
Retransmission Schemes for End-to-end Failover with Transport Layer Multihoming

Armando L. Caro Jr., Paul D. Amer
Protocol Engineering Lab

Computer and Information Sciences
University of Delaware�

acaro, amer � @cis.udel.edu

Randall R. Stewart
Cisco Systems, Inc.

rrs@cisco.com

Abstract— We previously evaluated five retransmission
schemes in non-failure scenarios for transport protocols that
support multihoming. In this paper, we introduce five additional
retransmission schemes, and evaluate all ten schemes under
both non-failure and failure scenarios. We show that the best
retransmission policy dictates that (a) new data transmissions
and fast retransmissions should be sent to the same peer IP
address, and (b) timeout retransmissions should be sent to an
alternate peer IP address. This policy performs best if combined
with our Multiple Fast Retransmit algorithm.

I. INTRODUCTION

Multihoming among networked machines is a technolog-
ically feasible and increasingly economical proposition. A
host is multihomed if it can be addressed by multiple IP
addresses [2], as is the case when the host has multiple
network interfaces. Though feasibility alone does not de-
termine adoption of an idea, multihoming can be expected
to be the rule rather than the exception in the near future.
For instance, cheaper access to the Internet will motivate
content providers to have simultaneous connectivity through
multiple ISPs. More and more home users will have wired and
wireless connections. Furthermore, wireless devices may be
simultaneously connected through multiple access technolo-
gies. Multihoming is improving a host’s fault tolerance at an
increasingly economical cost.

The current transport protocol workhorses, TCP and UDP,
are ignorant of multihoming; TCP allows binding to only one
network address at each end of a connection. When TCP was
designed, network interfaces were expensive components, and
hence multihoming was beyond the ken of research. Lowering
interface costs and a desire for networked applications to be

Prepared through collaborative participation in the Communications and
Networks Consortium sponsored by the U.S. Army Research Laboratory un-
der the Collaborative Technology Alliance Program, Cooperative Agreement
DAAD19-01-2-0011. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright
notation thereon.

This research supported, in part, by the University Research Program of
Cisco Systems, Inc.

fault tolerant at an end-to-end level have brought multihoming
within the purview of the transport layer.

Two recent transport layer protocols, the Stream Control
Transmission Protocol (SCTP) [7], [11] and the Datagram
Congestion Control Protocol (DCCP) [9] support multihom-
ing at the transport layer. The motivation for multihoming in
DCCP is mobility, while SCTP is driven by a broader and
more generic application base, which includes fault tolerance
and mobility. Of the two, we use SCTP primarily because our
focus is on fault tolerance, but the results and conclusions pre-
sented in this paper should be applicable in general to reliable
SACK-based transport protocols that support multihoming.

SCTP, an IETF standards track transport layer protocol,
allows binding of one transport layer association (SCTP’s
term for a connection) to multiple IP addresses at each end of
the association. This � to � binding allows an SCTP sender
to send data to a multihomed receiver via different destination
addresses. For example, an SCTP association between hosts�

and � in Figure 1 could be bound to both IP addresses at
each host: ��� �
	��������� ��� 	�� � ����� . Such an association would
allow data transmission from host

�
to host � to be sent to

either � 	 or � � .

Host A

A1

A2

Host B

B1

B2

InternetISP

ISP

ISP

ISP

Fig. 1. Example multihoming topology

Currently, SCTP uses multihoming for redundancy pur-
poses only and not for concurrent multipath transfer [8]. Each
endpoint chooses a single peer IP address as the primary des-
tination address, which is used for transmission of new data.
Retransmitted data are sent to an alternate peer IP address(es).
RFC2960 [11] states in Section 6.4 that “when its peer is
multihomed, an endpoint SHOULD try to retransmit [data] to



an active destination transport address that is different from
the last destination address to which the [data] was sent.”

SCTP’s current retransmission policy attempts to improve
the chance of success by sending all retransmissions to an
alternate peer IP address [10]. The underlying assumption
is that loss indicates either that the network path to the
primary destination is congested, or the peer IP address used
is unreachable. Hence, SCTP retransmits to an alternate peer
IP address in attempt to avoid another loss of the same data.
We have shown previously that SCTP’s current retransmission
policy in RFC2960 actually degrades performance in some
circumstances [5]. We also explored alternative retransmission
schemes, and concluded that best performance occurs if our
Multiple Fast Retransmit algorithm is used and lost data are
retransmitted to the same peer IP address to which they were
originally sent [4].

However, our previous results assume reachability of all
peer IP addresses at all times (i.e., no failures). In this paper,
we evaluate retransmission schemes during failure scenarios.
We also introduce five additional schemes, resulting in a
total of ten retransmission schemes that we evaluate in both
non-failure and failure scenarios. We show that the best
retransmission policy dictates that (a) new data transmissions
and fast retransmissions should be sent to the same peer IP
address, and (b) timeout retransmissions should be sent to an
alternate peer IP address. We find this policy to perform best
if combined with our Multiple Fast Retransmit algorithm.

We begin in Section II by describing the retransmission
schemes evaluated in this paper. We comparatively evaluate
these schemes using ns-2 simulation as described in Sec-
tion III. The results and analysis of non-failure and failure
scenarios are presented in Section IV and Section V, respec-
tively. Section VI concludes the paper and discusses future
work.

II. RETRANSMISSION SCHEMES

The ten retransmission schemes evaluated are combinations
of the following three policies and three algorithms.

A. Policies

1) AllRtxAlt - All retransmissions are sent to an alternate
destination. This policy represents SCTP RFC2960 and
attempts to bypass transient network congestion and
path failures. A drawback is that alternate destinations
often have overly conservative (i.e., too large) RTOs,
which significantly degrades performance when
retransmissions of lost packets themselves are lost [5].

2) AllRtxSame - All retransmissions are sent to the same
destination. This policy often improves performance
in non-failure scenarios by using the destination with
the most accurate RTO [5]. However, if the primary

destination becomes unreachable, this policy will not
successfully deliver any data until the sender detects
failure and fails over to an alternate destination.

3) FrSameRtoAlt - Fast retransmissions are sent to the
same destination, and timeout retransmissions are sent
to an alternate destination. This policy is introduced in
this paper as a compromise between the two policies
above. Fast retransmissions are generally caused by
network congestion, whereas timeouts may be caused
by either severe congestion or path failure.

B. Algorithms

1) Heartbeat After RTO (HAR) - In addition to normal
timeout behavior, a heartbeat (control probe normally
sent to each idle destination for RTT measurement
and reachability status) is sent immediately to the
destination on which a timeout occurred. This algorithm
is useful to obtain more RTT measurements and hence
a more accurate RTO setting for alternate destinations
that experience timeouts. This algorithm applies only
to AllRtxAlt and FrSameRtoAlt policies, because it
offers no benefits to AllRtxSame.

2) Timestamps (TS) - Similar to TCP’s timestamp
option, each packet includes a 12-byte timestamp
to eliminate the retransmission ambiguity. Thus,
Karn’s algorithm can be eliminated, and successful
retransmissions on alternate paths can be used to
obtain RTT measurements. This algorithm applies only
to AllRtxAlt and FrSameRtoAlt policies, because the
packet overhead is not worth the limited performance
gain (if any) for AllRtxSame.

3) Multiple Fast Retransmit (MFR) - The sender maintains
extra recovery state to allow lost fast retransmissions
to be fast retransmitted again. Thus, MFR reduces the
number of timeouts. This algorithm applies only to
AllRtxSame and FrSameRtoAlt policies, because using
it with AllRtxAlt may often generate spurious fast
retransmissions.

C. Schemes

1) AllRtxAlt (i.e., original SCTP)
2) AllRtxAlt+HAR
3) AllRtxAlt+TS
4) AllRtxSame
5) AllRtxSame+MFR
6) FrSameRtoAlt
7) FrSameRtoAlt+HAR
8) FrSameRtoAlt+TS
9) FrSameRtoAlt+MFR

10) FrSameRtoAlt+MFR+HAR



Further motivation and details about these retransmission
policies and algorithms can be found in [4].

III. METHODOLOGY

We evaluate the ten retransmission schemes described in
Section II using University of Delaware’s SCTP module [6]
for the ns-2 network simulator [1]. Figure 2 illustrates the net-
work topology used. The core links have a 10Mbps bandwidth
and a 25ms one-way delay. Each router, � , is attached to a
dual-homed node (

�
or � ) via an edge link with 100Mbps

bandwidth and 10ms one-way delay. The end-to-end one-way
delay is 45ms, which approximates reasonable Internet delays
for distances such as coast-to-coast of the continental US, and
eastern US to/from western Europe.

Fig. 2. Simulation network topology

The SCTP sender,
�

, has two paths (labeled Primary and
Alternate) to the SCTP receiver, � . We introduce uniform
loss on these paths (0-10% each way) at the core links. We
realize that a more realistic approach would be to introduce
only congestion induced loss by simulating self-similar cross-
traffic. Our previous results were gathered using this technique
with a dual-dumbbell topology [4], [5]. However, the simu-
lation time for this technique was too time consuming and
impractical. We did compare representative simulations using
uniform loss versus simulations using cross-traffic based loss,
and our analysis remains unchanged. We therefore proceeded
with uniform loss on the paths instead of cross-traffic based
loss.

We simulate a 4MB file transfer with and without failure.
The failure scenario has a bi-directional failure on the primary
path occurring at time = 4 seconds into the transfer (with
0% loss on the primary path, about 53% of the file transfer
completed by this time), and remaining until the end of
the simulation. The failure is simulated by a link breakage
between the routers on the primary path. The three input
parameters for each simulation are the primary path’s loss
rate, the alternate path’s loss rate, and one the ten retrans-
mission schemes. Each parameter set is simulated with 120
different seeds. Our results exclude the few simulations that
were unable to successfully establish an association due to
lossy conditions.

IV. NON-FAILURE SCENARIOS

We collected results for 0-10% loss rates on the primary
and alternate path. Due to space constraints in this paper, we
do not include results for all the different primary path loss
rates in non-failure scenarios. Since the retransmission policy
is the most influential factor in a scheme’s performance, we
first compare the three policies without any of the algorithms
from Section II-B. Then, we compare the results for all ten
schemes.

A. Retransmission Policies Only

Figure 3 illustrates our results that have 1%, 5%, and
10% primary path loss rates. The alternate path’s loss rate
is varied on the � -axis, ranging from 0% to 10%. The graphs
in Figure 3 compare the time to transfer a 4MB file using
SCTP’s current retransmission policy (AllRtxAlt) versus the
other two policies, AllRtxSame and FrSameRtoAlt.

The graphs depict the mean file transfer time at varying
alternate path loss rates for each retransmission scheme. We
ensure statistical confidence by calculating the 90% confi-
dence interval with an acceptable error of 10% of the mean.
The 90% confidence intervals are not shown in the graphs
for clarity. These intervals vary for different loss rates and
retransmission schemes, but on average the 90% confidence
interval is about +/- 2 seconds around the mean. The largest
90% confidence interval is about +/- 13 seconds around the
mean; larger confidence intervals tend to be for higher loss
rates.

Figure 3 shows that FrSameToAlt always does about the
same or better than AllRtxSame. Also, AllRtxAlt only out-
performs FrSameToAlt when the alternate path’s loss rate is
less than half of the primary’s.

At low primary path loss rates, most of the losses are
detected by fast retransmit. Hence, FrSameToAlt will send
most of its lost packets to the same destination as AllRtxSame,
thus experiencing similar results. Furthermore, they do not
suffer, as AllRtxAlt does, from overly conservative RTOs for
the alternate destination (see Section II-A).

As the loss rate on primary path increases relative to
the alternate path, it becomes more sensible to alleviate the
loss conditions by retransmitting to the alternate path. As
a result, AllRtxSame suffers at higher primary path loss
rates. In contrast, FrSameRtoAlt is able to alleviate severe
loss conditions by sending timeout retransmissions to the
alternate path. AllRtxAlt performs best when loss conditions
on the primary are significantly worse than the alternate. The
alternate path’s loss rate must be fairly low to masque the
influence of overly conservative RTOs.



0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10

Fi
le

 T
ra

ns
fe

r T
im

e 
(s

ec
)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 1%

AllRtxAlt (Original SCTP)
AllRtxSame
FrSameRtoAlt

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8 9 10

Fi
le

 T
ra

ns
fe

r T
im

e 
(s

ec
)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 5%

AllRtxAlt (Original SCTP)
AllRtxSame
FrSameRtoAlt

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7 8 9 10

Fi
le

 T
ra

ns
fe

r T
im

e 
(s

ec
)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 10%

AllRtxAlt (Original SCTP)
AllRtxSame
FrSameRtoAlt

Fig. 3. 4MB file transfer time for (a) 1%, (b) 5%, and (c) 10% primary
path loss with no failure

B. All Retransmission Schemes

We now present the results of these policies when the
three algorithms in Section II-B are introduced. Table I details
the results for all ten schemes when the primary path’s loss
rate is 5%. The None column represents the graph shown in
Figure 3b. For each alternate path loss rate and retransmission
policy, the best performing scheme is in bold text (ties are
broken by the simplist scheme).

As Table I shows, the algorithms generally improve per-
formance significantly – enough to close most of the perfor-

TABLE I
IMPROVEMENT FOR 5% PRIMARY PATH LOSS

Alt Algorithm
Path MFR+
Loss Policy None HAR TS MFR HAR

AllRtxAlt 54.9 54.9 55.7 – –
0% AllRtxSame 69.8 – – 62.3 –

FrSameRtoAlt 67.1 67.5 68.1 60.8 61.6

AllRtxAlt 58.7 57.6 57.4 – –
1% AllRtxSame 69.8 – – 62.3 –

FrSameRtoAlt 67.6 68.1 68.6 61.4 61.6

AllRtxAlt 62.5 60.1 58.8 – –
2% AllRtxSame 69.7 – – 62.3 –

FrSameRtoAlt 67.9 68.6 68.9 61.6 61.8

AllRtxAlt 68.8 61.9 60.3 – –
3% AllRtxSame 69.8 – – 62.4 –

FrSameRtoAlt 68.4 68.9 69.2 61.6 61.9

AllRtxAlt 74.7 63.4 61.5 – –
4% AllRtxSame 69.6 – – 62.4 –

FrSameRtoAlt 68.3 69.3 69.3 61.7 62.0

AllRtxAlt 84.4 65.4 62.8 – –
5% AllRtxSame 69.7 – – 62.4 –

FrSameRtoAlt 69.4 69.3 70.0 61.8 62.2

AllRtxAlt 92.4 66.8 64.2 – –
6% AllRtxSame 69.8 – – 62.4 –

FrSameRtoAlt 69.9 69.6 69.7 62.2 62.2

AllRtxAlt 100.7 71.6 66.1 – –
7% AllRtxSame 69.5 – – 62.3 –

FrSameRtoAlt 70.5 70.1 70.3 62.3 62.0

AllRtxAlt 116.7 75.8 68.6 – –
8% AllRtxSame 69.5 – – 62.4 –

FrSameRtoAlt 71.9 70.3 70.6 62.2 61.9

AllRtxAlt 125.1 78.5 69.3 – –
9% AllRtxSame 69.7 – – 62.5 –

FrSameRtoAlt 72.4 70.8 71.0 62.6 62.3

AllRtxAlt 145.4 82.8 70.7 – –
10% AllRtxSame 69.8 – – 62.5 –

FrSameRtoAlt 74.7 70.8 71.4 62.8 62.6

mance gaps between the three policies. Sometimes, however,
introducing a retransmission algorithm degrades performance.
For example, the packet overhead of TS sometimes outweighs
the potential benefits for FrSameRtoAlt, but AllRtxAlt almost
always benefits with TS.

Both HAR and TS succeed in addressing AllRtxAlt’s issue
with overly conservative RTOs on the alternate path. However,
since TS provides more alternate path RTT measurements,
AllRtxAlt+TS outperforms AllRtxAlt+HAR at higher alter-
nate path loss rates.

On the other hand, HAR and TS only improve FrSameR-
toAlt’s performance at higher alternate path loss rates. Since
FrSameRtoAlt sends much fewer retransmissions to the al-



ternate path, the alternate path loss rate must be high before
overly conservative RTOs becomes an issue. MFR reduces
the number of timeouts, and thus further reduces the number
of retransmissions that FrSameRtoAlt sends on the alternate
path. Hence, the alternate path’s overly conservative RTO
becomes less of an issue. As a result, MFR is the best
algorithm for FrSameRtoAlt.

Lastly, MFR is the only algorithm which applies to All-
RtxSame. By reducing the number of timeouts, MFR im-
proves AllRtxSame’s performance significantly.

At this point, we will not conclude which policy is best.
They first need to be evaluated in failure scenarios. We will,
however, conclude which is the best retransmission scheme
for each policy in non-failure scenarios: AllRtxAlt+TS, All-
RtxSame+MFR, and FrSameRtoAlt+MFR.

V. FAILURE SCENARIOS

Again, we collected results for 0-10% loss rates on the
primary and alternate path, but due to space constraints, we
only include failure scenario results for primary path loss
rates 0%, 1%, and 5%. We use two metrics to evaluate the
retransmission schemes in failure scenarios: failure detection
time and file transfer time.

A. Failure Detection Time

Failure detection time is the time period from when a
failure occurs to when the SCTP sender detects the failure. To
detect failure, SCTP uses a Path.Max.Retrans parameter. Each
timeout (for data or heartbeats) on a particular destination
increments an error count for that destination. The error count
for a destination is cleared whenever data or a heartbeat sent
to that destination is acked. A destination is marked as failed
when its error count exceeds Path.Max.Retrans. If a failed
destination is the primary, the sender fails over to an alternate
destination address.

All of our simulations use the parameter settings recom-
mended in RFC2960 [11]: RTO.Min ��� second, RTO.Max
����� seconds, and Path.Max.Retrans ��� attempts. Since our
simulation topology has a 90ms RTT on both paths, we expect
the primary path’s RTO to be 1 second (assuming 0% loss) at
the time a failure occurs. The exponential back-off procedure
causes the RTO to be doubled on each timeout. Thus, we
expect, in the best case, the six consecutive timeouts needed
to detect failure to take �! #"$ &%' &(' )���$ &*�"+�,��* seconds.

We omit results for schemes that do not employ one
of the three retransmission algorithms, because Section IV
shows that they are suboptimal for non-failures. We also omit
results for the three schemes which use HAR, because the
algorithm interferes with the exponential backoff procedure
in the failure detection mechanism. Many RTO periods ex-
perience more than one timeout: one for data and one for
a heartbeat. These RTO periods double count the errors for

the failed destination, causing failure detection to occur in
fewer RTO periods and sooner than the expected 63 seconds.
Although faster failure detection is desirable, this behavior
can potentially cause spurious failovers. Furthermore, we can
simply reduce Path.Max.Retrans to achieve similar behavior.
Therefore, we present results for the remaining four schemes:
AllRtxAlt+TS, AllRtxSame+MFR, FrSameRtoAlt+TS, and
FrSameRtoAlt+MFR.

Figure 4 plots the average failure detection times for
primary path loss rates of 0%, 1%, and 5%. Again, 90%
confidence intervals were measured, but are not shown. The
results show that the four retransmission schemes presented in
Figure 4 are able to detect failure in roughly the same time at
low primary path loss rates. However, some subtle differences
do exist between them.

AllRtxSame+MFR is the only scheme able to achieve the
expected failure detection time of 63 seconds at 0% primary
path loss (see Figure 4a). As expected, AllRtxSame+MFR’s
failure detection is independent of the alternate path’s loss
rate. Also, as the primary path loss rate increases from 0%
to 5%, AllRtxSame+MFR’s failure detection time increases
negligibly. On the other hand, the failure time increases more
drastically (from 63 to 71 seconds) as the primary path loss
rate increases from 5% to 10%.

The sudden drastic increase beginning at 5% primary loss
is due to the increased possibility of a timeout immediately
before a failure occurs. In such a case, the failure detection
may increase as follows. The timeout causes the primary
destination’s RTO to be doubled and the lost packet to be
retransmitted to the primary destination. Then the ack for the
retransmission clears the primary destination’s error count,
but does not provide an RTT measurement to reduce the
RTO. If the failure occurs before another RTT measurement is
obtained for the primary destination, then the six consecutive
timeouts needed to detect failure will now take "- .%/ .(� 
�0�1 2*3"1 2���4�5��"�" seconds!

The failure detection times for AllRtxAlt+TS, FrSameR-
toAlt+FS, and FrSameRtoAlt+MFR increase with the loss
rates on both the primary and alternate path. The cause
for performance dependence on the primary path is similar
to that of AllRtxSame+MFR, but the scenarios are slightly
different. Due to space constraints, we do not describe these
scenarios. Figure 4a shows that in the best case (0% loss
on primary and alternate paths), failure is detected in 64
seconds – only slightly longer than expected. While the
primary path’s loss rate remains 0%, the average failure
detection times reach as high as 66, 66, and 71 seconds for
AllRtxAlt+TS, FrSameRtoAlt+TS, and FrSameRtoAlt+MFR,
respectively. Since new data may not be transmitted to the
primary destination until all queued retransmissions have been
sent, the failure detection times for these schemes depend on
the quality of the alternate path. If the alternate path’s loss



40

45

50

55

60

65

70

75

80

85

0 1 2 3 4 5 6 7 8 9 10

Fa
ilu

re
 D

et
ec

tio
n 

Ti
m

e 
(s

ec
)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 0%

AllRtxAlt + TS
AllRtxSame + MFR
FrSameRtoAlt + TS
FrSameRtoAlt + MFR

40

45

50

55

60

65

70

75

80

85

0 1 2 3 4 5 6 7 8 9 10

Fa
ilu

re
 D

et
ec

tio
n 

Ti
m

e 
(s

ec
)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 1%

AllRtxAlt + TS
AllRtxSame + MFR
FrSameRtoAlt + TS
FrSameRtoAlt + MFR

40

45

50

55

60

65

70

75

80

85

0 1 2 3 4 5 6 7 8 9 10

Fa
ilu

re
 D

et
ec

tio
n 

Ti
m

e 
(s

ec
)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 5%

AllRtxAlt + TS
AllRtxSame + MFR
FrSameRtoAlt + TS
FrSameRtoAlt + MFR

Fig. 4. Failure detection time for (a) 0%, (b) 1%, and (c) 5% primary path
loss

rate is high, it will take more time to send the retransmissions.

The exception to this trend is that the failure detection time
actually decreases when both the primary and alternate path
loss rates are high (see Figure 4c). This anomaly is caused
by the interaction of the two scenarios described above for
dependency on primary and alternate path loss rates. The
higher detection times at higher primary path loss rates are
offset when losses on the alternate path causes a significant
number of lost retransmissions to be re-retransmitted to the
primary destination. These re-retransmissions get lost and
timeout, causing the primary destination’s error count to be

incremented sooner than if the retransmissions on the alternate
path were not lost.

When the primary path loss rate is low and the alternate
path loss rate is high, FrSameRtoAlt+MFR does worse than
AllRtxAlt+TS and FrSameRtoAlt+TS. These loss conditions
cause some ambiguous situations that TS is able to resolve.
Without resolving the ambiguities, the primary destination’s
error count may be cleared without an RTT measurement,
causing the failure detection time to increase.1 This behavior
occurs more often at 0% primary path loss instead of 1%,
because the cwnd is able to grow larger up to the time of fail-
ure. Therefore, with a greater number of outstanding packets
at the time of failure, the alternate path has a higher chance
of losing a packet and causing the ambiguous behavior.

Although AllRtxSame+MFR detects failure faster and more
consistently than the other three schemes, there is a tradeoff
between them. A drawback to AllRtxSame+MFR is that the
sender will not successfully deliver any data until the entire
failure detection process has completed, and the sender fails
over to an alternate destination. In our simulations with 0%
primary loss, the sender has 30 lost data packets outstand-
ing when failure occurs. AllRtxAlt+TS, FrSameRtoAlt+TS,
and FrSameRtoAlt+MFR all successfully retransmit these 30
packets after the first timeout in the failure detection process,
thus delaying them by only 1 second. On the other hand,
AllRtxSame+MFR successfully retransmits the 30 packets
after the failure detection completes and delays them by 63
seconds!

B. File Transfer Time

Figure 5 plots the transfer times for failure scenarios with
primary path loss rates of 0%, 1%, and 5%. In these transfers,
the sender transmits data to the primary for the first 4 seconds
and then a failure occurs on the primary path. Eventually,
the sender fails over to the alternate destination address, and
resumes sending until the 4MB file transfer completes.

The results show that all of the schemes provide about the
same transfer time with failure. Note, however, that in our
simulations, at least half of the 4MB file is left to be trans-
ferred after the failure. With such a large amount remaining to
be sent, plenty of time is left to close any gaps in performance.
Also, once failover occurs, there is only one active destination
address, which eliminates the difference between the three
retransmission policies. However, the results may differ for
multihomed hosts with more than two interfaces.

As discussed in Section V-A, AllRtxSame+MFR delays the
outstanding packets until after the failure detection completes.

1RFC2960 allows implementations to choose how to handle ambiguous
situations during failure detection. Other implementations may not experience
this effect, but handling ambiguous situations differently may cause other
side-effects unknown to the authors.



0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10

Fi
le

 T
ra

ns
fe

r T
im

e 
(s

ec
)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 0%

AllRtxAlt + TS
AllRtxSame + MFR
FrSameRtoAlt + TS
FrSameRtoAlt + MFR

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10

Fi
le

 T
ra

ns
fe

r T
im

e 
(s

ec
)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 1%

AllRtxAlt + TS
AllRtxSame + MFR
FrSameRtoAlt + TS
FrSameRtoAlt + MFR

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10

Fi
le

 T
ra

ns
fe

r T
im

e 
(s

ec
)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 5%

AllRtxAlt + TS
AllRtxSame + MFR
FrSameRtoAlt + TS
FrSameRtoAlt + MFR

Fig. 5. 4MB file transfer time for (a) 0%, (b) 1%, and (c) 5% primary path
loss with failure

Thus, the throughput of small transfers will suffer signifi-
cantly with AllRtxSame+MFR.

VI. CONCLUSION AND FUTURE WORK

Our results show that AllRtxAlt+TS and FrSameR-
toAlt+MFR perform the best overall in non-failure and failure
scenarios. Of these two schemes, we argue that FrSameR-
toAlt+MFR is the scheme that should be adopted. FrSameR-
toAlt+MFR minimizes the number of timeouts, which signfi-
cantly benefits small transfers. Also, FrSameRtoAlt+MFR’s
fairly consistent performance across different loss rates is

beneficial when the sender does not have prior knowledge
about the paths’ characteristics.

However, a strong conclusion cannot be made without
further investigation. These retransmission schemes should
be evaluated with small transfers and under uni-directional
failures. Network topologies that have different primary and
alternate path bandwidth-delay products should be evaluated.
These schemes should also be tested for resilience to spurious
failovers with more aggressive failover thresholds. Finally, the
degree of multihoming should be increased beyond two per
endpoint to ensure that the trends remain the same.

ACKNOWLEDGEMENTS

The authors acknowledge Janardhan Iyengar, Sourabh
Ladha, and Ryan Bickhart of University of Delaware’s Pro-
tocol Engineering Lab for their valuable comments and sug-
gestions.

DISCLAIMER

The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the Army Research Laboratory or the U. S. Government.

REFERENCES

[1] UC Berkeley, LBL, USC/ISI, and Xerox Parc. ns-2 documentation and
software, Version 2.26, 2003. http://www.isi.edu/nsnam/ns.

[2] R. Braden. Requirements for Internet hosts–communication layers.
RFC1122, Internet Engineering Task Force (IETF), October 1989.

[3] A. Caro. End-to-end Fault Tolerance using Transport Layer Multi-
homing. PhD Dissertation, CISC Dept, University of Delaware. (in
progress).

[4] A. Caro, P. Amer, J. Iyengar, and R. Stewart. Retransmission Policies
with Transport Layer Multihoming. In ICON 2003, Sydney, Australia,
September 2003.

[5] A. Caro, P. Amer, and R. Stewart. Transport Layer Multihoming for
Fault Tolerance in FCS Networks. In MILCOM 2003, Boston, MA,
October 2003.

[6] A. Caro and J. Iyengar. ns-2 SCTP module, Version 3.4, August 2003.
http://pel.cis.udel.edu.

[7] A. Caro, J. Iyengar, P. Amer, S. Ladha, G. Heinz, and K. Shaht.
SCTP: A Proposed Standard for Robust Internet Data Transport. IEEE
Computer, 36(11):56–63, November 2003.

[8] J. Iyengar, K. Shah, P. Amer, and R. Stewart. Concurrent Multipath
Transport Using SCTP Multihoming. Tech Report TR2004-02, CIS
Dept, University of Delaware, September 2003.

[9] E. Kholer, M. Handley, and S. Floyd. Datagram Congestion Control
Protocol (DCCP). draft-ietf-dccp-spec-06.txt, Internet Draft (work in
progress), Internet Engineering Task Force (IETF), February 2004.

[10] R. Stewart and Q. Xie. Stream Control Transmission Protocol (SCTP):
A Reference Guide. Addison Wesley, New York, NY, 2001.

[11] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor,
I. Rytina, M. Kalla, L. Zhang, and V. Paxson. Stream Control
Transmission Protocol. RFC2960, Internet Engineering Task Force
(IETF), October 2000.


