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a b s t r a c t

We investigate how path failure influences Concurrent Multipath Transfer (CMT) using SCTP multihom-
ing. We show that CMT suffers from significant ‘‘receive buffer blocking” which degrades performance
during both permanent and short-term failure. To improve performance, we introduce a new ‘‘Poten-
tially-Failed” (PF) destination state, and revise CMT’s failure detection and (re)transmission policies to
include the PF state. Using simulation, we demonstrate that the modification called CMT-PF outperforms
CMT during failure – even with aggressive failure detection thresholds and varying receive buffer con-
straints. In non-failure scenarios, CMT-PF performs on par or better but never worse than CMT. Finally,
we confirm these simulation results using FreeBSD implementations of CMT and CMT-PF. Based on our
findings, we recommend CMT-PF be used in existing and future CMT implementations and RFCs.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Multihoming among networked machines and devices is a tech-
nologically feasible and increasingly economical proposition. Un-
like TCP and UDP, the Stream Control Transmission Protocol
(SCTP) [16] natively supports multihoming at the transport layer.
SCTP multihoming allows binding of one transport layer association
(SCTP’s term for a connection) to multiple IP addresses at each end
of the association. This binding allows a sender to transmit data to
a multihomed receiver through different destination addresses,
providing network interface redundancy and improved end-to-
end fault tolerance.

Multihomed nodes may also be connected via multiple end-to-
end paths. For instance, users may be simultaneously connected
through dial-up/broadband, or via multiple wireless technologies
(e.g., 802.11b, GPRS). Concurrent Multipath Transfer (CMT) [7] is
an experimental SCTP extension that assumes multiple indepen-
dent paths, and exploits these paths for simultaneous transfer of
new data between end hosts. This work investigates CMT perfor-
mance during path failures. We also highlight the conditions under

which our findings would be pertinent to other transports that
support multipath transfer (e.g., multipath TCP [19]).

This paper is organized as follows. Section 2 motivates this re-
search by discussing the commonness of link failures in the Inter-
net. Section 2 also overviews CMT’s failure detection process, and
how CMT’s throughput degrades during failure detection. Section
3 outlines our proposed improvement – CMT with a ‘‘Potentially-
Failed” destination state (CMT-PF). Using ns-2 simulations, Sec-
tions 4 and 5 evaluate CMT vs. CMT-PF in failure and congestion
scenarios, respectively. Section 6 validates the simulation results
with empirical experiments using FreeBSD implementations of
CMT and CMT-PF. Section 7 concludes this work.

2. Problem description

This section discusses the prevalence of Internet path failures,
and outlines how CMT’s performance degrades during path
failures.

2.1. Prevalence of path failures

Internet paths fail when a router or a link connecting two rou-
ters fails due to planned maintenance or unplanned accidents such
as hardware malfunction or software error. Ideally, the routing sys-
tem detects unplanned link failures, and reconfigures routing ta-
bles to avoid trying to route traffic via a failed link. Using data
from an ISP’s routing logs, Markopoulou et al. [9] observed that link
failures are part of everyday operation. Around 80% of the failures
are unplanned, and the time-to-repair for any particular failure can
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be on the order of hours. Using probes Feamster et al. [5] observed
that Internet paths fail often. The failures appear everywhere and
are not confined to a few bad links.

Existing research also highlights problems with Internet back-
bone routing that result in long route convergence times. Labovitz
et al. [8] shown that Internet’s interdomain routers may take as
long as tens of minutes to reconstruct new paths after a failure.
During these delayed convergences, end-to-end Internet paths
experience intermittent loss of connectivity in addition to in-
creased packet loss, latency, and reordering. Using probes, Paxson
and Zhang et al. [14,20] found that ‘‘significant routing patholo-
gies” prevent selected pairs of hosts from communicating about
1.5% to 3.3% of the time. Importantly, the authors also find that this
trend has not improved with time. In [3], the authors use probes to
confirm that failure durations are heavy-tailed, and report that 5%
of detected failures last more than 2.75 h, and as long as 27.75 h.
The pervasiveness of path failures in practice motivates us to study
their impact on CMT.

2.2. Failure detection in CMT

Since CMT is an extension to SCTP, CMT retains SCTP’s failure
detection process. A CMT sender employs a tunable failure detec-
tion threshold called Path.Max.Retrans (PMR) [16]. As shown in
the finite state machine of Fig. 1, a destination is in one of the
two states – Active or Failed (inactive). A destination is active as
long as acks come back for data or heartbeats (probes) sent to that
destination. When a sender experiences more than PMR consecu-
tive timeouts while trying to reach a specific active destination,
that destination is marked as failed. Only heartbeats (i.e., no data)
are sent to a failed destination. A failed destination returns to ac-
tive when the sender receives a heartbeat ack. RFC4960 proposes
a default PMR = 5, which translates to P63 s (6 consecutive time-
outs) for failure detection.

2.3. Receive buffer blocking in CMT

Iyengar et al. [6] explored the ‘‘receive buffer blocking” problem
in CMT, where Transport Protocol Data Unit (TPDU) losses throttle
data transmission once the CMT receiver’s buffer (rbuf) is filled
with out-of-order data. Even though the sender’s cwnd would al-
low new data to be transmitted, rbuf blocking (i.e., flow control)
stalls the sender, causing throughput degradation.

Rbuf blocking problem cannot be eliminated in CMT [6]. To re-
duce rbuf blocking’s negative impact during congestion, Iyengar
et al. [6] proposed different retransmission policies that use heuris-
tics for faster loss recovery. These policies consider different path
properties such as loss rate and delay, and try to reduce rbuf block-
ing by sending retransmissions on a path with lower loss or delay.
In practice, a path’s loss rate can only be estimated, so Iyengar et al.
[6] proposed the RTX_SSTHRESH policy, where retransmissions are

sent on the path with the largest slow-start threshold. Since
RTX_SSTHRESH outperformed other retransmission policies during
congestion, Iyengar et al. [6] recommended the RTX_SSTHRESH
policy for CMT. However, Iyengar et al. [6] did not consider CMT
performance during path failures, which is the focus of this work.

2.4. CMT performance during path failures

CMT’s failure-induced rbuf blocking is explained via the time-
line diagram shown in Fig. 2. The CMT sender (A) has two inter-
faces – A1 and A2, and transmits data to receiver (B) with two
interfaces – B1 and B2. All four addresses are bound in the CMT
association such that the sender employs the two independent
paths – path 1 and path 2, for data transmission.

In Fig. 2, the initial cwnd for each path = 2 MTUs. Each TPDU
consists of an MTU-sized data chunk, and is assigned a unique
Transmission Sequence Number (TSN) [16]. Ci and Oi denote the
cwnd in number of MTUs, and the number of outstanding TPDUs,
respectively, on path i. A SACK labeled hSa; b� c; Rdi cumulatively
acknowledges all TSNs up to and including a, selectively acknowl-
edges TSNs b through c (missing report for TSNs aþ 1 through
b� 1), and advertises a receiver window capable of buffering d
more TSNs. In Fig. 2’s example, the transport layer receive buffer
can hold a maximum of 5 TSNs, and its contents are listed after
the reception of every TSN.

Both forward and reverse paths between A1 and B1 fail just after
TSN 2 enters the network. Hence, TSN 2 and the SACK for TSN 1 are
presumed lost. TSNs 3 and 4 are received out of order and stored in
the receive buffer. Each of these TSNs triggers a SACK to the sender.
The CMT sender uses the Cwnd Update for CMT (CUC) algorithm [7]
to decouple a path’s cwnd evolution and data ordering. On receiv-
ing the SACK triggered by TSN 3, the sender uses CUC to increment
C2 to 3, and decrement O1 and O2 to 1. The available receive buffer
space for new data, calculated as advertised receive window (=4) –
total outstanding (=2), allows the sender to transmit two TSNs, 5
and 6, on path 2. On path 1, even though 1 MTU worth of new data
could be transmitted ðC1 > O1Þ, rbuf blocking, i.e., flow control,
throttles data transmission. On receiving the SACK triggered by
TSN 4, the sender increases C2 = 4, and decreases O2 = 2. However,
lack of rbuf space inhibits transmission of new data on path 2.

Since O2 < C2, the SACKs triggered by TSNs 5 and 6 do not
increment C2 [16] (discussed later). But these SACKs decrement
O2. Even though O2 < C2, flow control continues to prevent data
transmission on path 2.

When path 1’s retransmission timer expires, the sender detects
the loss of TSN 2. Note that this timeout is the first of the 6 (when
PMR = 5) consecutive timeouts needed to detect path 1’s failure.
After this timeout, C1 = 1, O1 = 0, and path 1’s RTO value is doubled
[16]. The CMT sender employs the RTX_SSTHRESH policy and
retransmits TSN 2 on path 2.

On receiving TSN 2, the CMT receiver delivers data from TSNs 2
to 6 to the application. The corresponding SACK advertises a re-
ceive window of 5 TSNs. Once receive buffer becomes available,
the sender transmits TSN 7 on path 1, and TSNs 8–11 on path 2.
Due to path 1 failure, TSN 7 is lost, and TSNs 8–11 are received
out-of-order and fill the receiver’s buffer. Once again, flow control
inhibits data transmission until the sender experiences a timeout
on path 1, detects loss of TSN 7, and successfully retransmits TSN
7 on path 2.

To generalize, a CMT sender continues to transmit data on a
failed path until the corresponding destination is marked failed,
i.e., until the sender experiences (PMR + 1) consecutive timeouts
on the failed path. During failure detection, out-of-order data re-
ceived via the non-failed path(s) fill the receive buffer and stall
data transmission until the lost TPDUs are successfully retransmit-
ted. Since losses on a failed path are detected only after a timeout,Fig. 1. Failure detection in CMT.
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the length of an rbuf blocking instance is proportional to the failed
path’s RTO. Until failure detection, the sender keeps transmitting
data on the failed path, resulting in successive instances of rbuf
blocking. Each instance is exponentially longer than the previous
instance due to the exponential backoff of RTO values.

Ref. [19] discusses the advantages of resource pooling and ar-
gues the need for multipath-capable TCP (a.k.a. multipath TCP) to
facilitate resource pooling. Multipath TCP functions similar to
CMT – multipath TCP extends TCP to support multihoming, and
sets up multiple subflows to simultaneously transmit data over
multiple paths. Ref. [19] acknowledges that a single receive win-
dow can interact badly with multipath TCP connections. Data re-
ceived out-of-order on one subflow (path) may fill the receive
window and flow control would stall data transmission on other
subflows (paths). Note that this problem is conceptually similar
to CMT’s congestion-induced rbuf blocking. Consequently, when
multipath TCP’s subflows share a single receive window, the mul-
tipath TCP connection will endure failure-induced rbuf blocking
and degraded throughput.

In CMT, rbuf blocking results in the following side-effects that
further degrade throughput.

2.4.1. Preventing congestion window growth
Note that rbuf blocking prevents the sender from fully utiliz-

ing the cwnd. When the amount of outstanding data is less than
the cwnd, RFC4960 prevents the sender from increasing the
cwnd for future SACKs. For example, in Fig. 2, when the sender
receives the SACKs for TSNs 5, 6, 9–11, the sender cannot incre-
ment C2.

2.4.2. Reducing congestion window
To reduce burstiness in data transmission, an SCTP sender em-

ploys a congestion window validation algorithm similar to [15].
During every transmission, the sender uses the MaxBurst parame-
ter (recommended value of 4) as follows:

If ððoutstanding þMaxBurst �MTUÞ < cwndÞ
cwnd ¼ outstanding þMaxBurst �MTU

Fig. 2. CMT’s rbuf blocking during path failure.
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This algorithm decays the cwnd after an idle period so that at
the next sending opportunity, the sender will not transmit more
than ðMaxBurst �MTUÞ bytes of data. During rbuf blocking, the
amount of outstanding data can become less than the cwnd. In
such cases, the above rule is triggered and further reduces the
cwnd. In Fig. 2, when the SACK triggered by TSN 11 arrives at the
sender, O2 decrements to 0. The window validation algorithm
causes C2 to be reduced to 4 (O2 (=0) + MaxBurst (=4)).

3. Solution

Caro [2] recommends lowering the PMR value for SCTP flows in
Internet-like environments. Correspondingly, lowering the PMR for
CMT flows reduces the number of rbuf blocking episodes during
failure detection. However, lowering the PMR is an incomplete
solution to the problem since a CMT flow may be rbuf blocked
for any PMR > 0 (Section 4). Also, a tradeoff exists on deciding
the value of PMR – a lower value reduces rbuf blocking but in-
creases the chances of spurious failure detection, whereas a higher
PMR increases rbuf blocking and reduces spurious failure detection
in a wide range of environments.

3.1. Details of CMT-PF

To mitigate failure-induced rbuf blocking, our proposed solu-
tion introduces a new ‘‘Potentially-Failed” state to the FSM of
Fig. 1. The expanded FSM, shown in Fig. 3, assumes that loss de-
tected by a timeout implies either severe congestion or failure en
route. After a single timeout on a path, a sender is unsure, and
marks the corresponding destination as ‘‘Potentially-Failed” (PF).
A PF destination is not used for data transmission or retransmis-
sion. CMT’s retransmission policies are augmented to include the
PF state. CMT with the new set of retransmission policies is called
CMT-PF [10,12]. Details of CMT-PF are:

� If a TPDU loss is detected by RFC4960’s threshold number of
missing reports, one of CMT’s current retransmission policies,
such as RTX_SSTHRESH, is used to select an active destination
for ‘‘fast” retransmission.

� If a TPDU loss is detected after a timeout, the corresponding
destination transitions to the PF state (Fig. 3). The sender never
transmits data to a PF destination. However, when all destina-

tions are in the PF state, the sender transmits data to the des-
tination with the fewest consecutive timeouts. In case of a tie,
data is sent to the last active destination. This exception
ensures that CMT-PF does not perform worse than CMT when
all paths have potentially failed (discussed further in Section
5).

� Heartbeats are sent to PF destination(s) with an exponential
backoff of RTO after every timeout until either (i) a heartbeat
ack transitions the destination back to the active state, or (ii)
an additional PMR consecutive timeouts confirm the path fail-
ure, upon which the destination transitions to the failed state,
and heartbeats are sent with a lower frequency as described in
RFC4960.

� If ever a heartbeat ack indicates a PF destination is alive, that
destination’s cwnd is set to either 1 MTU (CMT-PF1), or 2
MTUs (CMT-PF2), and the sender follows the slow start algo-
rithm to transmit data to this destination. Detailed analysis
on the cwnd evolution of CMT-PF1 vs. CMT-PF2 can be found
in Section 5.

� Acks for retransmissions do not transition a PF destination back
to the active state, since a sender cannot disambiguate whether
the ack was for the original transmission or the
retransmission(s).

3.2. CMT-PF data transfer during failure

Fig. 4 depicts an analogous CMT-PF timeline for the scenario de-
scribed in Fig. 2. All events are identical between the two figures up
to the first timeout on path 1. After this timeout, the CMT-PF sen-
der transitions path 1 to the PF state, transmits a heartbeat on path
1, and retransmits TSN 2 on path 2. The heartbeat loss on the failed
path (path 1) is detected on the next timeout. This timeout is the
second of (PMR + 1) consecutive timeouts required to detect path
1 failure. Meanwhile, receiver buffer space is released once the
retransmitted TSN 2 is received on path 2. From this point on-
wards, data is transmitted only on path 2, without further rbuf
blocking.

Section 2D discussed how other multipath transports (e.g., mul-
tipath TCP [19]) may suffer from rbuf blocking during path failures.
We note that the CMT-PF framework can be adapted to such mul-
tipath transports to mitigate the negative consequences of failure-
induced rbuf blocking.

4. Evaluations during failure

CMT-PF is evaluated using the University of Delaware’s ns-2
SCTP/CMT module [13,4]. The failure experiments discussed in this
section use a simple topology and loss model (Fig. 5). In the next
section, we employ a more realistic (and complex) simulation
topology and loss model to evaluate CMT and CMT-PF during
congestion.

In Fig. 5, the multihomed sender, A, has two independent paths
to the multihomed receiver, B. The edge links between A (or B) to
the routers represent last-hop link characteristics. The end-to-end
one-way delay is 45 ms on both paths, representing typical coast-
to-coast delays experienced by significant fraction of the flows in
the Internet [18]. The sender A transfers an 8MB file to receiver B
using both path 1 and path 2. This file transfer uses a single-
streamed CMT or CMT-PF association such that all data is delivered
in sequence to the receiving application. Path 2 fails during the file
transfer; this failure is simulated by bringing down the bidirec-
tional link between routers R20 and R21. Unless stated otherwise,
the PMR = 5, rbuf = 64 KB, and both paths experience Bernoulli
losses with low loss rate (<1%).Fig. 3. Failure detection in CMT-PF (PMR >0).

1580 P. Natarajan et al. / Computer Communications 32 (2009) 1577–1587
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4.1. Evaluations during permanent path failure

In the following experiments, path 2 fails permanently 5 s after
the file transfer begins.

4.1.1. Single permanent path failure
Neither path experiences congestion in this experiment, which

helps to highlight how CMT and CMT-PF differ during failure
detection.

Path 2’s failure causes back-to-back timeouts at the sender.
Both senders (CMT and CMT-PF) experience the first timeout on
path 2 at �6 s, and detect the failure after 6 back-to-back timeouts
(PMR = 5), at �69 s (Fig. 6). During the failure detection period,
CMT continues to transmit data on path 2, experiencing consecu-
tive timeouts and recurring rbuf blocking instances. CMT’s
throughput suffers until 69 s (i.e., until failure detection), after
which CMT uses path 1 alone and completes the file transfer at
around 80 s. On the other hand, CMT-PF transitions path 2 to PF

Fig. 4. CMT-PF reduces rbuf blocking during path failure.

Fig. 5. Simulation topology for failure experiments.

P. Natarajan et al. / Computer Communications 32 (2009) 1577–1587 1581
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state after the first timeout, and then transmits only heartbeats on
path 2 avoiding further rbuf blocking. Reduced rbuf blocking helps
CMT-PF to complete the file transfer (�15 s) using path 1 alone,
even before path 2’s failure is detected.

4.1.2. Varying failure detection thresholds (PMR values)
To achieve faster yet robust failure detection, Caro [2] argued

for varying the PMR based on a network’s loss rate, and suggests
PMR = 3 for the Internet. Since the sender detects a permanent
path failure after (PMR + 1) consecutive timeouts, CMT’s failure-in-
duced rbuf blocking varies as the PMR varies. Let,

Tf = time when path 2 fails.
Td = time when the sender detects path 2 failure (after PMR + 1
consecutive timeouts).
The goodput during failure detection ðGÞ is defined as,
G = (application data received during Tf to Td) �ðTd ��Tf Þ.

Fig. 7 plots CMT vs. CMT-PF average goodput ðGÞ with 5% error
margin. The dashed line in Fig. 7 denotes the maximum attainable
goodput of an SCTP file transfer (application data received � trans-
fer time) using path 1 alone.

When the failure detection threshold is most aggressive
(PMR = 0), both CMT and CMT-PF detect path 2 failure after the
first timeout. Effectively, CMT-PF’s failure detection never engages

the PF state transition (Fig. 3), and is equivalent to CMT’s failure
detection procedure. Both senders experience identical rbuf block-
ing, and perform similarly (Fig. 7). As PMR increases, the number of
rbuf blocking instances during failure detection increases, resulting
in increasing performance benefits with CMT-PF. In Fig. 7, as PMR
and the failure detection period increase, CMT-PF’s goodput in-
creases, whereas CMT’s goodput decreases. Starting from
PMR = 3, CMT-PF’s goodput is comparable or equal to the maxi-
mum attainable goodput. To conclude, during path failures, CMT-
PF performs as well as CMT for PMR = 0, and better than CMT for
PMR >0.

4.2. Evaluations during short-term failure

In the following experiments, path 2 in Fig. 5 fails temporarily
during the file transfer between A and B. The link connecting rou-
ters R20 and R21 goes down after 5 s from the start of file transfer,
and is restored 5 s later.

4.2.1. During single short-term failure
Neither path experiences congestion in this experiment, which

helps to highlight the differences between CMT and CMT-PF during
a short-term failure.

The short-term failure is long enough for the sender (CMT or
CMT-PF) to experience three back-to-back timeouts on path 2. As
in the failure case, CMT transmits data on path 2 after each of these
timeouts, while CMT-PF does not. Therefore, CMT suffers from con-
secutive rbuf blocking and lower throughput than CMT-PF (Fig. 8).
Once path 2 recovers at time = 10, CMT’s data and CMT-PF’s heart-
beat transmissions on the path (after the 3rd timeout – �12.5 s)
are successful, and both CMT and CMT-PF complete the file transfer
without further rbuf blocking.

4.2.2. Varying receive buffer sizes
This second short-term failure experiment analyzes CMT vs.

CMT-PF for varying levels of receive buffer constraints (receive buf-
fer sizes). Let

Tf = time when path 2 fails.
Tr = time when path 2 is restored.
The goodput during the short-term failure (GÞ is defined as,
G = (application data received during Tf to Tr) � ðTr � Tf Þ.

Fig. 9 plots CMT vs. CMT-PF average goodput ðGÞ with 5% error
margin. As the receive buffer becomes more constrained, i.e., as

Fig. 6. CMT vs. CMT-PF during permanent path failure.

Fig. 7. CMT vs. CMT-PF under varying PMR values. Fig. 8. CMT vs. CMT-PF during short-term path failure.
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rbuf size decreases, the chances of rbuf blocking increases. Conse-
quently, CMT-PF’s ability to alleviate rbuf blocking is more valuable
for smaller rbuf sizes.

5. Evaluations during congestion

In this section we investigate how CMT-PF performs when
timeouts are caused by non-failure scenarios such as congestion
[11,12]. Consider the case when a timeout on path p is due to con-
gestion rather than failure. Depending on the rbuf size and the dif-
ferent paths’ characteristics, the transport sender may or may not
be rbuf blocked, leading to the following two scenarios.

5.1. Sender is rbuf-limited

Both CMT and CMT-PF senders cannot transmit new data until
the rbuf blocking is cleared, i.e., until after successful retransmis-
sion(s) of lost data. The only difference is that CMT considers p
for retransmissions, whereas CMT-PF transmits a heartbeat on p,
and tries to retransmit lost data on other active paths. (If all desti-
nations are in the PF state, the CMT-PF sender transitions the des-
tination with the fewest consecutive timeouts to the active state
(Section 3A), and retransmits lost data to this destination.)

5.2. Sender is not rbuf-limited

Assume that SCTP PDUs (data or heartbeats) transmitted after
the first timeout on path p are successfully received. In CMT, the
cwnd allows 1 MTU of new data transmission on p (Fig. 10a), and
the corresponding SACK increments path p’s cwnd by 1 MTU.
After1 RTT after the timeout (shown by point A in Fig. 10a), (i)
p’s cwnd is 2 MTUs, and (ii) 1 MTU of new data has been success-
fully sent on p.

CMT-PF transmits a heartbeat on p and new data on other active
path(s). (Note: if all destinations are marked PF, the CMT-PF sender
transitions one of the PF destinations to the active state.) Path p is
marked active when the heartbeat ack reaches the sender. There-
fore, after 1 RTT from the timeout (point B in Fig. 10b), (i) p’s cwnd
is 1 MTU (CMT-PF1), and (ii) no new data has been sent on p. Com-
paring points A and B in Fig. 10a and b, respectively, it can be seen
that CMT has a 1 RTT ‘‘lead” in p’s cwnd growth. Assuming no fur-
ther losses on p, after n RTTs, the cwnd on p will be 2n with CMT,
and 2n�1 with CMT-PF1.

To avoid the 1 RTT lag in CMT-PF1’s cwnd evolution, we propose
CMT-PF2 which initializes p’s cwnd to 2 MTUs after receiving a
heartbeat ack (shown by point C in Fig. 10c). Assuming that today’s

Internet router queues deal with packets rather than bytes, the
successful routing of a heartbeat PDU is equivalent to the success-
ful routing of a data PDU. Hence, a heartbeat ack can be used to
clock the transport layer sender in the same way as a data ack. (Un-
der similar reasoning, even an SCTP sender could initialize a desti-
nation’s cwnd to 2 MTUs after transitioning the destination from
failed to active state, but that recommendation is outside the scope
of this paper.) Since CMT-PF2 is clearly superior, we no longer con-
sider CMT-PF1, and in the following sections, any reference to
CMT-PF implies CMT-PF2.

5.3. Simulation setup

In the dual-dumbbell topology shown in Fig. 11, each router, R,
is attached to five edge nodes. Dual-homed edge nodes A and B are
the transport sender and receiver, respectively. The other edge
nodes are single-homed, and introduce background cross-traffic

Fig. 9. CMT vs. CMT-PF under varying receive buffer sizes.

Fig. 10. CMT vs. CMT-PF during congestion. (a) CMT; (b) CMT-PF1; (c) CMT-PF2.

P. Natarajan et al. / Computer Communications 32 (2009) 1577–1587 1583
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that instigates bursty periods of congestion, and hence bursty con-
gestion losses at the routers. Their last-hop propagation delays are
uniformly distributed between 5 and 20 ms, resulting in end-to-
end one-way propagation delays ranging �35–65 ms [18]. All links
(both edge and core) have a buffer size twice the link’s bandwidth-
delay product, a reasonable setting in practice. Base on intuition,
we believe that the final conclusions regarding CMT vs. CMT-PF
are independent of the actual bandwidth and delay configurations
used in the topology, as long as these configurations are similar on
both paths.

Each single-homed edge node has eight traffic generators, intro-
ducing cross-traffic with a Pareto distribution [1]. The cross-traffic
flows start at random times during the initial 5 s of the simulation.
After an initial warm-up period, at time = 10 s, sender A begins
transmitting a 32-MB file to receiver B over paths 1 and 2. This file
transfer uses a single-streamed CMT or CMT-PF association such
that all data is delivered in sequence to the receiving application.
For both CMT and CMT-PF flows, rbuf = 64KB, PMR = 5, and loss
rates are controlled by varying the cross-traffic load. The graphs
in the subsequent discussions plot the average goodput (file size
� transfer time) of CMT vs. CMT-PF with 5% error margin.

5.4. Evaluations during symmetric loss conditions

In the symmetric loss case, the aggregate cross-traffic load on
both paths are similar, and vary from 40% to 100% of the core link’s
bandwidth.

Both CMT and CMT-PF perform similarly (Fig. 12) during low
loss rates (i.e., low cross-traffic), since, most of the TPDU losses
are recovered via fast retransmits, not timeout recoveries. As the
cross-traffic load increases causing the loss rate to increase, the
number of timeouts on each path increases and CMT-PF performs
on par or insignificantly better than CMT (Fig. 12). This confirms that
the PF state transition does not penalize CMT-PF performance during
symmetric path loss conditions.

5.5. Evaluations during asymmetric loss conditions

In practice, different paths are likely to experience asymmetric
loss rates. For the next set of experiments, paths 1 and 2 experience
different cross-traffic loads. The aggregate background cross-traffic

on path 1 is set to 50% of the core link bandwidth, while the back-
ground on path 2 varies from 50% to 100% of the core link
bandwidth.

Note that rbuf blocking depends on the frequency of loss events
(loss rate), and the duration of loss recovery. As the loss rate in-
creases, the probability that a sender experiences consecutive
timeout events on the path increases. After the first timeout,
CMT-PF transitions the path to PF, and avoids data transmission
on the path (as long as another active path exists) until a heart-
beat-ack confirms the path as active. But, a CMT sender suffers
back-to-back timeouts on data sent on the path, with exponential
backoff of RTO. As path 2’s cross-traffic load increases, the proba-
bility that a sender experiences back-to-back timeouts on path 2
increases. CMT suffers more consecutive timeouts on data (Table
1) resulting in longer rbuf blocking periods when compared with
CMT-PF. Therefore, as the asymmetry of the paths increases,
CMT-PF performs better than CMT (Fig. 13).

The asymmetric loss experiment helps highlight an important
difference in CMT vs. CMT-PF’s transmission strategy. In CMT,
RTX_SSTHRESH is a retransmission policy, and is not applied to
new data transmissions. In CMT-PF, a path is marked PF after a

Fig. 11. Topology for non-failure experiments.

Fig. 12. CMT vs. CMT-PF during symmetric loss.
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timeout, and as long as active path(s) exist, CMT-PF avoids retrans-
missions on the PF path. Once the retransmissions are all sent,
CMT-PF’s data transmission strategy is applied to new data, and
CMT-PF avoids new data transmissions on the PF path. As shown
in Table 2, when compared to CMT, CMT-PF reduces the number
of (re)transmissions on the higher loss rate path 2 and (re)trans-
mits more on the lower loss rate path 1. This transmission differ-
ence (ratio of transmissions on path 1 over path 2) between
CMT-PF and CMT increases as the paths become more asymmetric
in their loss conditions.

In summary, CMT-PF does not perform worse than CMT during
asymmetric path loss conditions. In fact, CMT-PF is a better transmis-
sion strategy than CMT, and performs better as the asymmetry in path
loss increases.

6. CMT-PF implementation

We extended the FreeBSD CMT implementation to incorporate
CMT-PF. The following experiments were performed using this

implementation with the intention of validating the simulation-
based conclusions in Sections 4 and 5.

The experimental topology, shown in Fig. 14, consists of a client
and server node running FreeBSD 7 and an intermediate node run-
ning the Dummynet traffic shaper [17] which emulates Bernoulli
losses. The server and client are connected by two independent
paths, with symmetric bandwidth and propagation delay charac-
teristics. The forward and reverse queue sizes for both paths are
set to 1000 KB. The transport layer receive window = 64 KB, and
PMR = 5. At time = 0, the server initiates a bulk file transfer to the
client. This file transfer uses a single-streamed CMT or CMT-PF
association such that all data is delivered in sequence to the receiv-
ing application.

6.1. Single permanent path failure

This single permanent path failure scenario is similar to the sce-
nario described in Section 4A1. Neither path experiences loss. At
time = 5 s, path 2 fails; this failure is emulated by having Dummy-
net block all packets traversing via path 2 to and from the client
and server, respectively. Fig. 15 plots the cumulative bytes received
at the client during this transfer.

As observed in the simulations (Fig. 6), path 2’s failure causes
consecutive timeouts and rbuf blocking instances in CMT, which
prevents data transmission until failure detection time = 69 s).
After failure detection, CMT transmits data using only path 1, com-
pleting the file transfer at time = 80 s. The CMT-PF sender transi-
tions path 2 to PF after the first timeout (at time = 6.5 s), and
transmits only heartbeats on path 2. Data transmission continues
on path 1 and the file transfer finishes at time = 18 s. This

Table 1
CMT vs. CMT-PF mean consecutive data timeouts on path 2.

Variant Path 2 cross-traffic (%) # of consecutive timeouts

2 3 4 5

CMT
70

0.49 0.02 0 0
CMT-PF 0 0 0 0
CMT

80
1.13 0.07 0 0

CMT-PF 0 0 0 0
CMT

90
3.73 0.60 0.09 0.02

CMT-PF 0.02 0.02 0 0
CMT

100
9.42 1.62 0.18 0.04

CMT-PF 0.04 0.04 0 0

Fig. 13. CMT vs. CMT-PF during asymmetric loss conditions.

Table 2
CMT vs. CMT-PF mean number of transmissions.

Variant Path 2 cross-traffic % Aggregate transmissions

Path 1 Path 2 Path 1/path 2

CMT
70

13,857 9486 1.5
CMT-PF 14,002 9344 1.5
CMT

80
15,530 7902 2.0

CMT-PF 16,029 7416 2.2
CMT

90
17,137 6401 2.7

CMT-PF 18,153 5362 3.4
CMT

100
18,093 5508 3.3

CMT-PF 20,318 3193 6.4

Fig. 14. Emulation topology for CMT vs. CMT-PF experiments.

Fig. 15. CMT vs. CMT-PF during permanent path failure.
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experiment confirms that the FreeBSD CMT-PF implementation be-
haves as expected during a path failure.

6.2. Symmetric and asymmetric loss conditions

Similar to the congestion scenarios in Section 5, the following
two experiments compare CMT and CMT-PF when the paths expe-
rience symmetric and asymmetric congestion levels, respectively.
Note that the emulation and simulation topologies assume differ-
ent loss models. Therefore, to facilitate a reasonable comparison
between the emulation and simulation results, the Bernoulli loss
rates for paths in Fig. 14 were adjusted to be similar to the mean
loss rates observed in the cross-traffic simulations.

In the first experiment, both paths experience symmetric loss
rates, varying from 0.3% to 14%. Fig. 16 plots the average goodput
(file size � transfer time) of CMT vs. CMT-PF with 5% error margin.
As observed in the simulations (Fig. 12), both CMT and CMT-PF
perform similarly at low loss rates, and this trend continues at
higher loss rates.

In the second experiment, paths 1 and 2 experience asymmetric
loss rates; loss rate on path 1 is fixed at 0.3% while path 2’s loss rate
varies from 0.3% to 14%. As observed in the simulations (Fig. 13), (i)
both CMT and CMT-PF perform similar under low loss rates
(Fig. 17), and (ii) as the paths become more asymmetric in their
loss conditions, CMT-PF performs similarly or slightly better than
CMT. However, the absolute goodput difference between CMT
and CMT-PF in Fig. 17 is not as significant as observed in Fig. 13,

likely because the emulations and simulations employ different
loss models. Nonetheless, our emulation experiments confirm that
CMT-PF performs on par or better but never worse than CMT during
congestion.

7. Summary

Using simulation, we demonstrated that retransmission policies
using CMT with a ‘‘potentially-failed” destination state (CMT-PF)
outperform CMT during permanent and short-term failures. During
permanent failures, CMT-PF employs a better failure detection pro-
cess even under aggressive failure detection thresholds and vary-
ing receive buffer constraints.

Investigations also revealed that the PF state transition does not
penalize CMT-PF performance during congestion. CMT-PF per-
forms as well as CMT when the paths experience symmetric con-
gestion levels, and similar or better than CMT when the paths
experience asymmetric congestion levels. These conclusions were
confirmed using real implementations of CMT and CMT-PF in
FreeBSD.

Since our findings demonstrate CMT-PF performs better or similar
but never worse than CMT, we recommend CMT be replaced by
CMT-PF in existing and future implementations and RFCs. Finally,
we note that other multipath transports (e.g., multipath TCP
[19]) may also suffer from rbuf blocking during path failures, and
the CMT-PF framework can be adapted to such transports to allevi-
ate the negative consequences of failure-induced rbuf blocking.
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