
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Throughput analysis of Non-Renegable Selective Acknowledgments (NR-SACKs)
for SCTP q

Ertugrul Yilmaz a, Nasif Ekiz a, Preethi Natarajan b, Paul D. Amer a,*, Jonathan T. Leighton a, Fred Baker c,
Randall R. Stewart d

a CIS Dept., University of Delaware, United States
b Cisco Systems, 425 East Tasman Drive, San Jose, CA 95134, USA
c Cisco Systems, 1121 Via Del Rey, Santa Barbara, CA 93117 USA
d Huawei Technologies, Chapin, SC 29036, USA

a r t i c l e i n f o

Article history:
Received 10 December 2009
Received in revised form 29 June 2010
Accepted 30 June 2010
Available online 27 July 2010

Keywords:
CMT
TCP
SACK
SCTP
Reneging

a b s t r a c t

Preliminary work introduced Non-Renegable Selective Acknowledgments (NR-SACKs) and showed they
(i) better utilize a data sender’s memory in both SCTP and CMT, and (ii) improve throughput in CMT.
In this paper, we provide the latest specification of NR-SACKs, and extend the investigation of throughput
improvements that NR-SACKs can provide. Using ns-2 simulation, for various loss conditions and band-
width-delay combinations, we show that the throughput observed with NR-SACKs is at least equal and
sometimes better than the throughput observed with SACKs. We introduce ‘‘region of gain” which defines
for a given bandwidth, delay, and send buffer size combination, what range of loss rates results in signif-
icant throughput improvement when NR-SACKs are used instead of SACKs. In both SCTP and CMT, NR-
SACKs provide greater throughput improvement as the send buffer size decreases, and as end-to-end
delay decreases. Provided that the bandwidth-delay product (BDP) P send buffer size, additional band-
width does not increase NR-SACKs’ throughput improvements for either SCTP or CMT. For BDPs < send
buffer size, the throughput improvement decreases as the BDP decreases.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Both TCP and SCTP employ selective acknowledgements
(SACKs) that provide a data sender with a more accurate view of
the data received at the data receiver than is provided by only
using cumulative acknowledgments (cum-acks). Although SACKs
inform a data sender of the reception of out-of-order data,
RFC2018 [10] and RFC4960 [11] specify SACKs as being advisory
in TCP and SCTP, respectively. A data receiver is permitted to later
discard data that it previously selectively-acked (herein, ‘‘SACKed”)
without having delivered the data to the receiving application. This
‘‘SACK and discard without delivery” behavior is called reneging. In

practice, reneging should only occur during drastic situations, such
as when an OS needs to reclaim previously allocated buffer space
to keep a system from crashing.

Due to the potential need to retransmit in case reneging occurs,
with the current SACK mechanism a data sender is not released
from the responsibility of retransmitting data until it is cum-acked.
Hence a copy of all SACKed data must be kept in the send buffer
until that SACKed data also is cum-acked.

In SCTP, situations commonly exist where out-of-order data are
non-renegable, that is, the data receiver cannot renege. For exam-
ple, in addition, SCTP multistreaming allows data transfer over
multiple independent logical streams. It is common SCTP behavior
for data received in-order within a stream to be delivered to the
application even if the data is out-of-order with respect to the
overall flow.

SCTP defines an unordered data transfer service. Data marked
for unordered delivery can be delivered to the application immedi-
ately upon arrival, regardless of the data’s position in the overall
flow. Once data has been delivered, by definition, it no longer
can be reneged.

In this paper, we discuss Non-Renegable Selective Acknowledge-
ments (NR-SACKs), a new ack mechanism that enables a transport
receiver to explicitly identify that some or all out-of-order data

0140-3664/$ - see front matter � 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.comcom.2010.06.028

q Prepared through collaborative participation in the Communication and Net-
works Consortium sponsored by the US Army Research Lab under Collaborative
Tech Alliance Program, Coop Agreement DAAD19-01-2-0011. The US Govt. is
authorized to reproduce and distribute reprints for Govt. purposes notwithstanding
any copyright notation thereon. Supported by the University Research Program,
Cisco Systems, Inc.

* Corresponding author. Tel.: +1 302 831 1944; fax: +1 302 831 8458.
E-mail addresses: eyilmaz@cis.udel.edu (E. Yilmaz), nekiz@cis.udel.edu (N. Ekiz),

prenatar@cisco.com (P. Natarajan), amer@cis.udel.edu (P.D. Amer), leighton@cis.
udel.edu (J.T. Leighton), fred@cisco.com (F. Baker), randall@lakerest.net (R.R.
Stewart).

Computer Communications 33 (2010) 1982–1991

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/ locate/comcom



Author's personal copy

are non-renegable [1,2]. This information about the ‘‘renegability”
of received out-of-order data is in addition to all information
carried by conventional SACKs. Preliminary work defined an early
version of NR-SACKs, and investigated their performance benefits
for unordered data transfers in SCTP and CMT, a variation of SCTP
that permits concurrent transfer over multiple paths [6]. The results
showed that NR-SACKs improve memory utilization both in CMT and
SCTP, and improve throughput in CMT. The loss conditions and
bandwidth-delay combination initially studied demonstrated
limited throughput improvement in SCTP.

In this work we first present in Section 2 an example that dem-
onstrates the limitations of SACKs. Section 3 then presents a stable
version of NR-SACKs developed as a result of feedback from several
IETF presentations. The NR-SACK semantics as well as format sig-
nificantly changed since first presented in [1]. In Sections 4 and
5, we respectively present an ns-2 simulation model and investiga-
tion that extends beyond [1] by focusing on the throughput gains
for SCTP and CMT data transfers using SACKs vs. NR-SACKs for a
broader range of loss rate, bandwidth and delay combinations.

Specifically, we investigate how send buffer size, loss rate,
bandwidth or delay alone affects the throughput improvement
that NR-SACKs provide when the other parameters are constant.
In addition, we investigate how throughput improvement is af-
fected when the bandwidth-delay product (BDP) is equal to, smal-
ler than, and larger than the send buffer size. In Section 6, we
discuss the management of how NR-SACKs are negotiated by peer
endpoints. Finally Section 7 provides some concluding remarks.

2. Motivation: selective acks can be inefficient

2.1. Transport layer send buffer

As shown in Fig. 1, data in a reliable transport’s (e.g., SCTP, TCP)
send buffer can be classified as either: new application data wait-
ing to be transmitted for the first time, or copies of data that have
been transmitted, and are yet to be cum-acked, a.k.a. the retrans-
mission queue (RtxQ).

The transport data sender is responsible for the data in the RtxQ
until informed by the receiver that either it (1) has delivered the
data, or (2) guarantees to eventually deliver the data to the receiv-
ing application. In traditional in-order data delivery service, (1) or
(2) is achieved when a receiver cum-acks the latest in-order data.
Cum-acked data either has been delivered to the application or is
deliverable (ready for delivery). In either case, cum-acks are an ex-
plicit assurance from the receiver not to renege on the cum-acked
data.

On receiving a cum-ack, a sender is no longer responsible for
the cum-acked data, and removes the corresponding data from
the RtxQ. In the current SCTP (and TCP) specifications, a data recei-
ver can inform a data sender of non-renegable data only with cum-
acks. All SACKed out-of-order data is renegable, and might need to
be retransmitted.

As explained in Section 1, SCTP’s multistreaming and unordered
data delivery services result in situations where out-of-order data
is delivered even before the data is cum-acked, and is thus non-
renegable.

Furthermore, some operating systems allow configuration of
transport layer implementations such that no out-of-order data
(deliverable or not deliverable) can be reneged. For example, in
FreeBSD, the sysctl parameters net.inet.tcp.do_tcpdrain and net.
inet.sctp.do_sctp_drain can be configured such that the OS never
reclaims buffer space previously allocated to TCP and SCTP sockets,
respectively [7]. When the drain option is off at the data receiver,
any SACKed out-of-order data is guaranteed never to be reneged.
SACKs cannot relay information about renegability of out-of-order
data. NR-SACKs allow a data receiver to inform a data sender of
non-renegable out-of-order data so that all unnecessary copies of
non-renegable data in the sender’s RtxQ can be removed sooner
than if traditional SACKs were used, resulting in better utilization
of the memory allocated for the send buffer, and in some cases, im-
proved throughput.

To better understand NR-SACKs, we present an example reliable
data transfer first using SACKs, and then in Section 3.2 using NR-
SACKs.

2.2. SCTP unordered data transfer using SACKs

While out-of-order data can become non-renegable in several
ways, this discussion uses a simple unordered data transfer exam-
ple, shown in Fig. 2. The SCTP send buffer, denoted by the box on
the left, holds a maximum of eight TPDUs. Each SCTP PDU is as-
signed a unique Transmission Sequence Number (TSN). The time
slice shown in Fig. 2 picks up the data transfer at a point when
the sender’s congestion window (cwnd) C = 8, allows transmission
of 8 TPDUs (arbitrarily numbered TSNs 11–18). Once TSN 18 is
transmitted, the RtxQ has grown to fill the entire send buffer.

In Fig. 2’s scenario, TSN 11 is presumed lost in the network.
TSNs 12–18 are received out-of-order and immediately delivered
to the application, and SACKed by the SCTP receiver. SACKs are for-
matted as:

S : CumAckTSN; GapAckStart-GapAckEnd

The GapAckStart and GapAckEnd values are relative to the cum-ack
value, and together they specify a block of TSNs received out-of-or-
der. At the sender, the first received SACK (S:10;2–2) is a dupack,
and gap-acks TSN 12. Though data corresponding to TSN 12 has
been delivered to the receiving application, this SACK does not (or
more precisely, cannot) convey the non-renegable nature of TSN
12, forcing the sender to keep TSN 12 in the RtxQ. Starting from this
point, the buffering of TSN 12 is unnecessary; it wastes send buffer
space.

The gap-ack for TSN 12 reduces the amount of outstanding data
(O) to 7 TPDUs. Since O < C, the sender could in theory transmit
new data, but in practice cannot do so since the completely filled
send buffer blocks the sending application from writing new data
into the transport layer. We call this situation send buffer blocking.
Note that send buffer blocking prevents the sender from fully uti-
lizing its cwnd.

Similarly, after receiving (S:10;2–3) and (S:10;2–4), the sender
needlessly maintains copies of TSNs 13 and 14, respectively. These
copies needlessly use kernel memory, and send buffer blocking
continues to prevent new data transmission. On receipt of
(S:10;2–4), i.e., the third dupack, the sender halves the cwnd
(C = 4), fast retransmits TSN 11, and enters fast recovery. Dupacks
received during fast recovery further increase the amount of
unnecessary data in the RtxQ, prolonging inefficient RtxQ usage.
Note that even though these dupacks reduce outstanding data
(O < C), send buffer blocking prevents new data transmission.

The sender eventually exits fast recovery when the SACK for
TSN 11’s retransmission (S:18) arrives. The sender removes TSNs
12–18 from the RtxQ, and concludes the current instance of send
buffer blocking. Since send buffer blocking prevented the senderFig. 1. Transport layer send buffer.

E. Yilmaz et al. / Computer Communications 33 (2010) 1982–1991 1983



Author's personal copy

from fully utilizing the cwnd before, the new cum-ack (S:18) does
not increase the cwnd [11]. The sending application writes data
into the newly available send buffer space, and the sender now
transmits TSNs 19–22.

Based on Fig. 2’s timeline, the following observations can be
made regarding transfers with non-renegable out-of-order data:

� The copies of delivered out-of-order data unnecessarily occupy
kernel memory (RtxQ). The amount of wasted memory is a
function of flightsize (amount of data ‘‘in flight”) during a loss
event; a larger flightsize wastes more memory.
� When the RtxQ grows to fill the entire send buffer, send buffer

blocking ensues, which degrades throughput.

2.3. CMT using SACKs

SCTP supports transport layer multihoming for fault-tolerance
purposes [11]. An SCTP association binds multiple IP addresses at
each endpoint, but chooses one destination address as primary,
which is used for all data traffic under normal transmission. Failure
in reaching the primary destination results in failover, where an
SCTP endpoint dynamically chooses an alternate destination to
transmit data.

Concurrent Multipath Transfer (CMT) is an experimental SCTP
extension that further exploits multihoming beyond fault toler-
ance for simultaneous data transfer over multiple independent
paths [6]. Similar to an SCTP sender, the CMT sender uses a single
send buffer and RtxQ for data transfer. However, the CMT sender’s
total flightsize is the sum of flightsizes across all paths. Since the

amount of potential unnecessary kernel memory usage and the
probability of send buffer blocking increase as a transport sender’s
flightsize increases, we hypothesize that a CMT association is even
more likely than an SCTP association to suffer from the inefficien-
cies of the existing SACK mechanism.

Wischik et al. [9] discuss the advantages of resource pooling
and argues the need for multipath-capable TCP (a.k.a. multipath
TCP) to facilitate resource pooling. Similar to CMT, multipath TCP
extends TCP to support multihoming, and sets up multiple sub-
flows to simultaneously transmit data over multiple paths. Similar
to a CMT sender, a multipath TCP sender’s flightsize would be the
sum of flightsizes across all paths. Therefore, we expect that our
hypothesis for CMT and the corresponding observations would
be pertinent to other multipath transports such as multipath TCP.

3. Non-Renegable Selective Acknowledgments

Non-Renegable Selective Acknowledgments (NR-SACKs) enable
a receiver to explicitly convey the renegable vs. non-renegable nat-
ure of out-of-order data. NR-SACKs provide the same information
as SACKs for congestion and flow control, and the sender is ex-
pected to process this information identical to SACK processing.
In addition, NR-SACKs provide the added option to report some
or all of the out-of-order data as being non-renegable.

3.1. NR-SACK details

The proposed NR-SACK for SCTP is shown in Fig. 3. Since
NR-SACKs extend SACK functionality, an NR-SACK has several

Fig. 2. Unordered SCTP data transfer using SACKs.

1984 E. Yilmaz et al. / Computer Communications 33 (2010) 1982–1991



Author's personal copy

fields identical to a SACK: the Cumulative TSN Ack, the Advertised
Receiver Window Credit, and Duplicate TSNs. These fields have iden-
tical semantics to the corresponding fields in the SACK [11]. Fur-
ther, an NR-SACK’s R Gap Ack Blocks are semantically equivalent
to a SACK’s Gap Ack Blocks.

An NR-SACK also contains NR Gap Ack Blocks, a.k.a. ‘‘nr-gap-
acks”. Each NR Gap Ack Block acknowledges a continuous subse-
quence of non-renegable out-of-order data. All data with TSNs P
(Cumulative TSN Ack + NR Gap Ack Block Start) and 6 (Cumulative
TSN Ack + NR Gap Ack Block End) of each NR Gap Ack Block are re-
ported as both gap-acked and non-renegable. The Number of NR Gap
Ack Blocks (M) field indicates the number of NR Gap Ack Blocks in-
cluded in the NR-SACK.

Note that TSNs listed in both R Gap Ack and NR Gap Ack Blocks
are being gap-acked. While TSNs listed in R Gap Ack Blocks may be
reneged, TSNs listed in NR Gap Ack Blocks are non-renegable.
These two lists should be disjoint.

Importantly, non-renegable information cannot be revoked. If a
TSN is nr-gap-acked in an NR-SACK, then all subsequent NR-SACKs
must also nr-gap-ack that TSN. Complete details of the NR-SACK
can be found in [4].

Each NR-SACK has a constant overhead of 4 bytes: 2 bytes for
the ‘‘Number of NR Gap Ack Blocks” field, and 2 bytes for
‘‘RESERVED” padding to align Gap Ack Blocks on a 4-byte word
boundary. No additional overhead occurs if all data is exclusively
renegable or non-renegable. In the worst case, for each instance
when an NR Gap Ack block resides in the middle of what would
be a single gap-ack block within a SACK, an NR-SACK would need
8 extra bytes.

3.2. SCTP unordered data transfer using NR-SACKs

With NR-SACKs, an SCTP receiver can optionally convey the
non-renegable nature of out-of-order TSNs. The sender no longer
needs to keep nr-gap-acked TSNs in the RtxQ, thus allowing the
sender to free up kernel memory sooner than if the TSNs were only
gap-acked.

Fig. 4 is analogous to Fig. 2’s example; this time the data trans-
fer employs NR-SACKs instead of SACKs. The sender and receiver
are assumed to have negotiated the use of NR-SACKs during asso-
ciation establishment (discussed in Section 6). As in Fig. 2, TSNs
11–18 are initially transmitted, and TSN 11 is presumed lost. For
each TSN arriving out-of-order, the SCTP receiver transmits an
NR-SACK instead of a SACK. NR-SACKs are formatted as:

N : CumAckTSN; NRGapAckStart-NRGapAckEnd

The first NR-SACK (N:10;2–2) is also a dupack. It cum-acks TSN 10,
and nr-gap-acks TSN 12. Once the sender learns that TSN 12 is
non-renegable, the sender frees up kernel memory allocated to
TSN 12, and the sending application writes more data into the newly
available send buffer space. Since TSN 12 is also gap-acked (remem-
ber, every nr-gap-ack also gap-acks), the amount of outstanding data
(O) is reduced to 7, allowing the sender to transmit new data, TSN 19.

Similarly (N:10;2–3) and (N:10;2–4) nr-gap-ack TSNs 12–13 and
12–14, respectively, and the sender removes TSNs 13 and 14 from
the RtxQ. The sender transmits new data TSNs 20 and 21. On receipt
of (N:10;2–4), the third dupack, the sender halves the cwnd (C = 4),
fast retransmits TSN 11, and enters fast recovery. Dupacks received
during fast recovery nr-gap-ack TSNs 15–20. The sender frees RtxQ

Fig. 3. NR-SACK for SCTP.

E. Yilmaz et al. / Computer Communications 33 (2010) 1982–1991 1985



Author's personal copy

accordingly, and transmits new TSNs 21, 22 and 23. The sender exits
fast recovery when the NR-SACK with a new cum-ack (N:20) arrives.
This new cum-ack increments C = 5, and decrements O = 3. The sen-
der now transmits new data TSNs 24 and 25.

The explicit non-renegable information in NR-SACKs ensures
that the RtxQ contains only necessary data - TSNs that are either
in flight or ‘‘received and renegable”. Comparing Figs. 2 and 4,
we observe that NR-SACKs use the RtxQ more efficiently and
achieve greater throughput.

3.3. Send buffer blocking

During an SCTP data transfer, the send buffer size imposes a
hard limit on the size of the RtxQ. The data sender experiences
send buffer blocking when the cwnd allows for sending out new
data, but the send buffer consists of only the RtxQ, hence no new
data can be transmitted until some data in the RtxQ is cum-acked.
With NR-SACKs, the RtxQ is minimized allowing a sender to trans-
mit more new data thus increasing the overall throughput.

We expect that, as long as the cwnd can grow up to the send
buffer size, SCTP data transfer using SACKs will experience reduced
throughput due to some level of send buffer blocking when there is
loss. Although two different loss patterns with the same average
loss can result in different cwnd evolution, we expect that in gen-
eral for lower average loss rates, cwnd is more likely to grow as
large as the send buffer size, which increases the chances of send
buffer blocking with SACKs.

4. Simulation design

The open distribution of the ns-2 [5] SCTP and CMT modules
were extended to transmit and process NR-SACKs at the data recei-
ver and data sender, respectively. For SCTP tests (topology 1 in

Fig. 5), a single path with various bandwidth-delay combinations
has been configured. The performance of NR-SACKs has been
tested for {8K,32K,64K,128K,256K} send buffer sizes in SCTP.

For CMT (topology 2 in Fig. 6), the sender and the receiver are
multihomed, and CMT data transfer is carried out through two
independent paths (Path 1 and Path 2). For all CMT experiments,
both paths are simulated to have the same bandwidth (100 Mbps)
and the same one-way delay {5,45,450} ms. On Path 1, each and
every packet transmitted is independently lost with a probability

Fig. 4. Unordered SCTP data transfer using NR-SACKs.

Fig. 5. Topology for SCTP experiments (topology 1).

Fig. 6. Topology for CMT experiments (topology 2).

1986 E. Yilmaz et al. / Computer Communications 33 (2010) 1982–1991



Author's personal copy

of 0.0008 (0.08%), whereas Path 2 is configured to have four differ-
ent loss rates {0.08%,1.5%,3.5%,8.5%} to investigate the effects of
asymmetric paths. The performance of NR-SACKs has been tested
for {128K,256K} send buffer sizes in CMT.

The SCTP and CMT data transfers are unordered data transfers,
as might be used by a disk to disk copy application. When all data
is unordered, we expect the best possible gains using NR-SACKs
since all out-of-order data is assumed delivered to the application
immediately upon arrival, and therefore non-renegable.

5. Simulation results

Prior work [1] discussed throughput improvements achieved by
using NR-SACKs in CMT, but did not present any SCTP throughput
improvements, the reason being that the particular bandwidth-
delay parameters studied showed limited throughput improve-
ments for NR-SACKs over SACKs in SCTP. Our further investigation
here shows scenarios do exist where NR-SACKs provide significant
throughput improvement for SCTP. The scenarios previously inves-
tigated had low, mild, medium, and heavy cross traffic loads
(<0.1%, 1–2%, 3–4%, 8–9% loss rates, respectively) that demon-
strated some throughput improvement only for send buffers
632K. Investigation of SCTP data transfer for a broader range of
loss rates has shown that NR-SACKs can provide better throughput
improvements for send buffers 632K, and have the potential to
provide throughput improvement for even larger send buffer sizes
(Fig. 7).

To evaluate NR-SACKs vs. SACKs, we define throughput gain as
(TNR � TS) � (100 � TS) where TS is the throughput achieved by
SACKs and TNR is the throughput achieved by NR-SACKs for an
identical set of experimental parameters (send buffer size, loss
rate, bandwidth, and delay).

For presentation purposes, Fig. 7 uses a mixed scale. The
throughput gain values for 32K and 64K send buffers are shown
using the primary axes (bottom and left), and the values for an
8K send buffer are shown using secondary axes (top and right).

Mechanisms, such as congestion control and flow control, per-
form identically for NR-SACKs and SACKs. Therefore we hypothe-
sized that NR-SACKs will always perform at least as well as
SACKs. Fig. 7 confirms this hypothesis for all parameter combina-
tions tested. In no case, on average, did SACKs outperform
NR-SACKs.

More importantly, under certain conditions, NR-SACKs achieve
a higher throughput than SACKs. Deeper investigation showed that
this throughput improvement occurred as a result of send buffer
blocking. We determined that, for send buffer blocking to occur,
the loss rate must be below a certain level such that the congestion
window, and hence RtxQ, can grow large enough to fill the entire
send buffer. No send buffer blocking is expected if the loss rate is
so high that cwnd is prevented from reaching the send buffer size.

In SCTP, without loss, no data will be received out-of-order;
hence no gaps will be reported by both SACKs and NR-SACKs.
Therefore, regardless of send buffer size, no improvement is ex-
pected with 0% loss as confirmed by Fig. 7. If only one data packet
is lost after the data transfer is stabilized, exactly one instance of
send buffer blocking will occur where NR-SACKs allow the sender
to transmit some extra data due to the removal of non-renegable
data. As more losses occur, NR-SACKs provide additional through-
put improvement until the point where the loss rate becomes suf-
ficiently high that cwnd cannot grow large enough to fill the entire
send buffer, thus decreasing number of send buffer blocking
instances.

5.1. Region of gain

For a given bandwidth-delay combination we define the region
of gain as the loss rate interval, [a–b], where any loss rate between
a and b results in an expected throughput gain of at least x, where x
is the percentage improvement considered significant by the user.
For our presented results, we chose x = 5%. For a given x, the inter-
val [a–b] depends on the size of the send buffer.

Since higher loss rates result in smaller cwnds, we hypothesized
that for smaller send buffers, more significant send buffer blocking
would be observed at higher loss rates than for larger send buffers.
Therefore, for a given bandwidth-delay combination, the right edge
of the region of gain is expected to be a higher loss rate for smaller
send buffer sizes.

This hypothesis is confirmed by Fig. 7. Even with loss rates as
high as 65% (clearly an absurd loss rate in practice), NR-SACKs still
provide significant throughput gain for an 8K send buffer which
suggests that even a 65% loss rate allows the RtxQ to grow to 8K,
thus blocking the send buffer. On the other hand, for 32K and
64K send buffers negligible throughput gain is expected when
the loss rate is higher than 6% and 1%, respectively.

For a 100 Mbps link with 45 ms delay, the loss rate intervals [1–
65+%], [0.09–2%], and [0.09–0.16%] are the approximate regions of
gain for 8K, 32K, and 64K send buffers, respectively (Fig. 7). The
peak throughput gain provided by NR-SACKs increases as the send
buffer size decreases, the peak gain is >250% for 8K and �6% for
64K (refer to the upper axis for 8K.) The region of gain narrows
for larger send buffers, and widens for smaller send buffers.

Although send buffer blocking with SACKs appears to give
NR-SACKs an opportunity to provide better throughput than
SACKs, it would be incorrect to simply conclude that having in-
creased number of send buffer blocking instances with SACKs will
increase the gain from using NR-SACKs. For example, in Fig. 7, for
an 8K send buffer, more send buffer blocking is expected at 20%
loss than is expected for loss rates <20%. However the throughput
gain NR-SACKs provide is higher at 20% loss than loss rates <20%.

5.2. Retransmission queue evolution

To gain insight into NR-SACKs, consider the Retransmission
Queue (RtxQ) size over time. Fig. 8 shows the RtxQ size for an
unconstrained send buffer during an SCTP data transfer using
SACKs. The loss rate on the link is 10% which does not fall in the
region of gain of a 32K send buffer with 45 ms delay and 100 Mbps
bandwidth. Even though the send buffer is unconstrained, with
10% loss rate, RtxQ size never reaches 32K (Fig. 8). Therefore one
can deduce that no send buffer blocking would occur for a 32K
send buffer at 10% loss; hence NR-SACKs would provide no
throughput gain under these conditions. For 45 ms delay and
100Mbps bandwidth, loss rates <6% do allow the cwnd to grow
to 32K; hence NR-SACKs would provide throughput gain with loss
rates <6% (Fig. 7).Fig. 7. SCTP throughput gain with NR-SACKs (45 ms, 100 Mbit).

E. Yilmaz et al. / Computer Communications 33 (2010) 1982–1991 1987



Author's personal copy

Fig. 9 shows a slice of one run for SACK 32K with 1% loss. This
figure is characteristic of all of the runs under the same conditions.
With 1% loss, as opposed to 10% loss, the RtxQ size does reach 32K
several times. Each time the RtxQ = 32K is an instance of send buf-
fer blocking. At the times where the RtxQ = 32K for SACKs, NR-
SACKs can take advantage of the removal of non-renegable data
from the RtxQ to allow the sender to transmit new data, thus
achieving a better overall throughput.

NR-SACKs improve throughput by removing non-renegable
data from the RtxQ during loss recovery, thereby allowing new
data to be sent out during what would have been send buffer
blocking with SACKs. Longer loss recovery periods help NR-SACKs
provide higher throughput improvement. For a particular instance
of send buffer blocking, if no data within the current send window
is lost, then a data sender using NR-SACKs would not be able to re-
move any data from the RtxQ, and the data sender would not send
out more data until a cum-ack was received (thus behaving no dif-
ferent than SACKs).

For NR-SACKs, if no data within the send window is lost (i.e., no
gap in send window) for any send buffer blocking instances
throughout a data transfer, no throughput improvement will be ob-
served. So it is more accurate to say that ‘‘the throughput gain with
NR-SACKs over SACKs is more significant as the ratio p/q increases
where: p is the total loss recovery duration where send buffer
blocking is occurring, and q is the total time for data transfer.”

5.3. Impact of bandwidth and delay

Our prior work [1,2] did not evaluate the impact of different
bandwidth-delay combinations on the performance of NR-SACKs
vs. SACKs. Our investigation here shows that for a given delay
the throughput gain provided by NR-SACKs does not vary with
bandwidth when the Bandwidth-Delay Product (BDP) > send buffer
size (upper four curves in Fig. 10). For links with a 45 ms delay and
{3,10,100,1000} Mbps bandwidths, the throughput gain graphs

overlap for all the loss rates considered. In these cases, the BDP >
send buffer size.

When the BDP < send buffer size, the send buffer size is no long-
er the limiting factor for the max cwnd as the cwnd cannot grow
beyond the BDP. Since the cwnd is bound by the BDP, as BDP de-
creases the RtxQ becomes less likely to fill the entire send buffer.
Therefore as BDP gets smaller, fewer send buffer blocking instances
are expected, thus lowering the throughput gain provided by NR-
SACKs (lower three curves in Fig. 10).

Fig. 11 shows how the throughput gain with NR-SACKs varies
for a 32K send buffer under 100 Mbps bandwidth and various de-
lay parameters. Note that for all the scenarios shown in Fig. 11, the
BDP >32K. For all simulated loss rates, the gain is greater over a link
with a shorter delay. We conclude that the region of gain for SCTP
32K gets wider as the delay gets shorter. The peak throughput gain
significantly increases as the delay gets shorter. For a 100 Mbps
link the peak gain for 32K send buffer is �18% for 45 ms delay,
and �75% for 5 ms delay.

Although Figs. 10 and 11 show results for a 32K send buffer, we
observed similar trends for different send buffer sizes (graphs not
shown). That is, for a particular send buffer size, throughput gain;
(i) does not change with bandwidth as long as the BDP > send buf-
fer size, (ii) decreases as BDP gets smaller than send buffer size, and
(iii) increases as the delay gets shorter regardless of BDP.

5.4. Impact of send buffer size

The default STCP send buffer sizes used in {FreeBSD 7.0, Solaris
10, Linux Ubuntu-2.6.31-i686} are {227K,100K,112K}, respectively.

Fig. 8. Retransmission queue evolution for SCTP-SACKs (unconstrained send buffer,
10% loss, 45 ms, 100 Mbit).

Fig. 9. Retransmission queue evolution for SCTP-SACKs (32K send buffer, 1% loss).

Fig. 10. NR-SACK throughput gain in SCTP for 32K send buffer, 45 ms delay, and
various bandwidth parameters.

Fig. 11. NR-SACK throughput gain in SCTP for 32K send buffer, 100 Mbps and
various delay parameters.

1988 E. Yilmaz et al. / Computer Communications 33 (2010) 1982–1991



Author's personal copy

These SCTP implementations are still in development, so the
default sizes remain open to change. Also the default send buffer size
setting is configurable, so it is possible that systems with limited
memory, such as handheld devices, will want to tune the send
buffer size down to 32K or 64K.

Fig. 12 shows that NR-SACKs can provide throughput improve-
ment for larger send buffers. With a 128K send buffer, a region of
gain exists with the loss rate interval of [0.004–0.095%]. NR-SACKs
provide�14% throughput gain with 0.03% loss for 128K send buffer
and a 5 ms delay. Even with a 256K send buffer, NR-SACKs achieve
�7% better throughput than SACKs for the loss rates [0.003–
0.012%]. Although Fig. 12 shows the throughput gain for a 1 Gbps
link, this bandwidth was chosen so that the BDP P send buffer size
for all three send buffer sizes tested. The throughput gain is ex-
pected to be the same for lower bandwidths as long as the BDP
P send buffer size as demonstrated in Fig. 10.

To provide intuition about the throughput gain that NR-SACKs
might provide in a real life scenario, we ran an anecdotal experi-
ment pinging http://www.youtube.com from a WiFi-enabled lap-
top connected to the University of Delaware’s wireless network.
Pinging the YouTube server 10,000 times, we observed an average
round-trip delay of 8 ms and 101 lost packets, roughly �1%.

We then ran an ns-2 experiment with these delay and loss val-
ues for wireless links of both 11 Mpbs and 54 Mbps. As an example,
with a 32K send buffer NR-SACKs achieved throughput gains of
�37%, and �60%, respectively. Note that the BDPs for the 11 Mbps
and 54 Mbps links are �10.7K, and �52.7K, respectively. Since the
BDP for the 11 Mbps link is less than the simulated send buffer
size, the throughput improvement for 11 Mbps link is less than
the observed gain of �49% for 32K send buffer, 5 ms delay, and
100 Mbps shown in Fig. 11 of Section 5.2.

On the other hand, since BDP >32K for both 100 Mbps and
54 Mbps links, and 54 Mbps link has a slightly shorter delay (4 ms
vs. 5 ms), the throughput improvement for the 54 Mbps is higher
than that of 100 Mbps supporting the results shown in Fig. 11 (low-
er delay provides better gain as long as BDP P send buffer size).

In addition to potential throughput gain NR-SACKs provide, our
results also suggest that NR-SACKs can achieve the same through-
put as SACKs using smaller send buffers. Fig. 13 shows that
NR-SACKs with a smaller send buffer, hence less memory can
provide the same throughput as or a better throughput than SACKs
with a larger send buffer. NR-SACKs with a 230K send buffer
outperforms or achieves comparable throughput as SACKs with a
256K send buffer for the loss rates considered in Fig. 13.

By using NR-SACKs instead of SACKs, a highly loaded web server
handling hundreds of thousands of simultaneous transport con-
nections can potentially handle (i) the same number of connec-
tions using 10% less memory, or (ii) 10% more connections using
the same amount of memory.

5.5. Impact of short delay and low loss rate

Some of the experimental parameters such as short delay and
low loss rate used for some of our results might seem impractical.
However, such short delays and low loss rates are observed in to-
day’s Internet. Consider increasingly popular content distribution
networks (CDN). CDNs provide enhanced web browsing experience
through their distributed servers strategically deployed around the
world which are used to cache highly demanded web content.
When web content is requested from a web server using CDN,
using DNS redirection, the transport connection is opened to a
physically closer CDN server; which increases the overall through-
put by taking advantage of shorter delay and lower loss rate.

Based on an analysis conducted on Akamai [15], the largest CDN
provider, in some cases transport connections experience delays in
the order of a few milliseconds and loss rates as low as 0.001% [14].
Some of the well known servers using Akamai’s CDN service are
Oracle, Windows Update, Adobe, CBC, and MTV. Simply pinging
http://www.oracle.com with 5,000,000 packets through an Ether-
net interface connected to University of Delaware’s network, we
observed an average round-trip delay of 5.226 ms and a loss rate
of 0.00166%. Depending on the send buffer size Akamai servers
are using, NR-SACKs can provide throughput gain of 3–12% for
the observed loss rate.

Unfortunately our ping experiments are anecdotal. YouTube
and Akamai run over TCP not SCTP, and we were unable to deter-
mine their send buffer sizes. At this time, no commercial web serv-
ers are running over SCTP. We do observe that the default TCP send
buffer sizes used in {FreeBSD 7.0, Solaris 10, Linux Ubuntu-2.6.31-
i686, Mac OS X 10.2.0} are {32K,48K,16K,64K}, respectively. Our
ping experiments suggest that when certain send buffer sizes are
used, NR-SACKs could improve throughput in these and similar
real life scenarios.

We note that if dynamic autotuning buffering management [12]
is enabled such that none of the connections have send buffer lim-
itation (unlikely for a highly loaded web server), then the benefits
of NR-SACKs would only be for improved memory utilization, not
throughput. It is important to emphasize that NR-SACKs will not
decrease throughput.

5.6. Results for CMT throughput

Our prior work [1] did not investigate the effects of bandwidth
and delay on potential throughput gains that NR-SACKs can
provide to CMT. As was the case for SCTP, in CMT, when the BDP
> send buffer size the bandwidth has no effect on the throughput
gain. Path-1 in Fig. 6 is designed to have a simulated loss rate
of 0.08% in all CMT experiments. The bandwidth and delayFig. 12. NR-SACK throughput gain in SCTP (1 Gbps, 5 ms).

Fig. 13. SACK vs. NR-SACK throughput in SCTP (1 Gbps, 5 ms).

E. Yilmaz et al. / Computer Communications 33 (2010) 1982–1991 1989



Author's personal copy

parameters for both paths are always identical. Fig. 14 shows the
observed throughput gain through paths with {5,45,450} ms de-
lays for 128K and 256K send buffers in CMT where the loss rate
for the Path-2 ranges from 0.08 to 8.5%.

Regardless of the delay, for both 128K and 256K send buffers,
the throughput gain increases as the loss on Path 2 increases. As
the two paths become more asymmetric in terms of loss, more
out-of-order data is received by the data receiver. The additional
out-of-order data in turn increases the loss recovery durations
where send buffer blocking is occurring. For all loss rate-delay
combinations studied, the throughput gain is greater for smaller
send buffers.

Delay has a strong impact on the performance of NR-SACKs in
CMT (Fig. 14). The throughput gain achieved by NR-SACKs dramati-
cally increases as the delay gets shorter. For a 128K send buffer, NR-
SACKs provide a throughput gain of up to 120% (5 ms). In other
words, when Path 2 experiences 8.5% loss, transferring a file through
paths with 5 ms delay takes 2.2 times longer using SACKs than using
NR-SACKs. For 5 ms delay, even when both paths have a loss rate of
only 0.08%, the data transfer using SACKs takes 20% longer than the
data transfer using NR-SACKs (leftmost data point in Fig. 14).

6. Recommended NR-SACK management

Since NR-SACKs are optional, the endpoints must first negotiate
NR-SACK usage during association establishment as depicted in
Fig. 15. An endpoint supporting the proposed extension lists

NR-SACK in the Supported Extensions Parameter carried in the INIT
or INIT ACK RFC5061 [13]. During association establishment, if
both endpoints support the NR-SACK extension, then each end-
point acknowledges received data with NR-SACKs, not SACKs.

Once the use of NR-SACKs is negotiated, both endpoints take the
following actions for correct operation of NR-SACKs throughout the
data transfer.

� when out-of-order data is received, the data is classified as
either renegable or non-renegable. An out-of-order data is classi-
fied as non-renegable by the data receiver (1) if the receiver
never reneges (as in FreeBSD when an endpoint sets sctp_do_-
drain = 0), or (2) immediately after the received data is delivered
to the application (for example, when the out-of-order data is
unordered or in-order within the stream).
� when an NR-SACK is to be sent, renegable out-of-order data are

reported in r-gap-ack block(s), and non-renegable out-of-order
data are reported in nr-gap-ack block(s).
� when an NR-SACK is received at the data sender, the r-gap-ack

and nr-gap-ack blocks are processed as would be gap-ack blocks
for a regular SACK. In addition, all nr-gap-acked (non-renegable)
data is removed from the data sender’s retransmission queue.

7. Conclusions

Our SCTP and CMT throughput analysis shows that the through-
put with NR-SACKs is never worse than SACKs, and for certain re-
gions of gain significantly better. The trade-off of using NR-SACKs
is the additional processing time required to fill and process the
new fields in an NR-SACK at the data receiver and data sender,
respectively, and a few more bytes on the wire. Based on our ns-
2 NR-SACK module, we believe these overheads to be negligible.

To make NR-SACKs available in practice, we are currently
implementing them in FreeBSD 7.0. Once implemented, NR-SACKs
will be evaluated in a variety of network environments using an
emulation test-bed based on Dummynet [3] as shown in Fig. 16.

The concept of NR-SACKs can be applied to any reliable trans-
port connection that either: (1) permits out-of-order data delivery,
or (2) by OS design, does not permit a data receiver to renege. In
regards to (2), while reneging is permitted, it should only occur
during drastic situations, such as when an OS needs to reclaim pre-
viously allocated buffer space to keep a system from crashing. We
are currently investigating how frequently, if at all, reneging occurs
in today’s Internet by analyzing TCP traffic traversing several major

Fig. 14. NR-SACK throughput gain in CMT (100 Mbps, path 1 loss rate: 0.08%).

Fig. 15. NR-SACK negotiation in SCTP.

1990 E. Yilmaz et al. / Computer Communications 33 (2010) 1982–1991



Author's personal copy

routers, and by checking if today’s operating systems are pro-
grammed to renege and/or handle reneging [8]. Our reneging
investigation will provide insights and empirical evidence to argue
for the total replacement of SACKs with NR-SACKs.

References

[1] P. Natarajan, N. Ekiz, E. Yilmaz, P. Amer, J. Iyengar, R. Stewart, Non-Renegable
Selective Acknowledgments (NR-SACKs) for SCTP, in: International Conf on
Network Protocols (ICNP), Orlando, October 2008.

[2] P. Natarajan, Leveraging Innovative Transport Layer Services for Improved
Application Performance, PhD Dissertation, Computer & Information Sciences
Department, University of Delaware, USA, 2009.

[3] L. Rizzo, Dummynet: a simple approach to the evaluation of network protocols,
ACM Computer Communication & Review 27 (1) (1997) 31–41.

[4] P. Natarajan, P. Amer, E. Yilmaz, R. Stewart, J. Iyengar, Non-Renegable Selective
Acknowledgments (NR-SACKs) for SCTP, IETF Internet Draft, work in progress,
January 2010.

[5] N. Ekiz, P. Natarajan, J. Iyengar, A. Caro, ns-2 SCTP Module, Version 3.7,
September 2007. <http://pel.cis.udel.edu/>.

[6] J. Iyengar, P. Amer, R. Stewart, Concurrent multipath transfer using SCTP
multihoming over independent end-to-end paths, IEEE/ACM Transaction on
Networking 14 (5) (2006).

[7] FreeBSD TCP and SCTP Implementation. <http://www.freebsd.org/cgi/
cvsweb.cgi/src/sys/netinet/#dirlist>.

[8] N. Ekiz, Transport layer reneging, PhD Dissertation, CISC Department,
University of Delaware (in preparation).

[9] D. Wischik, M. Handley, M. Braun, The Resource Pooling Principle, Computer
Communications Review 38 (5) (2008) 47–52.

[10] M. Mathis, J. Mahdavi, S. Floyd, A. Romanov, TCP Selective Acknowledgment
Options RFC2018 (1996). <http://www.rfc-editor.org/rfc/rfc2018.txt>.

[11] R. Stewart et al., Stream Control Transmission Protocol RFC4960 (2007).
<http://www.rfc-editor.org/rfc/rfc4960.txt>.

[12] J. Semke, J. Mahdavi, M. Mathis, Automatic TCP Buffer Tuning, in: Proc. ACM
SIGCOMM, Vancouver, September 1998.

[13] R. Stewart et al., Stream Control Transmission Protocol (SCTP) Dynamic
Address Reconfiguration, RFC5061, September 2007. <http://www.rfc-
editor.org/rfc/rfc5061.txt>.

[14] A. Su, D. Choffnes, A. Kuzmanovic, F. Bustamante, Drafting behind Akamai:
Inferring network conditions based on CDN redirections, IEEE/ACM Trans.
Netw. 17 (6) (2009) 1752–1765.

[15] Akamai Technologies, Inc. <http://www.akamai.com/>.

Fig. 16. Emulation experimental design.

E. Yilmaz et al. / Computer Communications 33 (2010) 1982–1991 1991


