
Retransmission Policies For Concurrent Multipath Transfer Using SCTP Multihoming

Janardhan R. Iyengar Paul D. Amer Randall Stewart
Protocol Engineering Lab Protocol Engineering Lab Transport Technologies

CIS Dept, University of Delaware CIS Dept, University of Delaware Cisco Systems
iyengar@cis.udel.edu amer@cis.udel.edu rrs@cisco.com

Abstract— Concurrent Multipath Transfer (CMT) uses the
Stream Control Transmission Protocol’s (SCTP’s) multihoming
feature to distribute data across multiple end-to-end paths in a
multihomed SCTP association. We propose five retransmission
policies for CMT. We demonstrate the occurrence of spurious
retransmissions in CMT with all of the five policies, and propose
an amendment to the timeout retransmission mechanism to avoid
spurious retransmissions. We also modify the Cwnd Update for
CMT (CUC) algorithm to allow better cwnd growth in CMT
with the different retransmission policies. We then evaluate
the retransmission policies using ns-2 simulations, and discuss
the distributions of traffic that result. We operate under the
strong assumptions that the receiver’s advertised window does
not constrain the sender, and that the bottleneck queues on the
end-to-end paths used in CMT are independent.

I. I NTRODUCTION

Multihoming among networked machines and devices is a
technologically feasible and increasingly economical proposi-
tion. A host is multihomed if it can be addressed by multiple IP
addresses, as is the case when the host has multiple network in-
terfaces. Though feasibility alone does not determine adoption
of an idea, multihoming can be expected to be the rule rather
than the exception in the near future. When fault tolerance
is crucial, multihoming will become an essential architectural
design feature. Multihomed nodes may be simultaneously con-
nected through multiple access technologies, and even multiple
end-to-end paths to increase resilience to path failure. Mul-
tiple active interfaces suggest the simultaneous existence of
multiple paths between the multihomed hosts. Previous work
has proposed using these multiple paths between multihomed
source and destination hosts throughConcurrent Multipath
Transfer (CMT)to increase an application’s throughput. CMT
is the concurrent transfer of new data from a source to a
destination host via two or more end-to-end paths.

The current transport protocol workhorses, TCP and UDP,
do not support multihoming; TCP allows binding to only
one network address at each end of a connection. At the
time TCP was designed, network interfaces were expensive
components, and hence multihoming was beyond the ken
of research. Increasing economic feasibility and a desire for
networked applications to be fault tolerant at an end-to-end

Prepared through collaborative participation in the Communications and
Networks Consortium sponsored by the U. S. Army Research Laboratory un-
der the Collaborative Technology Alliance Program, Cooperative Agreement
DAAD19-01-2-0011. The U. S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright
notation thereon.

Supported in part by University Research Program of Cisco Systems, Inc.

level, have brought multihoming within the purview of the
transport layer. While concurrency can be arranged at the
application layer, CMT at the transport layer is desirable since
it has finest information about the end-to-end path(s). CMT at
the application layer increases redundancy and room for error
by requiring a separate implementation by each application
programmer. Further, complexity at the transport-application
interface will increase due to continuous information exchange
between the transport and the application.

The Stream Control Transmission Protocol (SCTP) [9], [10]
is an IETF standards track protocol that natively supports
multihoming at the transport layer. SCTP multihoming allows
binding of one transport layerassociation(SCTP’s term for
a connection) to multiple IP addresses at each end of the
association. This binding allows an SCTP sender to send
data to a multihomed receiver through different destination
addresses. Simultaneous transfer of new data to multiple
destination addresses is currently not allowed in SCTP due
primarily to insufficient research. This research attempts to
provide that needed work.

Previous work in CMT specified three algorithms for SCTP
resulting in CMTscd - a protocol that uses SCTP’s multihom-
ing feature forcorrectly transferring data between multihomed
end hosts using multiple separate end-to-end paths [8]. Since
CMTscd

1 concurrently transmits data to multiple destinations,
the sender could send retransmissions to one of several des-
tinations that are receiving new transmissions. In this paper,
we propose and evaluate five retransmission policies for de-
ciding which destination should be used. We present some
modifications to SCTP and the Cwnd Update for CMT (CUC)
algorithm [8] to prevent side-effects of the different retrans-
mission policies. We also present a performance analysis of
CMT vs. AppStripe (Application Striping), an ideal simulated
application. In this evaluation, we operate under the strong
assumptions that the receiver’s advertised window does not
constrain the sender, and that the bottleneck queues on the
end-to-end paths used in CMT are independent of each other.
Future work will relax these constraints.

Section II describes the different retransmission policies.
Section III presents our simulation topology and describe our
evaluation methodology. Section IV motivates and presents
modifications to the Cwnd Update for CMT (CUC) algorithm
(Section IV-A) and to SCTP’s timeout recovery mechanism
(Section IV-B). Section V presents our simulation results and
a detailed analysis of the different retransmission policies.

1Henceforth, we will refer to “CMTscd” as simply “CMT”

This section also presents a performance analysis of CMT vs.
AppStripe. Section VI concludes the paper with notes on the
current focus of our work in the larger framework of CMT.

A note on language and terminology. Since an SCTP associ-
ation allows multihomed source and destination endpoints, an
SCTP source maintains per destination, a separate congestion
window (cwnd), slow start threshold (ssthresh), retransmission
timer, and roundtrip time (RTT) estimates among other state.
Thus, a reference to “cwnd for destination X” means the cwnd
maintained at the sender for destination X, and “timeout on
destination X” refers to the expiration of a retransmission timer
maintained for destination X at the sender. Since bottleneck
queues on the end-to-end paths are assumed independent, each
destination in our topology uniquely maps to an independent
path. Thus, “cwnd for destination X” may be used interchange-
ably with “cwnd for path Y”. SCTP acks carry cumulative and
selective ack information and are called “SACKs”. We use the
terms “SACKs” and “acks” interchangeably.

II. CMT RETRANSMISSIONPOLICIES

We present five retransmission policies for CMT. For most,
a retransmission may be sent to a destination other than
the one used for the original transmission. Previous work
on retransmission policies for SCTP [5] shows that sending
retransmissions to an alternate destination degrades perfor-
mance severely. The primary reasons for the degradation in
performance are related to lack of sufficient traffic on alternate
paths. We point out to the reader that with CMT, data is
concurrently sent on all paths, thus rendering the results in [5]
not applicable. In CMT, a sender has much more information
about the paths to the destination host than an SCTP sender
(without CMT). A CMT sender uses this information to
influence the selection of a destination for a retransmission.
The five different retransmission policies for CMT are:

� RTX-SAME - Once a new data chunk is scheduled and
sent to a destination, all retransmissions of the chunk
thereafter are sent to the same destination (until the
destination is deemedinactivedue to failure [10]).

� RTX-ASAP - A retransmission of a data chunk is sent
to any destination for which the sender has cwnd space
available at the time the retransmission needs to be
sent. If the sender has available cwnd space for multiple
destinations, the destination is chosen randomly from
among those available.

� RTX-CWND - A retransmission of a data chunk is sent
to the destination for which the sender has the largest
cwnd. A tie is broken by random selection.

� RTX-SSTHRESH - A retransmission of a data chunk is
sent to the destination for which the sender has the largest
ssthresh. A tie is broken by random selection.

� RTX-LOSSRATE - A retransmission of a data chunk
is sent to the destination with the lowest loss rate path.
If multiple destinations have the same loss rate, then a
destination is selected randomly from among them. This
policy is an ideal case since the loss rate is known, and
not measured in the simulations.

Of the policies, RTX-SAME is simplest. RTX-ASAP is a
“hot-potato” retransmission policy - the goal is to retransmit
as soon as possible without regard to loss rate. RTX-CWND
and RTX-SSTHRESH practically track and attempt to move
retransmissions onto the path with the lowest loss rate. Since
ssthresh is a slower moving variable than cwnd, the values
of ssthresh may better reflect the conditions of the respective
paths2. RTX-LOSSRATE uses information about loss rate pro-
vided by an “oracle” - information that RTX-CWND and RTX-
SSTHRESH implicitly infer and use. This policy quantifies the
impractical case where the sender knows the exact loss rate of
the paths being used for CMT, and selects the path with the
lowest loss rate to send all retransmissions.

We initially hypothesized that retransmission policies that
take loss rate into account would outperform ones that do
not, because sending retransmissions on a lower loss rate path
would improve chances of a retransmission getting through.
Consequently, performance would improve due to fewer time-
outs, particularly those due to loss of retransmissions.

III. M ETHODOLOGY

We evaluate the different retransmission policies using the
University of Delaware’s SCTP module for the ns-2 simu-
lator [3], [6]. We have incorporated CMT and the different
retransmission policies in the SCTP module. As a reference
for performance, we useAppStripe- a hypothetical multihome-
aware application that achieves the highest throughput achiev-
able by an application that distributes data across multiple
SCTP associations (see Figure 1). End-to-end load sharing is
performed at the application layer by AppStripe, and at the
transport layer by CMT [7].

CMTscdAssoc

AppStripe
(distributes data) Bulk transfer application

transport
layer

application
layer

AppStripe CMTscd

(distributes data)

new data
sent

to dest1

new data
sent

to destn

new data
sent

to dest2

SCTP
Assoc1

SCTP
Assocn

SCTP
Assoc2

new data
sent

to dest1

new data
sent

to destn

new data
sent

to dest2

Fig. 1. Schematic - AppStripe and CMT

The simulation topology (see Figure 2) is simple - the edge
links represent the last hop, and the core links represent end-
to-end conditions on the Internet. This simulation topology
does not account for effects seen in the Internet and other real
networks such as network induced reordering, delay spikes,
etc.; these effects are beyond the scope of this study. Our

2We assume that the reader is familiar with SCTP and TCP congestion
control, the variables cwnd and ssthresh, and their dynamics [2], [10].

simulation evaluation provides insight into the fundamental
differences between the retransmission policies, and their
performance in a constrained environment. The loss rate on
Path 1 is maintained at 1%, and on Path 2 is varied from 1 to
10%. The loss rates apply to both forward and reverse paths
- a loss rate of 1% means a forward path loss rate of 1%, and
a reverse path loss rate of 1%.

A B

Sender ReceiverR1,0

R2,0

R1,1

R2,1

100Mbps 1
us

100Mbps 1us

100Mbps 1us

100Mbps 1
us

1 Mbps, 20 ms

1 % uniform loss

1 Mbps, 20 ms

1 – 10 % uniform loss

A1

A2

B1

B2

Path 1

Path 2

Fig. 2. Simulation topology used for evaluation

IV. M ODIFICATIONS TO PROTOCOL MECHANISMS

A. CUCv2: Modified CUC Algorithm

SCTP’s current design principle (as with TCP) assumes that
a SACK’s cumulative ack (cum ack), which tracks the latest
Transmission Sequence Number (TSN)3 received in-order at
the receiver, applies to an entire association and not per
destination. TCP and current SCTP use only one destination
address at any given time to transmit new data to, and hence,
this design principle works fine when CMT is not considered.

Since CMT uses multiple destinations simultaneously, cwnd
growth in CMT demands tracking the latest TSN received in-
orderper-destinationsince TSNs may be arbitrarily distributed
across destinations depending on the scheduling algorithm.
This per-destination ordering information is not present in a
SACK. A sender must infer cum ack per destination, possibly
through SACKs and history information in the retransmission
queue - the Cwnd Update for CMT (CUC) algorithm achieves
this end [8]. The CUC algorithm enables correct cwnd updates
in the face of increased reordering due to CMT.

The CUC algorithm recognizes a set of TSNs outstanding
per-destination, and the per-destinationpseudo-cumacktraces
the left edge of this list of TSNs, per destination. The
CUC algorithm assumes that retransmissions are sent to the
same destination as the original transmission, and so the per-
destination pseudo-cumack moves whenever the corresponding
left edge is acked; the TSN on the left edge being acked may
or may not have been retransmitted.

If the assumption about the retransmission destination is
violated, and a retransmission is made to a different destination
from the transmission, the current CUC algorithm cannot

3TSN serves the the same function in SCTP as the sequence number does
in TCP.

faithfully track the left edge on either destination. We propose
a modification to the CUC algorithm to permit the different
retransmission policies. The modified CUC algorithm, named
CUCv2 (CUC version 2) is shown in Figure 3.

The crux of the modification is in recognizing that of the
TSNs outstanding on a destination, a distinction can be made
- the ones that have been retransmitted, and those that have
not been retransmitted. The CUCv2 algorithm maintains two
left edges for these two sets of TSNs -exp-pseudo-cumack
andexp-rtx-pseudo-cumack. Whenever either of the left edges
moves, a cwnd update is triggered. In CUCv2 (see Figure 3),
lines 2(iv), 2(v), 3(iv) and 3(v) have been added, and lines
3(ii) and 4 have been modified from the CUC algorithm [8].

B. Spurious Timeout Retransmissions

When a timeout occurs, an SCTP sender is expected to
bundle as many of the earliest TSNs outstanding on the
destination for which the timeout occurred as can fit in a
packet and send the packet. As per RFC2960, if more TSNs
are outstanding on that destination, these TSNs “should be
marked for retransmission and sent as soon as cwnd allows
(normally when a SACK arrives)”. The cwnd is also reset to
1 Maximum Segment Size (MSS) for the destination on which
a timeout occurs, allowing only one MSS sized packet in flight.
Thus, the next TSN(s) marked for retransmission can be sent
only when a SACK arrives for the TSN(s) retransmitted first.

A timeout retransmission can occur in SCTP (as in TCP)
due to one of several reasons. One of the reasons is loss of
the fast retransmission of a TSN4. Consider Figure 45. When
a timeout occurs due to loss of a fast retransmission, it is quite
likely that some TSNs that were just sent to the destination on
which the timeout occurred are awaiting SACKs (in the Figure,
TSNs Y+2 and Y+3). These TSNs get incorrectly marked for
retransmission on timeout. With the different retransmission
policies in CMT, the retransmissions may be sent to a different
destination than the original transmission; if cwnd space on a
destination is available, possibly due to receipt of a SACK
on that destination, TSNs marked for retransmission may be
sent to that destination. In Figure 4, incorrect retransmissions
of TSNs Y+2 and Y+3 are sent to destinationB1, on receipt
of SACKs freeing up cwnd space for destinationB1. This
problem is exacerbated in CMT, as shown through this il-
lustration, due to the possibility of sending data (including
retransmissions) to multiple destinations concurrently.

We studied the occurrence of such spurious retransmissions
with the different retransmission policies in CMT. The sim-
ulation topology used is the one described in Section III.
Figure 5(a) shows the number of retransmissions relative to the
number of actual packet drops at the router in our simulations.
Ideally, the number of retransmissions should be exactly equal

4The Multiple Fast Retransmit (MFR) algorithm allows recovery using fast
retransmission multiple times on the same TSN [4]. The MFR algorithm has
not been ported to CMT, and so the only recovery mechanism possible from
the loss of a fast retransmission currently in CMT, as is the case currently in
SCTP and TCP, is a timeout recovery.

5This figure illustrates the point, and may have discrepancies in scale and/or
details which may be overlooked.

At beginning of an association [Sender side behavior]:
8 destinations d, reset

d.find pseudocumack= TRUE;
d.find rtx pseudocumack= TRUE;

On receipt of a SACK [Sender side behavior]:
1) 8 destinations d, resetd.newpseudocumack= FALSE;
2) if the SACK carries a new cum ackthen

for each TSNtc being cum acked for the first time, that was not acked through prior
gap reportsdo

(i) let dc be the destination to whichtc was sent;
(ii) set dc:find pseudo cumack = TRUE;
(iii) set dc:new pseudo cumack = TRUE;
(iv) set dc:find rtx pseudo cumack = TRUE;
(v) setdc:new rtx pseudo cumack = TRUE;

3) if gap reports are present in the SACKthen
for each TSNtp being processed from the retransmission queuedo

(i) let dp be the destination to whichtp was sent;
(ii) if (dp:find pseudo cumack = TRUE) and tp was not acked in the past

and tp was not retransmittedthen
dp:pseudo cumack = tp;
dp:find pseudo cumack = FALSE;

(iii) if tp is acked via gap reports for first timeand (dp:pseudo cumack = tp) then
dp:new pseudo cumack = TRUE;
dp:find pseudo cumack = TRUE;

(iv) if (dp:find rtx pseudo cumack = TRUE) and tp was not acked in the past
and tp was retransmittedthen

dp:rtx pseudo cumack = tp;
dp:find rtx pseudo cumack = FALSE;

(v) if tp is acked via gap reports for first timeand (dp:rtx pseudo cumack = tp) then
dp:new rtx pseudo cumack = TRUE;
dp:find rtx pseudo cumack = TRUE;

4) for each destinationd do
if (d.newpseudocumack= TRUE) or (d.newrtx pseudocumack= TRUE) then

Update cwnd according to [9], [10];

Fig. 3. CUCv2 Algorithm - Modified Cwnd Update for CMT (CUC) Algorithm

Timeout on dest B2
- TSN X is rtxd
- TSNs Y+2 & Y+3
incorrectly marked
for rtx !

TSN Y+2

B1
A1 A2 B2Sender

A
Receiver

B
Receiver

B

SACK X-1 (X+1 to Y)

SACK X-1 (X+1 to Y+1)

TSN Y+3TSN X (rtx)

Incoming
SACKs

SACKsthat will
free up cwnd space
for destination B1

SACKs

TSN Y+2

TSN Y+3

Spurious rtxs !!

LEGEND:

- SACK X-1 (X+1 to Y) indicates a SACK with a cumack of X-1 carrying gap acks for TSNs from X+1
through Y. This SACK indicates that TSN X has not been received.

- TSN Y+2 indicates a packet containing one data chunk with TSN Y+2. A data chunk is the smallest
indivisible unit of data in an SCTP packet.

Fig. 4. Example of spurious retransmissions after timeout in CMT

to the number of packet drops at the router; the curves should
be straight lines at 1 on the Y-axis. The figure shows that
spurious retransmissions occur commonly in CMT with the
different retransmission policies.

We propose a heuristic to avoid these spurious retransmis-
sions. Our solution assumes that a timeout cannot be triggered
on a TSN until the TSN has been outstanding for at least one
Round-Trip Time (RTT). Thus, if a timeout is triggered, TSNs
which are sent within an RTT in the past are not marked for
retransmission. We use an average measure of the RTT for
this purpose - the Smoothed RTT (SRTT) which is maintained
at the sender. This heuristic requires the sender to maintain a
timestamp for each TSN indicating the time at which the TSN
was last transmitted (or retransmitted). Figure 5(b) shows how
the application of this heuristic drastically reduces the number
of spurious retransmissions.

0.95

1

1.05

1.1

1.15

1.2

1.25

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

N
um

be
r

of
 R

et
ra

ns
m

is
si

on
s

/ N
um

be
r

of
 P

ac
ke

t D
ro

ps

Path 2 Loss Rate

Path 1 Loss Rate: 1%

RTX-SAME
RTX-ASAP

RTX-SSTHRESH
RTX-CWND

RTX-LOSSRATE

0.95

1

1.05

1.1

1.15

1.2

1.25

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

N
um

be
r

of
 R

et
ra

ns
m

is
si

on
s

/ N
um

be
r

of
 P

ac
ke

t D
ro

ps

Path 2 Loss Rate

Path 1 Loss Rate: 1%

RTX-SAME
RTX-ASAP

RTX-SSTHRESH
RTX-CWND

RTX-LOSSRATE

(a) (b)

Fig. 5. Spurious retransmissions in CMT: (a) Without SRTT heuristic (b) With SRTT heuristic

V. EVALUATION OF RETRANSMISSIONPOLICIES

Figure 6 shows the time taken to transfer an 8MB file
using CMT with the five retransmission policies, and using
AppStripe. The x-axis represents different loss rates on Path
2. These results are averaged over 30 simulation runs per
point. Overall, AppStripe (� in Figure 6) performs worst,
RTX-SAME () performs better than AppStripe, RTX-ASAP
(�) performs better than RTX-SAME, and almost as good
as the best performing group - RTX-SSTHRESH (4), RTX-
CWND (5) and RTX-LOSSRATE (�). We now discuss these
performance differences.

35

40

45

50

55

60

65

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Path 2 Loss Rate

Path 1 Loss Rate: 1%

 AppStripe
 RTX-SAME
 RTX-ASAP
 RTX-SSTHRESH
 RTX-CWND
 RTX-LOSSRATE

Fig. 6. Performance comparison of AppStripe and CMT with different
retransmission policies

A. Performance of CMT vs. AppStripe

CMT using any of the retransmission policies performs
better than, if not the same as, AppStripe. As the loss rate
on Path 2 increases, CMT performs increasingly better for
two reasons. First, CMT gets better overall cwnd growth than

AppStripe in the slow start phase when delayed acks are
used [8]. This phenomenon allows the CMT sender to increase
its overall cwnd faster than AppStripe during the slow start
phase. Note that the overall cwnd increase is faster, yet TCP-
friendly with CMT. As the loss rate increases, number of
timeouts increases, and since the sender enters slow start after
each timeout, the sender spends more time overall in slow start.
This phenomenon explains part of the improvement observed
with CMT under high loss rates.

Second, CMT is more resilient to reverse path loss than
AppStripe. CMT uses a single sequence space (TSN space,
used for congestion control and loss detection and recovery)
across the multiple paths used in the association, whereas
AppStripe by its design must use a separate SCTP association
per path, and hence uses a separate sequence space per path.
Since SCTP acks are cumulative, sharing of sequence spaces
across paths helps an SCTP sender receive ack info on either
of the return paths. Thus, CMT effectively usesboth return
paths for communicating ack info to the sender, whereas each
SCTP association in AppStripe uses a single return path for
sending acks. For instance, if an ack is lost on one return
path, traffic on the other path will cause the CMT receiver to
respond with acks on the other return path. These cumulative
acks carry the information that was lost due to the ack loss.
Since AppStripe uses an independent SCTP association on
each path, acks for one association cannot help acks on the
other association. This phenomenon is solely due to the fact
that CMT shares sequence space across the paths.

To support our analysis, Figure 7(a) shows the time taken to
transfer an 8MB file, when delayed acks are turned OFF (one
ack is sent per packet received) and the topology is modified
to have loss only on the forward path - there is no reverse
path loss. These results (and also the rest of the results in
Figure 7) are averaged over 30 simulation runs per point.
This graph shows very little performance difference between
CMT with RTX-SAME policy and AppStripe, thus supporting
our analysis of the performance difference between AppStripe

34

36

38

40

42

44

46

48

50

52

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Path 2 Loss Rate

 AppStripe
 RTX-SAME
 RTX-ASAP
 RTX-SSTHRESH
 RTX-CWND
 RTX-LOSSRATE

2

4

6

8

10

12

14

16

18

20

22

24

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

A
ve

ra
ge

 n
um

be
r

of
 ti

m
eo

ut
s

Path 2 Loss Rate

RTX-SAME
RTX-ASAP
RTX-SSTHRESH
RTX-CWND
RTX-LOSSRATE

(a) (b)

1500

2000

2500

3000

3500

4000

4500

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

N
um

be
r

of
 s

uc
ce

ss
fu

l t
ra

ns
m

is
si

on
s

Path 2 Loss Rate

RTX-SAME (Path 1)
RTX-ASAP (Path 1)

RTX-CWND (Path 1)
RTX-SSTHRESH (Path 1)
RTX-LOSSRATE (Path 1)

RTX-SAME (Path 2)
RTX-ASAP (Path 2)

RTX-CWND (path 2)
RTX-SSTHRESH (Path 2)
RTX-LOSSRATE (Path 2)

0

50

100

150

200

250

300

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

N
um

be
r

of
 r

et
ra

ns
m

is
si

on
s

Path 2 Loss Rate

RTX-LOSSRATE (Path 1)
RTX-SSTHRESH (Path 1)

RTX-CWND (Path 1)
RTX-ASAP (Path 1)
RTX-SAME (Path 1)

RTX-LOSSRATE (Path 2)
RTX-SSTHRESH (Path 2)

RTX-CWND (path 2)
RTX-ASAP (Path 2)
RTX-SAME (Path 2)

(c) (d)

Fig. 7. With Path 1 loss rate = 1%: (a) AppStripe and CMT: Performance with no reverse path loss and no delayed acks, (b) Number of retransmission
timeouts for CMT with different retransmission policies, (c) Distribution of successful transmissions for CMT with different retransmission policies, (d)
Distribution of retransmissions for CMT with different retransmission policies

and CMT. These results demonstrate that sharing sequence
space across paths is more beneficial than maintaining separate
sequence spaces per path [1].

B. Performance of different retransmission policies for CMT

Of the retransmission policies used for CMT, RTX-SAME
is the simplest to implement, but performs worst. The per-
formance difference between RTX-SAME and other policies
increases as the loss rate on Path 2 increases. The im-
provement in using RTX-LOSSRATE, RTX-CWND, or RTX-
SSTHRESH reinforces our intuition - taking path loss rate into
consideration while deciding the retransmission destination
improves the chances of a retransmission getting through, and
improves overall performance. RTX-ASAP performs as good
as the best performing policies - note that RTX-ASAP does
not explicitly consider loss rate in its decision, but sends the
retransmissions as soon as possible, to any destination that has
available cwnd space.

Figure 7(b) shows the number of timeouts with the different
policies. RTX-SAME has the most and RTX-LOSSRATE,

RTX-CWND and RTX-SSTHRESH have the fewest. RTX-
ASAP figures between these policies in number of timeouts.
Policies that take loss rate into consideration do best at
avoiding timeouts. The number of timeouts is much larger with
RTX-SAME as compared to any of RTX-LOSSRATE, RTX-
CWND or RTX-SSTHRESH. Thus, the number of timeouts,
and hence the amount of time spent in timeout recovery for
RTX-SAME explains its poorer performance.

Figure 7(c) shows the distribution of successful transmis-
sions, and Figure 7(d) shows the distribution of retransmis-
sions over the two paths. The numbers of transmissions or
retransmissions sent over Path 1 are shown with hollow shapes
(), and those sent over Path 2 are shown in corresponding
solids (v).

Figure 7(c) shows that of the policies, RTX-SAME gets
most of its data through to the destination via Path 1 (the
lower loss rate path), and the loss rate based policies di-
vide the successful transmission more evenly. RTX-ASAP is
roughly midway between RTX-SAME and the group of RTX-
LOSSRATE, RTX-SSTHRESH and RTX-CWND. Figure 7(d)

shows that of the policies, RTX-LOSSRATE as expected
always sends the retransmissions via Path 1 (the lower loss rate
path) except when the loss rates are the same for both paths
at 1%, where the retransmission distribution is even. RTX-
SSTHRESH and RTX-CWND send most retransmissions via
Path 1, while some retransmissions are still sent via Path 2 (the
higher loss rate path). On the other hand, RTX-SAME sends
most of its retransmissions via Path 2. The reason for this
difference is that RTX-SSTHRESH and RTX-CWND divert
retransmissions for most of the losses occurring onbothpaths
to Path 1, whereas RTX-SAME maintains the retransmissions
for losses occurring on Path 2 to the same path. RTX-
ASAP distributes the retransmissions fairly evenly between
the two paths. This behavior with RTX-ASAP is because
most of the times that a retransmission has to be sent, cwnd
space is available for both destinations for the retransmission,
thus resulting in a random selection of the retransmission
destination. To better explain this behavior, we point out that
SCTP allows sending one MTU worth of retransmission to
the destination which has suffered a loss, even if the cwnd for
that destination has no space. Thus, immediately after a cwnd
reduction for a destination due to loss, the sender still has
space for one MTU of retransmission that can be sent to that
destination. This extra space creates multiple choices for the
sender during most retransmissions thus resulting in random
selection of the retransmission destination most of the times.

Figure 7(c) shows that the amount of data that gets through
to the destination via Path 2 (the higher loss rate path) is much
lesser with RTX-SAME as compared to the other policies.
At the same time, Figure 7(d) shows that the number of
retransmissions that are sent via Path 2 is higher than with the
other policies. This higher number of retransmissions on Path
2 given that a lesser number of packets actually get through on
Path 2 indicates that the same TSNs get dropped repeatedly.

RTX-SAME suffers a large number of timeouts (as seen
in Figure 7(b)), but these timeouts are dominated by repeated
timeouts on the same TSNs. These timeouts cause a sender
to wait for a retransmission timer to expire for destination
B2, thus keeping Path 2 idle for a significant portion of
the transfer. This behavior causes the sender using the RTX-
SAME policy to schedule more new transmissions on Path
1 (the lower loss rate path), thus distributing the load of new
transmissions automatically with a bias towards the lower loss
rate path. This automatic shift of load towards the lesser loss
rate path may benefit the RTX-SAME policy, but the higher
number of timeouts, and hence greater time spent waiting for
retransmission timer expiration and in timeout recovery causes
degradation in overall performance.

Figure 7(d) shows RTX-ASAP distributing the retransmis-
sion load fairly evenly between the paths. This distribution ex-
plains why RTX-ASAP sees fewer timeouts than RTX-SAME,
but more timeouts than RTX-LOSSRATE, RTX-CWND and
RTX-SSTHRESH. The fewer number of timeouts seen by
RTX-ASAP improves its performance over RTX-SAME.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented and evaluated several retransmis-
sion policies for CMT. Our overall analysis reveals that RTX-
LOSSRATE, RTX-SSTHRESH and RTX-CWND are clear
winners. RTX-SAME performs the worst in terms of both total
time taken for a transfer, and number of retransmission time-
outs. RTX-ASAP performs better than RTX-SAME and about
the same or worse than RTX-LOSSRATE, RTX-SSTHRESH
and RTX-CWND, which are the best performing.

Though further investigation is needed to recommend a
general retransmission policy, our investigation reveals that
any retransmission policy that takes loss rate into account will
likely improve load distribution for both new transmissions and
retransmissions. Policies that take loss rate into account avoid
repeated retransmissions and timeouts - thus improving the
timeliness of data. We believe that with a constrained receiver
window and/or with path failure, a policy that cannot avoid
repeated retransmissions will suffer.

In the larger framework of CMT, we are currently working
on sharing mechanisms for the receiver’s advertised window
when the window is limited. We have so far assumed that the
receiver’s advertised window does not constrain the sender;
we will now relax this constraint. We propose to evaluate the
different retransmission policies in the face of a constrained
receiver’s advertised window. In the future, we will evaluate
these different policies in the presence of path failures.

DISCLAIMER

The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of the
Army Research Laboratory or the U.S. Government.

REFERENCES

[1] A. Abd El Al, T. Saadawi, and M. Lee. LS-SCTP: A Bandwidth
Aggregation Technique For Stream Control Transmission Protocol.
Computer Communications, 27(10), 2004.

[2] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control.
RFC2581, Internet Engineering Task Force (IETF), April 1999.

[3] UC Berkeley, LBL, USC/ISI, and Xerox Parc. ns-2 documentation and
software, Version 2.1b8, 2001. http://www.isi.edu/nsnam/ns.

[4] A. Caro, P. Amer, J. Iyengar, and R. Stewart. Retransmission Policies
with Transport Layer Multihoming. InICON 2003, Sydney, Australia,
September 2003.

[5] A. Caro, P. Amer, and R. Stewart. Transport Layer Multihoming for
Fault Tolerance in FCS Networks. InMILCOM 2003, Boston, MA,
October 2003.

[6] A. Caro and J. Iyengar. ns-2 SCTP module, Version 3.2, December
2002. http://pel.cis.udel.edu.

[7] J. Iyengar, P. Amer, and R. Stewart. Concurrent Multipath Transfer
Using Transport Layer Multihoming: Performance Under Varying Band-
width Proportions. Tech report, CIS Dept., University of Delaware,
October 2004.

[8] J. Iyengar, K. Shah, P. Amer, and R. Stewart. Concurrent Multipath
Transfer Using SCTP Multihoming. InSPECTS 2004, San Jose,
California, July 2004.

[9] R. Stewart, L. Ong, I. Arias-Rodriguez, K. Poon, A. Caro, and
M. Tuexen. Stream Control Transmission Protocol (SCTP) Imple-
menter’s Guide. draft-ietf-tsvwg-sctpimpguide-10.txt, Internet Draft
(work in progress), Internet Engineering Task Force (IETF), November
2003.

[10] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor,
I. Rytina, M. Kalla, L. Zhang, and V. Paxson. Stream Control Trans-
mission Protocol. RFC2960, Internet Engineering Task Force (IETF),
October 2000.

