

Improving File Transfers Using SCTP Multistreaming*

Sourabh Ladha, Paul D. Amer
Protocol Engineering Lab, CIS Department, University of Delaware

Abstract

We identify overheads associated with FTP, attributed to
separate TCP connections for data and control, non-
persistence of the data connections, and the sequential nature
of command exchanges. We argue that solutions to avoid
these overheads using TCP place an undue burden on the
application. Instead we propose modifying FTP to use SCTP
and its multistreaming service. FTP over SCTP avoids the
identified overheads in the current FTP protocol without
introducing complexity at the application, while still
remaining “ TCP-friendly” . We implemented FTP over SCTP
in three ways: (1) simply replacing TCP calls with SCTP
calls, thus using one SCTP association for control and one
SCTP association for each data transfer, (2) using a single
multistreamed SCTP association for control and all data
transfers, and (3) enhancing (2) with the addition of command
pipelining. Our experiments compared these 3 variations with
the classic FTP over TCP. Results indicate significant
improvements in throughput for multiple file transfers with all
three of our variations. The largest benefit occurs for (3) FTP
over a single, pipelined, multistreamed SCTP association.
More generally, this paper encourages the use of SCTP’s
innovative services to benefit existing and future application
performance and presents the case for multistreaming.

1. Introduction

The past decade has witnessed an exponential growth of

traffic in the Internet, with a proportionate increase in Hyper
Text Transfer Protocol (HTTP) [BFF96] and decline in File
Transfer Protocol (FTP) [PR85], both in terms of use and the
amount of traffic. The decline in FTP traffic is chiefly
attributed to the inflexible nature of its interface. Over the
years several FTP extensions have been proposed (e.g.,
[AOM98], [EH02], [HL97]), but few aim at reducing file
transfer latency [Kin00, AO97]. FTP uses TCP to provide
end-to-end reliability. In this paper, we identify reasons why
modifying FTP to reduce latency overheads has been difficult,
mainly due to TCP’s semantics which constrain the FTP
application. One result of these constraints has been that
several FTP implementations aiming to enhance performance
use parallel TCP connections to achieve better throughput.

*Prepared through collaborative participation in Communication and Network
Consortium sponsored by US Army Research Lab under Collaborative Tech
Alliance Program (DAAD19-01-2-0011). The US Gov’ t is authorized to reproduce
and distribute reprints for Gov’ t purposes notwithstanding copyright notation
thereon.

However, opening parallel TCP connections (whether for FTP
or HTTP) is regarded as “TCP-unfriendly” [FF99] as this
allows an application to gain an unfair share of bandwidth at
the expense of other network flows, potentially sacrificing
network stability. Moreover multiple parallel TCP
connections consume more system resources than are
necessary. This paper focuses on improving end-to-end FTP
latency and throughput in a TCP-friendly manner.

Although FTP traffic has proportionately declined in the
past decade, FTP still remains one of the most popular
protocols for bulk data transfer on the Internet [MC00]. For
example, Wuarchive [WUARCHIVE] serves as a file archive
for a variety of files including mirrors of open source projects.
Wuarchive statistics for the period of April 2002 to March
2003 indicate FTP accounting for 5207 Gigabytes of traffic,
and HTTP accounting for 7285 Gigabytes of traffic. FTP is
exclusively used in many of the mirroring software on the
Internet, for various source repositories, for system backups
and for file sharing. All these applications require transferring
multiple files from one host to another.

In this paper we identify the overheads associated with

the current FTP design. We present modifications to FTP to
run over Stream Control Transmission Protocol (SCTP)
[SXY+03] instead of TCP. SCTP is an IETF standards track
transport layer protocol. Like TCP, SCTP provides an
application with a full duplex, reliable transmission service.
Unlike TCP, SCTP provides additional transport services.
This paper focuses on the use of one such service:
multistreaming. SCTP multistreaming logically divides an
association into streams with each stream having its own
delivery mechanism. All streams within a single association
share the same congestion and flow control parameters.
Multistreaming decouples data delivery and transmission, and
in doing so prevents Head-of-Line (HOL) blocking.

This paper shows how SCTP multistreaming benefits

FTP in reducing overhead, especially for multiple file
transfers. We recommend two modifications to FTP that make
more efficient use of the available bandwidth and system
resources. We implemented these modifications in a FreeBSD
environment, and carried out experiments to compare the
current FTP over TCP design vs. our FTP over SCTP designs.
Our results indicate dramatic improvements in transfer time
and throughput for multiple file transfers under certain
network conditions. Moreover, our modifications to FTP
solve concerns current FTP protocol faces with NATs and

amer
Note
THE results in this paper are invalid due to a difficulty with EMULAB's control connection. We are currently rerunning our simulations with a corrected simulation configuration.

Paul Amer, 3-10-05

amer
Note

Figure 1: Expected cwnd evolution during a multiple file
transfer in FTP over TCP

firewalls in transferring IP addresses and port numbers in the
payload data ([AOM98], [Tou02], [Bel94]).

The remainder of this paper is organized as follows.

Section 2 details and quantifies the overheads in the current
FTP over TCP design. This section also discusses possible
solutions to eliminate these overheads while still using TCP
as the transport. Section 3 introduces SCTP multistreaming.
Section 4 presents our protocol changes in FTP to exploit
using SCTP multistreaming, and a description of how these
designs reduce the overheads. Section 5 presents the
experimental results. Section 6 concludes the paper.

2. Inefficiencies and possible solutions

2.1 Inefficiencies in the current FTP design

FTP’s current design includes a number of inefficiencies

due to (1) separate control and data connection and (2) non-
persistent data connection. Each is discussed in turn.

2.1.1 Distinct control and data connection

A. FTP’s out-of-band control signaling approach has
consequences in terms of end-to-end latency. Traffic on the
control connection is periodic in nature, and hence this
connection typically remains in the slow start phase of TCP
congestion control [APS99]. The control connection is
vulnerable to timeouts because of the send-and-wait nature of
control commands. (Also, insufficient packets are flowing to
cause a TCP fast retransmit.) An operation (involving a single
control command) will be subject to a timeout in the event of
loss of either a command or its reply. Attempts are needed to
reduce the command exchange over the control connection.

B. Since control and data flow on separate connections, an
extra overhead of at least 1.5 Round Trip Time (RTT) is
incurred for connection setup-teardown (1RTT for setup and
0.5 RTT for teardown). Moreover the end hosts create and
maintain on average two Transport Control Blocks (TCBs) for
each FTP session. This factor is negligible for clients, but may
significantly degrade performance of busy servers that are
subject to reduced throughput due to memory block lookups
[FTY99]. However, TCB overheads may be reduced by using
ensemble sharing [BS01, Tou97].

C. Over the past years there have been considerable
discussions on FTP’s lack of security, some of them attributed
to data connection information (IP address, port number)
being transmitted in plain text in the PORT command on the
control connection to assist the peer in establishing a data
connection. Moreover, transferring IP addresses and port
numbers in the protocol payload creates problem for NATs
and firewalls that must monitor and translate addressing
information [AOM98, Tou02].

2.1.2 Non-persistence of the data connection

A. The non-persistence of the data connection causes
connection setup overhead at least on the order of 1 RTT each
time a file transfer or directory listing request is serviced.
Queuing delays can significantly increase the RTT. To
improve end-to-end delays, every attempt should be made to
minimize the number of round trips.

B. Every new data connection causes a new probing of the
congestion window (cwnd) during the connection’s slow start
phase. Each connection begins by probing for the available
bandwidth before it reaches its steady state cwnd. Moreover, a
loss early in the slow start phase, before the cwnd is large
enough to allow for fast retransmit, will result in a timeout at
the server. Figure 1 graphically shows the nature of this re-
probing overhead in the event of three consecutive file
transfers. The interval between the transfers indicates the time
involved in terminating the previous connection, setting up a
new connection, and transferring control commands. (The
reader should be able to understand that this is a generic
example and not an exact indication of cwnd evolution.)

C. For each file transfer, a one RTT overhead is incurred for
each exchange of the PORT command and its 200 reply.

D. In the event of multiple small file transfers, the server ends
up having many connections in the TCP TIME-WAIT state
and hence maintain on average more than two TCBs per
session. This per-connection memory load can adversely
affect a server’s connection rate and throughput [FTY99].

2.2. Possible solutions and drawbacks

We describe some of the possible solutions that try to

avoid the above stated overheads while still using TCP as the
underlying transport service. The drawbacks associated with
each solution are presented.

A. Use one persistent TCP connection for control and data

Improvements: This approach avoids most overheads
associated with FTP’s current design listed in the previous
section. The commands over the control connection can be
pipelined (in the event of a multiple file transfer) to improve
latency, and maintain the probed congestion window for
subsequent transfers.

Drawbacks: TCP provides a byte-stream service and does not
differentiate between the different types of data it transmits
over the same connection. Using a single TCP connection
requires the application to use markers to differentiate
between control and data. This marking burden increases
application layer complexity. Control and file data in an FTP
session are logically different types of data, and conceptually,
are best kept logically if not physically, separate.
Additionally, using a single connection risks Head-of-Line
(HOL) blocking (HOL blocking is discussed in Section 3).

B. Use two persistent TCP connections: one for control, one
for data

Improvements: A persistent data connection eliminates the
connection setup-teardown and command exchange
overheads for every file transfer, thus reducing number of
round trips.

Drawbacks: Due to the sequential nature of commands over
the control connection, the data connection will remain idle in
between transfers of a multiple files transfer. When data is
send after this idle time, the data connection congestion
window may reduce to as much as the initial default size, and
later require TCP to re-probe for the available bandwidth
[HPF00]. Moreover this approach suffers from the overhead
listed in Section 2.1.1 B.

C. Use two persistent TCP connections: one for control, one
for data. Also use command pipelining on control connection.

Improvements: A persistent data connection with command
pipelining will maintain a steadier flow of data (i.e., higher
throughput) over the data connection by letting subsequent
transfers utilize the already probed bandwidth.

Drawbacks: This approach suffers from the overhead listed in
Section 2.1.1 B.

D. Use one TCP connection for control, and ‘n’ parallel data
connections

Improvements: Some FTP implementations achieve better
throughput using parallel TCP connections for a multiple file
transfer.

Drawbacks: This approach is not TCP-friendly [FF99] as it
may allow an application to gain an unfair share of bandwidth
and adversely affect the network’s equilibrium [FF99,
BFF96]. Moreover past research has shown that parallel TCP
connections may suffer from aggressive congestion control
resulting in a reduced throughput [FF99]. As such, this
solution should not be considered. This approach also suffers
all the overheads listed in Section 2.1.1.

Related Work: Apart from the above solutions, researchers in
the past have suggested ways to overcome TCP’s limitations
in order to boost application performance (e.g. [Bra94],
[BS01], [Tou97]). For example, T/TCP [Bra94] reduced the

connection setup/teardown overhead by allowing data to be
transferred in the TCP connection setup phase. But due to a
fundamental security flaw, T/TCP was removed from
operating systems. Objectives (of aggregating transfers) have
also been discussed for HTTP over the past years [PM94].
But while HTTP semantics allowed for persistent data
connections and command pipelining, FTP semantics do not
allow similar solutions without introducing changes to the
application (see A. above).

Having summarized ways for improving FTP
performance while still using TCP, we now consider
improving FTP performance by using SCTP, an emerging
IETF general-purpose transport protocol [SXM+00]. We
would like to note that the TCP alternatives that incorporate
temporal and ensemble sharing (e.g. [Bra94], [BS01],
[Tou97]) have not been discussed further in this paper. Future
work should include and evaluate such alternatives.

3. SCTP multistreaming

One of the innovative transport layer services that

promises to improve application layer performance is SCTP
multistreaming. A stream in an SCTP association is “A uni-
directional logical channel established from one to another
associated SCTP endpoint, within which all user messages are
delivered in sequence except for those submitted to the
unordered delivery service” [SXM+00].

Multistreaming within an SCTP association separates

flows of logically different data into independent streams.
This separation enhances application flexibility by allowing it
to identify semantically different flows of data, and having the
transport layer “manage” these flows (as the authors argue
should be the responsibility of the transport layer, not the
application layer). No longer must an application open
multiple end-to-end connections to the same host simply to
signify different semantic flows.

In Figure 2, Hosts A and B have a multistreamed

association. Three streams go from A to B, and one stream
goes from B to A. The number of streams in each direction is
negotiated during SCTP’s association establishment phase.

Each stream has an independent delivery mechanism,

thus allowing SCTP to differentiate between data delivery and
reliable data transmission and avoid HOL blocking. Similar to
TCP, SCTP uses a sequence number to order information.
However, TCP sequences bytes, and SCTP sequences PDU’s
or “chunks” . SCTP uses Transmission Sequence Numbers

 Figure 2: Use of streams within an SCTP association

(TSN) for reliable transmission. The TSN is global over all
streams. Each stream is uniquely identified by a Stream ID
(SID) and has its own Stream Sequence Numbers (SSN). In
TCP, when a sender transmits multiple TCP segments, and
the first segment is lost, the later segments must wait in the
receiver's queue until the first segment is retransmitted and
arrives correctly. This HOL blocking delays the delivery of
data to the application, which in signaling and some
multimedia applications is unacceptable. In SCTP, however,
if data on stream 1 is lost, only stream 1 may be blocked at
the receiver while awaiting retransmissions. With streams
being logically independent flows, data on remaining streams
is deliverable to the application. SCTP’s socket API
extensions [SXY+03] provide data structures and socket calls
through which an application can indicate or determine the
stream number on which it intends to send or receive data.

4. FTP over SCTP variants

4.1 FTP over SCTP

FTP over SCTP keeps the same semantics as the classic

FTP over TCP. Thus, this FTP model uses one separate SCTP
association for control, and a new SCTP association for each
file transfer, directory listing, or file namelist. The changes to
the classic implementation involved only changing the socket
call parameters from IPPROTO_TCP to IPPROTO_SCTP in
both the client and the server sources.

4.2 FTP over SCTP with multistreaming

In this second model, we use multistreaming to combine
the FTP control and data connections in a single SCTP
association. Only one SCTP association exists for the entire
FTP session. First, an FTP client establishes an SCTP
association with the server. During initialization, two streams
are opened in each direction. The client and the server send
control information (commands and replies) on their
respective stream 0. Their respective data stream or stream 1
is used to transfer data (files, directory listings, and file
namelists). This approach maintains semantics for streams
analogous to control and data connections in FTP over TCP.

Recall that the data connection in FTP over TCP is non-

persistent and the end of data transfer (EOF) is detected by
the data connection’s close. To detect EOF in our approach,
we utilize the SIZE command [EH02]. The SIZE command is
already widely used in FTP for the purpose of detecting
restart markers. For directory listings, the end of data transfer
is detected by using the info (# of bytes read by resvmsg call)
provided by the SCTP socket API [SXY+03].

In the event of a multiple file retrieval issued, the client

sends out the request on outgoing stream 0 and receives the
data on incoming steam 1 for each file in a sequential manner.
Figure 3 shows the retrieval of multiple files using FTP over
multistreamed SCTP. The outgoing stream for all messages
and data has been identified. Data on stream 1 is represented

by dashed lines, and control messages on stream 0 have been
represented by solid lines. The dashed box on the timeline in
Figure 3 indicates the operations that are repeated sequentially
for each file to be transferred.

This approach has various advantages, and avoids most

of the overheads described in Section 2.1. The number of
round trips is reduced as: (1) a single connection (association
in SCTP terminology) exists throughout the FTP session,
hence repeated setup-teardown of each data connection is
avoided, and (2) exchanging PORT commands for data
connection information is not needed. The server load is
reduced as the server maintains TCBs for at most half of the
connections as required with FTP over TCP.

The drawback that this approach faces is similar to the

drawbacks described in Section 2.1.2 (B). In the event of a
multiple file transfer, each subsequent file transfer will not be
able to utilize the prior probed available bandwidth. Before
transmitting new data chunks, the sender calculates the cwnd
based on the SCTP protocol parameter Max.Burst [SOA+03]
as follows:

if ((flightsize + Max.Burst*MTU) < cwnd) (1)
 cwnd = flightsize + Max.Burst*MTU

Since the next file transfer of file i+1 cannot take place

immediately (due to the exchange of control commands
before each transfer (see Figure 3)), all data sent by the server
for file i gets acked, and reduces the flightsize at the server to
zero. Thus in multiple file transfers, the server’s cwnd may be
reduced to Max.Burst*MTU ([SOA+03] recommends the
value of the protocol parameter Max.Burst to be set to 4)
before starting each subsequent file transfer.

4.3 FTP over SCTP with multistreaming and
command pipelining

Finally in this third model we introduce command

pipelining in our design from Section 4.2 to avoid
unnecessary cwnd reduction for a multiple file transfer. The
command pipelining is similar to that defined in [PM94]. In
Section 4.2’s model, the cwnd reduction between file transfers
occurs because the SIZE and RETR commands for each
subsequent file are sent only after the previous file has been
received completely by the client.

In Figure 4, we present a solution that allows each

subsequent transfer to utilize the probed value of congestion
window from the prior transfer. Command pipelining ensures
a continuous flow of data from the server to client throughout
the execution of a multiple file transfer. As seen in Figure 4,
after parsing the name list of the files, the client sends SIZE
commands for all files at once. As soon as a reply for each
SIZE command is received, the client sends out the RETR
command for that file. Since the control stream is ordered, the
replies for the SIZE and RETR commands will arrive in the
same sequence as the commands.

By using SCTP multistreaming and pipelining, FTP
views multiple file transfers as a single data cycle. Command
pipelining aggregates all of the file transfers resulting in better
management of the cwnd. This solution overcomes all of the
drawbacks listed in Section 2.1, resulting in a more efficient
utilization of the bandwidth.

5. Experimental results

We now report on our experimental study of FTP over

TCP vs. FTP over SCTP. We measured the total transfer time
observed for a multiple file transfer for a varied set of
parameters.

• Bandwidth-Propagation Delay (B-D) configuration: Three
path configurations were evaluated: (1Mbps, 35ms),
(256Kbps, 125ms), (3Mbps, 1ms). Both the client to server
and server to client paths share the same characteristics. In
this section, we focus on the results of (1Mbps, 35ms)
configuration. Results of the other two configurations have
been described in Appendix A.

• Packet Loss Ratio (PLR): The PLRs studied were (0, .01,
.03, .06, and .1). Each value represents the loss ratio for
both the client to server and the server to client paths
experience the same loss rate. We used a uniform
probability distribution to emulate packet loss. Certainly
10% loss represents an extreme case but we were interested
in general trends as the loss rate increases. Moreover,
higher loss rates may be of interest to wireless and military
networks.

• File sizes: Although FTP is widely used for bulk data
transfer, some applications (e.g., source updates) use FTP
to transfer small files. To evaluate potential reduced
overheads in a variety of these applications, we chose file
sizes as (10K, 50K, 200K, 500K, and 1M).

Two sets of experiments were performed with different

number of files transferred (10 and 100 files) to observe the
effect of total transfer time on the number of files being
transferred.

5.1 Experimental setup

We used Netbed [WLS+02] (an outgrowth of Emulab)

which provides integrated access to experimental networks.
Three nodes were used for each experiment, one for the FTP
client and one for the FTP server. The third node acted as a
router for shaping traffic between the client and server. The
client and server nodes are 850MHz Intel Pentium III
processors, and based on the Intel ISP1100 1U server
platform. All three nodes run FreeBSD-4.6. The FreeBSD
kernel implementation of SCTP available with the KAME
Stack [KAME] was used on the client and server nodes.
KAME is an evolving and experimental stack mainly targeted
for IPv6/IPsec in BSD based operating systems. An updated
snapshot of the stack (KAME snap kit) is released every
week. We used the snap kit of 14th October, 2002. The router
node runs Dummynet [Riz97] which simulates a drop tail
router with a queue size of 50 packets, and specified
bandwidth, propagation delay and packet loss ratio.

We implemented protocol changes by modifying the FTP

client and server source code available with the FreeBSD 4.6
distribution. In our experiments, total transfer was measured
using packet level traces as follows. The starting time was
taken as the time the client sends out the first packet to the
server following the user’s “ mget” command. The end time
was the time the “226 control reply” from the server reached
the client after the last file transfer. Each combination of
parameters (3 B-D configurations x 5 PLR x 5 file sizes) was
run multiple times to achieve a 90% confidence level for the
total transfer time. Tcpdump [TCPDUMP] (version 3.7.1) was
used to perform packet level traces. SCTP decoding

Figure 4: FTP over multistreamed SCTP with command
pipelining timeline showing a multiple file transfer.

Client

NLST
150
Name List

226

Stream 0

RETR
213
213

150

226

RETR

DATA

 Server

SIZE

SIZE
Stream 0
Stream 0

Stream 0
Stream 0

. . .

. . .
Stream 0

Stream 1

Stream 0

Stream 0
Stream 0

Stream 0

Stream 1

Stream 0

 Server Client
NLST

150
Name List

226
213

RETR
150

 DATA

226

 SIZE

Stream 0
Stream 0

Stream 0

Stream 0

Stream 1

Stream 0

Stream 0

Stream 0

Stream 1

Stream 0

. . .

. . .

Figure 3: FTP over multistreamed SCTP timeline showing
a multiple file transfer.

functionality in tcpdump was developed in collaboration of
UD's Protocol Engineering Lab and Temple University's
Netlab. Our results compare four FTP variants:

(1) FTP over TCP: The current FTP protocol which uses a
separate TCP connection for control, and a new TCP data
connection for every file transfer, directory listing and
name list. The TCP variant used was New-Reno.

(2) FTP over SCTP: The original FTP protocol design but
using SCTP at the transport. See Section 4.1.

(3) FTP over multistreamed SCTP: This design, described in
Section 4.2, uses a single SCTP association for both
control and data. It uses multistreaming to assign one
stream to control, and one stream to data. The SCTP
association between the client and the server persists
throughout the FTP session.

(4) FTP over multistreamed SCTP with command pipelining:
(see Section 4.3) This design adds command pipelining
over multistreamed SCTP to ensure the congestion
window is not needlessly probed for each file transfer.

We have performed experiments involving single as well

as multiple file transfer. Although the improvement of file
transfers using SCTP multistreaming is also witnessed in
single file transfers, we emphasize the results of experiments
involving multiple file transfer for two reasons. First, the
positive impact of multistreaming is more predominant in the
event of multiple file transfers. Second, comparing variant (1)
vs. variant (2) provides insight on single file transfer.

5.2 Results

Figure 5 shows the results obtained for (1Mbps, 35ms)

bandwidth-delay configuration. The results represent the loss
probabilities vs. total transfer time to retrieve 10 files (each
the same size) using four different FTP variants. Figure 6
shows the same comparisons but with retrieval of 100 files.

5.2.1 Comparing (1) vs. (2). Since (2) is simply a
straightforward substitution of TCP calls with SCTP calls,
any difference in performance must be attributed to SCTP’s
handling of data (i.e., congestion control, loss recovery) and
not to multistreaming. Figure 5 shows that for small file
transfers, (1) and (2) overall perform similarly. (2) performs
worse than (1) at low loss rates (~ 0-3%) since SCTP’s per
packet payload (1408 bytes) is less than TCP’s (1448 bytes).
SCTP’s overhead is slightly more than TCP’s. (When
experiments were performed, the SCTP fragmentation
threshold for the FreeBSD implementation was 1408. This
threshold was increased recently thus reducing its effect on
per packet overhead.) As the packet loss rate increases, (2)
outperforms (1). We believe this reversal is due to SCTP’s
more robust loss recovery and congestion control mechanisms
that outbalance the effects of per packet overheads. Details on
the differences of congestion control mechanisms between
SCTP and TCP can be found in [AAI02].

For small file transfers, the data connection in both (1)
and (2) is dominated by slow start phase of the congestion

control. As the file size increases, the data connection’s life
time in both (1) and (2) is dominated by the congestion
avoidance phase. Hence as the file size increases, both the
scale and ratio of performance benefit seen by (2) as
compared to (1) at loss rates (1-10%) increases. For example,
at 3% loss rate the ratio of total transfer time taken by (1) to
(2) is 0.92, 1.14, 1.29, 1.31, 1.56 for ten 10K, 50K, 200K,
500K and 1M multiple file transfers, respectively. This steady
increase results because as the number of loss events
generated increases proportionally with the size of file
transfers, SCTP takes advantage over TCP on a per loss event
basis eventually reducing latency by nearly or more than 50%.
This improvement can be seen in Figure 6 at a 3% loss, (1)
requires 2210 seconds to transfer 100 1M-files whereas (2)
requires 1409 seconds.

From Figures 5 and 6, as the number of files transferred

increase from 10 to 100, the scale of performance of (2) as
compared to (1) also increases. As the loss rate increases,
more significant performance improvements can be seen.
SCTP’s significant out performance of TCP at medium to
high loss rate came as a surprise as it was widely understood
that the congestion control mechanisms in TCP and SCTP are
approximately the same. We have validated our results using
simulations, and are currently investigating the effect of the
subtle differences between the congestion control mechanisms
in TCP and SCTP, which result in such significant difference
observed in overall steady state performance (e.g., SCTP’s
congestion control semantics incorporate Limited Transmit
[ABF01], Appropriate Byte Counting [All03], while the TCP
implementation that is currently prevalent (and the TCP
implementation used in our experiments) does not use such
features.). The congestion control mechanisms in TCP are in
the process of being fine tuned, a research task underway in
the IETF [e.g., ABF01, All03]. Once the TCP extensions are
included in TCP implementations, we expect (1) and (2) to
perform similarly at different loss rates.

5.2.2 Comparing (3) and (4) vs. (2). We now turn our
discussion to the multistreamed FTP variants (3) and (4). We
compare (3) and (4) with (2) and not with (1) because our
main focus is to evaluate the effect of SCTP multistreaming
and command pipelining on multiple file transfers.

As noted in Sections 2 and 4, using multistreaming and
command pipelining (a) reduces round trips in command
exchanges and connection setup-teardown, and (b) maintains
the probed value of the congestion window for subsequent
transfers in a multiple file transfer. We hypothesized the
effect of (a) would remain fairly constant irrespective of file
sizes being transferred, and the effect of (b) would be more
evident in transfer of small files than for large files. For small
files, non-persistent data connections tend to remain longer in
slow start probing for available bandwidth, whereas the time
spent in probing in large file transfers would be smaller
compared to time spent in steady state congestion avoidance.
We expected the effects of both (a) and (b) would be directly
proportional to the number of files being transferred.

In (3) we reduce the number of round trips but do not
maintain the probed congestion window for subsequent
transfers (see Section 4.2). As noted above this effect should
have a constant scale as compared to (2). We can see from

Figure 5 that the ratio of transfer time taken by (2) vs. (3)
remains fairly constant ranging between 1.5 and 1.7. The
small variance can be attributed to the losses (which result in
timeouts) incurred by the extra round trips involved in (2).

 (a) File Size = 10K

 (c) File Size = 200K
 (d) File Size =500K

 (e) File Size = 1M

Figure 5: Transfer Time vs. Loss Probability for a
multiple transfer of 10 files (Bandwidth = 1Mbps
Propagation Delay = 35ms)

 (b) File Size = 50K

 (a) File Size = 10K

 (e) File Size = 1M

 (b) File Size = 50K

 (d) File Size = 500K

Figure 6: Transfer Time vs. Loss Probability for a
multiple transfer of 100 files (Bandwidth = 1Mbps
Propagation Delay = 35ms)

 (c) File Size = 200K

As noted above, the most significant impact of (4) as
compared to (2) comes for short transfers. For example in
Figure 6(a), at a 3% loss scenario, (2) requires 103 seconds to
transfer 100 files of size 10K each, as compared to (4) which
takes only 19 seconds. From Figure 5, at 3% loss rate the ratio
of total transfer time taken by (2) to (4) is 4.9, 4.1, 3.5, 3.1,
and 2.1 for ten 10K, 50K, 200K, 500K and 1M file transfers,
respectively. Thus this effect, which is also seen by
comparing the ratio of (3) vs. (4), demarcates the benefits that
multistreaming and command pipelining provide.

Moreover, it can be seen from Figures 5 and 6 that as the
number of files to be transferred increase from 10 to 100, the
performance gain by (4) as compared to (2) increases. This
increase implies significant benefits to mirroring applications
that use FTP (e.g., fmirror) which often have to mirror a large
number of files from one server to the other.

We note that comparing (1) which is FTP over TCP-New

Reno (the Internet’s prevalent variant) to (4) shows the
tremendous impact that SCTP, multistreaming and command
pipelining can have in FTP transfer time. From Figure 6(e),
(1) takes 2210 seconds as compared to (4) which takes 948
seconds to transfer 100 1M-files at 3% loss. Also note that (3)
and (4) perform consistently better as compared to either (1)
or (2) irrespective of the loss rates.

5.2.3 Summary: We observe that (2) performs close to (1) at
lower loss rates, and as the loss rate increases, (2) outperforms
(1) significantly. For smaller loss rates, per packet overhead
in (2) results in marginally lower performance as compared to
(1). (This factor does not play into the latest SCTP
implementation) Past research shows the congestion control
semantics and loss recovery mechanisms in SCTP are robust
as compared to TCP, which result in better steady state
throughput at higher loss rates [AAI02].
• Exploiting SCTP multistreaming in (3) performs better by

a steady scale factor of approx. 1.5 (in relation to file
sizes) as compared to FTP over SCTP without
multistreaming in (2). This gain is attributed to
multistreaming helping reduce a constant number of
round trips directly proportional to the number of files
being transferred. The slight variance witnessed is due to
the loss (and eventually timeouts) that these extra round
trips can incur.

• Adding command pipelining to multistreaming in (4)
further reduces total transfer time for a multiple file
transfer. The effect of command pipelining is more
predominant in small transfers due to the fact that short
flows spend most of the time probing for the available
bandwidth.

• The absolute scale of transfer time improvement in FTP
over multistreamed SCTP with/without command
pipelining is directly proportional to the number of files
being transferred in a multiple file transfer request: more
files transferred results in more relative savings in
transfer time.

6. Conclusions and future work

Our experimental results confirm that modifying FTP to

use SCTP multistreaming and command pipelining
dramatically reduces latency of multiple file transfers. These
features:
• reduce the number of connections by aggregating the

control and data connections,
• reduce the number of round trips required for connection

setup/teardown, and command exchange, and
• use the bandwidth more efficiently by preserving the

congestion window between file transfers.

Apart from transfer time improvements, other advantages

of FTP over SCTP (with multistreaming and/or command
pipelining) instead of over TCP are:
• The number of connections a server must maintain is

reduced. Quantifying server load and its effects on
throughput is beyond the scope of this paper. The
interested reader is pointed to [FTY99]. We however
expect that by using either modification (3) or (4),
servers could serve at least twice the number of clients
compared to the current FTP over TCP design (assuming
the bottleneck for the number of simultaneous clients
served is the TCBs reserved for the connections). This
result may be of interest to busy servers who are
constrained by the number of simultaneous clients.

• The number of packets exchanged between the client and
the server is reduced (ex., by reducing the command
exchanges) thus reducing the overall network load.

• Aggregating control and data connections into one SCTP
multistreamed association solves concerns that current
FTP protocol faces with Network Address Translators
(NAT) and firewalls in transferring IP addresses and port
numbers through the control connection [AOM98,
Tou02].

The authors further argue that the benefits of SCTP’s

multistreaming can be exploited by other applications.
SCTP’s multistreaming provides a TCP-friendly mechanism
for parallel transfers. Ongoing research at UD’s PEL is
investigating whether web transfers using HTTP can benefit
from aggregation of multiple transfers in a single SCTP
association.

Three limitations of this work which we plan to address

in the future:
• We have used a uniform loss distribution model for

emulating losses on the path. We are investigating a
variation that can models burst losses.

• Recent additions to the TCP congestion control [ABF01,
All03] fine-tune TCP’s behavior for faster recovery from
loss, and fewer timeouts. An extension to our work could
be to take such TCP fine tunings into consideration.

• TCP alternatives incorporating temporal and ensemble
sharing ([Bra94], [BS01], [Tou97]) can be considered in
further evaluation of FTP over SCTP.

Disclaimer

Views and conclusions contained in this document are

those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the Army Research Lab or the US Gov’ t.

Acknowledgements

This paper benefited from discussions with J. Iyengar

and A. Caro. We thank R. Stewart for supporting the SCTP
KAME stack. We thank Jay Lepreau and the staff of Netbed,
the Utah Network Emulation Testbed (supported by NSF
ANI-00-82493 and Cisco) for their facilities. Special thanks
to Mike Hibler for helping set up nodes on Netbed.

References

[AAI02] R. Alamgir, M. Atiquzzaman, W. Ivancic, Effect of
Congestion Control on the Perf of TCP and SCTP over Satellite
Nets. Proc. NASA Earth Science Tech Conf, 6/02. Pasadena, CA.

[ABF01] M. Allman, H. Balakrishnan, S. Floyd, Enhancing
TCP's Loss Recovery Using Limited Transmit, RFC 3042, 1/01.

[AF99] M. Allman, A. Falk, On the Effective Evaluation of TCP.
ACM CCR, 29(5), 10/99.

[All03] M. Allman, TCP Congestion Control with Appropriate
Byte Counting (ABC), RFC 3465, 2/03.

[AO97] M. Allman, S. Ostermann, Multiple Data Connection
FTP Extensions. TR-19971, Ohio Univ. Computer Science, 2/97.

[AOM98] M. Allman, S. Ostermann, C. Metz, FTP extensions
for NATS and firewalls, RFC 2428, 9/98.

[APS99] M. Allman, V. Paxson, W. Stevens, TCP Congestion
Control, RFC 2581, 4/99.

[Bel94] S. Bellovin, Firewall-Friendly FTP. RFC 1579, 2/94.

[BFF96] T. Berners-Lee, R. Fielding, H. Frystyk, Hypertext
Transfer Protocol -- HTTP/1.0. RFC 1945, IETF, 5/96.

 [Bra94] R. Braden, T/TCP - TCP extensions for transactions
functional specification, RFC 1644, 7/94.

 [BS01] H. Balakrishnan, S. Seshan, The Congestion Manager,
RFC 3124, 6/01.

[EH02] R. Elz, P. Hethmon, Extensions to FTP. draft-ietf-ftpext-
mlst-16.txt, IETF Internet draft (work in progress), 9/02.

[FF99] S. Floyd, K. Fall, Promoting the Use of End-to-End
Congestion Control in the Internet. IEEE/ACM Trans on
Networking, 8/99.

[FH99] S. Floyd, T. Henderson, The NewReno Modification to
TCP's Fast Recovery Algorithm. RFC 2582, 4/99.

[FTY99] T. Faber, J. Touch, W. Yue, The TIME-WAIT State in
TCP and Its Effect on Busy Servers. Proc Infocom, 3/99, NYC.

[HL97] M. Horowitz, S. Lunt, FTP Security Extensions. RFC
2228, 10/97.

[HPF00] M. Handley, J. Padhye, S. Floyd, TCP Congestion
Window Validation, RFC 2861, 6/00.

[KAME] KAME Project, www.kame.net

[Kin00] J. King, Parallel FTP Performance in a High-
Bandwidth, High-Latency WAN, SC2000, 11/00.

[MC00] S. McCreary, K. Clay, Trends in WAN IP Traffic
Patterns - Ames Internet Exchange. Proc. ITC, 9/00. Monterey.

[NS] UC Berkeley, LBL, USC/ISI, and Xerox Parc. Ns-2
documentation and software, v2.1b8. www.isi.edu/nsnam/ns.

[PM94] V. Padmanabhan, J. Mogul, Improving HTTP latency.
Proc. 2nd Inter WWW Conf, 10/94, Chicago, IL.

[PR85] J. Postel, J. Reynolds, File Transfer Protocol (FTP), RFC
959, 10/85.

[Riz97] L. Rizzo, Dummynet: a simple approach to the
evaluation of network protocols. ACM CCR, 27(1):3141, 1/97.

[SOA+03] R. Stewart, L. Ong, I. Arias-Rodriguez, K. Poon, P.
Conrad, A. Caro, M. Tuexen, SCTP Implementers Guide, draft-
ietf-tsvwg-sctpimpguide-10.txt (work in progress), 11/03.

[SXM+00] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H.
Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang, V.
Paxson, SCTP, RFC 2960, 10/00.

[SXY+03] R. Stewart, Q. Xie, L. Yarroll, J. Wood, K. Poon,, K.
Fujita, M. Tuexen, Sockets API Extensions for SCTP. draft-ietf-
tsvwg-sctpsocket-07.txt, (work in progress), 8/03.

[TCPDUMP] TCPDUMP public repository, www.tcpdump.org

[Tou97] J. Touch, TCP Control Block Interdependence. RFC
2140, 4/97.

[Tou02] J. Touch, Those Pesky NATs, IEEE Internet Computing,
7/02.

[WLS+02] B. White, et al. An Integrated Experimental
Environment for Dist’d Systems and Networks. Proc. 5th Symp
on OS Design and Implementation, 12/02. Boston, MA.

[WUARCHIVE] Usage Statistics for wuarchive,
wuarchive.wustl.edu

