequence Spaces

Another approach to accomplishing CMT would be to define a separate sequence space

per destination—a solution often considered the simplest design for CMT [6, 7]. While

this solution simplifies some issues, it also introduces its own complications.

• What sequence number is used for a packet that is retransmitted to a destination

other than the original? What happens to the sequence number used for the original

destination (is it reused, or is it discarded thereby introducing a gap?) Any solution

will likely require additional reliable signaling between sender and receiver.

92

• During association closure, the final sequence number must be agreed upon by

sender and receiver to ensure complete reliable transfer. Introducing multiple se-

quence number spaces complicates this issue.

• Several mechanisms are understood with a single sequence space, for example,

reneging. Managing per destination sequence numbering for these mechanisms

requires careful examination.

• Separating sequence spaces causes separation of ack info per path. This separation

cannot provide CMT’s increased resilience to reverse path loss and reverse path

failure as shown in Section 3.4.

We believe that the complexities introduced by such a design outweigh the benefits.

7.1.2 Retransmission Timer Calculations

In SCTP, acks for transmitted TSNs are used to estimate the roundtrip time (RTT), which

is subsequently used in calculating the retransmission timeout (RTO) [65]. Unexpected

behavior can occur with CMT when the paths used have different delay characteristics

(see Figure 7.1). Assuming traffic on both paths, an ack sent later on the faster return path

(SACK with cumack x+n) may reach the sender sooner than an ack sent earlier on the

slower return path (SACK with cumack x). Such later acks which are received sooner,

being cumulative, will cause the sender to a different value for RTT than the actual RTT

for Path A1 − B1.

Before addressing the question of whether spurious timeouts will occur with CMT, we

first raise the question: What is the RTT when multiple return paths exist, as is the case

with CMT? A sender records the time from sending data to a certain destination, until the

receipt of the corresponding ack as the RTT for that path. When a single path is used in

both directions (as in SCTP or TCP), this recorded time represents (in the general case)

93

A1 A2 B2

Sender
A

Receiver
B

B1

Receiver
B

TSN x+n

SACK
(cumack = x)

TSN x

SACK

(cumack = x+n)

t1

t2

t3

RTT sample used
for destination B1

RTT sample used
for destination B2

Included in RTT sample
for destination B1 if only
Path B1-A1 used for acks

t2 : Moment when TSN x is first acked
t2 – t1 : RTT sample for destination B1 when return path B2-A2 is used
t3 – t1 : RTT sample for destination B1 when return path B1-A1 is used

Figure 7.1: RTT Calculation at CMT Sender

the sum of the end-to-end delays on the single forward path and the single return path.

When multiple return paths are used for transmitting cumulative acks, which return path

is the “roundtrip”, and hence, which return path’s delay should be used in the sender’s

RTT estimate?

We suggest that when multiple return paths are used, the estimated RTT at a CMT sender

should be a weighted average of the different RTT measures, with the weights reflecting

the number of samples. Such an average will reflect the expected ack arrival time for

a transmitted data PDU, and is achieved naturally by SCTP’s (and TCP’s) current RTT

estimation mechanism [54, 65], which is used by CMT.

We now discuss the effects of these RTT estimates on the calculated RTO value. Equa-

tion (7.1) shows the RTO calculation used in SCTP for loss recovery [65].

RTO = SRTT + 4 ∗ RTTV AR (7.1)

94

where SRTT is the average estimated RTT, and RTTVAR is the variance observed in the

RTT samples.

The RTO value, thus, accounts for variance observed in the RTT samples. In Figure 7.1,

at steady state, with a continuous stream of data and acks on both paths, the sender (host

A) will receive acks on both A1 and A2. Therefore, when data and ack flows exist on both

paths, for data sent on forward path A1 − B1, some acks will be received on return path

B1 − A1, providing larger RTT samples of (t3 − t1), and other acks will be received on

return path B2 − A2, providing smaller RTT samples of (t2 − t1). The variance of the

RTT samples will, therefore, be larger than when acks are received on only one of the two

return paths. This increased variance will consequently cause the RTO value to be larger

(and therefore, more conservative), and will prevent spurious timeouts from occurring.

We note that the use of multiple return paths is not unique to CMT—a similar situation

arises when acks on the return path in an SCTP (or TCP) association are distributed by a

load-balancing router in the network over two paths with different delays.

7.1.3 Applicability With a Shared Bottleneck

This dissertation operates under the strong assumption that the bottleneck queues (in other

words, points of congestion) on the end-to-end paths used in CMT are independent. Over-

lap in the paths is acceptable as long as the paths’ bottlenecks are independent. If used in

the presence of a shared bottleneck, CMT using n paths will be as aggressive as n sepa-

rate SCTP associations sharing the bottleneck. An improved CMT sender would be able

to detect the presence of a shared bottleneck and respond appropriately, and should be

no more aggressive than a single SCTP association through the shared bottleneck. Later

in this chapter (Section 7.2.2), we discuss how related work on end-to-end shared bottle-

neck detection can be applied to CMT. In this section, we discuss the applicability of this

dissertation’s results when a bottleneck is shared across the paths used for CMT.

95

• CMT algorithms (Chapter 2) are applicable when reordering due to different path

delays occurs within a CMT association. Path delays can be different even if a

bottleneck is shared, and thus our algorithms will continue to apply in the presence

of a shared bottleneck.

• CMT retransmission policies (Chapters 3 and 4) show differences in performance

as the paths’ loss rates diverge (for instance, see Figure 4.4). If a bottleneck is

shared, the loss rates (due to congestive losses) of the paths sharing the bottleneck

should be the same, and therefore the retransmission policies should all perform

similarly. If non-congestive losses exist on the paths, the rates of such losses could

be different, and a loss-rate-based policy may still perform better than the other

policies. If the congestive and non-congestive losses can be tracked separately,

then newer loss-rate-based policies that consider both kinds of loss rates should be

considered.

• Rbuf blocking (Chapter 4) degrades performance increasingly with increasing loss

rate and delay difference between the paths. With a shared bottleneck, while loss

rates (due to congestive losses) of the paths sharing the bottleneck should be the

same, the delays can still be different, causing rbuf blocking. Further, while the

extent may or may not be significant, different rates of non-congestive loss on the

paths can also contribute to increased rbuf blocking.

7.1.4 CMT in Other Environments

Small file transfers: Small file transfers (web transfers) suffer from the problem that they

are more prone to timeouts because the number of packets in the transfer may be in-

sufficient to trigger a fast retransmission. We have not tested CMT behavior with small

files, but note the following. Spreading a small file transfer over multiple paths further

decreases the ability for fast retransmit to discover loss, and thus will decrease expected

96

throughput. At the same time, using the aggregated bandwidth of multiple paths should

tend to increase throughput. We suspect that the performance degradation due to timeouts

may dominate with small file transfers using CMT.

Failure scenarios: SCTP uses k consecutive timeouts as an indication of failure (recom-

mended value of k is 6 [65]). CMT’s failure detection/response mechanisms and latency

are currently the same as those of SCTP. In the presence of failure, we observed that

CMT’s behavior is the same as that of SCTP with a failed primary path (brief transmis-

sion periods followed by long silence periods). We believe that further optimization is

possible to improve CMT performance during failures, and is part of our future work.

In Section 7.2.1, we discuss a promising optimization currently being explored by this

author’s colleague in the Protocol Engineering Lab.

TCP-to-SCTP translation shim: While the SCTP specification is maturing through the

IETF standardization process, a gradual migration path is needed for SCTP deployment.

A transparent TCP-to-SCTP translation shim layer proposed by Bickhart [12] provides a

mechanism for this migration. Bickhart proposes a shim layer to intercept system calls

to TCP and translate them to equivalent SCTP calls, thereby enabling use of an SCTP

association in place of a TCP connection. Such a shim allows legacy TCP applications to

use SCTP, and benefit from its multihoming features, transparent to the application user.

If both endpoints do not support SCTP, the shim falls back to using TCP. CMT can be

used and enabled in such a shim, thereby providing improved throughput to even legacy

TCP applications running on multihomed endpoints.

7.2 Future Work

We now discuss two directions for future work.

97

7.2.1 Considerations For Path Failures

When one path used in CMT experiences failure, data outstanding on the failed path has

to be recovered through a timeout, resulting in rbuf blocking for the period of the time-

out. After a timeout recovery, a sender will continue to send new data to the failed path

until Path.Max.Retransmit (PMR) consecutive timeouts occur. With the current SCTP

recommendation of PMR = 5, a failure results in almost 61 seconds of rbuf blocking.

Using PMR = 3 as recommended by Caro [16] can still cause rbuf blocking of upto 15

seconds. We believe that this blocking can be reduced with better management of data

transmissions when failure seems imminent, i.e., when a timeout occurs.

This author co-developed an idea with Preethi Natarajan for better handling of failure

conditions with CMT.

In addition to the existing ACTIVE and INACTIVE states for a destination, we introduce

a new state—“POSSIBLY FAILED (PF)”. When a CMT sender experiences a timeout

for a destination, the destination is marked PF, and the sender should stop sending any

data (transmissions or retransmissions) to that destination. Only HeartBeat (HB) probes

are sent to a destination in the PF state until the destination responds. New data and

retransmissions continue to be sent to the other destinations. Thus, the sender experiences

rbuf blocking of atmost 1 RTO and then continues to send data on all other paths. Note

that HBs sent to a PF destination follow the same timeout pattern as data, i.e., HBs follow

the more aggressive data timer, and not the slow HB timer. Initial studies have shown that

this simple idea seems to work well in handling failure conditions with CMT. This idea is

currently being pursued by Preethi to improve CMT performance under failure conditions.

98

7.2.2 Shared Bottleneck Detection and Response

A sub-association flow is defined as a flow within a CMT association consisting of packets

having the same source and destination IP addresses. In distributing transmitted data to

multiple destination addresses, a CMT sender creates several sub-association flows within

the association. These sub-association flows may share (with each other) the available

bandwidth at a bottleneck router.

In this dissertation work, we have operated under the strong assumption that the paths

used in CMT have independent bottlenecks, i.e., the sub-association flows within a CMT

association do not share any bottleneck. On a network such as the Internet, this assump-

tion may be invalid. If a CMT sender incorrectly assumes independent bottlenecks in the

presence of a shared bottleneck, the sender sends more aggressively than the other flows

sharing the bottleneck. This aggressive behaviour is due to multiple cwnds evolved and

used at a CMT sender for sub-association flows sharing a bottleneck, giving the sender an

unfair increase in aggregate throughput. It is only fair to the other flows at the bottleneck,

which use a single cwnd, that the CMT sender evolve and use a single cwnd instead of

multiple cwnds.

An area of future study is to investigate shared bottleneck detection techniques that can

be employed by CMT, and response mechanisms for a CMT sender to switch from using

multiple cwnds to a single cwnd when independent paths do not exist [5].

Several techniques have been proposed that use non-TCP flows for sender-side detec-

tion of a shared bottleneck between end-to-end flows [30, 44, 45, 47, 57]. Further work is

needed to determine how these techniques can be employed with a multihomed, window-

based, application-limited transport layer sender. The outcome of this research will

present simple yet concrete online algorithms for multihomed end-hosts to detect and

respond to shared bottlenecks. The larger problem can also be broken down into smaller

99

components:

1. Evaluation of different end-to-end shared bottleneck detection techniques: Using

analysis, simulation and, if possible, emulation, the different techniques need to be

evaluated in different topologies and traffic conditions. The goal here is to evaluate

the strengths and weaknesses of the different techniques, and to identify what can

be used in the context of CMT.

2. Application of these techniques to an application-limited window-based sender:

Current techniques do not consider the constraints that a transport layer sender has

to operate under, such as application behavior and sending constraints due to con-

gestion control. While some initial work in the area demonstrates feasibility [53],

further work is needed to determine how these techniques can be employed with

CMT.

3. Investigation of how a sender can seamlessly move between using shared and sep-

arate congestion control: A sender must have the ability to seamlessly curb the

overall sending rate if a shared bottleneck is detected, and allow the sending rate

to quickly ramp up and utilize the available bandwidth when separate bottlenecks

are established. While separate cwnds already handle separate congestion control,

a larger aggregate cwnd, which tracks the sum of the individual cwnds, can be used

when a bottleneck is shared. This variable can control the sending rate of the entire

association, while allowing each path to maintain its own cwnd and ack clock.

4. Tradeoffs involved in using multiple paths with shared congestion control: If all

bottlenecks are shared, CMT may not gain any throughput benefits over plain SCTP.

On the one hand, path delay differences may cause CMT throughput to be lesser

than SCTP throughput when all bottlenecks are shared, but on the other hand, CMT

may have a faster reaction time if failure occurs. Tradeoffs may thus exist that

should be considered when evaluating CMT in the presence of shared bottlenecks.

100

7.3 Related Work

Load balancing in computer networks is a well studied problem. Though this dissertation

is focused on the transport layer, this section provides a survey of load balancing efforts

at other layers as well. These other research projects helped identify and understand

how common issues have been addressed previously, and provided insight on how to

incorporate related ideas. This section broadly classifies related previous work into load

balancing at the application, transport, network and link layers, as presented and described

in Sections 7.3.1, 7.3.2, 7.3.3, and 7.3.4, respectively.

7.3.1 Load Balancing at the Application Layer

Several applications [29,59] use multiple TCP connections to increase throughput in high

bandwidth networks. These applications load balance over a single path to a receiver in an

attempt to maximize use of the large available bandwidth, whereas CMT distributes data

over multiple paths. Content Networks [24] provide an infrastructure for connection level

load balancing at the granularity of TCP connections. CMT provides T-PDU level load

balancing at the granularity of Transport-PDUs. Connection level load balancing is useful

for short TCP connections such as web requests and responses, but can be suboptimal for

long bulk data transfers, where the server is constrained to a single path throughout the

transfer.

While we are not aware of any instance, an application could conceivably attempt sub-

connection scale load balancing. We argue that even if such an application were at-

tempted, load balancing at these T-PDU scales is best done at the transport layer, which,

being the lowest end-to-end layer, has the most accurate information about end-to-end

path(s). CMT uses loss and delay information for redirection of retransmissions - such

decisions are best made in the transport layer. A load balancing application that desires

high level of control at T-PDU scales would functionally reside in the transport layer,

101

and would require significantly increased communication between the transport and the

application layers.

We further argue that in general, load balancing at the application layer increases code

redundancy and room for error by requiring independent implementations in each appli-

cation.

7.3.2 Load Balancing at the Transport Layer

mTCP [72], an effort parallel with ours, implements a transport layer solution to ag-

gregate bandwidth across multiple end-to-end paths. mTCP, like CMT, uses a single

sequence space across paths. mTCP significantly modifies TCP to use multiple paths pro-

vided by an overlay network (RON [9]), and like CMT, employs mechanisms to handle

reordering side-effects. mTCP introduces a new shared bottleneck detection mechanism

to detect and respond to shared bottlenecks, and proposes a heuristic-based “path suppres-

sion” mechanism which suppresses use of paths that have “sufficiently low” throughput.

While path suppression avoids throughput degradation in mTCP due to rbuf blocking and

path failure, unlike CMT, mTCP does not consider retransmission policies in reducing

the effects of rbuf blocking. RON is assumed as the underlying routing layer for mTCP,

and is required for obtaining multiple paths; that is, mTCP cannot be used on an arbi-

trary IP network. On the other hand, CMT leverages native transport layer multihoming

mechanisms in SCTP, and can be used on any IP network. mTCP also uses a single re-

turn path for ack traffic, thereby requiring additional mechanisms to detect failure of the

single ack path, and causing performance degradation during failure. Inspite of the differ-

ences between mTCP and CMT, there are significant similarities in their design and the

issues considered. Ideas proposed in mTCP, such as shared bottleneck detection/response

and path suppression, are broadly applicable to CMT, and are worth evaluating for future

incorporation into CMT.

102

Al et al. [6,7] suggest ideas for load sharing that requires additional metadata in the SCTP

PDUs. We believe that current SCTP (and TCP-SACK) PDUs already contain sufficient

information for the data sender to infer the per-path ordering information that [7] explic-

itly codes as metadata. Reference [7] fails to suggest modified procedures for mechanisms

which are immediately affected, such as initialization of the per-path sequence numbers,

association initialization and shutdown procedures with multiple sequence numbering

schemes, and response to reneging by a receiver. We have also seen that sharing se-

quence number space across paths improves performance (see Section 3.4) whereas [7]

uses a separate sequence number space per path, and will therefore not see CMT’s per-

formance benefits. Further, [7] assumes that the rbuf does not constrain a sender which is

unrealistic in practice.

Argyriou et al. [10] provide techniques for bandwidth aggregation with SCTP, but do not

present and analyze their protocol modifications to SCTP. The modified fast retransmis-

sion algorithm is simplistic and assumes information that is not available to an SCTP

receiver. For instance, the implicit assumption that a receiver will be able to differentiate

a packet loss from reordering is unrealistic.

Hsieh et al. [31] propose pTCP (parallel TCP) which provides an infrastructure for data

striping within the transport layer. pTCP has two components—Striped connection Man-

ager (SM) and TCP-virtual (TCP-v). The TCP-v’s are separate connections that are man-

aged by the SM. TCP-v probes the path and performs congestion control and loss detec-

tion/recovery, while the SM decides which data is sent on which TCP-v. This decoupling

of functionality avoids some pitfalls of application layer approaches, and allows for in-

telligent scheduling of transmissions and retransmissions. A significant issue with pTCP

is its complexity. As the authors note, maintenance of multiple Transmission Control

Blocks at a sender can be a resource sink [31]. Implementation is also complex, since

pTCP replicates transport layer functionality such as connection establishment/teardown

103

and checksum calculations. Further, pTCP has several unresolved issues. If both sender

and receiver are multihomed with two IP addresses each, pTCP does not explain how a

sender decides on which sender-receiver pairs to establish TCP connections - a complex

problem. Plugging transport protocols into pTCP also requires non-trivial modifications

to the transport protocols themselves. CMT, on the other hand, uses a transport protocol

with built-in mechanisms for multihoming.

7.3.3 Load Balancing at the Network Layer

Phatak and Goff [56] propose distributing data at the network layer transparent to the

higher layers using IP-in-IP encapsulation. The authors identify conditions under which

this mechanism avoids incorrect retransmission timeouts. The proposed solutions assume

end-to-end delays are dominated by fixed transmission delay, and do not apply to propaga-

tion delay dominated paths, or paths with dynamically changing bandwidths and delays.

CMT’s algorithms do not require such assumptions, and will operate under dynamic and

propagation delay dominated conditions.

Several proposals exist for multipath routing - routing packets from a source to a destina-

tion network over multiple paths. However, different paths are likely to exhibit different

RTTs, thus introducing packet reordering. TCP’s performance degrades in the presence

of increased reordering. To enable optimal load balancing at intermediate routers with-

out affecting end-to-end TCP performance, modifications to TCP have also been pro-

posed [13, 14, 27, 71]. These proposals augment and/or modify TCP’s congestion control

mechanisms to cope with reordering introduced by network layer load balancing; the

burden of actually using multiple paths in the network is left to the intermediate routers.

On one hand, though there is motivation for the routing infrastructure in the Internet to

use multiple paths simultaneously, it is important to ensure a priori that the endpoints are

capable of handling the reordering introduced. On the other hand, the endpoints will be

104

able to benefit from these proposals only when the routing infrastucture uses the multiple

paths. There is no significant motivation for endpoints to implement and use any of these

proposals since performance gain, if any, is not immediate, but long term. These issues,

though not strictly research issues, govern the deployment and fruition of the proposals

described in this section.

In the Internet, the end user has knowledge of, and control over, only the multihomed end

hosts, not the intermediate routers. In such cases the end host cannot dictate or govern

use of multiple paths in the network. But the end host can use multiple end-to-end paths

available to the host [67], thus motivating CMT at the transport layer.

7.3.4 Load Balancing at the Link Layer

Load balancing research at the link layer, also known as link layer striping or inverse

multiplexing, generally addresses packet resequencing and fair load distribution across

a single link. Link layer research addresses the needs of service providers to increase

bandwidth by adding more links, and striping data across the links to provide increased

aggregated bandwidth, instead of having to replace exisiting infrastucture. Generally, the

link characteristics do not vary significantly, and end-to-end congestion control is not a

concern, thus reducing the load balancing problem to those of fairness and packet rese-

quencing. Research in inverse multiplexing [4, 23, 68] or link aggregation [60] has gen-

erally not been end-to-end, and the operating conditions do not represent the conditions

that end-to-end CMT over the Internet has to operate in.

Packet resequencing techniques address packet reordering due to load balancing across

multiple links. In synchronous packet resequencing techniques, the receiver and the

sender are synchronized to allow the receiver to receive segments in order from its multi-

ple links. In comparison to an environment such as the Internet, such techniques operate

within better known delay difference and bandwidth difference bounds. Asynchronous

105

packet resequencing techniques, such as [21,46] require more metadata, such as sequence

numbers or rank information [46] to be added to the packets and/or assume information

such as bitrate on the channels. Information such as bitrate and delay are not static and

cannot be assumed for an end-to-end path through the Internet. Further, adding meta-

data is unnecessary for a SACK-based transport protocol since the sender can infer the

necessary information from the SACKs.

Snoeren [61] proposes a more general adaptive inverse multiplexing mechanism called

Link Quality Balancing (LQM), which uses relative link performance metrics to sched-

ule traffic across logically bundled point-to-point links in Wireless WANs (WWANs).

This scheduling mechanism is implemented in Wide-Area Multilink PPP (WAMP), which

leaves bandwidth probing and reliability to the higher layers (in [61], to TCP), and focuses

only on scheduling of traffic taking link quality metrics into consideration. This work may

be useful in future investigation of scheduling mechanisms for CMT.

7.4 Summary

This dissertation investigated and evaluated design considerations in implementing CMT

at the transport layer over independent end-to-end paths using SCTP as an example of a

multihome-capable transport layer protocol. We proposed algorithms to handle reordering

due to CMT, and introduced retransmission policies for CMT. We presented the problem

of rbuf blocking, argued that it cannot be eliminated, and demonstrated that intelligent

retransmission decisions at the transport layer can reduce performance degradation due to

rbuf blocking. We discussed our implementation of CMT in BSD-SCTP, and pointed out

potential areas for continued research in CMT.

Varied use and experimentation with CMT in different environments and under different

constraints will contribute to a better understanding of CMT and to uncovering of hitherto

unknown issues. We, therefore, encourage wider use of, and experimentation with, CMT.

106

BIBLIOGRAPHY

[1] Future combat systems website.
http://www.globalsecurity.org/military/systems/ground/fcs.htm.

[2] KAME Project. http://www.kame.net.

[3] CAIDA: Packet Sizes and Sequencing, Mar 1998. http://traffic.caida.org.

[4] H. Adiseshu, G. Parulkar, and G. Varghese. A Reliable and Scalable Striping Proto-
col. In ACM SIGCOMM 1996, Stanford, California, August 1996.

[5] A. Akella, S. Seshan, and H. Balakrishnan. The Impact of False Sharing on Shared
Congestion Management. In ICNP 2003, Atlanta, GA, November 2003.

[6] A. Abd El Al, T. Saadawi, and M. Lee. Improving Throughput and Reliability in
Mobile Wireless Networks via Transport Layer Bandwidth Aggregation. Computer
Networks, Special issue on Military Communications Systems and Technologies,
46(5), December 2004.

[7] A. Abd El Al, T. Saadawi, and M. Lee. LS-SCTP: A Bandwidth Aggregation Tech-
nique For Stream Control Transmission Protocol. Computer Communications, Spe-
cial issue on Protocol Engineering for Wired and Wireless Networks, 27(10), June
2004.

[8] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control. RFC2581, IETF,
April 1999.

[9] D. Andersen, H. Balakrishnan, and R. Morris M. Kaashoek. Resilient Overlay Net-
works. In 18th ACM Symposium on Operating Systems Principles (SOSP 2001),
Banff, Canada, October 2001.

[10] A. Argyriou and V. Madisetti. Bandwidth Aggregation With SCTP. In IEEE Globe-
com 2003, San Fransisco, CA, December 2003.

[11] J. C. R. Bennett, C. Partridge, and N. Shectman. Packet Reordering is Not Patho-
logical Network Behavior. IEEE/ACM Transactions on Networking, 7(6), December
1999.

107

[12] R. Bickhart. TCP-to-SCTP Translation Shim. MS Thesis, CIS Dept, University of
Delaware, May 2005.

[13] E. Blanton and M. Allman. On Making TCP More Robust to Packet Reordering.
ACM Computer Communication Review, 32(1), January 2002.

[14] S. Bohacek, J. P. Hespanha, J. Lee, C. Lim, and K. Obraczka. TCP-PR: TCP for
Persistent Packet Reordering. In IEEE ICDCS 2003, Rhode Island, May 2003.

[15] R. Braden. Requirements for Internet Hosts – Communication Layers. RFC1122,
IETF, October 1989.

[16] A. Caro. End-to-End Fault Tolerance Using Transport Layer Multihoming. Phd
dissertation, CIS Dept, University of Delaware, August 2005.

[17] A. Caro, P. Amer, J. Iyengar, and R. Stewart. Retransmission Policies with Transport
Layer Multihoming. In ICON 2003, Sydney, Australia, September 2003.

[18] A. Caro, P. Amer, and R. Stewart. Rethinking End-to-End Failover With Transport
Layer Multihoming. Annals of Telecommunications. (in press).

[19] A. Caro, P. Amer, and R. Stewart. Retransmission Policies for Multihomed Trans-
port Protocols. Computer Communications. (in press).

[20] A. Caro, J. Iyengar, P. Amer, S. Ladha, G. Heinz, and K. Shah. SCTP: A Pro-
posed Standard for Robust Internet Data Transport. IEEE Computer, 36(11):56–63,
November 2003.

[21] F. M. Chiussi, D. A. Khotimsky, and S. Krishnan. Generalized Inverse Multiplexing
of Switched ATM Connections. In IEEE GLOBECOM 1998, Sydney, Australia,
November 1998.

[22] K. Claffy, G. Miller, and K. Thompson. The Nature of the Beast: Recent Traffic
Measurements from an Internet Backbone. INET 1998, April 1998.

[23] The ATM Forum Technical Committee. Inverse Multiplexing for ATM (IMA) Spec-
ification, Version 1.0, July 1997. AF-PHY-0086.000.

[24] M. Day, B. Cain, G. Tomlinson, and P. Rzewski. A Model For Content Internet-
working (CDI). RFC3466, IETF, February 2003.

[25] H. Ekstrom and R. Ludwig. The Peak-Hopper: A New End-to-End Retransmission
Timer for Reliable Unicast Transport. In IEEE INFOCOM 2004, Hong Kong, March
2004.

108

[26] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An Extension to the Selective
Acknowledgement (SACK) Option for TCP. RFC2883, IETF, July 2000.

[27] M. Gerla, S. S. Lee, and G. Pau. TCP Westwood Simulation Studies in Multiple-
Path Cases. In SPECTS 2002, San Diego, California, July 2002.

[28] K. D. Gradisching and M. Tuexen. Signalling Transport Over IP-based Networks
using IETF Standards. In Third International Workshop on Design of Reliable Com-
munication Networks (DRCN 2001), Budapest, Hungary, October 2001.

[29] T. Hacker and B. Athey. The End-to-End Performance Effects of Parallel TCP Sock-
ets on a Lossy Wide-Area Network. In IEEE IPDPS, Ft. Lauderdale, FL, April 2002.

[30] K. Harfoush, A. Bestavros, and J. Byers. Robust Identification of Shared Losses
Using End-to-End Unicast Probes. In ICNP 2000, Osaka, Japan, October 2000.

[31] H.Y. Hsieh and R. Sivakumar. A Transport Layer Approach for Achieving Aggre-
gate Bandwidths on Multihomed Mobile Hosts. In ACM International Conference
on Mobile Computing and Networking (MOBICOM), Atlanta, Georgia, September
2002.

[32] S. Iren, P. Amer, and P. Conrad. The Transport Layer: Tutorial and Survey. ACM
Computing Surveys, 31(4), December 1999.

[33] J. Iyengar, P. Amer, and R. Stewart. Concurrent Multipath Transfer Using SCTP
Multihoming Over Independent End-to-End Paths. IEEE/ACM Transactions on Net-
working. (in press).

[34] J. Iyengar, P. Amer, and R. Stewart. Performance Implications of a Bounded Receive
Buffer In Concurrent Multipath Transfer. Tech. Report, CIS Dept., University of
Delaware.

[35] J. Iyengar, P. Amer, and R. Stewart. Concurrent Multipath Transfer Using Trans-
port Layer Multihoming: Performance Under Varying Bandwidth Proportions. In
MILCOM 2004, Monterey, CA, October 2004.

[36] J. Iyengar, P. Amer, and R. Stewart. Retransmission Policies For Concurrent Mul-
tipath Transfer Using SCTP Multihoming. In ICON 2004, Singapore, November
2004.

[37] J. Iyengar, P. Amer, and R. Stewart. Receive Buffer Blocking In Concurrent Multi-
path Transport. In IEEE GLOBECOM, St. Louis, Missouri, November 2005.

[38] J. Iyengar, P. Amer, R. Stewart, and I. Arias-Rodriguez. Preventing SCTP Con-
gestion Window Overgrowth During Changeover. draft-iyengar-sctp-cacc-03.txt,
Internet Draft, IETF, November 2005.

109

[39] J. Iyengar, A. Caro, P. Amer, G. Heinz, and R. Stewart. SCTP Congestion Window
Overgrowth During Changeover. In SCI 2002, Orlando, FL, July 2002.

[40] J. Iyengar, A. Caro, P. Amer, G. Heinz, and R. Stewart. Making SCTP More Robust
to Changeover. In SPECTS 2003, Montreal, Canada, July 2003.

[41] J. Iyengar, K. Shah, P. Amer, and R. Stewart. Concurrent Multipath Transfer Using
SCTP Multihoming. In SPECTS 2004, San Jose, California, July 2004.

[42] N. Jani and Krishna Kant. SCTP Performance in Data Center Environments. Tech-
nical report, Intel Corporation, 2005.

[43] A. Jungmaier. SCTP For Beginners, 2001.
http://tdrwww.exp-math.uni-essen.de/inhalt/forschung/sctp fb/.

[44] D. Katabi, I. Bazzi, and X. Yang. A Passive Approach for Detecting Shared Bottle-
necks. In IEEE ICCCN 2001, October 2001.

[45] D. Katabi and C. Blake. Inferring Congestion Sharing and Path Characteristics from
Packet Interarrival Times. Technical report, MIT Lab for Computer Science, 2001.

[46] D. A. Khotimsky. A Packet Resequencing Protocol for Fault-Tolerant Multipath
Transmission with Non-Uniform Traffic Splitting. In IEEE GLOBECOM 1999, Rio
de Janeiro, Brazil, December 1999.

[47] M. S. Kim, T. Kim, Y. Shin, S. S. Lam, and E. J. Powers. A Wavelet-based Approach
to Detect Shared Congestion. In ACM SIGCOMM, Portland, Oregon, August 2004.

[48] E. Kohler, M. Handley, and S. Floyd. Designing DCCP: Congestion Control Without
Reliability. Technical report, ICIR, 2004.

[49] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control Protocol
(DCCP). draft-ietf-dccp-spec-13.txt, December 2005. (work in progress).

[50] S. Ladha, S. Baucke, R. Ludwig, and P. Amer. On Making SCTP Robust to Spurious
Retransmissions. ACM SIGCOMM Computer Communication Review, 34(2):123–
135, April 2004.

[51] W. Leland, M. Taqqu, W. Willinger, and D. Wilson. On the Self-similar Nature of
Ethernet Traffic. In ACM SIGCOMM 1993, San Francisco, CA, September 1993.

[52] R. Ludwig and R. Katz. The Eifel Algorithm: Making TCP Robust Against Spurious
Retransmissions. ACM Computer Communications Review, 30(21):30–36, January
2000.

110

[53] Pavlos Papageorgiou and Michael Hicks. Merging Network Measurement with Data
Transport (Extended Abstract). In IEEE Passive/Active Measurement Workshop
(PAM), Boston, MA, March 2005.

[54] V. Paxson and M. Allman. Computing TCP’s Retransmission Timer. RFC2988,
IETF, November 2000.

[55] B. Penoff and A. Wagner. Towards MPI Progression Layer Elimination With TCP
and SCTP. In Workshop on High-Level Parallel Programming Models and Support-
ive Environments (HIPS): Proceedings of the 2006 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), Rhodes, Greece, April 2006.

[56] D. S. Phatak and T. Goff. A Novel Mechanism for Data Streaming Across Multiple
IP Links for Improving Throughput and Reliability in Mobile Environments. In
IEEE INFOCOM 2002, New York, NY, June 2002.

[57] D. Rubenstein, J. Kurose, and D. Towsley. Detecting Shared Congestion of Flows
Via End-to-End Measurement. IEEE/ACM Transactions on Networking, 10(3), June
2002.

[58] S. Shakkottai, R. Srikant, A. Broido, and k. claffy. The RTT Distribution of TCP
Flows in the Internet and its Impact on TCP-based Flow Control. Technical report,
Cooperative Association for Internet Data Analysis (CAIDA), February 2004.

[59] H. Sivakumar, S. Bailey, and R. Grossman. PSockets: The Case For Application-
Level Network Striping For Data Inttensive Applications Using High Speed Wide
Area Networks. In IEEE Supercomputing (SC), Dallas, TX, November 2000.

[60] K. Sklower, B. Lloyd, G. McGregor, D. Carr, and T. Coradetti. The PPP Multilink
Protocol (MP). RFC1990, IETF, August 1996.

[61] A. C. Snoeren. Adaptive Inverse Multiplexing for Wide-Area Wireless Networks.
In IEEE GLOBECOM 1999, Rio de Janeiro, Brazil, December 1999.

[62] W. Stevens, B. Fenner, and A. Rudoff. Unix Network Programming: Volume 1.
Addison-Wesley, 2004.

[63] R. Stewart, I. Arias-Rodriguez, K. Poon, A. Caro, and M. Tuexen. Stream Control
Transmission Protocol (SCTP) Specification Errata and Issues. draft-ietf-tsvwg-
sctpimpguide-16.txt, October 2005. (work in progress).

[64] R. Stewart and Q. Xie. Stream Control Transmission Protocol (SCTP): A Reference
Guide. Addison Wesley, New York, NY, 2001.

111

[65] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Ry-
tina, M. Kalla, L. Zhang, and V. Paxson. Stream Control Transmission Protocol.
RFC2960, October 2000.

[66] T. Strayer and A. Weaver. Evaluation of Transport Protocols for Real-time Com-
munications. Technical Report TR-88-18, CS Dep., University of Virginia, June
1988.

[67] R. Teixeira, K. Marzullo, S. Savage, and G.M. Voelker. In Search of Path Diversity
in ISP Networks. In USENIX/ACM Internet Measurement Conference, Miami, FL,
October 2003.

[68] C.B.S. Traw and J. M. Smith. Striping Within the Network Subsystem. IEEE Net-
work, 9(4):22–32, July 1995.

[69] J. Walrand. Communication Networks: A First Course. Aksen Associates, 1991.

[70] W. Willinger, M. Taqqu, R. Sherman, and D. Wilson. Self-Similarity Through High-
Variability: Statical Analysis of Ethernet LAN Traffic at the Source Level. In ACM
SIGCOMM 1995, Cambridge, MA, August 1995.

[71] M. Zhang, B. Karp, S. Floyd, and L. Peterson. RR-TCP: A Reordering-Robust TCP
with DSACK. In ICNP, November 2003.

[72] M. Zhang, J. Lai, A. Krishnamurthy, L. Peterson, and R. Wang. A Transport Layer
Approach for Improving End-to-End Performance and Robustness Using Redundant
Paths. In USENIX, June 2004.

112

