
Receive Buffer Blocking In
Concurrent Multipath Transfer

Janardhan R. Iyengar Paul D. Amer Randall Stewart
Protocol Engineering Lab, CIS Department Internet Technologies Division

University of Delaware Cisco Systems
{iyengar, amer}@cis.udel.edu rrs@cisco.com

Abstract— Previously, we studied the performance of Concur-
rent Multipath Transfer using SCTP Multihoming (CMT) under
the assumption of an infinite receive buffer (rbuf). Here, we study
CMT performance when a sender is constrained by the rbuf.
We demonstrate using simulation that if two paths are used for
CMT, the lower quality (i.e., higher loss rate) path degrades
overall throughput of an rbuf-constrained CMT association by
blocking the rbuf. We demonstrate that a wise retransmission
policy can alleviate some of the throughput degradation by
reducing the rbuf blocking problem. We present and discuss
CMT performance using several retransmission policies and
constrained rbuf values of 16KB, 32KB, 64KB, 128KB, and
256KB. While rbuf blocking cannot be eliminated, it can be
reduced by choice of retransmission policy - a facility available
to only the transport layer.

I. INTRODUCTION

A host is multihomed if it can be addressed by multiple IP
addresses, as is the case when the host has multiple network
interfaces. Multihoming is increasingly economically feasible
and can be expected to be the rule rather than the exception
in the near future, particularly when fault tolerance is crucial.
Multihomed nodes may be simultaneously connected through
multiple access technologies, and even multiple end-to-end
paths to increase resilience to path failure. For instance, a
mobile user could have simultaneous Internet connectivity via
a wireless local area network using 802.11b and a wireless
wide area network using GPRS.

Previous work proposed using Concurrent Multipath Trans-
fer (CMT) between multihomed source and destination hosts
to increase an application’s throughput [1], [2]. CMT is the
concurrent transfer of new data from a source to a destination
host via two or more end-to-end paths. The current transport
protocol workhorses, TCP and UDP, do not support multi-
homing; TCP allows binding to only one network address at
each end of a connection. At the time TCP was designed,
network interfaces were expensive components, and multi-
homing was beyond the ken of research. Changing economics
and increasing emphasis on end-to-end fault tolerance have
brought multihoming within the purview of the transport layer.

While concurrency can be arranged at other layers, the
transport layer has the best knowledge to estimate end-to-
end paths’ characteristics. Implementing multipath transfer at
the application layer increases redundancy and room for error
by requiring a separate implementation by each application
programmer. We research CMT at the transport layer using the

Prepared through collaborative participation in the Communications and
Networks Consortium sponsored by the U. S. Army Research Laboratory un-
der the Collaborative Technology Alliance Program, Cooperative Agreement
DAAD19-01-2-0011. The U. S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright
notation thereon.

Supported in part by University Research Program of Cisco Systems, Inc.

Stream Control Transmission Protocol (SCTP) [3], [4]. SCTP
is an IETF standards-track protocol that natively supports
multihoming at the transport layer. SCTP multihoming allows
binding of one transport layer association (SCTP’s term for
a connection) to multiple IP addresses at each end of the
association. This binding allows a sender to transmit data to
a multihomed receiver through different destination addresses.
Concurrent transfer of new data to multiple destination ad-
dresses is currently not allowed in SCTP due primarily to
insufficient research. Our research attempts to fill that need.

Previous CMT research developed three algorithms for
SCTP resulting in CMTscd - a protocol that uses SCTP’s
multihoming feature for correctly transferring data between
multihomed end hosts using multiple separate end-to-end
paths [1]. Since CMTscd

1 allows concurrent transmission of
data to multiple destinations, a sender can send retransmis-
sions to one of several destinations that are receiving new
transmissions. Previously, we proposed five retransmission
policies, and protocol modifications to SCTP to allow for
correct functioning of these retransmission policies [2]. But in
[2], we operated under the strong and limiting assumptions that
the receive buffer (rbuf) was infinite, and that the bottleneck
queues on the end-to-end paths used in CMT were independent
of each other.

In this paper, we drop the first assumption and investigate
the effects of a bounded rbuf. That is, we analyze CMT
performance using different retransmission policies in the
presence of a finite rbuf. We continue to operate under the
strong assumption that the bottleneck queues on the end-to-
end paths used in CMT are independent of each other. Future
work will relax this constraint.

Section II describes the simulation topology for our in-
vestigation, and reviews relevant concepts and terminology.
Section III describes, by example, the rbuf blocking problem.
Section IV reviews five retransmission policies for CMT. Sec-
tion V presents our simulation results and a detailed analysis of
the different retransmission policies with different rbuf sizes.
Section VI concludes the paper.

II. PRELIMINARIES

For our simulations, we use the University of Delaware’s
SCTP module for the ns simulator [5], [6], modified to
incorporate CMT and the different retransmission policies. The
topology is shown in Figure 1. The edge links represent the
last hop, and the core links represent end-to-end conditions on
the Internet. The end-to-end delays are 45ms on both paths,
representing typical US coast-to-coast delays experienced by
a significant fraction of the flows on the Internet [7]. The loss

1Henceforth, we will refer to “CMTscd” as simply “CMT”

rate on Path 1 is maintained at 1%, and on Path 2 is varied
from 1 to 10%. A loss rate of 1% means a forward path loss
rate of 1%, and a reverse path loss rate of 1%.

A B

Sender ReceiverR1,0

R2,0

R1,1

R2,1

100Mbps 1
us

100Mbps 1us

100M
bps 1us

100Mbps 1
us

10 Mbps, 45 ms

1 % uniform loss

10 Mbps, 45 ms

1 – 10 % uniform loss

A1

A2

B1

B2

Path 1

Path 2
Fig. 1. Simulation topology

This simulation topology does not account for effects seen
in the Internet such as network-induced reordering, delay
spikes, etc.; these effects are beyond the scope of this study.
Our simulation evaluation provides insight into the impact that
a constrained rbuf poses to CMT, the fundamental differences
between the retransmission policies, and their performance in
a constrained rbuf environment. We chose a simple topology to
avoid influence of other effects, and to focus on performance
differences which we believe should hold true in a real
environment as well2.

We now review relevant concepts and terminology. A trans-
port layer receiver maintains rbuf space for incoming data
for two reasons: (i) to handle out-of-order data, and (ii) to
receive data at a rate higher than that of the receiving applica-
tion’s consumption. In SCTP (and TCP), a receiver advertizes
currently available rbuf space through window advertisements
(normally accompanying acks) to a data sender. We refer to
this value as the advertized receive window (adv-rwnd). A
sender computes a peer-rwnd to deduce how much more data
can be buffered at the receiver. Beside the latest adv-rwnd
received, the peer-rwnd takes into account data that has been
sent but not yet acked by the receiver.

An SCTP receiver maintains a single rbuf per association.
An SCTP sender, consequently, maintains a single peer-rwnd
per association. Note that sender-side estimates such as con-
gestion window (cwnd), slow start threshold (ssthresh) and
roundtrip time (RTT) are maintained per destination - they
represent the state of different network paths from a sender to
each destination address. A sender has no reason to maintain
separate rbufs or peer-rwnds per path since a receiver can
consume data only in sequence, irrespective of the destination
address they are sent to3. An SCTP sender’s sending rate is
bound by both the peer-rwnd and the pertinent destination’s
cwnd, i.e., min(peer-rwnd, cwnd).

We define a sub-association flow as the set of transport
protocol data units (PDUs) within an SCTP association that
have the same destination address. In Figure 1, an SCTP
association from the sender to the receiver spanning the two

2The simulation topology is clearly simplistic. We have used a more
complex topology involving variable cross-traffic for a representative set of
loss rate and rbuf combinations. The relative performance of the evaluated
policies are the same for both of our topologies [8].

3While SCTP supports unordered data delivery and multistreaming in an
association [4], here we focus on ordered data delivery over a single stream.

paths will have two sub-association flows - one consisting of
PDUs with destination B1, and the other with destination B2.

A reference to “cwnd for destination X” means the cwnd
maintained at the sender for destination X, and “timeout on
destination X” refers to the expiration of a retransmission timer
maintained for destination X at the sender. Since bottleneck
queues on the end-to-end paths are assumed independent,
each destination uniquely maps to an independent path. For
instance in Figure 1, “cwnd for destination B1” may be used
interchangeably with “cwnd for path 1” (where path 1 ends at
destination B1).

CMT schedules new data to different destinations as band-
width becomes available on corresponding paths, i.e., as
corresponding cwnds allow. When cwnd space is available
simultaneously for two or more destinations, data is sent
to these different destinations arbitrarily. Assuming that a
CMT sender will likely not know path properties apriori, our
transmission policy is an intuitive one.

III. PROBLEM DESCRIPTION: RECEIVE BUFFER BLOCKING

A CMT receiver maintains a single rbuf which is shared
across the sub-association flows in an association. With CMT,
this buffer sharing can degrade throughput. To elaborate this
point, we use an excerpt from a simulation of a CMT asso-
ciation (see Figure 2) using the topology shown in Figure 1.
In this example, the rbuf is 16KB, Path 1 (A1 to B1) has a
loss rate of 1%, and Path 2 (A2 to B2) has a loss rate of 10%.
Retransmissions are sent to the same destination as the original
transmission. We call this retransmission policy RTX-SAME
(we will revisit this retransmission policy decision later).

Figures 2(a) and (c) show Transmission Sequence Number
(TSN) progression4 over Path 1 and Path 2, respectively, and
Figure 2(b) shows peer-rwnd evolution at the sender (endpoint
A) during an excerpted time interval. Figure 2(a) shows that
data transmission over the lower loss rate path stops abruptly
around 114.5 seconds and resumes around 128 seconds. This
13.5 second cessation can be explained with the help of
Figure 2(b). At 114.5 seconds, the peer-rwnd at the sender
abruptly reduces from 16384 bytes to 236 bytes, constraining
the sender from transmitting any new data. The cause for this
abrupt rbuf reduction is explained as follows.

During the same time interval from 114.5 seconds to 128
seconds, Figure 2(c) shows that the lower quality (i.e., higher
loss rate) path undergoes congestion, and recovers from losses
through repeated retransmission timeouts - the longest recov-
ery time being 8 seconds for TSN 2304. During this period
of 13.5 seconds when loss recovery repeatedly occurs on Path
2, the receiver waits for retransmissions to come through, and
is unable to deliver subsequent TSNs to the application (some
of which were sent over Path 1). These subsequent TSNs are
held in the transport layer rbuf until the retransmissions are
received, thus blocking the rbuf and the peer-rwnd. Path 2 thus
causes blocking of the rbuf, preventing data from being sent
on either path and reducing overall throughput.

This example demonstrates how a shared rbuf results in
a sub-association flow on a higher quality (i.e., lower loss
rate) path getting lower throughput than expected. We note that
the exact numbers used in this example do not hold special
relevance. This example presents a phenomenon which occurs,
in lesser or greater degree, throughout a CMT association.

4TSNs in SCTP serve the same purpose as sequence numbers do in TCP.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 110 115 120 125 130
p

e
e

r-
rw

n
d

 a
t

s
e

n
d

e
r

A
 (

b
y
te

s
)

Time (sec)

(a) (b) (c)

Fig. 2. Instantiation of rbuf blocking: (a) Progression of data sent to destination B1 over Path 1 (loss rate 1%) over a select interval; (b) peer-rwnd value
maintained at sender (endpoint A) over same interval; (c) Progression of data sent to destination B2 over Path 2 (loss rate 10%) over same interval

We argue that rbuf blocking is not specific to the transport
layer; it applies to multipath transfer at other layers as well.
rbuf blocking cannot be eliminated or reduced by moving
CMT’s functionality to a different layer. Specifically, if a single
logical flow is distributed across multiple end-to-end paths by
the application layer, and the application layer receiver (the
final destination) has finite buffer space, then rbuf blocking
will occur.

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
ra

ns
fe

r
tim

e
(s

ec
)

Path 2 Loss Rate

CMT (with RTX-SAME policy)
SCTP assoc (Path 1 only, 1% loss)

Fig. 3. rbuf blocking in CMT causes throughput degradation

Figure 3 shows two curves - time taken to transfer an 8MB
file using (i) CMT (with RTX-SAME retransmission policy)
with a 16KB rbuf, and (ii) a single SCTP association which
uses only the better path (Path 1 with loss rate 1%). Intuitively,
using two paths should provide higher overall throughput than
using one path. However, Figure 3 demonstrates that using two
paths performs worse than using only the better path if a finite
rbuf is shared across the paths5. This performance difference
is due to rbuf blocking that occurs in CMT - an rbuf of 16KB
does not constrain a single SCTP association (which uses one

5Presumably an SCTP sender does not have apriori knowledge about the
better path and hence cannot always achieve best performance. We discuss
expected SCTP performance in [8].

lower loss rate path) as much as it constrains CMT (which
uses two paths with different loss rates).

After analyzing several traffic flows, we observe that
chances of rbuf blocking are higher during periods of timeout
recovery. Further, a larger timeout recovery period due to
back-to-back timeouts with exponential backoff results in an
even higher probability that a finite rbuf blocks a sender. We
therefore hypothesize that reducing (i) the number of timeouts,
and/or (ii) the number of back-to-back timeout retransmissions
will alleviate the rbuf blocking problem. Consequently, we
hypothesize that making an intelligent decision about which
destination a retransmission should be sent to will help reduce
rbuf blocking. As we mentioned earlier, retransmissions in the
above example are sent to the same destination as the original
transmission. We used this retransmission policy initially due
to its simplicity. In the following section, we present several
alternative “smarter” policies.

IV. CMT RETRANSMISSION POLICIES

Multiple paths present an SCTP sender with a choice where
to send a retransmission of a lost transmission. But this
choice is not well-informed since SCTP currently restricts
sending new data [4], which can act as probes for information
(such as available bandwidth, loss rate and RTT), to only
one primary destination. Consequently, an SCTP sender has
minimal information about alternate paths to a receiver.

On the other hand, since new data is regularly being sent to
all destinations concurrently, a CMT sender maintains more
current and more accurate information (e.g., RTT estimate)
about all paths to a receiver. This information allows a CMT
sender to make a more informed decision where to send a
retransmission. We now investigate how CMT should make
this decision in a realistic lossy environment.

We review five retransmission policies for CMT [2]. For
four policies, a retransmission may be sent to a destination
other than the one used for the original transmission.

• RTX-SAME - Once a new data chunk is scheduled and
sent to a destination, all retransmissions of the chunk
thereafter are sent to the same destination (until the
destination is deemed inactive due to failure [4]).

• RTX-ASAP - A retransmission of a data chunk is sent
to any destination for which the sender has cwnd space
available at the time the retransmission needs to be
sent. If the sender has available cwnd space for multiple
destinations, one is chosen randomly.

• RTX-CWND - A retransmission of a data chunk is sent
to the destination for which the sender has the largest
cwnd. A tie is broken randomly.

• RTX-SSTHRESH - A retransmission of a data chunk is
sent to the destination for which the sender has the largest
ssthresh. A tie is broken randomly.

• RTX-LOSSRATE - A retransmission of a data chunk
is sent to the destination with the lowest loss rate path.
If multiple destinations have the same loss rate, one is
selected randomly.

Of the policies, RTX-SAME is simplest. Since an applica-
tion that stripes data across multiple transport layer (SCTP
or TCP) associations will not be able to move outstanding
data from one association to another, such an application will
use the RTX-SAME policy at the transport layer. RTX-SAME
thus represents the performance of an data striping application.
RTX-ASAP is a “hot-potato” retransmission policy - the goal
is to retransmit as soon as possible (without regard to loss
rate) so that a receiver does not have to wait longer for
the lost TSN. RTX-CWND and RTX-SSTHRESH attempt
to move retransmissions onto the path with estimated lowest
loss rate. RTX-LOSSRATE uses information about loss rate
provided by an “oracle” - information that RTX-CWND and
RTX-SSTHRESH estimate. This policy represents a “hypo-
thetically” ideal case; hypothetical since in practice, a sender
typically does not know apriori which path has the lowest loss
rate; ideal since the path with the lowest loss rate has highest
chance of having a PDU delivered.

Retransmission policies that take loss rate into account
(RTX-CWND, RTX-SSTHRESH, and RTX-LOSSRATE) at-
tempt to reduce the chances of a retransmission getting
dropped. Therefore, we initially hypothesized that these poli-
cies would best alleviate rbuf blocking by reducing the number
of timeouts and the number of back-to-back timeouts.

We do not propose different policies for scheduling new
transmissions - we assume that a sender does not know path
properties apriori and can therefore only react to network
events such as congestion losses (see Section II for our
transmission policy). This assumption holds true particularly
in the Internet where the path properties are changing.

V. EVALUATION OF CMT RETRANSMISSION POLICIES

We now evaluate the five retransmission policies for CMT
operating under a constrained rbuf. Default rbuf values in
commonly used operating systems today vary from 16KB to
64KB and beyond. We believe that today, when having 1

2 GB
of memory on a desktop computer is common, having an
rbuf of at least 64KB should be reasonable. We first study
and analyze performance of the different policies with an
rbuf of 64KB in Section V-A. This section provides insight
into the causes of the performance differences between the
retransmission policies. We then summarize performance of
the different policies under more and less constraining rbufs
varying from 16KB to 256KB in Section V-B. This analysis
provides us with an understanding of how much impact the
rbuf blocking problem has on the different policies. Finally

in Section V-C, we study the impact of end-to-end delay on
performance degradation due to rbuf blocking.

A. Evaluation with rbuf = 64KB

Figure 4(a) shows the time taken for a CMT sender to
transfer an 8MB file when the rbuf is set to 64KB, using the
five retransmission policies. Each plotted value is the mean
of at least 100 simulation runs. RTX-SAME, the simplest to
implement, performs worst. Its performance gap with the other
policies increases as the loss rate on Path 2 increases. RTX-
ASAP performs better than RTX-SAME, but still considerably
worse than the three loss rate based policies which perform
best. We present two causes for these differences.

Cause 1: Figure 4(b) shows the number of retransmission
timeouts experienced when using the different policies. One
may conclude that improvement in using the loss rate based
policies is due partly to fewer timeouts (and hence, timeout
recovery periods). RTX-SAME does not consider loss rate
and experiences the largest number of timeouts. RTX-ASAP
does not consider loss rate and does better than RTX-SAME,
but still experiences more timeouts than the loss rate based
policies. This analysis supports our intuitive hypothesis -
taking path loss rate into consideration while deciding the
retransmission destination improves the chances of a retrans-
mission getting through, and improves overall performance
due to reduction of rbuf blocking.

Cause 2: Figure 4(c) shows the average time taken to
successfully communicate a TSN. This time is measured as
the time taken from the first transmission of a TSN to the
time when that TSN or one of its retransmissions finally
reaches the receiver. RTX-SAME shows the highest average,
suggesting that more retransmissions may be needed for a
successfully communicating a TSN. Since recovery via fast
retransmission can happen only once for a given TSN. The
MFR algorithm has not been ported to CMT, and so the
only recovery mechanism possible from the loss of a fast
retransmission currently in CMT, as is the case currently in
SCTP and TCP, is a timeout recovery., the number of back-to-
back timeouts may be higher with RTX-SAME than with the
other policies. Each back-to-back timeout causes a sender’s
retransmission timeout value to double, thus doubling the
timeout recovery period. Recall that the longer the timeout
recovery period, the higher the probability and longer the
duration for which rbuf blocking occurs. Thus, more back-
to-back timeouts will degrade performance.

Figure 4(d) shows average number of n back-to-back time-
outs for the different retransmission policies with Path 1
loss rate = 1%, and Path 2 loss rate = 10%. Overall, loss
rate based policies experience about half the back-to-back
timeouts that RTX-SAME does. Though the occurrences of
n=3 and n=4 are few, their impact is significant - with our
simulation parameters, at n=3 timeout recovery is 4 seconds,
and at n=4 timeout recovery is 8 seconds. Thus, we argue
that performance degradation due to back-to-back timeouts
can be significantly reduced by taking loss rate into account
for making retransmission decisions.

B. Evaluation with different rbufs

We also investigated the performance of the different re-
transmission policies using rbuf sizes of 16KB, 32KB, 128KB,
and 256KB. The performance ranking of the different policies
with these rbufs remains the same as with an rbuf of 64KB

 20

 30

 40

 50

 60

 70

 80

 90

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
ra

ns
fe

r
tim

e
(s

ec
)

Path 2 Loss Rate

RTX-SAME
RTX-ASAP
RTX-SSTHRESH
RTX-LOSSRATE
RTX-CWND

 0

 5

 10

 15

 20

 25

 30

 35

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

R

et
ra

ns
m

is
si

on
 T

im
eo

ut
s

Path 2 Loss Rate (%)

RTX-SAME
RTX-ASAP
RTX-SSTHRESH
RTX-LOSSRATE
RTX-CWND

(a) (b)

 0.048

 0.05

 0.052

 0.054

 0.056

 0.058

 0.06

 0.062

 0.064

 0.066

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

A
vg

 ti
m

e
ta

ke
n

to
 c

om
m

un
ic

at
e

a
T

S
N

 (
se

co
nd

s)

Path 2 Loss Rate

RTX-SAME
RTX-ASAP
RTX-SSTHRESH
RTX-LOSSRATE
RTX-CWND

 0

 5

 10

 15

 20

 25

 30

singleton 2 back-to-back 3 back-to-back 4 back-to-back

A
vg

 N
um

be
r

of
 n

 T
im

eo
ut

s

n

RTX-SAME
RTX-ASAP

RTX-CWND
RTX-SSTHRESH
RTX-LOSSRATE

(c) (d)

Fig. 4. With rbuf = 64K, and Path 1 loss rate = 1%,: (a) Time taken by CMT to transfer an 8MB file, (b) Number of retransmission timeouts for CMT
with different retransmission policies, (c) Average time taken to successfully communicate a TSN with different retransmission policies, (d) Average number
of back-to-back timeouts with different retransmission policies (Path 1 loss rate = 1%; Path 2 loss rate = 10%)

(Figure 4(a)); performance curves for these rbufs are therefore
not shown. We discuss a few salient points.

• With a large (i.e., minimally constraining) rbuf of 256KB,
RTX-SAME still performs poorly due to a high number
of timeouts, and the consequent throughput degradation.
Each timeout causes cwnd reduction at a sender, and
entails idle time with the sender not sending any data
- causing throughput reduction.

• As the rbuf size decreases and becomes more of a
constraint, degradation in CMT throughput occurs due to
increased rbuf blocking as explained in Section III. All
retransmission policies suffer in the face of a constrained
rbuf. Even with a reasonably large rbuf of 128KB, some
performance degradation occurs; i.e., even with large
rbufs, rbuf blocking does occur, but to a lesser extent.

• As the rbuf becomes more of a constraint, degradation in
throughput of RTX-SAME policy is markedly more than
with the other retransmission policies. The reasons for
this degradation are the same as described in Section V-
A. Degradation is lowest in the loss rate based policies
with an increasingly constraining rbuf.

In summary, retransmission policies that take loss rate into
account perform better under the different rbuf values consid-
ered. Of the loss rate based policies, the practical ones (RTX-

CWND and RTX-SSTHRESH) perform similarly under all
conditions considered. We arbitrarily select RTX-SSTHRESH
as CMT’s retransmission policy in further evaluations.

C. Evaluation under different end-to-end delays

Figure 5 shows relative performance degradation of CMT
with RTX-SSTHRESH under different end-to-end delays -
10ms, 25ms, 45ms, 90ms, 180ms, and 360ms, yielding RTTs
of 20ms, 50ms, 90ms, 180ms, 360ms, and 720ms, respectively.
The delays on both paths to the receiver are symmetric (We
are currently studying rbuf blocking with asymmetric paths).
These values cover a range of RTTs experienced by majority
of flows on the Internet [7]. Relative performance degradation
is computed as the ratio

CMT throughput with infinite (INF) rbuf

CMT throughput with rbuf = X

as X varies from 16KB to 256KB along the X-axis (Note
that along the Y-axis, smaller values are better).

The degradation curves for all end-to-end delays in Figure 5
show a knee at about 64KB. Also, as the end-to-end delay
decreases, CMT’s relative throughput degradation increases.
Degradation is as much as 10 times when end-to-end delay

is 10ms. We now explain why smaller delays have greater
sensitivity to rbuf constraints.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 50 100 150 200 250 300

C
M

T
 R

el
at

iv
e

D
eg

ra
da

tio
n

(T
hr

ou
gh

pu
t_

IN
F

 /
T

hr
ou

gh
pu

t_
rb

uf
=

X
)

rbuf (KB)

 CMT Using RTX-SSTHRESH, Path 1 Loss Rate: 1%, Path 2 Loss Rate: 10%

One Way Delay = 10ms
One Way Delay = 25ms
One Way Delay = 45ms
One Way Delay = 90ms

One Way Delay = 180ms
One Way Delay = 360ms

Fig. 5. Relative performance degradation of CMT with different end-to-end
delays

Overall SCTP throughput, similar to TCP throughput, varies
inversely with delay. As delay decreases, throughput increases.
This relationship holds true for large rbuf conditions. Thus, in
the relative performance degradation measure, the numerator
(CMT throughput with infinite rbuf) increases as delay de-
creases.

As the rbuf size increasingly becomes a bottleneck, a
different dynamic dominates. According to the SCTP specifi-
cation [4] and the specification for computing TCP’s retrans-
mission timer [11], retransmission timeouts (RTOs) should
have a (conservative) minimum value of 1 second to avoid
spurious timeouts. These timeout recovery periods are thus
independent of the end-to-end delays considered, since these
delays are much lesser than 1 second. As rbuf increasingly
constrains, the number of timeouts increases. Consequently,
total time spent in timeout recovery (which is roughly the same
irrespective of the end-to-end delay) increasingly dominates
association lifetime. Thus, the denominator in the relative per-
formance degradation measure (CMT throughput with rbuf=X,
as X varies) does not increase as fast as the numerator with
decreasing end-to-end delay, since the denominator is largely
dictated by (constant) timeout recovery periods. Therefore,
the influence of a constrained rbuf increases as end-to-end
delay decreases. In summary, CMT is more sensitive to rbuf
constraints in environments (such as data centers [12]) with
shorter end-to-end delay.

We can thus see that rbuf blocking has a larger impact on
associations with shorter end-to-end delay due to a minimum
RTO value which is recommended [4], [11] and largely in use.
We note that shorter minimum RTOs together with better RTT
estimation algorithms [13], [14] may help remove this bias
against shorter delay associations, but are beyond the scope
of this work.

VI. SUMMARY AND DISCUSSION

We presented the rbuf blocking problem which causes
degradation to a CMT sender by a constraining rbuf. We
evaluated five retransmission policies for CMT under different

rbuf constraints. Simulation results show that RTX-SAME,
shown in [15] to work well in non-CMT environments,
and whose performance represents that of a data striping
application, performs poorest. Better performance results from
any retransmission policy that takes loss rate into account.
Of the practical loss rate based policies (RTX-CWND and
RTX-SSTHRESH), we arbitrarily chose RTX-SSTHRESH as
CMT’s retransmission policy. Investigation under different
end-to-end delays revealed that CMT is more sensitive to rbuf
constraints in environments with shorter end-to-end delay.

We reemphasize that rbuf blocking is not specific to the
transport layer; it applies to multipath transfer at other layers
as well. rbuf blocking cannot be eliminated or reduced by
moving CMT functionality to a different layer. A significant
benefit of CMT is that retransmission decisions can be made at
the transport layer, thus considerably reducing rbuf blocking
- a benefit that multipath transfer at any other layer does not
have.

We are currently investigating rbuf blocking and CMT per-
formance with asymmetric paths and in the presence of failure.
Another area of future work is to investigate mechanisms to
share available bandwidth when the end-to-end paths are not
independent, and share a bottleneck.

DISCLAIMER

The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of the
Army Research Laboratory or the U.S. Government.

REFERENCES

[1] J. Iyengar, K. Shah, P. Amer, and R. Stewart, “Concurrent Multipath
Transfer Using SCTP Multihoming,” in SPECTS 2004, San Jose,
California, July 2004.

[2] J. Iyengar, P. Amer, and R. Stewart, “Retransmission Policies For
Concurrent Multipath Transfer Using SCTP Multihoming,” in ICON
2004, Singapore, Nov. 2004.

[3] R. Stewart, I. Arias-Rodriguez, K. Poon, A. Caro, and M. Tuexen,
“Stream Control Transmission Protocol (SCTP) Implementer’s Guide,”
draft-ietf-tsvwg-sctpimpguide-10.txt, Nov. 2003, (work in progress).

[4] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor,
I. Rytina, M. Kalla, L. Zhang, and V. Paxson, “Stream Control
Transmission Protocol,” RFC2960, Oct. 2000.

[5] UC Berkeley, LBL, USC/ISI, and Xerox Parc, “ns-2 documentation and
software,” Version 2.1b8, 2001, www.isi.edu/nsnam/ns.

[6] A. Caro and J. Iyengar, “ns-2 SCTP module,” Version 3.2, December
2002, http://pel.cis.udel.edu.

[7] S. Shakkottai, R. Srikant, A. Broido, and k. claffy, “The RTT Dis-
tribution of TCP Flows in the Internet and its Impact on TCP-based
Flow Control,” Tech. Rep., Cooperative Association for Internet Data
Analysis (CAIDA), Feb. 2004.

[8] J. Iyengar, P. Amer, and R. Stewart, “Receive Buffer Management
For Concurrent Multipath Transport Using SCTP Multihoming,” Tech
Report TR2005-10, CIS Dept, University of Delaware, Jan. 2005.

[9] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control,”
RFC2581, IETF, Apr. 1999.

[10] A. Caro, P. Amer, J. Iyengar, and R. Stewart, “Retransmission Policies
with Transport Layer Multihoming,” in ICON 2003, Sydney, Australia,
Sept. 2003.

[11] V. Paxson and M. Allman, “Computing TCP’s Retransmission Timer,”
RFC2988, IETF, Nov. 2000.

[12] N. Jani and Krishna Kant, “SCTP Performance in Data Center Envi-
ronments,” Tech. Rep., Intel Corporation, 2005.

[13] S. Bohacek, J. P. Hespanha, J. Lee, C. Lim, and K. Obraczka, “TCP-PR:
TCP for Persistent Packet Reordering,” in IEEE ICDCS 2003, Rhode
Island, May 2003.

[14] H. Ekstrom and R. Ludwig, “The Peak-Hopper: A New End-to-
End Retransmission Timer for Reliable Unicast Transport,” in IEEE
INFOCOM 2004, Hong Kong, Mar. 2004.

[15] A. Caro, P. Amer, and R. Stewart, “Transport Layer Multihoming for
Fault Tolerance in FCS Networks,” in MILCOM 2003, Boston, MA,
Oct. 2003.

