
Partial Order Transport Service for Multimedia and Other

Applications�

Paul D. Amer Christophe Chassot

Thomas J. Connolly Michel Diaz

Phillip Conrad

Computer and Info Science Dept LAAS du CNRS

University of Delaware 7, Avenue du Colonel Roche

Newark, DE 19716 USA 31077 Toulouse France

Abstract

Motivated by multimedia and perhaps other applications, this paper investigates a Partial
Order Connection (POC) service/protocol. Unlike classic transport services that deliver objects
either in the exact order transmitted or according to no particular order, POC provides a partial
order service; that is, a service that requires some, but not all objects to be received in the order
transmitted. Two versions of POC are proposed: reliable, which requires that all transmitted
objects are eventually delivered, and unreliable, which permits the service to lose a subset of the
objects. In the unreliable version, objects are more �nely categorized into one of three reliability
classes depending on their temporal value. Two metrics based on ei(P), the number of linear
extensions of partial order P in the presence of i lost objects, are proposed as complexity
measures of di�erent combinations of partial order and reliability. Formulae for calculating
ei(P) are derived when P is series-parallel. A formal speci�cation of a POC protocol, written in
Estelle, is presented and discussed. This speci�cation was designed and validated using formal
description tools and will provide a basis for future implementations.

1 Introduction and Motivation

Current applications that need to communicate objects (i.e., images, �les, sound bites) choose
between classic transport services that provide either an ordered service (e.g., TCP) or one that
does not guarantee any ordering (e.g., UDP). Many applications, however, such as multimedia
only require partial order delivery; some objects being communicated must arrive in the order
transmitted, some may arrive in any order. By currently using an ordered service, these applications
waste both memory and bandwidth resources and at the same time risk incurring greater delays.

Multimedia tra�c often is characterized either by periodic, synchronized parallel streams of contin-
uous bit rate (CBR) information (e.g., combined audio-video), or by structured image streams (e.g.,
displays of multiple overlapping and nonoverlapping windows). Currently these applications must
use and pay for an ordered service even though they do not need it. Because a partial order service
has greater
exibility in delivering objects to a user, such a service will reduce delays in object

�This work supported by CNET (Grant 92 1B 178) as part of a CNET-CNRS collaborative project on High Speed
Multimedia Systems. Amer, Connolly, and Conrad supported, in part, by the US Army Communication Electronics
Command (CECOM), Ft. Monmouth, and the US Army Research O�ce (DAAL03-91-G-0086, DAAL03-92-G-0070).

delivery, and require less memory and/or bandwidth on the average than would an ordered one.
This will be the case when the underlying service is inherently unreliable as in the Internet packet
switched network. In today's age of megabyte objects, avoiding the need to bu�er or retransmit
even one object can result in signi�cant savings.

Two variations of a partial order service are proposed: reliable partial order service (R-PO) which
guarantees the eventual delivery of all transmitted objects according to a de�ned partial order,
and unreliable partial order (U-PO) service which makes a best e�ort to deliver all transmitted
objects, but tolerates a well de�ned level of lost objects. In addition to introducing partial or-
der services/protocols, this article considers quantifying, comparing and formally specifying each
version.

Additionally, this article investigates what metric(s) appropriately characterizes (i.e., quanti�es)
the work that must be performed to provide a particular R-PO (U-PO) service, and how this metric
is computed for a given partial order. Such a metric would permit one to compare two or more
R-POs (U-PO) thereby distinguishing between di�erent quality of service levels and providing a
clearer means, say, for charging for each service.

Also, a U-PO service allows a destination to presume certain, but not all objects to be lost when
their temporal value has expired. How does one classify objects according to their varying temporal
constraints; how does a destination dynamically decide when objects are lost; and what are the
e�ects of such a decision?

These issues will be considered as follows. Section 2 introduces and motivates R-PO and U-PO
service in detail. Section 3 proposes two metrics based on a partial order's set of linear extensions

for quantifying and comparing the complexity of di�erent R-PO and U-PO services. Formulae
for calculating these metrics are derived for the subset of partial orders that are series-parallel,
a form often appropriate for characterizing multimedia applications. In Section 4 and Appendix
A, a Partial Order Connection (POC) protocol for providing either R-PO or U-PO service for any
partial order is speci�ed in Estelle. Also several practical issues of concern in implementing POC in
the future are considered. Finally, Section 5 provides conclusions and directions for future research.

2 Partial Order Service

Partial order services are needed and can be employed as soon as a complete ordering is not
mandatory. When two objects can be delivered to a transport service user in either order, there is
no need to use an ordered service that delays delivery of the second one transmitted until the �rst
arrives. We now present four illustrating examples.

Example 1: Consider an Anatomy and Physiology Instructor system described as \a simple multi-
media application example based on the hypermedia paradigm and temporal relation speci�cation"
[22]. Here a workstation displays multiple windows of video, audio, text, image, and animated image
according to well de�ned synchronization and ordering requirements. In one particular presenta-
tion, the user learns of the human heart by combining an animated image and sound track of a
heart pumping in one window while simultaneously providing general textual information (e.g.,
average heart rate) in another window (see Figure 1 taken from [15].)

Figure 2 adapted from [22] illustrates the partial order that models the heart presentation. Views
1 and 2 of the heart are �xed images that change with time to provide a gradual rotation or
slow-motion animation. These images are represented by objects 1-12 displayed in a sequence of
six pairs. There are two text objects and two single image objects shown in the four windows on

2

Figure 2: Analogous Partial Order (Example 1)

the right. These are single independent objects (16-19). The full motion video and sound track
are represented here as single objects preceded by a null object used for synchronization purposes
(13-15).

The six pairs of images of the slow motion animation have an inherent order, but there is no order
constraint on the delivery within each pair. Similarly the arrival ordering of all twelve images is
independent on the ordering of the four single objects. That is, the arrival of some objects is only
partially dependent on all of the others.

Note that a partial order service focuses primarily on delivery order. The temporal value of objects
is taken into consideration when the service allows some level of permitted loss (Section 4.2). It is
assumed that synchronization concerns in presenting the objects after delivery is a service provided
on top of the proposed partial order service. Temporal ordering for synchronized playback is
considered, for example, in [3, 16].

3

Figure 3: Ordered vs. Partial Ordered vs. Unordered Service (Example 2)

At the other extreme, if the windows are con�gured as in Figure 3.D, an unordered service would
su�ce. Here any of 4! = 24 delivery orderings would satisfy the application since the four windows
can be refreshed in any order. As notation, four ordered objects are written 1;2;3;4 and unordered
objects are written using a parallel operator: 1 k 2 k 3 k 4.

Figures 3.B and 3.C demonstrate two possible window con�gurations that call for a partial order
delivery service. In these cases, two and six orderings, respectively, are permitted at the destination.

Example 3: Sending a set of objects in a partial order need not be a one time event as in the
previous two examples. In cases of periodic (i.e., cyclic) communication such as a multimedia
presentation with synchronized video, sound and text streams, a partial order models each of a
repeating pattern of objects. In this case, each repetition or period represents a single partial order
snapshot in a stream of sequential periods of communication. This example and the one that follows
both illustrate periodic communications.

Consider a television news broadcast for the hearing impaired as shown in Figure 4. This multimedia
broadcast includes two video components (normal broadcast and sign language broadcast), two
audio components (left and right channels), and one text component (the subtitle). Assume the
�ve components have di�ering characteristics so that in each second there are 30 images/s for the
main video component, 10 images/s for the hand signing, 60 sound fragments/s for each audio
channel, and one subtitle text object per second consisting of either (1) new text, (2) a command
to repeat the previous second's text, or (3) a command for no text. These 161 objects are repeated

4

Figure 5: Analogous Partial Order (Example 3)

Example 4: This �nal example illustrates how performance can be improved. Improvements
are expected in several areas including: memory utilization, delay, throughput, and bandwidth
utilization. The following hypothetical example highlights these gains. The values and calculations
below are not intended to be a rigorous analysis; their purpose is simply to provide a more concrete
illustration of the potential savings.

Hypothesis: Assume an ATM network running on a 150Mbit/s channel. Assume that 44 of the 53
octet cells are available for user data thus resulting in an actual available bandwidth of roughly
125Mbit/s. The following table summarizes the size and transmission time of di�erent objects:

5

Figure 6: Hypothetical Multimedia Example for Performance Analysis (Example 4)

Assume the sender sends objects in numerical order and only object 1 is lost or damaged by the
underlying network service. At the receiver depending on its receive window size, a classic ordered
transport protocol will bu�er or reject arriving objects 2 through k where k is the last object
received before a retransmission of object 1 arrives. To the contrary, a partial order transport
receiver will accept and immediately deliver objects 2 through k to the user since their delivery is
independent of object 1. No bu�ering is required.

Suppose the strategy is to bu�er the out of sequence objects and to use selective positive acknowl-
edgments with a sending retransmission timer value of 250ms. Case (1) no
ow control: before the
250ms timeout, the sender will send objects 2 through 119 (taking into account the transmission
time of each object), that is, 2 subtitles, 38 sound fragments and 78 animated images. For an
ordered service, the needed bu�er space for these objects will be 3.7Mbytes. For a partial ordered
service, no bu�ers are needed. Additionally, the average end-to-end delay for objects 1-119 will be
231.1ms for an ordered service while only 104.2ms when a partial order is used. In this scenario,
the advantage of a partial order is clear.

Case (2) with
ow control: assuming real time replay of the information at the receiver, one may
assume that the transmission of any animated image stream will be throttled to an approximate
rate of 25 images per second or 1 every 40 ms. In this case, the sender will output a maximum
of 7 images in each image stream before retransmitting object 1. That is, only objects 1-24 will
be outstanding. Just prior to receiving the retransmission of object 1, a classic ordered transport
protocol receiver will need to bu�er 687Kbytes, again an amount of memory not needed with a
partial order service. Similarly for objects 1-24, the average delay will be 238.4ms versus only

6

112.4ms for the partial order service.

This example, while contrived, is meant to demonstrate that the potential quantitative gains in
using a partial order are nontrivial. More detailed studies of actual expected gains are in progress
and will be discussed further later on.

In summary, these four examples illustrate the usefulness of a partial order service. They also
illustrate that the partial order is dependent on the application and may be speci�ed at di�erent
levels. Compare the partial order used in Example 1 where an entire video sequence is a single
object to the more likely case in Examples 3 and 4 where individual video frames are single objects.
The e�ciency gained with a partial order service will depend on how an application designer chooses
an appropriate structure and granularity for the partial order.

2.1 Reliability vs. Order

While the most common transport protocols (e.g., TCP) work hard to avoid the loss of even a single
object, most multimedia applications have a genuine ability to tolerate loss. Losing one frame per
second in a thirty frame per second video or losing a segment of its accompanying audio channel is
usually not a problem. Bearing this in mind, the proposed partial order transport service combines
partial order with varying levels of loss that can be tolerated (partial reliability).

Traditionally there exist four transport services: reliable-ordered, reliable-unordered, unreliable-
ordered, and unreliable-unordered (see Figure 7). Reliable-ordered service is denoted by a single
point where all objects are delivered in the order transmitted. Traditional �le transfer is an example
application requiring such a service. Reliable-unordered is a single point where all objects must
be delivered, but not necessarily according to the order transmitted. Some transaction processing
such as credit card veri�cations requires such a service.

Unreliable-ordered service allows some objects to be lost; those that are delivered, however, must
arrive in relative order1. Since there are varying degrees of unreliability, this service is represented
by a set of points in Figure 7. An unreliable-ordered service is applicable to packet-voice or
teleconferencing applications. If duplicates are not permitted, this represents what some, but not
all authors call \at-most-once" delivery service [20].

Finally unreliable-unordered service allows objects to be lost and delivered in any order. This
is the kind of service used for normal email (without acknowledgment receipts) and electronic
announcements or junk email.

The concept of a partial order expands the order dimension from the two extremes of ordered and
unordered to a range of discrete possibilities. R-PO service, for example, is appropriate for the
screen refresh Example 2 described earlier while U-PO service is appropriate for general multimedia
applications such as the television news broadcast for the hearing impaired in Example 3.

2.2 Related Work

Other authors have considered theoretical consequences of channel ordering, or lack thereof, in the
context of designing and verifying distributed algorithms [19, 23]. For example, Ahuja shows that
some conclusions derived on the design of distributed algorithms need not have required FIFO
ordering as a base assumption [4]. Ahuja, however, assumes a sending process dynamically builds

1An unreliable service (e.g., the postal system) does not necessarily lose objects, simply it may do so without
failing to provide its advertised quality of service.

7

Figure 7: Quality of Service: Reliability vs. Order

the partial order and that no objects are ever lost [13, 26]. Our work assumes a predetermined
partial order negotiated between the sender and receiver and U-PO service allows objects to be lost.
Also, Ahuja's four data types do not permit all possible partial orders of objects as does Protocol
POC.

Reference [24] de�nes a partial order on the messages communicated by a set of distributed processes
and implements a protocol Psync that encodes the partial ordering within each message. The
partial order is de�ned by the interleaved times that messages are sent and received in the shared
message space of the multiple communicating processes and dynamically changes with each newly
sent message. Our work di�ers in its assumption of a point to point connection in which both sides
agree at any point in time to a partial ordering of the data to be transferred.

3 Quantifying and Comparing Partial Order Services

The complexity of a partial order P can be quanti�ed by its set of linear extensions, denoted
L(P). Each linear extension in the set L(P) is essentially one of the orderings of the objects
that is permitted at the destination. The number of linear extensions of P , denoted e(P), is
thought as the best single number which measures the complexity of P [28]. Clearly for N objects,
e(complete order) = 1, e(no order) = N !

It is argued in [1] that e(P) appropriately quanti�es a desired partial order transport service in
communication networks. Intuitively this metric correlates to the work a protocol would have to
perform to provide a particular partial order service. This is because the larger the number of
permitted orderings allowed at the destination, the less overhead is expected to provide acceptable
object delivery. For example, the larger the number of allowable orderings that a destination can
accept, the smaller the expected demand for memory to temporarily store objects received out of
order as shown in Example 4 in Section 2.

Several interesting questions related to linear extensions and therefore to a partial order service are

8

now discussed.

3.1 Reliable Partial Order Service

Given a particular partial order, just how many orderings are permitted at the destination if no
losses are permitted? Answering this question allows one to quantify and compare two or more
R-PO services. Unfortunately there is currently no known formula for calculating e(P) for an
arbitrary partial order. Recently it has been shown that the problem of computing e(P) is #P -
complete2 [9]. There is an O(N5) algorithm, where N is the number of objects, for computing e(P)
for partial orders that form a tree when all edges are considered undirected [7]. Similarly, there is
an O(N8) algorithm for computing e(P) for any graph (and therefore for any partial order) where
if the directions of the edges of P are not considered, any resulting cycles are edge disjoint[12].
Neither of these forms, however, model multimedia applications.

If the partial orders under consideration are series-parallel [28], calculation of e(P) is possible [1].
While not all applications calling for a partial order service need a series-parallel one, such a compo-
sition is reasonable for many applications, particularly multimedia applications. For instance, the
partial orders in all of Section 2's examples are series-parallel. (Similarly, the Object Composition
Petri-nets proposed by Little and Ghafoor as a basis for modeling the synchronization and ordering
of multimedia entities often are series-parallel [21, 22].)

Using \;" and \k" as notation for series and parallel composition, respectively, the Anatomy and
Physiology Instructor multimedia presentation of the human heart (Figure 2) can be de�ned as:

((1 k 2); (3 k 4); (5 k 6); (7 k 8); (9 k 10); (11 k 12)) k (13; (14 k 15)) k 16 k 17 k 18 k 19

From [28, Example 3.5.4], the following formulae for series-parallel compositions are known. If
X1; : : : ; Xk are k partial orders with n1; � � � ; nk objects, respectively, then X1; � � � ;Xk and X1 k

� � � k Xk have N =
kX
i=1

ni objects, and

e(X1; � � � ;Xk) =

kY
j=1

e(Xj)

e(X1 k � � � k Xk) =
N !

kY
j=1

(nj)!

�

kY
j=1

e(Xj)

Note that these formulae di�er only by a multinomial coe�cient which accounts for the allowed
interleaving in parallel composition.

3.2 Unreliable Partial Order Services

Just how much more
exible is a partial order with partial reliability (i.e., loss is permitted)?
Suppose a destination application not only permits objects to arrive in a partial order, but that

2#P -complete is a similar concept to NP -complete, however, it refers to counting problems rather than decision
problems. The signi�cance is that it is unlikely that polynomial time algorithms exist for #P -complete problems.

9

it also tolerates an occasional missing object. Let ei(P) denote the number of linear extensions
permitted by a partial order P that tolerates the loss of exactly i objects where e0(P) represents
what previously was denoted e(P). This section provides formulae for ei(P) analogous to those in
the previous section whenever P is series-parallel.

If a receiving application can tolerate the loss of some objects, then the destination partial order
service conceivably could more
exibly deliver those objects that arrive out of order from the
network (even in terms of a de�ned partial order) by simply assuming certain expected ones were
lost. The amount of added
exibility when i objects can be lost can be quanti�ed by considering all
possible variations of each valid ordering of N objects with up to and including i of them missing.
For example, the partial order in Figure 3.B permits two linear extensions: (1 2 3 4) and (1 3 2 4).
If the loss of any single object is tolerated, then the number of delivery orders that the destination
could accept increases from two to eight: (1 2 3 4), (1 3 2 4) and (1 2 3), (1 2 4), (1 3 2), (1 3 4),
(2 3 4), (3 2 4).

More precisely, if partial order X has a single object, then e0(X) = e1(X) = 1 and 8i�2[ei(X) = 0].
(One cannot lose two or more objects from a partial order that only has one object.) If partial
orders X1 and X2 are combined in series and i objects can be lost, the resulting number of linear
extensions is:

ei(X1;X2) =

iX
j=0

ej(X1)ei�j(X2) (1)

Equation (1) sums all combinations of: losing i and 0 objects from partial orders X1 and X2,
respectively; plus losing i � 1 and 1 objects from X1 and X2, respectively; ..., plus losing 0 and i
objects from partial orders X1 and X2, respectively. Analogously

ei(X1 k X2) =

iX
j=0

(n1 + n2 � i)!

(n1 � j)!(n2 � (i� j))!
ej(X1)ei�j(X2) (2)

where by de�nition i! = 1 for i � 1.

The number of terms in a general formula for ei(X), where X is a composition (either series or
parallel) of k > 2 partial orders, can be based on the number of compositions of i. Compositions3 of
i are expressions of i as a sum of positive integers with regard to order [6]4. For instance, there are 8
compositions of the integer 4: (1+1+1+1); (2+1+1); (1+2+1); (1+1+2); (2+2); (3+1); (1+3) and
(4). Reference [2] presents a general formula of ei(X) based on the partitions of i; this formula is
simpli�ed here by considering compositions. The overall number of terms in the formula increases,
but each one is simpler to represent. Thus by using compositions, the general formula is more
readable.

Intuitively, when composing k partial orders, either in series or in parallel, with i losses, it is possible
to have 1 loss in each of i partial orders and none in the others; or 2 losses in a single partial order,
1 loss in each of i� 2 partial orders and none in the others; or 2 losses in each of 2 partial orders,
1 loss in each of i � 4 partial orders and none in the others; ...; or i losses in 1 partial order and
none in the others. If the ranges of summation variables are properly de�ned, all of the linear

3Unfortunately, the term composition has two meanings. To minimize confusion, `composition' is used to refer to
the combining either in series or in parallel of two or more partial orders. `Composition' (in italics) will refer to the
mathematical concept of a set of integers summing to an integer i.

4Partitions of i do not take order into account.

10

extensions that result from all of these composition possibilities are mutually exclusive. Thus in a
general formula, there will be one term in the calculation of ei(X) for each composition of i. Each
term itself must consider all possible combinations of partial orders in which the losses occur, thus
resulting in multiple summations over all partial orders.

When partial orders are combined in series, one computes the product of the number of linear
extensions of each partial order (with or without its permitted loss(es)) to compute the total
number of possible ways the extensions can be combined. If the partial orders are combined in
parallel, then one also must consider all possible interleavings of a single linear extension from each
one. This results in an additional multinomial coe�cient hereafter denoted Pi;j (coe�cient for the
jth composition of i losses).

If X1; : : : ; Xk are k partial orders with n1; : : : ; nk objects, respectively, then X1; � � � ;Xk and X1 k

� � � k Xk have N =
kX

j=1

nj objects, and the formulae for e1; e2; and e3 are as follows. A single

formula is presented for composition either in series or in parallel. For series compositions, all Pi;j

coe�cients = 1; for parallel compositions, each Pi;j coe�cient is given.

Several speci�c formulae are given prior to to the general formula for ei to provide an intuition into
the structure and complexity of the general formula.

e1 =

kX
i=1

0
B@P1;1 e1(Xi)

kY
j=1

j 6=i

e0(Xj)

1
CA where P1;1 =

(N � 1)!

(ni � 1)!

kY
j=1

j 6=i

(nj!)

e2 =

kX
i=1

0
B@P2;1 e2(Xi)

kY
j=1

j 6=i

e0(Xj)

1
CA where P2;1 =

(N � 2)!

(ni � 2)!

kY
j=1

j 6=i

(nj!)

+

k�1X
i1=1

kX
i2=i1+1

0
B@P2;2 e1(Xi1)e1(Xi2)

kY
j=1

(j 6=i1)^(j 6=i2)

e0(Xj)

1
CA if(k � 2)

where P2;2 =
(N � 2)!

(ni1 � 1)!(ni2 � 1)!

kY
j=1

(j 6=i1)^(j 6=i2)

(nj!)

The two terms for e2 respectively represent all combinations of: 2 losses from 1 partial order and
none from the others; and 1 loss from each of 2 partial orders and none from the others. In the
second term, subscript i2 takes on only those values greater than subscript i1. This is to avoid
counting twice the case of a single loss in each of Xi1 and Xi2 .

11

e3 =

kX
i=1

0
B@P3;1 e3(Xi)

kY
j=1

j 6=i

e0(Xj)

1
CA where P3;1 =

(N � 3)!

(ni � 3)!

kY
j=1

j 6=i

(nj!)

+

k�1X
i1=1

kX
i2=i1+1

0
B@P3;2 e2(Xi1)e1(Xi2)

kY
j=1

(j 6=i1)^(j 6=i2)

e0(Xj)

1
CA if(k � 2)

where P3;2 =
(N � 3)!

(ni1 � 2)!(ni2 � 1)!

kY
j=1

(j 6=i1)^(j 6=i2)

(nj!)

+

k�1X
i1=1

kX
i2=i1+1

0
B@P3;3 e1(Xi1)e2(Xi2)

kY
j=1

(j 6=i1)^(j 6=i2)

e0(Xj)

1
CA if(k � 2)

where P3;3 =
(N � 3)!

(ni1 � 1)!(ni2 � 2)!

kY
j=1

(j 6=i1)^(j 6=i2)

(nj!)

+

k�2X
i1=1

k�1X
i2=i1+1

kX
i3=i2+1

0
B@P3;4 e1(Xi1)e1(Xi2)e1(Xi3)

kY
j=1

(j 6=i1)^(j 6=i2)^(j 6=i3)

e0(Xj)

1
CA if(k � 3)

where P3;4 =
(N � 3)!

(ni1 � 1)!(ni2 � 1)!(ni3 � 1)!

kY
j=1

(j 6=i1)^(j 6=i2)^(j 6=i3)

(nj!)

These formulae can be summarized by a single formula. Let:

ei(X1; : : : ;Xk) =

#Comp(i)X
t=1

Termi;t (with Pi;t = 1)

ei(X1 k : : : k Xk) =

#Comp(i)X
t=1

Termi;t (with Pi;t given)

where #Comp(i) = the number of compositions of i, and Termi;t is de�ned below. Each term for
a series composition assumes the coe�cient Pi;t = 1. For parallel compositions, the Pi;t values are
given.

12

Termi;t is based on the tth composition of i and is calculated as follows. Let the tth composition

consist of b integers denoted � = f�1; : : : ; �bg. That is,
bX

j=1

�j = i. For example, one composition

of the integer 21 is � = (8 + 4 + 4 + 2 + 2 + 1):

Each Termi;t has b summations where b partial orders \contribute" the lost objects and k � b

partial orders contribute no loss.

Termi;t =
k�b+1X
i1=1

k�b+2X
i2=i1+1

k�b+3X
i3=i2+1

� � �

k�1X
ib�1=ib�2+1

kX
ib=ib�1+1

0
BB@Pi;t

bY
u=1

e�u(Xiu)
kY

j=1

(j 6=i1)^(j 6=i2)^���^(j 6=ib)

e0(Xj)

1
CCA if (k � b)

where Pi;t =
(N � i)!

bY
u=1

(niu � �u)!
kY

j=1

(j 6=i1)^(j 6=i2)^���^(j 6=ib)

(nj !)

For an ordered or unordered service withN objects, ei reduces toC
N�i
N (= N !

i!(N�i)!) and P
N�i
N (= N !

i!),
respectively, where C and P represent combinations and permutations.

From a computational point of view, computing ei for a partial order composed of multiple smaller
partial orders is simpli�ed by composing them two at a time and repeatedly using the formu-
lae (1) and (2). The computational complexity of computing ei is discussed further in [11].

3.3 Comparing Partial Order Services

Using arbitrary precision arithmetic routines, programs were developed to compute ei values for an
arbitrary series-parallel partial order. Table 1 indicates ei values for 0 � i < N for the Anatomy
and Physiology Instructor example in Figure 2.

Additionally, the corresponding number of linear extensions for an ordered and unordered service
are tabulated. For example, if no losses are permitted, there are 5,417,717,760 valid orderings (i.e.,
linear extensions) out of the total possible 19! (=121,645,100,408,832,000) orderings, a fraction of
4:453 � 10�8.

On comparing over �ve billion valid orderings in a partial order service with just one valid ordering
in an ordered service, the partial order seems quite
exible, yet a fraction on the order of 10�8

hardly seems to re
ect this. The signi�cance is visualized more easily by considering the number of
valid orderings on a normalized logarithmic scale. Therefore the following normalized partial order
metrics in the interval [0,1] are proposed where 0 represents reliable ordered service, values from
0 to 1 represent increasingly more
exible partial reliable, partial order services, and 1 represents
unreliable unordered service. For partial order X containing N objects and considering a service
with i losses:

mi(X) =
log(ei(X))

log(PN�i
N)

for 0 � i < N

13

Mi(X) =

log
iX

j=0

(ej(X))

log
iX

j=0

(PN�j
N)

for 0 � i < N

The metric mi(X) represents a relative comparison between the number of permitted extensions
of a partial order and an unordered service for N objects and exactly i losses. The metric Mi(X)
represents a similar relative comparison, but for i or fewer losses. The mi and Mi values for the
multimedia example in Figure 2 also are tabulated in Table 1.

i Ordered(C
N�i

N) ei Unordered(PN�i
N

) Mi mi

0 1 5,417,717,760 121,645,100,408,832,000 .5697 .5697
1 19 23,381,729,280 121,645,100,408,832,000 .6016 .6069
2 171 49,662,412,800 60,822,550,204,416,000 .6233 .6373
3 969 67,881,748,480 20,274,183,401,472,000 .6376 .6642
4 3,876 66,369,896,320 5,068,545,850,368,000 .6466 .6891
5 11,628 49,056,157,696 1,013,709,170,073,600 .6517 .7124
6 27,132 28,344,600,128 168,951,528,345,600 .6543 .7347
7 50,388 13,092,017,600 24,135,932,620,800 .6554 .7560
8 75,582 4,912,613,408 3,016,991,577,600 .6558 .7766
9 92,378 1,516,456,832 335,221,286,400 .6559 .7966

10 92,378 389,093,456 33,522,128,640 .6559 .8161
11 75,582 83,725,808 3,047,466,240 .6559 .8354
12 50,388 15,226,920 253,955,520 .6559 .8546
13 27,132 2,355,648 19,535,040 .6559 .8740
14 11,628 311,452 1,395,360 .6559 .8940
15 3,876 35,268 93,024 .6559 .9152
16 969 3,414 5,814 .6559 .9386
17 171 280 342 .6559 .9657
18 19 19 19 .6559 1.0000
19 1 1 1 | |

Table 1: Statistics for Partial Order in Figure 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

o
o

o o o o o o o o o o o o o o o o o

Figure 8: mi (+) and Mi (o) vs i Values for Partial Order in Figure 2

These metrics provide better insight into this partial order's
exibility than do the ei values. The
metricsmi andMi allow one to quantify and compare partial orders with respect to communication

14

constraints independent of N . Consider, for example, Figure 8 which plots the full set of mi and
Mi values for Figure 2. As more losses are permitted, the mi values converge to those of unordered
service (for which all mi values equal 1.) For a partial order, the Mi values increase, but never
reach 1 because the partial order constraints always place limitations of the set of valid orderings.

This example leads to the conjecture that as the number of tolerated losses increases, U-PO service
never decreases in
exibility relative to an unordered service that tolerates the same number of
losses. That is, both mi(X) and Mi(X) are nondecreasing functions of i; 80�i<(N�1)[mi(X) �
mi+1(X)] and [Mi(X) �Mi+1(X)]. If this conjecture were not true, then in some cases, one would
be increasingly more motivated to use an ordered service for an application having only partial
order constraints as toleration for loss increased. This seems counterintuitive.

Similarly, initial study of mi and Mi demonstrates that for i 6= j;mi(X1) < mi(X2) does not imply
mj(X1) � mj(X2) (and analogously for Mi). Merely because partial order A is more
exible than
partial order B when i (or fewer) losses can be tolerated, A may be less
exible than B when j > i
(or fewer) losses can be tolerated (contrary to the authors' initial intuition).

The above formulae for ei assume that all objects are equivalent from the viewpoint of loss. In some
applications, however, this may not be true (see Section 4.2). For example, in Figure 2, perhaps
one could tolerate the loss of any single pair of associated parallel objects in 1 through 12 (i.e.,
(1,2) or (3,4) or ... or (11,12)), but not any single or any random two of the nineteen objects. The
previous formula for calculating e2 allows any two objects to be lost and thus overestimates the
number of valid linear extensions with this constraint.

One can take into account such restrictions when computing any ei value. In this example, one can
recompute the e2 value for just the partial order consisting of objects 1-12, and de�ne e2 = 0 for
the other �ve parallel composed partial orders (objects 13-19). Additionally, this constraint implies
e1 = 0 for all six parallelly composed partial orders. With this particular constraint, the number
of linear extensions is 6,273,146,880; less than 15% of the general e2 value of 49,662,412,800.

4 Estelle Protocol Speci�cation

While calculating ei(P) is useful for evaluating and comparing partial orders, it remains a practical
problem for a destination to determine as objects arrive if they are in one of the valid orders as
de�ned by P . That is, is the arriving order a member of L(P)? If not, arriving objects must be
bu�ered to guarantee the particular partial order in agreement at the time.

Enumerating L(P) is equivalent to �nding all possible topological sortings for a given partial order
[18]. Fortunately in practice, a destination need not enumerate L(P) to decide if an arriving object
can be delivered. The destination merely needs to see if the arriving object satis�es the de�ned
partial order.

Once a source/destination pair have agreed on the partial order in question, there remain two
problems: (1) what protocol does the destination use to evaluate an arriving object's validity with
regards to order, and (2) when/how does a destination decide that an object which has not yet
arrived can be presumed lost?

15

4.1 Protocol Partial Order Connection (POC)

Our protocol, entitled Partial Order Connection (POC) dynamically updates its information each
time an object arrives. It is speci�ed in the language Estelle (see Appendix A), an ISO International
Standard Formal Description Technique for specifying communication services/protocols and, more
generally, distributed systems [8, 17]. The speci�cation has been designed and validated using
several formal description tools: Pet-Dingo, a portable Estelle translator and distributed generator
for simulations [27]; and GROPE, a simulation system that provides graphical animation to visualize
an Estelle speci�cation [5].

Since it makes no practical sense to put a POC on top of a service that is already fully ordered
and fully reliable, Protocol POC assumes that the underlying network service is unreliable. It will
lose and duplicate objects, and sometimes deliver them out of the order transmitted. In all cases
(R-PO and U-PO), Protocol POC will remove duplicates.

The sender transmits (possibly repeating periods of)N objects using at most NUM SND BUFFERS
to remember unacknowledged objects outstanding at any moment in time. The receiver is assumed
to have NUM RCV BUFFERS with which to temporarily store out of order objects. In case of
repeating periods, the sender and receiver distinguish identically numbered objects from di�erent
periods by a period number.

4.2 Object Reliability Classes

In Section 3's discussion of U-PO service, it is assumed that all objects are equal with regards to
their reliability. This classi�cation is reasonable if all objects are identical (e.g., video frames in a
30 frame/s �lm). Applications that require a partial order service, however, may contain a variety
of object types. Thus Protocol POC de�nes three object reliability classes within a U-PO service:
BART-NL, BART-L, NBART-L, where it is the application's responsibility to de�ne which object
belongs to which class5. While classic transport services generally treat all objects equally, the
sending and receiving functions of Protocol POC behave di�erently for each class of object.

BART-NL objects must be delivered to the destination. These objects have long temporal value
that lasts for an entire established connection and require reliable delivery. If all objects are of type
BART-NL, the service is R-PO service. An example of BART-NL objects would be the windows
in the screen refresh Example 2 of Section 2. To assure eventual delivery of a BART-NL object
in Protocol POC, the sender bu�ers it, starts a timeout timer, and retransmits it if no ack arrives
before the timeout. The receiver in turn returns an ack when the object has safely arrived and
been delivered or bu�ered.

BART-L objects have temporal value over some intermediate amount of time, enough to permit
timeout and retransmission, but not everlasting. Once the temporal value of these objects has
expired, it is better to presume them lost than to delay further the delivery pipeline of information.
One possibility for deciding when an object's usefulness has expired is to require each object to
contain information de�ning its precise temporal value [14]. An example of a BART-L object
would be a movie subtitle which normally is displayed during a twenty second �lm sequence. If not
delivered sometime during the �rst ten seconds, the subtitle loses its value and can be presumed
lost. In Protocol POC, these objects are bu�ered-acked-retransmitted up to a certain point in time
and then presumed lost.

5BART stands for (Bu�ers, Acks, Retransmissions, Timeouts), four mechanisms employed to obtain reliability. L
indicates that loss is permitted; NL indicates no loss is allowed.

16

NBART-L objects are those associated with strict real time applications. Their temporal values
too short to bother timing out and retransmitting. An example of a NBART-L object might be a
single packet of speech in a packetized phone conversation or one image in a 30 image/s �lm. In
Protocol POC, a sender transmits these objects once and the service makes a best e�ort to deliver
them. If the one attempt is unsuccessful, no further attempts are made.

Protocol POC's general architecture is shown in Appendix A. A User Sender (e.g., sending applica-
tion) supplies objects to the POC Sender according to the partial order, not necessarily in sequence
order 1; 2; : : : ; N; 1; 2; : : : The partial order de�nes both the possible orders of transmission by the
sending application and the orders of delivery to the receiving application. The POC Sender bu�ers
and, if necessary, retransmits any BART-NL or BART-L objects that are not acknowledged within
a prede�ned timeout period. The total number of unacknowledged BART-NL and BART-L objects
never exceeds NUM SND BUFFERS.

Each time an object arrives at the receiver, Estelle transition Check Newly Arriving Object be-
comes �rable. If the object is within the receiver's window and is not a duplicate, it is either
immediately delivered to the User Receiver (e.g, destination application) or, if not deliverable ac-
cording to the partial order, stored for future delivery. BART-NL and BART-L objects are then
acked. Out of order objects for which there is no available bu�er space simply are discarded.

Whenever an object is delivered to the User Receiver, transition Check Bu�ers For Delivery be-
comes enabled which checks all occupied receive bu�ers to see if the just delivered object now
enables the delivery of any stored objects.

Due to practical page constraints, the Estelle speci�cation in Appendix A is abbreviated only to
include the architecture and data transfer phase. It is assumed that a connection already has been
established and that an initial partial order and vector de�ning the reliability class of each of the
N objects has been negotiated.

Also not included is that part of the data transfer phase that allows the POC Sender and POC Receiver
to change the partial order dynamically. Dynamic changes are permitted in the full speci�cation6

although the POC Sender and POC Receiver are obligated to complete one partial order before
beginning another. A sender and receiver may not handle multiple di�erent partial orders simul-
taneously. Currently the authors predict any gain in performance would be minor and not worth
the added complexity needed to permit multiple orders.

Any partial order can be represented in N(N � 1)=2 bits as an upper N by N triangular matrix
where N is the number of objects in the partial order [1]. If the partial order is series-parallel, it
can be represented as the intersection of two total orders [29]. By assuming one total order to be
1; 2; : : : ; N , a series-parallel partial order can be encoded in N logN bits.

For a U-PO service with BART-L and NBART-L type objects, a POC Receiver can decide at
any time that an object is presumed lost and then continue delivering objects as if the lost one
had been delivered. This represents the situation where a multimedia application decides that an
object has lost its temporal value. To decide when to presume an object is lost, POC Receiver
includes transition Validate Temporal Value to regularly check if delivery to the User Receiver of
each expected object in the reception window is still worthwhile.

As soon as an expected BART-L or NBART-L object's temporal value expires as determined by
a call to a special function Is Object Still Useful, the object is presumed lost. Then all currently
bu�ered objects are checked to see if their delivery is now enabled. Should an object that was
presumed lost arrive later, it will be discarded since it is no longer of any value, and if type BART-

6available from the authors

17

L, it will be acknowledged to stop its retransmission by the sender. Thus for this protocol, an ack
is sent any time a BART-L object is delivered, stored, or presumed lost; so it is possible to ack an
object that has not yet been sent.

The details of Is Object Still Useful are not de�ned in Appendix A. This function can be internal
to Protocol POC in which case each object is required to contain information de�ning its precise
temporal value. Otherwise this function must contact the User Receiver to decide when an object
is no longer valuable. The latter approach requires coordination between the User Receiver and
the POC Receiver.

In regards to the metrics discussed in Section 3, when the set of presumed losses exceeds a de�ned
limit as determined by a function assumed to have been negotiated at connection establishment,
a message is sent to the User Receiver indicating the negotiated QOS is not being provided. It is
then up to this user to determine whether or not to continue with the partial order service.

It is emphasized that while closed form formulae for computing mi(X) and Mi(X) exactly are
provided only for series-parallel partial orders, Protocol POC is applicable for any partial order,
not only those that are series-parallel. When a partial order contains BART-NL objects, the ei
values are reduced since certain linear extensions with loss are no longer permitted. Calculation
of ei in this case uses the same formulae derived in Section 3 with the single di�erence that initial
values e1(X) equal 0, not 1 whenever X is a partial order representing a single BART-NL object.

5 Conclusion

This work (1) introduces and motivates a partial order, partial reliable transport service/protocol,
(2) investigates the de�nition and calculation of metrics for quantifying a partial order service, and
(3) provides a formal Estelle speci�cation of a protocol that provides partial order service. The
authors currently are simulating Protocol POC using OPNET, a networking simulation system,
and implementing a partial order version of TCP based on a submitted RFC [10]. The simulation
and empirical studies will evaluate more precisely the expected delay/memory/bandwidth perfor-
mance improvements compared with an ordered service for various combinations of: (1) di�erent
partial orders and loss tolerances, (2) di�erent distributions of disorder and loss supplied by the
underlying service, and (3) di�erent sender-receiver window sizes. The goal is to better understand
the potential performance gains when using a partial order service over the full range of unreliable
network services.

Acknowledgments

The authors gratefully thank the anonymous referees for their substantive suggestions.

References

[1] P.D. Amer, C. Chassot, T. Connolly, and M. Diaz. Partial order transport service for multimedia
applications: Reliable service. In Proc 2nd High Performance Dist'd Computing Conf (HPDC), 272{
280, Spokane, Wash, Jul 1993.

18

[2] P.D. Amer, C. Chassot, T. Connolly, and M. Diaz. Partial order transport service for multimedia
applications: Unreliable channels. In Proc 3rd International Networking Conf (INET), BFA 1{10, San
Francisco, Aug 1993.

[3] D. Anderson and G. Homsy. A continuous media I/O server and its synchronization mechanism. IEEE
Computer, 24(10), 51{57, Oct 1991.

[4] M. Ahuja. FLUSH primitives for asynchronous dist'd systems. Info Processing Letters, 34(1), 5{12, Feb
1990.

[5] P. D. Amer and D. H. New. Protocol visualization in Estelle. Computer Networks and ISDN Systems,
25(7), 741{760, Feb 1993.

[6] G. Andrew. The Theory of Partitions. Addison-Wesley, Reading, Mass., 1976.

[7] M.D. Atkinson. The complexity of orders. [25], 195{230.

[8] S. Budkowski and P. Dembinski. An intro to Estelle: A speci�cation language for distributed systems.
Computer Networks and ISDN Systems, 14(1), 3{23, 1987.

[9] G. Brightwell and P. Winkler. Counting linear extensions is #P-complete. In Proc 23rd ACM Symp on
the Theory of Computing, 175{181, 1991.

[10] T. Connolly, P.D. Amer, and P. Conrad. An extension to TCP: Partial order service. RFC (submitted
for publication).

[11] P. Conrad, P.D. Amer, and T. Connolly. Improving performance in transport layer communications
protocols by using partial orders and partial reliability. (submitted for publication).

[12] H.W. Chang. Linear extensions of partially ordered sets. Tech Report MS Thesis, Carleton Univ, 1986.

[13] T. Camp, P. Kearns, and M. Ahuja. Proof rules for FLUSH channels. IEEE Trans on Software
Engineering, SE-19(14), 366{378, Apr 1993.

[14] M. Diaz and P. Senac. Time stream petri nets: a model for multimedia streams synchronization. In
Proc of Multimedia Modeling '93, 257{274, Singapore, Nov 1993.

[15] A.C. Guyton. Textbook of Medical Physiology. Saunders, Philidelphia, PA, 1981.

[16] S.L. Hardt-Kornacki and L.A. Ness. Optimization model for the delivery of interactive multimedia
documents. In Proc Globecom 91, 669{673, Phoenix, Ariz, Dec 1991.

[17] Information Processing Systems - Open System Interconnection. ISO International Standard 9074:
Estelle - A Formal Description Technique Based on an Extended State Transition Model.

[18] D. Knuth. The Art of Computer Programming Vol 1: Fundamental Algorithms, 2nd ed. Addison-Wesley,
Reading, Mass., 1973.

[19] L. Lamport. Time, clocks and the ordering of events in a dist'd system. CACM, 21(7), 558{565, Jul
1978.

[20] B. Lampson, N. Lynch, and J. Sogaard-Andersen. Correctness of at-most-once message delivery pro-
tocols. In R. Tenney, P. Amer, and U. Uyar, eds, Formal Description Techniques, VI. North Holland,
Amsterdam, 1994 (in press).

[21] T. Little and A. Ghafoor. Network considerations for dist'd multimedia object composition and com-
munication. IEEE Network Magazine, 32{49, Nov 1990.

[22] T. Little and A. Ghafoor. Synchronization and storage models for multimedia objects. IEEE J on
Selected Areas in Comm, 8(3), 413{427, Apr 1990.

[23] G. Neiger and S. Toueg. Substituting for real time and common knowledge in asynchronous dist'd
systems. In Proc 4th Symp on Principles of Dist'd Computing, 281{293, 1987.

[24] L. Peterson, N. Buchholz, and R. Schlighting. Preserving and using context information in interprocess
communication. ACM Trans on Computer Systems, 7(3), 217{246, Aug 1989.

19

[25] I. Rival. NATO Advanced Study Inst on Algorithms and Order. Klumer Acadamic Publishers, 1989.

[26] K. Shafer and M. Ahuja. Process channel(agent) process model of asynchronous dist'd communication.
In Proc ICDCS 12, 4{11, Yokohama, Japan, Jun 1992.

[27] R. Sijelmassi and B. Strausser. The PET and DINGO tools for deriving dist'd implementations from
Estelle. Computer Networks and ISDN Systems, 25(7), 841{852, Feb 1993.

[28] R. Stanley. Enumerative Combinatorics: Volume 1. Wadsworth + Brooks/Cole Advanced Books &
Software, Monterey, CA, 1986.

[29] J. Valdes, R. Tarjan, and E. Lawler. The recognition of series parallel digraphs. SIAM J. Computing,
11(2), 298{313, 1982.

20

APPENDIX A: Estelle Speci�cation of Protocol: Partial Order Connection

21

