
1

Rethinking End-to-End Failover
with Transport Layer Multihoming

Armando L. Caro, Jr.* Paul D. Amer Randall R. Stewart

Internetwork Research Department Protocol Engineering Lab Internet Technologies Division

BBN Technologies University of Delaware Cisco Systems

acaro@bbn.com amer@cis.udel.edu rrs@cisco.com

Abstract— Using the application of bulk data transfer, we
investigate end-to-end failover mechanisms and thresholds for
transport protocols that support multihoming (e.g., SCTP). First,
we evaluate temporary failovers, and measure the tradeoff
between aggressive (i.e., lower) thresholds and spurious failovers.
We surprisingly find that spurious failovers do not degrade
performance, and often actually improve goodput regardless
of the paths’ characteristics (bandwidth, delay, and loss rate).
A permanent failover mechanism tries to avoid throttling the
sending rate by not returning to a primary path when it recovers.
We demonstrate that such a mechanism can be beneficial if the
sender can estimate each path’s RTT and loss rate. We advocate
a new approach to end-to-end failover that temporarily redirects
traffic to an alternate path on the first sign of a potential failure
(i.e., a timeout) on the primary path, but conservatively proceeds
with failure detection of the primary path in the background.

Résuḿe—En appliquant les transferts de donńees par rafale,
nous étudions des ḿecanismes de bout en bout et les seuils de
basculement dans les protocoles de transport (par exemple SCTP)
qui supportent le multihoming. Nous évaluons tout d’abord des
basculements temporaires et mesurons le compromis entre les
seuils agressifs (les plus bas) et les faux basculements. Nous
avons eu la surprise de dcouvrir que loin de d́egrader les
performances, les faux basculements aḿeliorent souvent le d́ebit
utile et ce indépendamment des caract́eristiques des chemins
(bande passant, d́elai, et taux de perte). Un ḿecanisme de
basculement permanent tente d’́eviter de ralentir le taux d’
émission en ne retournant pasà un chemin primaire lors d’un
recouvrement d’ erreur. Nous d́emontrons le b́enéfice qu’apporte
un tel mécanisme à un utilisateur capable d’estimer le RTT
et le taux de perte de chaque chemin. Nous préconisons une
nouvelle approche de basculement de bout en bout qui redirige
temporairement le trafic vers un chemin alternatif dès le premier
signe d’une panne potentielle (expiration de temporisateur) sur
le chemin primaire, mais traite de manìere conservative et en
arri ère plan la détection de panne du chemin principal.

I. I NTRODUCTION

A host is multihomed if it can be addressed by multiple IP
addresses, as is the case when the host has multiple network

*This research results from the first author’s PhD dissertation while with
the Protocol Engineering Lab, CIS Department, University ofDelaware.

Prepared through collaborative participation in the Communications and
Networks Consortium sponsored by the U.S. Army Research Laboratory under
the Collaborative Technology Alliance Program, Cooperative Agreement
DAAD19-01-2-0011. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright
notation thereon.

Supported in part by the University Research Program of Cisco Systems,
Inc.

interfaces. Multihoming can be expected to be the rule rather
than the exception in the near future as cheaper network
interfaces and Internet access motivate content providersto
have simultaneous connectivity through multiple ISPs, and
more home users install wired and wireless connections for
added flexibility and fault tolerance. Furthermore, wireless
devices may be simultaneously connected through multiple
access technologies, such as wireless LANs (e.g., 802.11) and
cellular networks (e.g., GPRS, CDMA).

Our research focuses on transport layer techniques that ex-
ploit host multihoming at the transport layer to provide end-to-
end fault tolerance. While fault tolerance can be addressed at
other layers, the transport layer is in the best position to detect
failure (i.e., loss of connectivity) and make failover decisions.
After all, the transport layer is the lowest layer responsible for
end-to-end quality of service, and has knowledge about path
characteristics.

TCP does not support multihoming; it binds to only one
network address at each end of a connection. When TCP was
designed, network interfaces were expensive components, and
hence multihoming was beyond the ken of research. However,
newer transport protocols are emerging that support multihom-
ing. The Stream Control Transmission Protocol (SCTP) [1], [2]
and the Datagram Congestion Control Protocol (DCCP) [3]
support multihoming at the transport layer. The motivation
for multihoming in DCCP is mobility [4], while SCTP is
driven by a broader and more generic application base – fault
tolerance. We use SCTP in our experiments primarily because
of its relative maturity and our focus on fault tolerance, but
we believe the results and conclusions presented in this paper
apply in general to reliable SACK-based transport protocols
that support multihoming.

SCTP allows binding of one transport layerassociation
(SCTP’s term for a connection) to multiple IP addresses at
each end of the association. This binding gives an SCTP
sender more than one destination address for transmitting
data to a multihomed receiver. However, SCTP currently uses
multihoming for fault tolerance purposes only, and not for
concurrent multipath transfer [5]. Each endpoint chooses a
single peer IP address as the primary destination address to
transmit new data during normal transmission. If the primary
destination address becomes unreachable, the SCTP sender
detects the failure, and temporarilyfails over to using an
alternate destination address without requiring action bythe

2

user or application layer.
SCTP has a tunable failover threshold that RFC2960 recom-

mends should be set to a conservative value of six consecutive
timeouts, which translates to a failure detection time of at
least 63 seconds – unacceptable for many applications. In this
paper, we evaluate non-failure lossy conditions to measure
the tradeoff between more aggressive failover (i.e., lower
thresholds) and spurious failovers. We focus on the process
of detecting failure, which may be a correct detection or
a spurious detection. Regardless of the failover threshold
value used, the behavior after correctly detecting a loss of
connectivity is the same. Thus, an aggresive failover threshold
is clearly better in failure scenarios, but may cause spurious
failovers in non-failure lossy conditions. Hence, our study
shows how different failover values affect performance in the
case of a spurious failure detection. We surprisingly find that
spurious failovers do not degrade performance, and often ac-
tually improve goodput regardless of the paths’ characteristics
(bandwidth, delay, and loss rate).

Since failovers are temporary, traffic migrates back to the
primary path when the primary path recovers. This migration
throttles the sending rate, because upon returning to usingthe
primary path, the sender must enter slow start with a cwnd of
one MTU. To avoid this slowdown, the concept of permanent
failovers dictates that a sender make the failover permanent
if the primary path does not respond within some threshold
amount of time. We find that permanent failovers can improve
performance if a sender can accurately estimate each path’s
RTT and loss rate to make an informed decision.

We advocate a new approach to end-to-end failover that
temporarily redirects traffic to an alternate path on the first sign
of a potential failure (i.e., a timeout) on the primary path,but
conservatively proceeds with failure detection of the primary
path in the background.

Section II describes SCTP’s current failover mechanism.
Section III presents the tradeoffs between more aggressive
failover and spurious failovers. Section IV introduces and
evaluates a modified failover mechanism that allows failovers
to become permanent. We conclude the paper in Section V.

II. SCTP’S FAILOVER MECHANISM

Each endpoint uses both implicit and explicit probes to
dynamically maintain knowledge about the reachability of its
peer’s IP addresses. Transmitted data serve as implicit probes
to a destination (generally, the primary destination), while
explicit probes, calledheartbeats, periodically test reachability
and measure the RTT of idle destinations. Each timeout (for
data or a heartbeat) on a particular destination incrementsan
error count for that destination. A destination’s error count is
cleared whenever data or a heartbeat sent to that destination
is acked. A destination “fails” should its error countexceed
the failover threshold, called Path.Max.Retrans (PMR).

Figure 1 specifies SCTP’s current failover mechanism for
n destinations. The association begins in Phase I, where
destinationDi is the primary destination,Di is in the active
state, and all new data are sent toDi. WhenDi fails, “failover”
occurs and the association moves into Phase II.

Di primary
Di active
new Di

Phase I
Di primary
Di failed
new Dj

Phase I IDi’ s PMR exceeded

Di responds

Dj’ s PMR exceeded

[j = (j+1) % n]

[i = 0],
[j = 1]

Fig. 1. FSM for current failover mechanism

In Phase II,Di remains the primary destination, but in
a failed state; all new data are redirected to an alternate
destination,Dj . If more than one alternate destination address
exists, RFC2960 leaves the alternate destination selection
method unspecified. In this work, we assume a round-robin
selection method. IfDj ’s error count should exceed PMR,
a failover occurs to yet another alternate destination and the
association stays in Phase II.

While in Phase II, the sender explicitly probes the primary
destination,Di, with periodic heartbeats. IfDi ever responds
(i.e., recovers), failover is cancelled and the association returns
to Phase I.

Failure detection time depends on three tunable parameters,
which RFC2960 recommends to be set as: (1) minimum RTO
= 1s, (2) maximum RTO= 60s, and (2) PMR= 5. Using
these defaults, the first timeout towards failure detectiontakes
1s in the best case. Then, the exponential back-off procedure
doubles the RTO on each subsequent timeout towards failure
detection. With RFC2960’s current recommended PMR= 5,
six consecutive timeouts are needed to detect failure, taking
at least1 + 2 + 4 + 8 + 16 + 32 = 63s. In the worst case, the
first timeout takes the maximum of 60s, and failure detection
requires6 ∗ 60 = 360s!

III. R EDUCING PMR

Reducing PMR decreases failure detection time, but in-
creases the possibility ofspurious failover, where a sender
mistakenly concludes a failure has occurred. In this section, we
measure the tradeoff between lower PMR settings and spurious
failovers. The goal is to determine how much failure detection
time can be improved without having detrimental effects on
goodput in non-failure scenarios.

III.1. Methodology

We evaluate different PMR settings using the University
of Delaware’s SCTP module [6] for the ns-2 network sim-
ulator [7]. Figure 2 illustrates the network topology. The
multihomed sender,A, has two paths (labeledPrimary and
Alternate) to the multihomed receiver,B. The primary path’s
core link has a 10Mbps bandwidth and a 25ms one-way delay.
The alternate path’s core link has a 10Mbps bandwidth and
one-way delays of 25ms, 85ms, and 500ms. Each router,R,
uses drop-tail queuing and is attached to a dual-homed node
(A or B) via an edge link with 100Mbps bandwidth and 10ms
one-way delay.

The end-to-end RTTs are 90ms, 210ms, and 1040ms, which
sample reasonable delays on the Internet today. Although

3

0 – 10 % loss

Sender Receiver
R

R

R

R

10
0M

bp
s

10m
s

100Mbps10ms

10
0M

bp
s

10
ms

10Mbps, 25 ms
0 – 10 % loss

10Mbps, { 25,85,500} ms

A 100Mbps
10ms

B

Alternate

Primary

Fig. 2. Simulation network topology

1040ms may seem large, flows passing through cellular net-
works often experience RTTs as high as 1 or more sec-
onds [8]–[10]. In any case, the delays are selected to demon-
strate relative performance, and we believe our results and
conclusions are independent of the actual bandwidth and delay
configurations.

Note that we do not simulate different link bandwidths.
Reducing the alternate path’s bandwidth simply increases the
RTT, which we already independently control.

We introduce uniform loss on these paths (0-10% each
way) at the core links. We realize that using cross-traffic to
cause congestion would more realistically simulate loss, but
we found the simulation time for such a technique became
impractical. On the other hand, uniform loss is a simple, yet
sufficient model to provide insight about the effectiveness
of different PMR settings accurately detecting failure. To
evaluate if Figure 2’s loss model was reasonable, we compared
representative simulations using a cross-traffic model, shown
in [11], to produce self-similar, bursty traffic. Although the
absolute results differed for those examples compared, relative
relationships remained consistent – leading to the same con-
clusions. We therefore proceed with the simpler uniform loss
model, and refer the interested reader to [11] for an explanation
of the cross-traffic model.

In our simulations, the sender uses a different retransmission
policy than specified in RFC2960. The sender transmits (a)
fast retransmissions to the same peer IP address as new data
transmissions, and (b) timeout retransmissions to a non-failed
alternate peer IP address (if one exists). This policy has been
shown to perform better [11], and has been proposed to the
IETF as a change to SCTP [12]. In our simulations, our
Multiple Fast Retransmit algorithm [11] is also used to reduce
the number of timeouts.

To observe long term averages, we simulate 80MB file
transfers with PMR= {0, 1, 2, 3, 4, 5}. In this study, no link
or interface failures are introduced; hence, all failoversthat do
occur are spurious. Each simulation has four parameters:

1) primary path’s loss rate
2) alternate path’s loss rate
3) alternate path’s core link delay
4) PMR setting

III.2. Spurious Failovers

Figure 3 plots, for each PMR setting, the fraction of trans-
fers that experience at least one spurious failover at primary

path loss rates 0-10%. The graph aggregates all alternate path
loss rates for each particular primary path loss rate.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

F
ra

ct
io

n
of

 T
ra

ns
fe

rs
 w

ith
 S

pu
rio

us
 F

ai
lo

ve
rs

Primary Path Loss Rate (%)

PMR = 0
PMR = 1
PMR = 2
PMR = 3
PMR = 4
PMR = 5

Fig. 3. Fraction of transfers with spurious failovers

Since PMR= 0 triggers a failover on a single timeout,
this setting provides little robustness against spurious failovers
at loss rates greater than 1%. At the other extreme, PMR=
5 experiences nearly no spurious failovers at loss rates less
than 8%. As the PMR increases from 0-5, their corresponding
curves shift to the right by a loss rate of about 2%. This trend
implies a simple linear relationship between the PMR setting
and the robustness against spurious failovers. However, the
slopes of the curves slowly flatten as the PMR increases, which
argues that the robustness increases by more than a constant
for each PMR setting.

The frequency of spurious failovers is also important when
considering the robustness of various PMR settings. Figure4
plots the cumulative distribution function (CDF) of the number
of spurious failovers for primary path loss rates 2-10%. The
CDFs for 1% primary path loss rate are omitted, because PMR
= {1, 2, 3, 4, 5} experience no spurious failovers, and PMR
= 0 experiences spurious failovers in only 5% of the transfers.
Again, each graph in Figure 4 aggregates all alternate path loss
rates for each primary path loss rate.

At a 2% primary path loss rate, 53% of transfers with PMR
= 0 are completely robust against spurious failovers, and 84%
of transfers spuriously failover at most once. When the loss
rate increases to 3%, less than 1% of transfers with PMR= 0
experience no spurious failovers. Then with 4% loss, only 1%
of transfers experience less than ten spurious failovers.

As expected, PMR= 1 is more robust against spurious
failovers than PMR= 0. At 3% loss, 91% of the transfers
do not spuriously failover. Furthermore, at 4% loss, 57% of
the transfers are free of spurious failovers, and no transfers
experience more than four failovers. When the loss rate is
8%, less than 1% of transfers observe less than ten spurious
failovers.

This trend continues for PMR= {2, 3, 4, 5}. More than
25% of the transfers observe spurious failovers at{6, 8, 10}%
loss for PMR = {2, 3, 4}. With PMR = 5, only 3% and
6% of transfers have spurious failovers at 9% and 10% loss,
respectively.

To conclude, determining which failover threshold is “robust
enough” largely depends on the networking environment. For

4

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 T
ra

ns
fe

rs

Number of Spurious Failovers

Primary Path Loss Rate: 2%

PMR = 0
PMR = 1
PMR = 2
PMR = 3
PMR = 4
PMR = 5

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 T
ra

ns
fe

rs

Number of Spurious Failovers

Primary Path Loss Rate: 3%

PMR = 0
PMR = 1
PMR = 2
PMR = 3
PMR = 4
PMR = 5

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 T
ra

ns
fe

rs

Number of Spurious Failovers

Primary Path Loss Rate: 4%

PMR = 0
PMR = 1
PMR = 2
PMR = 3
PMR = 4
PMR = 5

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 T
ra

ns
fe

rs

Number of Spurious Failovers

Primary Path Loss Rate: 5%

PMR = 0
PMR = 1
PMR = 2
PMR = 3
PMR = 4
PMR = 5

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 T
ra

ns
fe

rs

Number of Spurious Failovers

Primary Path Loss Rate: 6%

PMR = 0
PMR = 1
PMR = 2
PMR = 3
PMR = 4
PMR = 5

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 T
ra

ns
fe

rs

Number of Spurious Failovers

Primary Path Loss Rate: 7%

PMR = 0
PMR = 1
PMR = 2
PMR = 3
PMR = 4
PMR = 5

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 T
ra

ns
fe

rs

Number of Spurious Failovers

Primary Path Loss Rate: 8%

PMR = 0
PMR = 1
PMR = 2
PMR = 3
PMR = 4
PMR = 5

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 T
ra

ns
fe

rs

Number of Spurious Failovers

Primary Path Loss Rate: 9%

PMR = 0
PMR = 1
PMR = 2
PMR = 3
PMR = 4
PMR = 5

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 T
ra

ns
fe

rs

Number of Spurious Failovers

Primary Path Loss Rate: 10%

PMR = 0
PMR = 1
PMR = 2
PMR = 3
PMR = 4
PMR = 5

Fig. 4. CDF of the number of spurious failovers for primary pathloss rates 2-10%

example, Zhang et al. [13] use end-to-end Internet measure-
ments to report that 84% of their traces experienced less than
a 1% loss rate (i.e., essentially “lossless”), and 15% of their
traces had loss rates of 1-10% (with an average of 4%). Thus,
to be completely robust against spurious failovers on 99% of
paths, PMR should be set to 6 (even PMR= 5 spuriously
fails over 6% of the time at 10% loss), but that translates to
a failover time of 123 seconds!Therefore, we would conclude
that PMR= 3 is robust enough for the Internet. This setting
translates to a 15 second failover time, and is robust for all
“lossless” paths and the average “lossy” path.

III.3. Symmetric Path Delays

While the frequency of spurious failovers is important in
providing intuition about overall behavior, of greater impor-
tance is how these spurious failovers affect performance. We
collected results for 0-10% loss on the primary and alternate
paths, but due to space constraints in this paper, we do
not include all results. The optimal transfer time (i.e., the
primary path loss rate is 0%) of an 80MB file is 122.3

seconds. Figure 5 plots the average 80MB file transfer time
for {3, 5, 8, 10}% primary path loss, a 90ms primary path
RTT, and a 90ms alternate path RTT. Each graph has a fixed
primary path loss rate, and varies the alternate path loss rate
on thex-axis from 0-10%. Note that the scale of they-axis
is different for each primary path loss rate to allow the reader
to observe a performance difference between the different
threshold settings at each primary path loss rate.

Counter to our intuition, we observe that the PMR setting
has little effect on the goodput for primary path loss rates
less than 8%. Above 8%, the results show that lower (!) PMR
settings begin to improve performance, with PMR= 0 provid-
ing the most improvement. That is, surprisingly, being more
aggressive with failover often provides improved performance,
even when the alternate path loss rate is higher than that of
the primary path. For example, reducing the PMR from 5 to
0 improves the performance by 4% when the primary and
alternate path loss rates are 8% and 10%, respectively. These
counter-intuitive results are explained later in Section III.7.

5

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 3%

 0

 200

 400

 600

 800

 1000

 1200

 1400

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 5%

 0

 500

 1000

 1500

 2000

 2500

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 8%

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 10%

PMR = 0
PMR = 1

PMR = 2
PMR = 3

PMR = 4
PMR = 5

Fig. 5. 90ms primary path RTT and 90ms alternate path RTT

III.4. Asymmetric Path Delays

We are also surprised to find that being aggressive with
failover does not change with asymmetric path delays. We
expected larger alternate path RTTs to degrade performance
of lower PMR settings. However, we find that the results
remain nearly constant regardless of the alternate path delay.
Figure 6 plots the results for{3, 5, 8, 10}% primary path
loss, a 90ms primary path RTT, and a 1040ms alternate
path RTT. Comparing these results with those in Figure 5
shows that the alternate path’s longer RTT does not affect
the performance. Even though the alternate path’s RTT is
more than ten times longer than the primary path’s, PMR
= 0 outperforms other PMR settings. Again, these unexpected
results will be explained in Section III.7.

III.5. Three Paths

To determine if our conclusions hold when the number of
paths between the endpoints increases, we add an additional
alternate path to the topology in Figure 2. We configure
both alternate paths to have the same properties (bandwidths,
delays, and loss rates). Otherwise, the number of simulation
parameters would be unmanageable. The results (not shown)
are consistent with those for two paths. That is, the relation-
ships between the different PMR settings remain the same. We
expect that the trends will remain the same for configurations
with more than three paths between endpoints.

III.6. Dormant State Behavior

As the finite state machine in Figure 1 shows, if a sender
fails over to an alternate destination that in turn fails, the
sender will failover to yet another alternate destination.If
needed, the sender continues to failover to other alternatedes-
tinations until all alternate destinations are exhausted.When
all destinations have failed, the association enters thedormant
state[14], not represented in Figure 1.

RFC2960 does not specify dormant state behavior. Imple-
mentations are provided the freedom of choosing what action
a sender takes when all destinations fail. The association
leaves the dormant state when one of the destinations (primary
or alternate) responds. Otherwise, the association is aborted
when the association exceeds the Association.Max.Retrans
threshold, which is an SCTP parameter to limit the number
of consecutive timeouts across all destinations.

Dormant state behavior is generally considered unimportant,
because high PMR settings make it unlikely to reach. However,
if PMR is lowered to 0, as our results thus far argue should be
done, entering the dormant state becomes more likely. Thus,
we consider three different dormant state behaviors to evaluate
how they impact behavior: (1) Dormant LastDest, (2) Dormant
Primary, and (3) Dormant Hop.

The Dormant LastDest behavior dictates that when the
dormant state is entered, the sender continues sending new data
to whichever destination was last used in Phase II. The other
destinations still are periodically probed in the background
with heartbeats. If the primary destination replies, the dormant
state is exited, and the association returns to Phase I. If an

6

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 3%

 0

 200

 400

 600

 800

 1000

 1200

 1400

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 5%

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 8%

 0

 1000

 2000

 3000

 4000

 5000

 6000

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 10%

PMR = 0
PMR = 1

PMR = 2
PMR = 3

PMR = 4
PMR = 5

Fig. 6. 90ms primary path RTT and 1040ms alternate path RTT

alternate destination replies, the association returns toPhase
II with the destination that replied asDj .

The Dormant Primary behavior differs only slightly from
the Dormant LastDest behavior. Instead of continually sending
new data to whichever destination was last used in Phase II, the
sender continually sends new data to the primary destination.

The Dormant Hop behavior, shown in Figure 7, attempts to
be more aggressive in finding an active destination. While in
the dormant state, the sender transmits new data to a different
destination after each timeout. The sender cycles through
all the destinations in a round-robin fashion until either a
destination responds, or the association aborts.

[i = 0],
[j = 1] Di primary

Di active
new Di

Phase I
Di primary
Di failed
new Dj

Phase I IDi’ s PMR exceeded

Di responds

Dj’ s PMR exceeded & j≠n

[j = (j+1) % n]
Phase II IDj’ s PMR exceeded & j=n

Di responds

[j = (j+1) % n]

Di primary
all dests failed

new Dj

Timeout on Dj

[j = (j+1) % n]

Dj responds & j≠i

Fig. 7. FSM with Dormant Hop behavior

The results in Sections III.2 through III.5 use the Dormant
Hop behavior, but we also evaluate the performance of the
other two dormant state behaviors. We find that dormant
state behavior does not affect goodput, and the trend reported
in those sections remains consistent for all dormant state
behaviors (results not shown).

III.7. Explaining the Results

Our results document that aggressive failover settings (in
particular, PMR= 0) improve performance regardless of the
path loss rates, path delays, and/or dormant state behavior
– a result counter to our intuition. We spent considerable
time investigating this surprising conclusion, which we now
explain.

The underlying advantage of aggressive failover is that an
association spends less time blocked during failure detection.
With PMR = 0 for example, a single timeout moves new
data transmission to the alternate path while the primary
destination is probed with heartbeats. The primary destination
may respond on the first probe, or it may not respond for
a long time. In either case, data transmission continues on
the alternate path, and migrates back to the primary path if
and when the primary destination responds. Less aggressive
failover settings (e.g., PMR= 5) cause a sender to wait longer
before sending new data to the primary destination; in the
meantime, essentially no useful communication takes place.
Therefore, even if the alternate path has a higher loss rate
and/or longer RTT, the sender always has the potential to gain
(without risking doing worse) by failing over sooner.

The remainder of this section presents four detailed time-
out scenarios (shown in Figure 8) for PMR= {0, 1} to
demonstrate the merits of more aggressive failover. They all
begin with TSN 1 (i.e., packet 1) being lost in transit to the
primary destination and subsequently timing out. For PMR

7

= 0, the sender immediately fails over, retransmits TSN 1 to
the alternate destination, and sends a heartbeat to the primary
destination. For PMR= 1, the sender retransmits TSN 1 to the
alternate destination as the retransmission policy dictates (see
Section III.1), and sends TSN 2 to the primary destination. We
compare the behavior of these two PMR settings by following
the details of four (of many) possible scenarios beyond this
point.

III.7.1. Scenario 1: The first packet sent to the primary
destination and the first packet sent to the alternate destination
following TSN 1’s timeout are both delivered successfully.

• PMR = 0 The failover is cancelled when the heartbeat
is acked. Although the figure shows both TSN 1 and
the heartbeat are acked at the same time, it is a race
condition. If the heartbeat gets acked first (as shown in
Figure 8’s Scenario 1), then TSN 2 is sent on the primary
and normal data transfer continues from this point. If TSN
1 gets acked first (not shown), then TSNs 2-3 are sent to
the alternate destination, TSN 4 is sent to the primary
destination when the heartbeat is acked, and normal data
transfer continues to the primary destination.

• PMR = 1 As both TSN 1 and 2 are sent at about
the same time, again a race condition occurs. If TSN
1 arrives at the receiver first, the receiver’s delayed ack
algorithm causes a single cumulative ack (denoted SACK
2) to be generated for both TSN 1 and 2 (as shown in
Figure 8). When this ack arrives, TSNs 3-4 are sent to the
primary destination and normal data transfer continues to
the primary destination. If TSN 2 arrives at the receiver
first, the receiver generates two acks (not shown). The
first selectively acks TSN 2 with a missing report for
TSN 1, and the second cumulatively acks TSN 2. Upon
receiving the first, the sender sends TSN 3 to the primary
destination and normal data transfer continues to the
primary destination.

This scenario presents a case where both PMR settings
perform roughly similar in our experiments. LetRTT1 and
RTT2 be the primary path’s RTT and the alternate path’s
RTT, respectively. IfRTT1 ≤ RTT2 (as is the case in our
experiments), then PMR= 1 has a marginal advantage in that
it sends one more packet than PMR= 0.

On the other hand, ifRTT1 > RTT2 (not shown in Figure 8
and not the case in our experiments), then PMR= 0 gets ahead
of PMR = 1 in the overall transfer. The amount by which
PMR = 0 gets ahead depends on the ratio of the two paths’
RTTs. However, sinceRTT1 ≤ RTT2 in our experiments, we
omit detailed analysis of PMR= 0’s performance gain when
RTT1 > RTT2.

III.7.2. Scenario 2:The first packet sent to the primary des-
tination following TSN 1’s timeout is successfully delivered,
and the first packet sent to the alternate destination is lost.

• PMR = 0 The failover is cancelled when the heartbeat
is acked. TSN 2 is sent to the primary destination.
When TSN 2 is selectively acked, TSN 3 is then sent
to the primary destination. The sender continues sending

one packet at a time to the primary destination until
TSN 1’s retransmission times out. TSN 1 is then re-
retransmitted to the primary destination and normal data
transfer continues to the primary destination.

• PMR = 1 When TSN 2 is selectively acked, TSN 3 is
sent to the primary destination, and when it is selectively
acked, TSN 4 is sent to the primary destination. The
sender continues sending one packet at a time to the
primary destination until TSN 1’s retransmission times
out. TSN 1 is then re-retransmitted to the primary desti-
nation and normal data transfer continues to the primary
destination.

Again, both PMR settings performroughly similar. PMR
= 1 has only a marginal advantage in that it sends one more
packet than PMR= 0. This scenario shows that loss on the
alternate path alone has little effect on the performance gap
between PMR settings.

III.7.3. Scenario 3:The first packet sent to the primary des-
tination following TSN 1’s timeout is lost, and the first packet
sent to the alternate destination is delivered successfully.

• PMR = 0 When TSN 1 is acked, TSNs 2-3 are sent to the
alternate destination, and normal data transfer continues
temporarily to the alternate destination. Eventually, the
heartbeat times out, and another heartbeat is then sent to
the primary destination. Since this timeout is the second
consecutive timeout on the primary destination, it will
take at least 2 seconds to expire (assuming RTO.Min is 1
second). Once the second heartbeat is successfully acked,
the sender cancels the failover, and resumes normal data
transmission to the primary destination.

• PMR = 1 When TSN 1 is acked, the sender is temporar-
ily blocked and does not send any new data. When TSN
2 times out (again, at least 2 seconds later), the sender
fails over to the alternate destination, retransmits TSN 2
to the alternate destination, and sends a heartbeat to the
primary destination. From this point, normal data transfer
continues to the alternate destination until the heartbeat
is acked and the failover is cancelled. Then the sender
resumes normal data transfer to the primary destination.

In Scenario 3, PMR= 0 may potentially perform signifi-
cantly better than PMR= 1. With PMR= 0, the sender trans-
mits new data on the alternate path until the sender receives
a heartbeat ack from the primary destination. We estimate the
number of packets,d, sent to the alternate destination during
this period as follows. From the time TSN 1 is retransmitted,
the time it takes to receive a heartbeat ack from the primary
destination is(RTO2

1 + RTT1), whereRTO2
1 is the primary

path’s RTO for the second consecutive timeout, andRTT1 is
the primary path’s RTT. The number of alternate path round
trips, r, that will take place during this period is

r = min

[

1,
RTO2

1 + RTT1

RTT2

]

(1)

whereRTT2 is the alternate path’s RTT. Note that since at
least one packet (TSN 1) is successfully sent on the alternate
path,r must be at least 1.

8

PMR = 0 PMR = 1

Scenario 1
��������
�

���

��	
�����

�

���

��������� ����������������

�����

!

"
"
"

�
�

#$%$%&#&
'

'

()*+,

-

./0

1

2

345647%

8
8
8

$
$

.494:;47# .494:;47#

Scenario 2
<=>=>?<?

@
@
@

A

BCA

DEFGH

I

JKL

MNOPQRS
TSU
V

W

A

XYWZY[>

\]̂_̀

abc

abd

@
@
@

JKL=
=

=
?

JYeYfgY[< JYeYfgY[<

hijijkhk

l
l
l

m

mn
opqrstu
vuw
x

y

m

z{y|{}j

~����

���

���

l
l
l

opqrstu
v�w
�

���

���i
k

i
i

�{�{��{}h �{�{��{}h

Scenario 3
��������
�

��

�������

��

�����

�

 ¡¢£¤

¥
¦

§
§
§

�
©̈
ª

§
§
§

«¬

«¬�
�

�
�

«�®�̄°��� «�®�̄°���

±²³²³́±́
µ

¶·̧¹·º³

µ

»¼½¾¿

À

À

Á

ÂÃÄ

ÂÃÄ

ÅÆ

ÇÈÉÊË

Ì
Ì
Ì

²
²

´
²

Â·Í·ÎÏ·º± Â·Í·ÎÏ·º±

Scenario 4
ÐÑÒÑÒÓÐÓ
Ô

ÕÖ

×ØÙÚØÛÒ

ÕÖ

ÜÝÞßà

áâ
ã

ä
ä
ä

Ô
åæç

Ô

èéßàê

ë
ì

ä
ä
äÙ
åæç

åæçÑ
Ñ

Ó
Ñ

Ñ
Ó

åØíØîïØÛÐ åØíØîïØÛÐ

ðñòñòóðó
ô

õö÷øöùò

ô

ô

úûüýþ

ÿ

�

úûüý�

�

�
�

�
�
�

���

���ñ
ñ

ó
ñ

���ñ
ó

�ö�ö	
öùð �ö�ö	
öùð

Fig. 8. Timeout scenarios

9

To estimate the number of packets,d, sent to the alternate
destination duringr alternate path round trips, we first assume
that no loss occurs on the alternate path during this period.
Hence, the transfer on the alternate path exits slow start when
cwnd exceeds ssthresh. Using the slow start cwnd growth
model from [15], the last alternate path cwnd before exiting
slow start is

cwnd = ssthresh = init cwnd ·

(

1 +
1

b

)rss−1

(2)

whereinit cwnd is the initial cwnd,b is the number packets
per ack the receiver’s delayed ack algorithm uses, andrss is
the number of alternate path round trips spent in slow start.
Since init cwnd = 1, b = 2, andrss ≤ r, we can solve for
rss to arrive at

rss = max
[

r, 1 + log 3

2

(ssthresh)
]

(3)

Using a component of the slow start data transfer model
from [15], the number of packets sent during the firstrss

round trips on the alternate path is

dss = 1 ·

(

3

2

)rss

− 1
3

2
− 1

= 2

[(

3

2

)rss

− 1

]

(4)

The remaining round trips,rca, are the number of round
trips the transfer on the alternate path spends in congestion
avoidance:

rca = r − rss (5)

During congestion avoidance, cwnd grows by 1 MTU each
round trip. Thus, we usecwndi to denote the sender’s cwnd
during thei-th round trip in congestion avoidance:

cwndi+1 = cwndi + 1 (6)

Then since a sender begins in congestion avoidance with
cwnd = ssthresh + 1, we have:

cwndi+1 = ssthresh + i (7)

Thus, the number of data packets sent during congestion
avoidance is

dca =

rca
∑

i=1

(ssthresh + i)

= (rca · ssthresh) +

rca
∑

i=1

i

= (rca · ssthresh) +
rca + (rca)2

2
(8)

Combining (4) and (8), we estimate the number of suc-
cessful data packets that PMR= 0 sends to the alternate
destination inr alternate path round trips as

d = dss + dca (9)

Since PMR= 1 only sends only one packet to the alternate
destination inr alternate path round trips, the difference in
the number of packets that PMR= 0 and PMR= 1 send in

this scenario is(d − 1). Therefore, the relative performance
difference between PMR= 0 and PMR= 1 in this scenario
depends onr. When r = 1, it follows that d = 1, and thus
PMR = 0 performs no better than PMR= 1. However, when
r > 1, PMR = 0 outperforms PMR= 1 sinced > 1.

This analysis assumes that the alternate path does not ex-
perience loss, but we now relax this constraint by considering
alternate path losses after TSN 1 (the case where TSN 1 is
lost is presented next in Scenario 4). Without getting into
the details of such scenarios (there are an infinite number),it
suffices to say that our estimate ofd in (9) is an overestimate
when loss is introduced. However, the fact thatd ≥ 1 remains
true. Therefore, it remains that, in this scenario, PMR= 0
performs no worse than PMR= 1, and may outperform PMR
= 1 by as much as(d − 1) packets, depending onr and the
loss conditions on the alternate path.

III.7.4. Scenario 4: The first packet sent to the primary
destination and the first packet sent to the alternate destination
following TSN 1’s timeout are both lost.

• PMR = 0 TSN 1’s retransmission times out first, and
TSN 1 is re-retransmitted to the primary destination.
When TSN 1 is acked, the failover is cancelled and
normal data transfer continues to the primary destination
from this point. Note that the heartbeat times out later,
but does not affect the data transfer.

• PMR = 1 TSN 1’s retransmission times out first, and
TSN 1 is re-retransmitted to the primary destination.
When TSN 1 is acked, the failover is cancelled, but
the sender cannot send any new data until TSN 2 times
out. Once TSN 2 times out, the sender retransmits it
to the alternate destination, and sends TSN 3 to the
primary destination. From this point, normal data transfer
continues to the primary destination.

Similar to Scenario 3, this scenario shows that PMR= 0
outperforms PMR= 1 when the primary path experiences
consecutive timeouts. Again, the improvement is based onr,
but in this scenario,r is the number of primary path round
trips defined as

r = min

[

1,
RTO2

1 − RTO1
2

RTT1

]

(10)

where RTO2
1 is the primary path’s RTO for the second

consecutive timeout,RTO1
2 is the alternate path’s RTO, and

RTT1 is the primary path’s RTT. Using this value ofr in (3)
and (5), we can use (9) to estimate the number of successful
data packets,d, that PMR= 0 sends to the primary destination
by the timeRTO1

2 expires. Therefore, this scenario also shows
PMR = 0 performing no worse than PMR= 1, and possibly
outperforming PMR= 1 by as much as(d − 1) packets.

The chances of encountering each of these four scenarios
depends on the loss conditions of the two paths. Regardless of
which scenario is encountered when a timeout occurs on the
primary path, lower PMR settings (PMR= 0 in particular)
provide a transfer with more to gain (potentially several more
packets successfully transferred) and less to lose (at most, one
less packet successfully transferred). Therefore, lower PMR

10

settings do not degrade performance and may actually improve
performance.

IV. PERMANENT FAILOVERS

When failovers are temporary, traffic migrates back to the
primary path when it recovers. This migration throttles the
sending rate, because the sender returns to slow start’s cwnd of
one MTU. To avoid this slowdown, we introduce a major po-
tential change to SCTP – the concept of “permanent failover”
using aChange Primary Threshold (CPT). Permanent failover
is based on a two-level threshold failover mechanism proposed
in [16]. Once failover occurs, the sender can make the failover
permanent (i.e., change the primary destination) if more than
CPT heartbeat probes sent to the primary destination time out.

The specification for permanent failovers, shown in Fig-
ure 9, adds two new transitions to the finite state machine in
Figure 7. While the association is in Phase II or III, if the
primary destination’s CPT threshold is exceeded, the primary
destination is changed to the alternate destination currently in
use. In Phase II, the association returns to Phase I with the
new primary destination. In Phase III, however, the association
remains in Phase III when a new primary destination is set;
that is, changing the primary destination does not change the
status of any destination, and thus the association remainsin
the dormant state.

[i = 0],
[j = 1] Di primary

Di active
new Di

Phase I
Di primary
Di failed
new Dj

Phase I IDi’ s PMR exceeded

Di responds

Dj’ s PMR exceeded & j≠n

[j = (j+1) % n]
Phase II IDj’ s PMR exceeded & j=n

Di responds

[j = (j+1) % n]

Di primary
all dests failed

new Dj

Timeout on Dj

[j = (j+1) % n]

Di’ sCPT exceeded
[i = j], [j = (j+1) % n]

Di’ sCPT exceeded
[i = j], [j = (j+1) % n]

Dj responds & j≠i

Fig. 9. FSM for permanent failovers

We evaluate different CPT settings using the same method-
ology explained in Section III, except here we only focus on
PMR = 0 and the Dormant Hop behavior.

IV.1. Symmetric Path Delays

Figure 10 plots the average 80MB file transfer time for
{3, 5, 8, 10}% primary path loss, a 90ms primary path RTT,
and a 90ms alternate path RTT. When the alternate path loss
rate is lower than the primary path loss rate, more aggressive
permanent failover (i.e., lower CPT settings) dramatically
improve performance. On the flip side, the performance is
degraded relatively little when the alternate path loss rate
is higher than that of the primary path. For example, when
the primary path loss rate is 5%, reducing CPT from 5 to
0 improves performance by as much as 88% and degrades
performance by at most 9%.

Since paths with lower loss rates are less likely to exceed
CPT, associations with lower CPT settings tend to spend less

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 3%

 0

 200

 400

 600

 800

 1000

 1200

 1400

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 5%

 0

 500

 1000

 1500

 2000

 2500

 3000

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 8%

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 10%

CPT = 0
CPT = 1

CPT = 2
CPT = 3

CPT = 4
CPT = 5

Fig. 10. PMR= 0, 90ms primary path RTT, and 90ms alternate path RTT

11

time on the higher loss rate path. The intuition is as follows.
If a sender permanently fails over to a path with a higher
loss rate, the performance may degrade, but only temporarily.
Eventually, CPT will be exceeded again and the sender will
switch back to the lower loss rate path.Therefore, when the
path delays are symmetric, the most aggressive permanent
failover (i.e., CPT= 0) provides the best performance.

IV.2. Asymmetric Path Delays

Figure 10 shows that lowering CPT improves performance
when path delays are symmetric, but what happens when path
delays are asymmetric? Figure 11 plots the average 80MB file
transfer for{3, 5, 8, 10} primary path loss, a 90ms primary
path RTT, and a 210ms alternate path RTT. These results
show that lower CPT settingsmay improve performance,
but only when the alternate path’s loss rate ismuch lower
than the primary path loss rate. Otherwise, aggressive perma-
nent failover degrades performance significantly. For example,
when the primary path loss rate is 5%, reducing CPT from 5
to 0 improves performance 76% and 23% for 0% and 1%
alternate path loss rates, respectively. On the other hand,the
performance suffers (by as much as 54%) for all other alternate
path loss rates. Thus, to benefit from a change primary, the
difference in path delays requires an alternate path loss rate
low enough to offset the alternate path’s relatively large delay.

Note that worst performance for aggressive permanent
failover occurs when both paths’ loss rates are similar. As
expected, aggressive permanent failover’s performance im-
proves as the alternate path’s loss rate decreases relativeto
the primary’s. Surprisingly, however, aggressive permanent
failover’s performance also improves as the alternate path’s
loss rate increases relative to the primary’s. As explainedin
Section IV.1, lower CPT settings allows an association to
reduce the time spent on the higher loss rate path. Therefore,
as the alternate path’s loss rate increases, the association will
spend less time on the alternate path, thereby reducing the
negative effects of its longer RTT.

Recognize that the results in Figure 11 present only one
perspective with respect to asymmetric path delays. We show
in Figure 12 that if the association begins with the longer
delay path as the primary, lower CPT settings are advantageous
regardless of the paths’ loss rates. When starting on the longer
delay path, the sender has only to gain with more aggressive
permanent failovers. If the alternate path’s loss rate is lower,
the association will spend more time on the shorter delay path.
Otherwise, the association will spend more time on the longer
delay path, which it would have anyway with higher CPT
settings.

These results seem to demonstrate that failovers should be
permanent only when the alternate path has a shorter RTT,
but both RTT and loss conditions need to be considered in the
decision process. A path with shorter RTT and higher loss rate
may provide lower throughput than a path with longer RTT
and lower loss rate. With an estimated RTT and loss rate (p) for
each path, a sender can apply Padhye’s simplified throughput
model, 1

RTT

√

3

4p
, from [17] to compare paths and determine

if a permanent failover would be advantageous. Future work

 0

 200

 400

 600

 800

 1000

 1200

 1400

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 3%

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 5%

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 8%

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 10%

CPT = 0
CPT = 1

CPT = 2
CPT = 3

CPT = 4
CPT = 5

Fig. 11. PMR= 0, 90ms primary path RTT, and 210ms alternate path RTT

12

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 3%

 0

 500

 1000

 1500

 2000

 2500

 3000

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 5%

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 8%

 0

 1000

 2000

 3000

 4000

 5000

 6000

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 10%

CPT = 0
CPT = 1

CPT = 2
CPT = 3

CPT = 4
CPT = 5

Fig. 12. PMR= 0, 210ms primary path RTT, and 90ms alternate path RTT

is to develop a mechanism to measure the loss rate of an idle
alternate path without introducing unnecessary overhead.

V. CONCLUSION

We investigated the affects of reducing SCTP’s failure
detection threshold, Path.Max.Retrans (PMR), to less than
the currently specified six consecutive timeouts. As expected,
the number of spurious failovers increased as PMR was
lowered, but we found that spurious failovers do not degrade
performance. In fact, we found that aggressive failover settings
have little effect on long term goodput averages for primary
path loss rates less than 8%. At higher primary path loss rates,
lower PMR settings improve goodput (even when the loss rate
and/or delay is higher on the alternate path). Furthermore,
since lower PMR settings provide less blocking during timeout
events, short transfers may benefit even at low primary path
loss rates.

We also explored the concept of permanent failovers to
further improve performance by avoiding a slowdown of the
sending rate after a failed path recovers. We found that that
permanent failovers can improve performance if a sender has
an estimate of each path’s RTT and loss rate to make an
informed decision.

Our results lead us to advocate a new approach to end-
to-end failover. We have shown that aggressively failing over
can significantly improve performance even if failure has not
occurred. However, accurate failure detection is important for
performance. When aggressively migrating traffic, a sender
would benefit from avoiding destinations which have actually
failed.

Figure 13 specifies our proposed failover mechanism forn

destinations. The association begins in Phase I, withDi as
the primary destination,Di in the active state, and all new
data sent toDi. On a single timeout onDi, the association
transitions to Phase II, whereDi remains the primary desti-
nation, Di is probed with heartbeats, and new data are sent
to an alternate destination (Dj). If Di’s probes cause PMR
to be exceeded, the association transitions to Phase III, where
Di is marked failed. While in Phase II or III, each timeout
redirects new data to a different destination (skipping failed
destinations). Any timeDi responds, the association returns
to Phase I.

[i = 0],
[j = 1] Di primary

Di active
new Di

Phase I
Di primary
Di probe
new Dj

Phase I ITimeout on Di

Di responds

Timeout on Dj

Phase II I
Di’ s PMR exceeded

Di responds

[j = (j+1) % n]

Di primary

new Dj

Timeout on Dj

[j = (j+1) % n]

Di failed

Fig. 13. FSM for proposed failover mechanism

This proposed mechanism provides improved performance
without sacrificing failure detection accuracy. Its aggressive
traffic migration design, however, may draw concern. First,
traditional thinking is that frequent traffic redirection is

13

counter-productive, but that intuition comes from research in
congestion-based routing algorithms. Migrating traffic back-
and-forth on an end-to-end basis does not suffer the side-
effects (e.g., reordering, inaccurate RTT estimates, etc.) that
are introduced, for example, when an intermediate router “flip-
flops” traffic between routes. These side-effects are avoided
because each time a flow moves to a new path, it begins
from slow start as if it were a new flow. Furthermore, SCTP
maintains path information (e.g., RTT, cwnd, ssthresh, etc.)
per destination.

Second, “global failover synchronization” becomes possible
with an aggressive traffic migration design. A cycle is formed
when a bottleneck router drops a burst of packets, causing
multiple flows to timeout and move their traffic to an alternate
path. These flows then simultaneously probe their primary
destination, and if successful, simultaneously migrate back to
their primary path and increase their cwnds up to the point
where a burst of drops occurs again.

However, we argue that global failover synchronization is
no worse than the existing well-known phenomenon of global
TCP congestion control synchronization [18]. In both cases,
synchronized timeouts cause synchronized slow starts and
cwnd evolution, but in the case of failover, the cwnd evolution
may occur on alternate paths that do not share bottlenecks. If
so, a single flow’s traffic migration appears no different than
a new end-to-end flow, because each time a flow migrates to
a new path, the flow begins from slow start with a cwnd of
one MTU. In fact, since new flows may begin with a cwnd as
large as four MTUs [19], a single flow’s traffic migration is
more conservative than a new flow.

On the other hand, if multiple flows do migrate to alternate
paths that share a bottleneck, these flows will not disturb the
network any more than a synchronized TCP timeout would.
In both cases, multiple flows begin from slow start with
cwnd = one MTU, and simultaneously grow their cwnd. The
only difference being that in the case of failover, the cwnd
evolution happens to be on a different path than where the
synchronized timeout occurred. In any case, AQM techniques
eliminate global synchronization [18], which also includes
global failover synchronization.

One limitation of our study is that the evaluation is indif-
ferent to the causes of packet loss. However, packet losses
may occur due to a variety of reasons, some of which include
network congestion, transmission errors, and transient loss of
connectivity. Each cause has inherent characteristics that may
skew the results. In future work, it would be interesting to
isolate and investigate how these particular scenarios influence
the results.

ACKNOWLEDGEMENTS

The authors acknowledge Ryan Bickhart, Mark Hufe, Ja-
nardhan Iyengar, Sourabh Ladha, and the anonymous review-
ers for their valuable comments and suggestions.

DISCLAIMER

The views and conclusions contained in this document
are those of the authors and should not be interpreted as

representing the official policies, either expressed or implied,
of the Army Research Laboratory or the U. S. Government.

REFERENCES

[1] Stewart, (R.), Xie, (Q.), Morneault, (K.), Sharp, (C.),Schwarzbauer,
(H.), Taylor, (T.), Rytina, (I.), Kalla, (M.), Zhang, (L.),and Paxson,
(V.), “Stream Control Transmission Protocol,” RFC2960, Oct. 2000.

[2] Caro, (A.), Iyengar, (J.), Amer, (P.), Ladha, (S.), Heinz, (G.), and Shah,
(K.), “SCTP: A Proposed Standard for Robust Internet Data Transport,”
IEEE Computer, vol. 36, no. 11, pp. 56–63, Nov. 2003.

[3] Kohler, (E.), Handley, (M.), and Floyd, (S.), “DatagramCongestion
Control Protocol (DCCP),” draft-ietf-dccp-spec-11.txt,Mar. 2005, (work
in progress).

[4] Kohler, (E.), “Datagram Congestion Control Protocol Mobility and
Multihoming,” draft-kohler-dccp-mobility-00.txt, July 2004, (work in
progress).

[5] Iyengar, (J.), Shah, (K.), Amer, (P.), and Stewart, (R.),“Concurrent
Multipath Transfer Using SCTP Multihoming,” inSPECTS 2004, San
Jose, California, July 2004.

[6] Caro, (A.) and Iyengar, (J.), “ns-2 SCTP module,”
http://pel.cis.udel.edu.

[7] Berkeley, (UC), LBL, USC/ISI, and Parc, (Xerox), “ns-2 documentation
and software,” Version 2.26, 2003,www.isi.edu/nsnam/ns.

[8] Gurtov, (A.), Passoja, (M.), Aalto, (O.), and Raitola, (M.), “Multi-Layer
Protocol Tracing in a GPRS Network,” inInternational Conference on
Ubiquitous Computing, Sept. 2002.

[9] Inamura, (H.), Montenegro, (G.), Ludwig, (R.), Gurtov, (A.), and Khafi-
zov, (F.), “TCP over Second (2.5G) and Third (3G) GenerationWireless
Networks,” RFC3481, Feb. 2003.

[10] Jayaram, (R.) and Rhee, (I.), “A Case for Delay-based Congestion
Control for CDMA 2.5G Networks,” inInternational Conference on
Ubiquitous Computing, Oct. 2003.

[11] Caro, (A.), Amer, (P.), and Stewart, (R.), “Retransmission Policies
for Multihomed Transport Protocols,”Computer Communications, (to
appear).

[12] Stewart, (R.), Arias-Rodriguez, (I.), Poon, (K.), Caro, (A.), and Tuexen,
(M.), “Stream Control Transmission Protocol (SCTP) Specification
Errata and Issues,” draft-ietf-tsvwg-sctpimpguide-15.txt, Feb. 2005,
(work in progress).

[13] Zhang, (Y.), Paxson, (V.), and Shenker, (S.), “ On the Constancy of
Internet Path Properties,” inCM SIGCOMM Internet Measurement
Workshop (IMW 2001), San Francisco, CA, Nov. 2001.

[14] Stewart, (R.) and Xie, (Q.), Stream Control Transmission Protocol
(SCTP): A Reference Guide, Addison Wesley, New York, NY, 2001.

[15] Cardwell, (N.), Savage, (S.), and Anderson, (T.), “Modeling TCP
Latency,” in IEEE INFOCOM 2000, Tel Aviv, Israel, Mar. 2000.

[16] Caro, (A.), Iyengar, (J.), Amer, (P.), Heinz, (G.), and Stewart, (R.),
“Using SCTP Multihoming for Fault Tolerance and Load Balancing,”
ACM Computer Communication Review, vol. 32, no. 3, pp. 23, July
2002, ACM SIGCOMM 2002 Poster.

[17] Padhye, (J.), Firoiu, (V.), Towsley, (D.), and Kurose,(J.), “Modeling
TCP Throughput: A Simple Model and its Empirical Validation,”in
ACM SIGCOMM 1998, Vancouver, CA, 1998, pp. 303–314.

[18] Braden, (B.), Clark, (D.), Crowcroft, (J.), Davie, (B.), Deering, (S.),
Estrin, (D.), Floyd, (S.), Jacobson, (V.), Minshall, (G.),Partridge, (C.),
Peterson, (L.), Ramakrishnan, (K.), Shenker, (S.), Wroclawski, (J.), and
Zhang, (L.), “Recommendations on Queue Management and Congestion
Avoidance in the Internet,” RFC2309, IETF, Apr. 1998.

[19] Allman, (M.), Floyd, (S.), and Partridge, (C.), “Increasing TCP’s Initial
Window,” RFC3390, IETF, Oct. 2002.

[20] Caro, (A.), “End-to-End Fault Tolerance Using Transport Layer Mul-
tihoming,” Phd dissertation, CIS Dept, University of Delaware, Aug.
2005.

