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Abstract 
 

We identify overheads associated with FTP, attributed to 
separate TCP connections for data and control, non-
persistence of the data connections, and the sequential nature 
of command exchanges. We argue that solutions to avoid 
these overheads using TCP place an undue burden on the 
application. Instead we propose modifying FTP to use SCTP 
and its multistreaming service. FTP over SCTP avoids the 
identified overheads in the current FTP protocol without 
introducing complexity at the application, while still 
remaining “ TCP-friendly” . We implemented FTP over SCTP 
in three ways: (1) simply replacing TCP calls with SCTP 
calls, thus using one SCTP association for control and one 
SCTP association for each data transfer, (2) using a single 
multistreamed SCTP association for control and all data 
transfers, and (3) enhancing (2) with the addition of command 
pipelining. Our experiments compared these 3 variations with 
the classic FTP over TCP. Results indicate significant 
improvements in throughput for multiple file transfers with all 
three of our variations. The largest benefit occurs for (3) FTP 
over a single, pipelined, multistreamed SCTP association. 
More generally, this paper encourages the use of SCTP’s 
innovative services to benefit existing and future application 
performance and presents the case for multistreaming. 
 
 

1. Introduction 
 
The past decade has witnessed an exponential growth of 

traffic in the Internet, with a proportionate increase in Hyper 
Text Transfer Protocol (HTTP) [BFF96] and decline in File 
Transfer Protocol (FTP) [PR85], both in terms of use and the 
amount of traffic. The decline in FTP traffic is chiefly 
attributed to the inflexible nature of its interface. Over the 
years several FTP extensions have been proposed (e.g., 
[AOM98], [EH02], [HL97]), but few aim at reducing file 
transfer latency [Kin00, AO97]. FTP uses TCP to provide 
end-to-end reliability. In this paper, we identify reasons why 
modifying FTP to reduce latency overheads has been difficult, 
mainly due to TCP’s semantics which constrain the FTP 
application. One result of these constraints has been that 
several FTP implementations aiming to enhance performance 
use parallel TCP connections to achieve better throughput. 
__________________________ 
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However, opening parallel TCP connections (whether for FTP 
or HTTP) is regarded as “TCP-unfriendly”  [FF99] as this 
allows an application to gain an unfair share of bandwidth at 
the expense of other network flows, potentially sacrificing 
network stability. Moreover multiple parallel TCP 
connections consume more system resources than are 
necessary. This paper focuses on improving end-to-end FTP 
latency and throughput in a TCP-friendly manner. 
 

Although FTP traffic has proportionately declined in the 
past decade, FTP still remains one of the most popular 
protocols for bulk data transfer on the Internet [MC00]. For 
example, Wuarchive [WUARCHIVE] serves as a file archive 
for a variety of files including mirrors of open source projects. 
Wuarchive statistics for the period of April 2002 to March 
2003 indicate FTP accounting for 5207 Gigabytes of traffic, 
and HTTP accounting for 7285 Gigabytes of traffic. FTP is 
exclusively used in many of the mirroring software on the 
Internet, for various source repositories, for system backups 
and for file sharing. All these applications require transferring 
multiple files from one host to another.  

 
In this paper we identify the overheads associated with 

the current FTP design. We present modifications to FTP to 
run over Stream Control Transmission Protocol (SCTP) 
[SXY+03] instead of TCP. SCTP is an IETF standards track 
transport layer protocol. Like TCP, SCTP provides an 
application with a full duplex, reliable transmission service. 
Unlike TCP, SCTP provides additional transport services. 
This paper focuses on the use of one such service: 
multistreaming. SCTP multistreaming logically divides an 
association into streams with each stream having its own 
delivery mechanism. All streams within a single association 
share the same congestion and flow control parameters. 
Multistreaming decouples data delivery and transmission, and 
in doing so prevents Head-of-Line (HOL) blocking.  

 
This paper shows how SCTP multistreaming benefits 

FTP in reducing overhead, especially for multiple file 
transfers. We recommend two modifications to FTP that make 
more efficient use of the available bandwidth and system 
resources. We implemented these modifications in a FreeBSD 
environment, and carried out experiments to compare the 
current FTP over TCP design vs. our FTP over SCTP designs. 
Our results indicate dramatic improvements in transfer time 
and throughput for multiple file transfers under certain 
network conditions. Moreover, our modifications to FTP 
solve concerns current FTP protocol faces with NATs and 
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Figure 1: Expected cwnd evolution during a multiple file 
transfer in FTP over TCP 

firewalls in transferring IP addresses and port numbers in the 
payload data ([AOM98], [Tou02], [Bel94]).  

 
The remainder of this paper is organized as follows. 

Section 2 details and quantifies the overheads in the current 
FTP over TCP design. This section also discusses possible 
solutions to eliminate these overheads while still using TCP 
as the transport. Section 3 introduces SCTP multistreaming. 
Section 4 presents our protocol changes in FTP to exploit 
using SCTP multistreaming, and a description of how these 
designs reduce the overheads. Section 5 presents the 
experimental results. Section 6 concludes the paper. 
 
2. Inefficiencies and possible solutions 
 
2.1 Inefficiencies in the current FTP design 

 
FTP’s current design includes a number of inefficiencies 

due to (1) separate control and data connection and (2) non-
persistent data connection. Each is discussed in turn.  
 
2.1.1 Distinct control and data connection 

    
A. FTP’s out-of-band control signaling approach has 
consequences in terms of end-to-end latency. Traffic on the 
control connection is periodic in nature, and hence this 
connection typically remains in the slow start phase of TCP 
congestion control [APS99]. The control connection is 
vulnerable to timeouts because of the send-and-wait nature of 
control commands. (Also, insufficient packets are flowing to 
cause a TCP fast retransmit.) An operation (involving a single 
control command) will be subject to a timeout in the event of 
loss of either a command or its reply. Attempts are needed to 
reduce the command exchange over the control connection. 

 
B. Since control and data flow on separate connections, an 
extra overhead of at least 1.5 Round Trip Time (RTT) is 
incurred for connection setup-teardown (1RTT for setup and 
0.5 RTT for teardown). Moreover the end hosts create and 
maintain on average two Transport Control Blocks (TCBs) for 
each FTP session. This factor is negligible for clients, but may 
significantly degrade performance of busy servers that are 
subject to reduced throughput due to memory block lookups 
[FTY99]. However, TCB overheads may be reduced by using 
ensemble sharing [BS01, Tou97]. 

 
C. Over the past years there have been considerable 
discussions on FTP’s lack of security, some of them attributed 
to data connection information (IP address, port number) 
being transmitted in plain text in the PORT command on the 
control connection to assist the peer in establishing a data 
connection. Moreover, transferring IP addresses and port 
numbers in the protocol payload creates problem for NATs 
and firewalls that must monitor and translate addressing 
information [AOM98, Tou02].  
 
2.1.2 Non-persistence of the data connection 

 

A. The non-persistence of the data connection causes 
connection setup overhead at least on the order of 1 RTT each 
time a file transfer or directory listing request is serviced. 
Queuing delays can significantly increase the RTT. To 
improve end-to-end delays, every attempt should be made to 
minimize the number of round trips.  

 
B. Every new data connection causes a new probing of the 
congestion window (cwnd) during the connection’s slow start 
phase. Each connection begins by probing for the available 
bandwidth before it reaches its steady state cwnd. Moreover, a 
loss early in the slow start phase, before the cwnd is large 
enough to allow for fast retransmit, will result in a timeout at 
the server. Figure 1 graphically shows the nature of this re-
probing overhead in the event of three consecutive file 
transfers. The interval between the transfers indicates the time 
involved in terminating the previous connection, setting up a 
new connection, and transferring control commands. (The 
reader should be able to understand that this is a generic 
example and not an exact indication of cwnd evolution.)  

 
C. For each file transfer, a one RTT overhead is incurred for 
each exchange of the PORT command and its 200 reply.  

 
D. In the event of multiple small file transfers, the server ends 
up having many connections in the TCP TIME-WAIT state 
and hence maintain on average more than two TCBs per 
session. This per-connection memory load can adversely 
affect a server’s connection rate and throughput [FTY99]. 

 
2.2. Possible solutions and drawbacks 

 
We describe some of the possible solutions that try to 

avoid the above stated overheads while still using TCP as the 
underlying transport service. The drawbacks associated with 
each solution are presented.  

 
A. Use one persistent TCP connection for control and data 

  
Improvements: This approach avoids most overheads 
associated with FTP’s current design listed in the previous 
section. The commands over the control connection can be 
pipelined (in the event of a multiple file transfer) to improve 
latency, and maintain the probed congestion window for 
subsequent transfers.  

 



Drawbacks: TCP provides a byte-stream service and does not 
differentiate between the different types of data it transmits 
over the same connection. Using a single TCP connection 
requires the application to use markers to differentiate 
between control and data. This marking burden increases 
application layer complexity.  Control and file data in an FTP 
session are logically different types of data, and conceptually, 
are best kept logically if not physically, separate. 
Additionally, using a single connection risks Head-of-Line 
(HOL) blocking (HOL blocking is discussed in Section 3).  

 
B. Use two persistent TCP connections: one for control, one 
for data  

 
Improvements: A persistent data connection eliminates the 
connection setup-teardown and command exchange 
overheads for every file transfer, thus reducing number of 
round trips. 

 
Drawbacks: Due to the sequential nature of commands over 
the control connection, the data connection will remain idle in 
between transfers of a multiple files transfer. When data is 
send after this idle time, the data connection congestion 
window may reduce to as much as the initial default size, and 
later require TCP to re-probe for the available bandwidth 
[HPF00]. Moreover this approach suffers from the overhead 
listed in Section 2.1.1 B. 

 
C. Use two persistent TCP connections: one for control, one 
for data. Also use command pipelining on control connection. 

 
Improvements: A persistent data connection with command 
pipelining will maintain a steadier flow of data (i.e., higher 
throughput) over the data connection by letting subsequent 
transfers utilize the already probed bandwidth. 

 
Drawbacks: This approach suffers from the overhead listed in 
Section 2.1.1 B. 

 
D. Use one TCP connection for control, and ‘n’  parallel data 
connections 

 
Improvements: Some FTP implementations achieve better 
throughput using parallel TCP connections for a multiple file 
transfer.  

 
Drawbacks: This approach is not TCP-friendly [FF99] as it 
may allow an application to gain an unfair share of bandwidth 
and adversely affect the network’s equilibrium [FF99, 
BFF96]. Moreover past research has shown that parallel TCP 
connections may suffer from aggressive congestion control 
resulting in a reduced throughput [FF99]. As such, this 
solution should not be considered. This approach also suffers 
all the overheads listed in Section 2.1.1. 
 
Related Work: Apart from the above solutions, researchers in 
the past have suggested ways to overcome TCP’s limitations 
in order to boost application performance (e.g. [Bra94], 
[BS01], [Tou97]). For example, T/TCP [Bra94] reduced the 

connection setup/teardown overhead by allowing data to be 
transferred in the TCP connection setup phase. But due to a 
fundamental security flaw, T/TCP was removed from 
operating systems. Objectives (of aggregating transfers) have 
also been discussed for HTTP over the past years [PM94]. 
But while HTTP semantics allowed for persistent data 
connections and command pipelining, FTP semantics do not 
allow similar solutions without introducing changes to the 
application (see A. above). 
 

Having summarized ways for improving FTP 
performance while still using TCP, we now consider 
improving FTP performance by using SCTP, an emerging 
IETF general-purpose transport protocol [SXM+00]. We 
would like to note that the TCP alternatives that incorporate 
temporal and ensemble sharing (e.g. [Bra94], [BS01], 
[Tou97]) have not been discussed further in this paper. Future 
work should include and evaluate such alternatives.  

 
3. SCTP multistreaming 

 
One of the innovative transport layer services that 

promises to improve application layer performance is SCTP 
multistreaming. A stream in an SCTP association is “A uni-
directional logical channel established from one to another 
associated SCTP endpoint, within which all user messages are 
delivered in sequence except for those submitted to the 
unordered delivery service”  [SXM+00].  

 
Multistreaming within an SCTP association separates 

flows of logically different data into independent streams. 
This separation enhances application flexibility by allowing it 
to identify semantically different flows of data, and having the 
transport layer “manage”  these flows (as the authors argue 
should be the responsibility of the transport layer, not the 
application layer). No longer must an application open 
multiple end-to-end connections to the same host simply to 
signify different semantic flows. 

 
In Figure 2, Hosts A and B have a multistreamed 

association.  Three streams go from A to B, and one stream 
goes from B to A. The number of streams in each direction is 
negotiated during SCTP’s association establishment phase.  

 
Each stream has an independent delivery mechanism, 

thus allowing SCTP to differentiate between data delivery and 
reliable data transmission and avoid HOL blocking. Similar to 
TCP, SCTP uses a sequence number to order information. 
However, TCP sequences bytes, and SCTP sequences PDU’s 
or “chunks” . SCTP uses Transmission Sequence Numbers 

   Figure 2: Use of streams within an SCTP association 

 



(TSN) for reliable transmission. The TSN is global over all 
streams. Each stream is uniquely identified by a Stream ID 
(SID) and has its own Stream Sequence Numbers (SSN). In 
TCP, when a sender transmits multiple TCP segments, and 
the first segment is lost, the later segments must wait in the 
receiver's queue until the first segment is retransmitted and 
arrives correctly. This HOL blocking delays the delivery of 
data to the application, which in signaling and some 
multimedia applications is unacceptable. In SCTP, however, 
if data on stream 1 is lost, only stream 1 may be blocked at 
the receiver while awaiting retransmissions. With streams 
being logically independent flows, data on remaining streams 
is deliverable to the application. SCTP’s socket API 
extensions [SXY+03] provide data structures and socket calls 
through which an application can indicate or determine the 
stream number on which it intends to send or receive data. 
 
4. FTP over SCTP variants 

 
4.1 FTP over SCTP 

 
FTP over SCTP keeps the same semantics as the classic 

FTP over TCP. Thus, this FTP model uses one separate SCTP 
association for control, and a new SCTP association for each 
file transfer, directory listing, or file namelist. The changes to 
the classic implementation involved only changing the socket 
call parameters from IPPROTO_TCP to IPPROTO_SCTP in 
both the client and the server sources. 

 
4.2 FTP over SCTP with multistreaming  
 

In this second model, we use multistreaming to combine 
the FTP control and data connections in a single SCTP 
association. Only one SCTP association exists for the entire 
FTP session. First, an FTP client establishes an SCTP 
association with the server. During initialization, two streams 
are opened in each direction. The client and the server send 
control information (commands and replies) on their 
respective stream 0. Their respective data stream or stream 1 
is used to transfer data (files, directory listings, and file 
namelists). This approach maintains semantics for streams 
analogous to control and data connections in FTP over TCP.  

 
Recall that the data connection in FTP over TCP is non-

persistent and the end of data transfer (EOF) is detected by 
the data connection’s close. To detect EOF in our approach, 
we utilize the SIZE command [EH02]. The SIZE command is 
already widely used in FTP for the purpose of detecting 
restart markers. For directory listings, the end of data transfer 
is detected by using the info (# of bytes read by resvmsg call) 
provided by the SCTP socket API [SXY+03]. 

 
In the event of a multiple file retrieval issued, the client 

sends out the request on outgoing stream 0 and receives the 
data on incoming steam 1 for each file in a sequential manner. 
Figure 3 shows the retrieval of multiple files using FTP over 
multistreamed SCTP. The outgoing stream for all messages 
and data has been identified. Data on stream 1 is represented 

by dashed lines, and control messages on stream 0 have been 
represented by solid lines. The dashed box on the timeline in 
Figure 3 indicates the operations that are repeated sequentially 
for each file to be transferred.  

 
This approach has various advantages, and avoids most 

of the overheads described in Section 2.1. The number of 
round trips is reduced as: (1) a single connection (association 
in SCTP terminology) exists throughout the FTP session, 
hence repeated setup-teardown of each data connection is 
avoided, and (2) exchanging PORT commands for data 
connection information is not needed. The server load is 
reduced as the server maintains TCBs for at most half of the 
connections as required with FTP over TCP. 

 
The drawback that this approach faces is similar to the 

drawbacks described in Section 2.1.2 (B). In the event of a 
multiple file transfer, each subsequent file transfer will not be 
able to utilize the prior probed available bandwidth. Before 
transmitting new data chunks, the sender calculates the cwnd 
based on the SCTP protocol parameter Max.Burst [SOA+03] 
as follows: 

 

if ((flightsize + Max.Burst*MTU) < cwnd)                 (1) 
         cwnd = flightsize + Max.Burst*MTU 
 
Since the next file transfer of file i+1 cannot take place 

immediately (due to the exchange of control commands 
before each transfer (see Figure 3)), all data sent by the server 
for file i gets acked, and reduces the flightsize at the server to 
zero. Thus in multiple file transfers, the server’s cwnd may be 
reduced to Max.Burst*MTU ([SOA+03] recommends the 
value of the protocol parameter Max.Burst to be set to 4) 
before starting each subsequent file transfer.  

 
4.3 FTP over SCTP with multistreaming and 
command pipelining 

 
Finally in this third model we introduce command 

pipelining in our design from Section 4.2 to avoid 
unnecessary cwnd reduction for a multiple file transfer. The 
command pipelining is similar to that defined in [PM94]. In 
Section 4.2’s model, the cwnd reduction between file transfers 
occurs because the SIZE and RETR commands for each 
subsequent file are sent only after the previous file has been 
received completely by the client.  

 
In Figure 4, we present a solution that allows each 

subsequent transfer to utilize the probed value of congestion 
window from the prior transfer. Command pipelining ensures 
a continuous flow of data from the server to client throughout 
the execution of a multiple file transfer. As seen in Figure 4, 
after parsing the name list of the files, the client sends SIZE 
commands for all files at once. As soon as a reply for each 
SIZE command is received, the client sends out the RETR 
command for that file. Since the control stream is ordered, the 
replies for the SIZE and RETR commands will arrive in the 
same sequence as the commands.  

 



By using SCTP multistreaming and pipelining, FTP 
views multiple file transfers as a single data cycle. Command 
pipelining aggregates all of the file transfers resulting in better 
management of the cwnd. This solution overcomes all of the 
drawbacks listed in Section 2.1, resulting in a more efficient 
utilization of the bandwidth. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

5. Experimental results 
 
We now report on our experimental study of FTP over 

TCP vs. FTP over SCTP. We measured the total transfer time 
observed for a multiple file transfer for a varied set of 
parameters. 

 

• Bandwidth-Propagation Delay (B-D) configuration: Three 
path configurations were evaluated: (1Mbps, 35ms),  
(256Kbps, 125ms), (3Mbps, 1ms). Both the client to server 
and server to client paths share the same characteristics. In 
this section, we focus on the results of (1Mbps, 35ms) 
configuration. Results of the other two configurations have 
been described in Appendix A. 

• Packet Loss Ratio (PLR): The PLRs studied were (0, .01, 
.03, .06, and .1). Each value represents the loss ratio for 
both the client to server and the server to client paths 
experience the same loss rate. We used a uniform 
probability distribution to emulate packet loss. Certainly 
10% loss represents an extreme case but we were interested 
in general trends as the loss rate increases. Moreover, 
higher loss rates may be of interest to wireless and military 
networks. 

• File sizes: Although FTP is widely used for bulk data 
transfer, some applications (e.g., source updates) use FTP 
to transfer small files. To evaluate potential reduced 
overheads in a variety of these applications, we chose file 
sizes as (10K, 50K, 200K, 500K, and 1M).  

 
Two sets of experiments were performed with different 

number of files transferred (10 and 100 files) to observe the 
effect of total transfer time on the number of files being 
transferred. 

  
5.1 Experimental setup 

 
We used Netbed [WLS+02] (an outgrowth of Emulab) 

which provides integrated access to experimental networks. 
Three nodes were used for each experiment, one for the FTP 
client and one for the FTP server. The third node acted as a 
router for shaping traffic between the client and server. The 
client and server nodes are 850MHz Intel Pentium III 
processors, and based on the Intel ISP1100 1U server 
platform. All three nodes run FreeBSD-4.6. The FreeBSD 
kernel implementation of SCTP available with the KAME 
Stack [KAME] was used on the client and server nodes. 
KAME is an evolving and experimental stack mainly targeted 
for IPv6/IPsec in BSD based operating systems. An updated 
snapshot of the stack (KAME snap kit) is released every 
week. We used the snap kit of 14th October, 2002. The router 
node runs Dummynet [Riz97] which simulates a drop tail 
router with a queue size of 50 packets, and specified 
bandwidth, propagation delay and packet loss ratio.  

 
We implemented protocol changes by modifying the FTP 

client and server source code available with the FreeBSD 4.6 
distribution. In our experiments, total transfer was measured 
using packet level traces as follows. The starting time was 
taken as the time the client sends out the first packet to the 
server following the user’s “ mget”  command. The end time 
was the time the “226 control reply”  from the server reached 
the client after the last file transfer. Each combination of 
parameters (3 B-D configurations x 5 PLR x 5 file sizes) was 
run multiple times to achieve a 90% confidence level for the 
total transfer time. Tcpdump [TCPDUMP] (version 3.7.1) was 
used to perform packet level traces. SCTP decoding 

Figure 4:  FTP over multistreamed SCTP with command 
pipelining timeline showing a multiple file transfer. 
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Figure 3: FTP over multistreamed SCTP timeline showing 
a multiple file transfer. 



functionality in tcpdump was developed in collaboration of 
UD's Protocol Engineering Lab and Temple University's 
Netlab. Our results compare four FTP variants:  

 

(1) FTP over TCP: The current FTP protocol which uses a 
separate TCP connection for control, and a new TCP data 
connection for every file transfer, directory listing and 
name list. The TCP variant used was New-Reno. 

(2) FTP over SCTP: The original FTP protocol design but 
using SCTP at the transport. See Section 4.1.  

(3) FTP over multistreamed SCTP: This design, described in 
Section 4.2, uses a single SCTP association for both 
control and data. It uses multistreaming to assign one 
stream to control, and one stream to data. The SCTP 
association between the client and the server persists 
throughout the FTP session.  

(4) FTP over multistreamed SCTP with command pipelining: 
(see Section 4.3) This design adds command pipelining 
over multistreamed SCTP to ensure the congestion 
window is not needlessly probed for each file transfer. 

 
We have performed experiments involving single as well 

as multiple file transfer. Although the improvement of file 
transfers using SCTP multistreaming is also witnessed in 
single file transfers, we emphasize the results of experiments 
involving multiple file transfer for two reasons. First, the 
positive impact of multistreaming is more predominant in the 
event of multiple file transfers. Second, comparing variant (1) 
vs. variant (2) provides insight on single file transfer. 

 
5.2 Results 

 
Figure 5 shows the results obtained for (1Mbps, 35ms) 

bandwidth-delay configuration. The results represent the loss 
probabilities vs. total transfer time to retrieve 10 files (each 
the same size) using four different FTP variants. Figure 6 
shows the same comparisons but with retrieval of 100 files.  
 
5.2.1 Comparing (1) vs. (2). Since (2) is simply a 
straightforward substitution of TCP calls with SCTP calls, 
any difference in performance must be attributed to SCTP’s 
handling of data (i.e., congestion control, loss recovery) and 
not to multistreaming. Figure 5 shows that for small file 
transfers, (1) and (2) overall perform similarly. (2) performs 
worse than (1) at low loss rates (~ 0-3%) since SCTP’s per 
packet payload (1408 bytes) is less than TCP’s (1448 bytes). 
SCTP’s overhead is slightly more than TCP’s. (When 
experiments were performed, the SCTP fragmentation 
threshold for the FreeBSD implementation was 1408. This 
threshold was increased recently thus reducing its effect on 
per packet overhead.) As the packet loss rate increases, (2) 
outperforms (1). We believe this reversal is due to SCTP’s 
more robust loss recovery and congestion control mechanisms 
that outbalance the effects of per packet overheads. Details on 
the differences of congestion control mechanisms between 
SCTP and TCP can be found in [AAI02]. 
 

For small file transfers, the data connection in both (1) 
and (2) is dominated by slow start phase of the congestion 

control. As the file size increases, the data connection’s life 
time in both (1) and (2) is dominated by the congestion 
avoidance phase. Hence as the file size increases, both the 
scale and ratio of performance benefit seen by (2) as 
compared to (1) at loss rates (1-10%) increases. For example, 
at 3% loss rate the ratio of total transfer time taken by (1) to 
(2) is 0.92, 1.14, 1.29, 1.31, 1.56 for ten 10K, 50K, 200K, 
500K and 1M multiple file transfers, respectively. This steady 
increase results because as the number of loss events 
generated increases proportionally with the size of file 
transfers, SCTP takes advantage over TCP on a per loss event 
basis eventually reducing latency by nearly or more than 50%. 
This improvement can be seen in Figure 6 at a 3% loss, (1) 
requires 2210 seconds to transfer 100 1M-files whereas (2) 
requires 1409 seconds.  

 
From Figures 5 and 6, as the number of files transferred 

increase from 10 to 100, the scale of performance of (2) as 
compared to (1) also increases. As the loss rate increases, 
more significant performance improvements can be seen. 
SCTP’s significant out performance of TCP at medium to 
high loss rate came as a surprise as it was widely understood 
that the congestion control mechanisms in TCP and SCTP are 
approximately the same. We have validated our results using 
simulations, and are currently investigating the effect of the 
subtle differences between the congestion control mechanisms 
in TCP and SCTP, which result in such significant difference 
observed in overall steady state performance (e.g., SCTP’s 
congestion control semantics incorporate Limited Transmit 
[ABF01], Appropriate Byte Counting [All03], while the TCP 
implementation that is currently prevalent (and the TCP 
implementation used in our experiments) does not use such 
features.). The congestion control mechanisms in TCP are in 
the process of being fine tuned, a research task underway in 
the IETF [e.g., ABF01, All03]. Once the TCP extensions are 
included in TCP implementations, we expect (1) and (2) to 
perform similarly at different loss rates. 

 
5.2.2 Comparing (3) and (4) vs. (2). We now turn our 
discussion to the multistreamed FTP variants (3) and (4). We 
compare (3) and (4) with (2) and not with (1) because our 
main focus is to evaluate the effect of SCTP multistreaming 
and command pipelining on multiple file transfers.  
 

As noted in Sections 2 and 4, using multistreaming and 
command pipelining (a) reduces round trips in command 
exchanges and connection setup-teardown, and (b) maintains 
the probed value of the congestion window for subsequent 
transfers in a multiple file transfer. We hypothesized the 
effect of (a) would remain fairly constant irrespective of file 
sizes being transferred, and the effect of (b) would be more 
evident in transfer of small files than for large files. For small 
files, non-persistent data connections tend to remain longer in 
slow start probing for available bandwidth, whereas the time 
spent in probing in large file transfers would be smaller 
compared to time spent in steady state congestion avoidance. 
We expected the effects of both (a) and (b) would be directly 
proportional to the number of files being transferred. 

 



In (3) we reduce the number of round trips but do not 
maintain the probed congestion window for subsequent 
transfers (see Section 4.2). As noted above this effect should 
have a constant scale as compared to (2). We can see from 

Figure 5 that the ratio of transfer time taken by (2) vs. (3) 
remains fairly constant ranging between 1.5 and 1.7. The 
small variance can be attributed to the losses (which result in 
timeouts) incurred by the extra round trips involved in (2). 

   (a) File Size = 10K 
 

   (c) File Size = 200K 
    (d) File Size =500K 

 

   (e) File Size = 1M 
 

Figure 5: Transfer Time vs. Loss Probability for a 
multiple transfer of 10 files (Bandwidth = 1Mbps    
Propagation Delay = 35ms) 
 

   (b) File Size = 50K 
 



   (a) File Size = 10K 
 

   (e) File Size = 1M 
 

   (b) File Size = 50K 
 

   (d) File Size = 500K 
 

Figure 6: Transfer Time vs. Loss Probability for a 
multiple transfer of 100 files (Bandwidth = 1Mbps    
Propagation Delay = 35ms) 
 

   (c) File Size = 200K 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



As noted above, the most significant impact of (4) as 
compared to (2) comes for short transfers. For example in 
Figure 6(a), at a 3% loss scenario, (2) requires 103 seconds to 
transfer 100 files of size 10K each, as compared to (4) which 
takes only 19 seconds. From Figure 5, at 3% loss rate the ratio 
of total transfer time taken by (2) to (4) is 4.9, 4.1, 3.5, 3.1, 
and 2.1 for ten 10K, 50K, 200K, 500K and 1M file transfers, 
respectively. Thus this effect, which is also seen by 
comparing the ratio of (3) vs. (4), demarcates the benefits that 
multistreaming and command pipelining provide.  
 

Moreover, it can be seen from Figures 5 and 6 that as the 
number of files to be transferred increase from 10 to 100, the 
performance gain by (4) as compared to (2) increases. This 
increase implies significant benefits to mirroring applications 
that use FTP (e.g., fmirror) which often have to mirror a large 
number of files from one server to the other. 

 
We note that comparing (1) which is FTP over TCP-New 

Reno (the Internet’s prevalent variant) to (4) shows the 
tremendous impact that SCTP, multistreaming and command 
pipelining can have in FTP transfer time. From Figure 6(e), 
(1) takes 2210 seconds as compared to (4) which takes 948 
seconds to transfer 100 1M-files at 3% loss. Also note that (3) 
and (4) perform consistently better as compared to either (1) 
or (2) irrespective of the loss rates. 

 
5.2.3 Summary: We observe that (2) performs close to (1) at 
lower loss rates, and as the loss rate increases, (2) outperforms 
(1) significantly. For smaller loss rates, per packet overhead 
in (2) results in marginally lower performance as compared to 
(1). (This factor does not play into the latest SCTP 
implementation) Past research shows the congestion control 
semantics and loss recovery mechanisms in SCTP are robust 
as compared to TCP, which result in better steady state 
throughput at higher loss rates [AAI02].  
• Exploiting SCTP multistreaming in (3) performs better by 

a steady scale factor of approx. 1.5 (in relation to file 
sizes) as compared to FTP over SCTP without 
multistreaming in (2). This gain is attributed to 
multistreaming helping reduce a constant number of 
round trips directly proportional to the number of files 
being transferred. The slight variance witnessed is due to 
the loss (and eventually timeouts) that these extra round 
trips can incur. 

• Adding command pipelining to multistreaming in (4) 
further reduces total transfer time for a multiple file 
transfer. The effect of command pipelining is more 
predominant in small transfers due to the fact that short 
flows spend most of the time probing for the available 
bandwidth. 

• The absolute scale of transfer time improvement in FTP 
over multistreamed SCTP with/without command 
pipelining is directly proportional to the number of files 
being transferred in a multiple file transfer request: more 
files transferred results in more relative savings in 
transfer time. 
 

6. Conclusions and future work 
 
Our experimental results confirm that modifying FTP to 

use SCTP multistreaming and command pipelining 
dramatically reduces latency of multiple file transfers. These 
features: 
• reduce the number of connections by aggregating the 

control and data connections, 
• reduce the number of round trips required for connection 

setup/teardown, and command exchange, and 
• use the bandwidth more efficiently by preserving the 

congestion window between file transfers. 
 
Apart from transfer time improvements, other advantages 

of FTP over SCTP (with multistreaming and/or command 
pipelining) instead of over TCP are: 
• The number of connections a server must maintain is 

reduced. Quantifying server load and its effects on 
throughput is beyond the scope of this paper. The 
interested reader is pointed to [FTY99]. We however 
expect that by using either modification (3) or (4), 
servers could serve at least twice the number of clients 
compared to the current FTP over TCP design (assuming 
the bottleneck for the number of simultaneous clients 
served is the TCBs reserved for the connections). This 
result may be of interest to busy servers who are 
constrained by the number of simultaneous clients. 

• The number of packets exchanged between the client and 
the server is reduced (ex., by reducing the command 
exchanges) thus reducing the overall network load. 

• Aggregating control and data connections into one SCTP 
multistreamed association solves concerns that current 
FTP protocol faces with Network Address Translators 
(NAT) and firewalls in transferring IP addresses and port 
numbers through the control connection [AOM98, 
Tou02].  
 
The authors further argue that the benefits of SCTP’s 

multistreaming can be exploited by other applications. 
SCTP’s multistreaming provides a TCP-friendly mechanism 
for parallel transfers. Ongoing research at UD’s PEL is 
investigating whether web transfers using HTTP can benefit 
from aggregation of multiple transfers in a single SCTP 
association.  

 
Three limitations of this work which we plan to address 

in the future: 
• We have used a uniform loss distribution model for 

emulating losses on the path. We are investigating a 
variation that can models burst losses. 

• Recent additions to the TCP congestion control [ABF01, 
All03] fine-tune TCP’s behavior for faster recovery from 
loss, and fewer timeouts. An extension to our work could 
be to take such TCP fine tunings into consideration. 

• TCP alternatives incorporating temporal and ensemble 
sharing ([Bra94], [BS01], [Tou97]) can be considered in 
further evaluation of FTP over SCTP. 
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