
Using One-way Communication Delay for In-order Arrival MPTCP Scheduling

Fan Yang
CISC Dept; University of Delaware

Newark, Delaware, USA 19716
yangfan@udel.edu

Paul Amer
CISC Dept; University of Delaware

Newark, Delaware, USA 19716
amer@udel.edu

Abstract—We use one-way communication delay of a TCP
connection to design an MPTCP scheduler that transmits
data out-of-order over multiple paths such that their arrival
is in-order. Our Linux implementation shows our proposed
scheduler can reduce receive buffer utilization, and increase
overall throughput when a small receive buffer size results in
receive buffer blocking.

Keywords-MPTCP; multipath TCP; scheduling; transport
protocol

I. INTRODUCTION

By simultaneously using multiple TCP paths between
peer end hosts [1], Multipath TCP (MPTCP) increases
robustness during times of path failure, and potentially
achieves higher end-to-end throughput by way of concurrent
multipath transfer (CMT) [4]. With its multiple paths, an
MPTCP connection has more available network resources
than a regular single TCP connection. To be fair, any
throughput gain by using MPTCP instead of TCP needs to
come from these increased available network resources, and
not from consuming more resources in the end hosts. For
a fair comparison, a host’s send/receive buffer sizes of an
MPTCP connection should be same as those of a single TCP
connection. Simply, the MPTCP send/receive buffers should
be used more efficiently.

Using a send buffer more efficiently means only main-
taining ‘necessary’ data in the send buffer. ‘Necessary’ data
are those packets which have been transmitted but not yet
received by the receiver. If a packet is received out-of-
order and the receiver guarantees not to discard it, having
the sender keep a copy of this packet in its send buffer is
‘unnecessary’. Non-Renegable Selective Acknowledgements
(NR-SACKs) have been introduced for both SCTP [5] and
MPTCP [6]. NR-SACKs allow a receiver to convey non-
renegable information of received out-of-order data back
to the corresponding sender. The sender in turn can im-
mediately remove NR-SACKed data from the send buffer
comfortably knowing the receiver has undertaken the respon-
sibility for that data’s eventual delivery.

Using a receive buffer more efficiently can be achieved by
decreasing the amount of received out-of-order data. Unlike
a TCP connection’s single path, an MPTCP connection
has multiple possibly asymmetric (i.e., different delays and

capacities) paths. Packets can arrive out-of-order not only
due to loss or network reordering, but also because of asym-
metric paths. Receive buffer blocking has been identified as a
problem for multipath data transfer [8, 9]. In the worst case,
out-of-order packets may occupy the entire receive buffer
causing the entire transmission flow to come to a halt [10].

Three sets of solutions have been proposed to overcome
receiver buffer blocking. The first set focuses on the receive
buffer, such as using larger receive buffers [8], or dividing
the receive buffer into equal blocks [11]. The second is
based on modified retransmission policies [9]. Using these
policies, a sender tries to provide the receiver with lost in-
order packets as fast as possible. The third defines schedulers
that transmit packets out-of-order such that they arrive in-
order at the receiver [10, 12].

In this work, we define the metric one-way communica-
tion delay, and design a scheduler of the third set based on
this metric. We implemented an estimation of this metric in
the Linux MPTCP kernel [13]. We show that our proposal
for in-order arrival scheduling based on one-way commu-
nication delay can reduce the receive buffer utilization, and
can increase overall throughput when receive buffer blocking
occurs for the selected topology. The tradeoff is the added
difficulty in practice to measure one-way communication
delay.

This paper is organized as follows. Section II defines
one-way communication delay and describes a method to
measure it. Section III contrasts two ways to implement the
scheduler while Section IV provides the pseudo-code of the
proposed scheduler implementation. Section V elaborates
our test-bed topology, and compares the performance of
MPTCP’s default scheduler versus our modified scheduler
under different scenarios. Section VI provides a brief con-
clusion.

II. ONE-WAY COMMUNICATION DELAY

Previous delay-aware schedulers have been based on
subflows’ smoothed RTTs (srtt), essentially using srtt/2
to approximate the one-way communication delay. This
assumption has two flaws. First, the forward path delay is
not necessarily equal to the return path delay. Second and
more importantly, TCP does not include any RTT samples
whenever there is a retransmitted TCP-PDU [14]. Thus, the



Figure 1. Example of CommD Measurement for MPTCP

srtt measurement in TCP does not reflect increases in one-
way communication delay due to losses in the connection.
The average one-way communication delay of a connection
with a shorter RTT but higher path loss rate can be greater
than that of a connection with longer RTT but lower loss
rate.

In MPTCP, when a TCP-PDU is received in-order at
a subflow’s receiver, the payload is delivered immediately
to the MPTCP receive buffer. To decrease the amount of
received out-of-order data in the MPTCP receive buffer, we
propose to focus on the time between when an MPTCP-
PDU is sent out on a subflow for the first time, and when
that PDU or a retransmission of that PDU first arrives
in-order at the subflow’s receive buffer (or the MPTCP
receive buffer) rather than just the subflows’ RTTs. This
time interval represents how long it takes for a sender to
truly communicate its data to the receiver, and is denoted
One-Way Communication Delay (CommD). CommD is
not the same as traditional one-way delay [15, 16, 17] which
measures propagation, transmission and queueing delays

without taking into account delays due to retransmissions.
A negative aspect of using CommD of a subflow is that

it is difficult to measure in practice since the metric is
distributed: the start and stop times of the CommD interval
occur on different machines.

In our proposed measurement scheme, the end point
clocks need not be synchronized. A scheduler only needs
to know which subflow has the shortest CommD rather
than its actual value, so the scheduler can easily measure
a CommD′ which is defined as CommD + C. Here, C is
the time difference between the end point clocks.

Let us present a hypothetical example to demonstrate
how to measure the CommD′ of a subflow in MPTCP.
Similar to TCP’s measurement of RTT, only one CommD′

measurement sample can be in progress at any time. We
denote CommDi

j and CommDi as the jth measured sample
and smoothed average CommD′ of subflow i, respectively.
Here, ‘sample’ and ‘smoothed’ have the analogous meaning
as those in RTT measurement. si is the time when a TCP-
PDU (seq: Ss - Se) is sent out for the first time, and



is recorded by subflow i’s sender as the start time of a
sample measurement. Subflow i’ receiver constantly updates
a variable ri to be the time when a PDU is received in-
order. The receiver echos the latest value of ri to the sender
by acknowledgements. The sender pairs the ri in the first
received acknowledgement (with acknowledgement number
≥ Se) with current si. Figure 1 shows an MPTCP connection
with two subflows. Two samples are collected for subflow
1, and only one sample is collected for subflow 2.

Note that, the accuracy of CommD′ measurement is
influenced by not only delayed acknowledgement but also
acknowledgement losses. Compared to RTT, CommD is
an one-way delay and accurately accounts for losses of a
connection.

III. IN-ORDER ARRIVAL SCHEDULING

The target of our scheduler is to transmit MPTCP-PDUs
on different subflows possibly out-of-order so that they
arrive in-order at the MPTCP receive buffer. To achieve
this target, two problems need to be solved: one is how to
select the next MPTCP-PDU to be scheduled, and the other
is on which subflow should this selected MPTCP-PDU be
transmitted.

Each MPTCP-PDU needs to be scheduled to a subflow
which will make it arrive in-order at the subflow’s receiver
in the shortest time. We define the time range between when
an MPTCP-PDU is scheduled to a subflow and when that
PDU arrives in-order at a subflow’s receive buffer as the
Delivery Delay (DeD). DeD differs from CommD. When we
talk about CommD, we refer to a TCP connection. While
we talk about DeD, we refer to a specific MPTCP-PDU.
Note that, for a subflow, ‘scheduled’ packets may not be
sent out immediately because the subflow may not have any
available cwnd at scheduling time. Let us use an example
to demonstrate the relationship between CommD and DeD.

If MPTCP-PDU i is ready to be scheduled, a scheduler
needs to compute DeDi

j for each subflow j and schedules
MPTCP-PDU i to the subflow with the shortest DeDi

j. If
subflow j has available cwnd, DeDi

j = CommDj. Otherwise,
DeDi

j = n ∗ RTTj + CommDj. Based on the number of not
yet sent packets in the subflow j’s send buffer, n(≥ 1)
RTTs are needed before subflow j has available cwnd. We
proposed a method to compute n in [12].

A straightforward answer to the first problem is “just
select the next not yet scheduled MPTCP-PDU in the
MPTCP send buffer”. Assume MPTCP-PDU i is selected
and scheduled to subflow j. MPTCP-PDU i is encapsulated
in a TCP-PDU and placed in subflow j’s send buffer. For
the default MPTCP scheduler [13], at a given time, only in-
flight packets have two copies (one copy is in the MPTCP
send buffer and the other is in the subflow send buffer).
However, for our proposed scheduler, at a given time, all
scheduled packets will have two copies. This first design
always schedules packets in-order. Doing so brings a result:

a more efficient usage of the receive buffer incurs a less
efficient usage of the send buffer. We cannot say this solution
is beneficial.

It is preferable to only maintain two copies of in-flight
packets, and still achieve in-order arrival. We need to modify
the answer to the first problem to be “select an unscheduled
MPTCP-PDU which can be sent out now”. For example,
MPTCP-PDU i is the next as yet unscheduled MPTCP-
PDU, and subflow j has the shortest DeDi

j. If subflow j has
available cwnd, MPTCP-PDU i is scheduled and sent out on
subflow j. If subflow j has no available cwnd, MPTCP-PDU
i is ‘assumed’ to be scheduled (what we refer to as ‘dummy
scheduling’) to subflow j but will not be copied to its send
buffer.

The scheduler continues to consider MPTCP-PDU i + 1
until an unscheduled MPTCP-PDU k is found and a subflow
l has both available cwnd and the shortest DeDk

l . Then,
MPTCP-PDU k is copied to the send buffer of subflow l and
transmitted immediately. Dummy scheduling is necessary to
maintain the correctness of the DeD calculation. Compared
to the first design, this design schedules packets out-of-
order. In the next section, we more formally specify the
implementation of this design.

IV. SCHEDULER IMPLEMENTATION

We implement this scheduler in Linux kernel based on the
Linux MPTCP [13]. Because of page limitation, the details
of the implementation can be found in [7].

V. PERFORMANCE EVALUATION

A. Test-bed Topology

Our test-bed depicted in Figure 2 consists of two Cisco
Linksys routers and two laptops running the latest MPTCP
kernel. We use Opportunistic Linked Increases Algorithm
(OLIA) as the default congestion control mechanism [2].
Both laptops are multihomed by using their tethered Ethernet
interface and a Cisco USB Ethernet adapter. An MPTCP
connection is established between the two laptops. Subflow
1 is established over the two tethered Ethernet interfaces,
while subflow 2 is established between the two Cisco USB
Ethernet adapters. Each Cisco USB Ethernet adapter comes
with a small internal buffer that can only queue up to
3 packets, thus the intermediate buffer size of subflow
2 is smaller than that of subflow 1. If the intermediate
buffers of both subflows are full, the RTT of subflow 2
will be shorter than that of subflow 1. We use FTP to
generate MPTCP traffic to confirm the in-order arrival of
our proposed scheduler.

B. Receive Buffer Usage

We hypothesized that our proposed scheduler would oc-
cupy less receive buffer space than the default scheduler. Fig-
ure 3 shows the size of occupied receive buffer size for the
default and our proposed schedulers) during the time interval



Table I
THROUGHPUT COMPARISON WITH REDUCED RECEIVE BUFFERS

Receive Buffer (KB) 889 796 707 619 530 442 354 265 177
Default Scheduler (MBps) 1.47 1.47 1.47 1.47 1.47 1.47 1.21 1.20 1.14
In-order Arrival Scheduler (MBps) 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47

Figure 2. Test-bed Topology

from 20s to 105s of data transfers. The default scheduler
can occupy as much as 342KB which is 38% of the entire
allocated receive buffer space. The default scheduler reaches
the steady state after 95s and occupies 83KB in average. Our
proposed scheduler always occupies 25KB, only 2.8% of the
allocated buffer space. Our hypothesis is confirmed and our
proposal can reduce the usage of the receive buffer for up
to 35.2% for this topology.

Figure 3. Receive Buffer Usage

C. Throughput with Reduced Receive Buffer

In an MPTCP data transfer, if the sender al-
ways has enough traffic to fill all the subflows (i.e.,
Sbuf ≥

∑
all subflow i w̄i (where w̄i is the average cwnd of

subflow i in equilibrium status)) and the receiver always
has enough space to accommodate out-of-order packets, the
scheduler cannot influence the throughput. However, when
the receive buffer decreases, we hypothesize our proposed
scheduler will provide greater throughput than the default
scheduler. Table I shows the throughput achieved by both
schedulers for a variety of receive buffer sizes. We can see
the throughput of the default scheduler starts decreasing
when the receive buffer is 354KB or smaller, while that
with our proposed scheduler remains steady even the receive
buffer is reduced to only 177KB.

VI. CONCLUSION AND FUTURE WORK

For our minimal experimentation, we show that, using
one-way communication delay, our proposal can reduce the
receive buffer utilization for up to 35.2% and increase the
throughput when the receive buffer size is smaller than
354KB for the selected topology. By scheduling packets out-
of-order, our proposed scheduler does not consume more
send buffer space than the default one.

Given these initial positive results, we are planing more
extensive testing to further evaluate using our metric of
one-way communication delay as a means of performing
out-of-order transmission scheduling for in-order arrival.
Additionally we are investigating the use of non-renegable
selective acknowledgments (NR-SACKs) using statistical
methods introduced in [3]. Our target is to make NR-SACKs
be added to MPTCP standard.

REFERENCES

[1] A. Ford, C. Raiciu, M. Handley, O. Bonaventure, TCP Extensions for Multipath
Operation with Multiple Addresses, RFC 6824, 06/2012

[2] R. Khalili, N. Gast, M. Popovic, U. Upadhyay, J.Y. Le Boudec, Non Pareto-
Optimality of MPTCP: Performance Issues and a Possible Solution, ACM
CoNEXT, 11/2012.

[3] C. Paasch, R. Khalili, O. Bonaventure, On the Benefits of Applying Experimental
Design to Improve MPTCP, ACM CoNEXT, 12/2013

[4] J. Iyengar, P. Amer, R. Stewart, Concurrent Multipath Transfer Using SCTP Mul-
tihoming over Independent End-to-end Paths, IEEE/ACM Trans on Networking,
2006

[5] P. Natarajan, N. Ekiz, E. Yilmaz, P. Amer, J. Iyengar, R. Stewart, Non-
Renegable Selective Acks (NR-SACKs) for SCTP, IEEE International Conference
on Network Protocols, Orlando, Florida, 10/2008

[6] F. Yang, P. Amer, Non-renegable Selective Acks for MPTCP, PAMS 2013,
Barcelona, Spain, 03/2013

[7] F. Yang, Improving the Performance of MPTCP, PhD Dissertation, University
of Delaware (in progress)

[8] C. Raiciu, C. Paasch, A. Ford, M. Honda, F. Duchene, O. Bonaventure, How
Hard Can it Be? Designing and Implementation a Deployable MPTCP, USENIX
NSDI, 2012

[9] J. Iyengar, P. Amer, R. Stewart, Retransmission Policies for CMT Using SCTP
Multihoming, IEEE ICON, Singapore, 11/2004

[10] G. Sarwar, R. Boreli, E. Lochin, A. Mifdaoui, G. Smith, DAPS: Intelligent
Delay-Aware Scheduling for Multipath Transport, ICC, Sydney, Australia,
06/2014

[11] H. Adhari, T. Dreibholz, M. Becke, E. Rathgeb, M. Tüxen, Evaluation of CMT
over Dissimilar Paths, PAMS 2011, Singapore, 09/2011

[12] F. Yang, Q. Wang, P. Amer, Out-of-order Transmission for In-order Arrival
Scheduling for MPTCP, PAMS 2014, Victoria, Canada, 05/2014

[13] MPTCP - Linux Kernel Implementation, http://mptcp.info.ucl.ac.be
[14] V. Paxson, M. Allman, J. Chu, M. Sargent, Computing TCP’s Retransmission

Timer, RFC 6298, 06/2011
[15] Q. Pan, X. Luo, H. Xiao, An Approach to Improve the Accuracy of One-Way

Delay Measurements, Communications in Computer and Information Science,
2011

[16] A. Hernandez, E. Magana, One-way Delay Measurement and Characterization,
ICNS 2007, Pamplona, Spain, 08/2007

[17] J. Hee, C. Yoo, One-way delay estimation and its application, Computer
Communications, 2005


