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ABSTRACT
This paper presents results from performance experiments that
demonstrate and quantify performance improvements when a
PO/R transport service is used instead of an ordered/reliable
service (O/R e.g., TCP) or an unordered/unreliable service (e.g.,
UDP). We first describe the Remote Multimedia Document
Retrieval system (ReMDoR),  an experimental application
developed by the authors  to  evaluate  the performance of  remote
document  re t r ieval  over  a  var ie ty  of  t ranspor t  protocols .  We then
provide a  detai led analysis  of  experiments  comparing O/R  service
to PO/R service for retrieval of a multimedia document. Our
results show that between 5% and 10% loss, user-perceivable
improvements in progressive display are obtained when PO/R
service is used. These results suggest that when packet losses
occur in an underlying packet-switched network, transport
services providing reliable delivery over independent streams
(such the emerging Internet protocol SCTP) are beneficial for
retrieval of streaming multimedia.
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1. INTRODUCTION
1.1 Graceful degradation of multimedia
documents over lossy networks.
Many systems now exist that allow authors to construct pre-
orchestrated multimedia documents. One of the most popular
commercial  systems is  Macromedia Director.  The proceedings of
the IEEE and ACM Multimedia conferences contain examples of
research systems; examples include [ 14,15,16].  Multimedia
documents consist of objects such as still images, text, audio clips
and video clips, which are prearranged according to a temporal
scenario. Various schemes exist for expressing temporal
scenarios [l]. During the playback of such a document, object
presentation proceeds according to this temporal scenario until
some event occurs which stops or resets it--for example, a user
interaction point is reached, or a user presses a pause button.
Typically, a multimedia workstation with sufficient CPU,
memory, and I/O capabilities can present a document in
compliance wi th  i t s  temporal  scenar io ,  provided that  the  channel
delivering the information is ordered and error-free.
However ,  suppose the  document  is  s tored on a  remote  t i le  server ,
and the channel delivering this information is the Internet. In this
case, network errors and delays may wreak havoc with attempts to
present the document correctly.
We propose that in such situations, it is appropriate to provide for
graceful degradation of the multimedia document presentation.
Graceful degradation is helpful in multimedia documents where
not all objects have equal importance, or the same quality-of-
service requirements; that is, some objects are essential to
document content, while others are nice to have, but optional.

Graceful degradation is also helpful when some objects must be
presented in a specific order, while other objects can be presented
in an order different from their transmission order, with no loss of
qual i ty .  For  example,  in  a  document  descr ibing a  s imple repair  to
a  p iece  of  equipment ,  “s tep  1”  should  be  presented  before  “s tep
2”.  Now, suppose the same document  also contains  three images
tha t  should  be  presented  roughly  s imul taneous ly .  I f  two of  them
show up, and one has to be retransmitted, in many cases it is
desirable to go ahead and present the images that arrived while
waiting for the retransmission of the missing image.

Given that we want to provide for graceful degradation, what
transport protocol should be used for multimedia objects? We
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argue that classic transport services such as TCP and UDP are ill
suited to this application, and investigate partial order/partial
reliability transport service as an alternative.

1.2 Partial Order/Partial Reliability
Transport Service
Partially Ordered, Reliable (PO/R) Transport Service bridges the
gap between two traditional forms of transport service:

l Ordered/Reliable (O/R) service, such as the Internet’s
Transmiss ion Control  Protocol  (TCP),  and

l Unordered/Unreliable (U/U) service, such as the
Internet’s User Datagram Protocol (UDP)

An application using partially-ordered service defines a partial
order, PO, over the objects to be communicated, and provides a
representat ion of  PO to  the  t ranspor t  l ayer .  Objec ts  submi t ted  by
the sending application may then be delivered to the receiving
application in any delivery order that is a linear extension, LE, of
P O . The ordered set LE is a linear extension of PO if it is a linear
ordering of the elements in PO such that (x<y  in PO 3 x<y in
LE).  The basic premise of partially-ordered service is that there
are applications that have some message sequencing requirements,
but can allow other messages to arrive in any of several orders.
For these applications, partially ordered delivery may provide less
delay, and use fewer memory resources than ordered delivery.
The premise of this work is that some applications-in particular,
multimedia applications-require services that lie in between
these two extremes.  Unordered/Unrel iable  service  is  insuff ic ient
for these applications, yet Ordered/Reliable service is too
restrictive and may cause the application to pay a performance
penalty. The goal is to determine whether better Quality of
Service (QoS)  tradeoffs and/or performance improvements can be
obtained by using a transport service in between these two
extremes-one that  i s  be t ter  matched to  an  appl ica t ion’s  needs .
Previous investigations of PO/R transport service used analytic
and simulation modeling to investigate the performance of an
abstract PO/R transport service called Partial Order Connection
POC)  L&3,41. By contrast, this paper presents results of
performance experiments designed to measure the extent  to which
Partially Ordered/Reliable transport service provides performance
benefits for a real multimedia application.
Sect ion 2  presents  an  overview two exper imenta l  sys tems used to
evaluate PO/R transport service. Section 3 presents the results of
performance experiments comparing PO/R and O/R  service for
retrieval of a multimedia document. Section 4 describes related
work. Section 5 closes the paper with some remarks about the
relevance of this work to the emerging Internet transport protocol
SCTP (RFC2960) [5].

2. ReMDoR
The ReMDoR system developed by the authors provides users
with the capability to create multimedia documents and place
them on a server for remote retrieval and display via the Internet.
The purposes of the ReMDoR system are:

l to show how a PO/R transport service facilitates
coarse-grained synchronizat ion of  mul t imedia  objects
and graceful degradation during times of network
stress,

l to demonstrate the mechanisms needed to implement
a PO/R transport protocol in practice, and

. to demonstrate and quantify performance
improvements  when a  PO/R t ranspor t  service  i s  used
instead of an ordered/reliable service (e.g., TCP) or an
unordered/unrel iable  service  (e .g . ,  UDP).  [6,7,8].

2.1 Architecture
ReMDoR’s  basic model is similar to that of the World Wide Web;
documents are available on a server and are retrieved via a
browser.  The user  interface of  the ReMDoR browser,  is  s imilar  to
that  of  famil iar  web browsers .  However ,  unl ike Web documents ,
ReMDoR documents are temporal-they have a t ime dimension
requir ing  synchroniza t ion  of  e lements  such as  audio ,  v ideo,  still-
images, text, pauses, and interactions.
ReMDoR has capabilities that support experimentation with
innovative protocols and data compression techniques, such as:

(1)

(2)

(3)

(4)

the ability to select from a wide range of transport services
and transport service features (via the UTL framework
described in Section 2.2),

the ability to record statistics about performance on an
object-by-object basis,
features to automate repeated performance experiments,  and
the abi l i ty  to  easi ly  incorporate  new image formats ,  such as

formats required for  network-conscious image compression
research [9].

Figure 1 illustrates that the ReMDoR architecture has six
components :

(1) The syntax and semantics of a language for specifying
multimedia documents. We call the language used to specify
ReMDoR documents Prototype Multimedia Specification
Language (PMSL). PMSL was  in t roduced  in  [6]..
(2, 3) A document compiler that takes a PMSL document as
input, parses it, and produces as output a compiled multimedia
document  in  the  Prototype Multimedia File Format (PMFF). A
PMFF f i le  is  an ASCII  f i le  containing information that  the server
can use to efficiently packetize the multimedia information, and
send it via a partially-ordered transport protocol.

(4, 5) A server that can respond to requests for documents using a
protocol. We ca l l  our  pro tocol  Prototype Multimedia Transfer
Protocol (PMTP), by analogy with HTTP. Our server is similar in
role to that of a Web server.
(6) A browser providing a GUI allowing the user to request from
a server a PMFF file from a server via its URL. The browser
parses a URL specification of a PMFF document, formats it as a
PMTP request, sends the request to the server, interprets the data
returned as  mult imedia elements:  text ,  audio,  vector  graphics  and
bitmap graphics (images), and presents elements to the user.

2.2 The Universal Transport Library (UTL)
Early in the development of ReMDoR, we recognized that
designing an application that can run over multiple transport
protocols presents certain difficulties. Suppose we want to
compare a PO/R  transport service such as POC [6,10]  to
traditional transport services: e.g., ordered/reliable service, and
unordered/unre l iable  service . We might imagine that we could
compare  POC to  TCP and UDP.  However ,  i t  turns  out  that  TCP
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and UDP differ in many ways other than order and reliability.
Here are  just three examples:

Figure 1: ReMDoR system architecture

. TCP is connection oriented, while UDP is
connect ionless .  Connect ion-or iented communicat ion
requires a different set of system calls to set up
communicat ion,  and clean up afterwards.

. TCP is byte-stream oriented, while UDP is message-
oriented. T O achieve message-oriented
communication over TCP, a considerable amount of
extra code most be added to the application.

l TCP provides flow control and congestion control;
UDP does not.

If we want to write an application that can operate over both TCP
and UDP, as well as experimental protocols such as POC, we will
likely have to write a great deal of special-case code. Special-case
code  tha t  depends  on  speci f ic  t ranspor t  layers  i s  unappeal ing  for
several reasons. First it is time-consuming and error prone.
Second, writing special-case code makes experimentation with
additional transport services difficult, since with this approach,
each time we want  to add a new transport service to the
experiment, the application most be modified. Finally, it opens
the experiments up to criticism that the comparison is unfair, since
the  appl ica t ion  code  be ing  executed  depends  s ign i f ican t ly  on  the
transport protocol.
To overcome these difficulties, we developed the Universal
Transport Library (UTL). UTL is a library of transport layer
software that can be linked in with an application, to provide a
range  of  t ranspor t  serv ices  through a  s ingle  API . The  t ranspor t
services provided in UTL include simple wrappers for TCP and
UDP, as well as a range of PO/R  transport services. The transport
layer functionality in UTL is implemented at user-level rather than
in the kernel, and sits in between the application and the regular
UDP and TCP services provided by the operating system.
UTL eliminates the oeed for special-case code in the application
to handle particular transport protocols. The protocol is specified
as a parameter to the function that listens for connections (in the
case of a server) or  the function that requests a connection (in the
case  of a client.)
UTL provides  benef i ts  both  for  developers  of  new t ranspor t  layer
services, and developers of applications that want to take

advantage of various kinds of transport layer service. For
developers of transport layer services and protocols, UTL
provides a framework for rapid prototyping  of transport layer
implementat ions .  For  appl ica t ion wri ters ,  UTL provides  a  l ibrary
of various transport services that can be accessed through a single
API .

3. EXPERIMENTAL RESULTS
3.1 Experimental Design
In  th i s  sec t ion ,  we  descr ibe  an exper iment  involving the  re t r ieval
of adocument called parisScene  .pmsl.

3.1.1  The parisScenel.pmsl  document
In the parisScenel.pmsl  document, the entire French
national anthem is played in parallel with two  image streams. The
first  image stream is a chain of maps zooming in to the city of
Paris. In parallel with the maps, and with the audio, a series of
eight postage-stamp sized scenes from Paris is presented. Images
I through 4 are presented, by default, sequentially; this ordering is
accomplished by specifying each image as a successor  o f  a
particular part of the linear audio stream. However, no
precedence relationship exists among images l-4, which means
that when partial order service is used, if an image is delayed by a
retransmission, later images can be presented without delay.
Images 5-g follow images l-4, with 5 following I, 6 following 2,
etc.
After the anthem, map sequence, and scenes have all been
presented, an audio clip proclaims “Welcome to Paris”, in parallel
with the presentation of the final map of Paris. A “continue”
but ton is  then presented.  The ReMDoR browser  and experiment
scripts allow the experimenter to simulate the pressing of continue
buttons by a human user after a fixed, specified delay; for this
experiment ,  the  but ton is  a lways pressed exact ly  one second af ter
It appears .

3.1.2 Transport protocols compared
This experiment compares the performance of ReMDoR over t w o
protocols  from the UTL framework described in Sect ion 2.2;
namely,  R3 and T3.

R3 provides a partially ordered/reliable (PO/R)  service and, will
therefore deliver messages out-of-order when permitted to do so
by the document specification. By contrast, TZ  enforces strict
order-of- t ransmission del ivery,  s imilar  to  TCP.

However, apart from the difference in ordering constraints, R3
and T3 are  designed to be as much alike as possible to eliminate
factors other than ordering from affecting the outcome of the
experiment. Both R3 and T3  use the same code for providing a
reliable, flow-controlled, message delivery service on top of UDP.
Both protocol implementations use  the same routines to
implement TCP-friendly congestion-control algorithms, and
emulate important TCP features such as RTf  estimation, fast-
retransmit and fast-recovery (as in TCP Ram).  R3 and TZ  both
use the partial order features of UTL to emulate Object
Composition Petri-Net based multimedia synchronization as
described in [6]  and  thus have equal packet header sizes.

3.1.3 Experiment parameters
Table 1 presents our experiment parameters. Given that there are
2 window sizes, 3 loss rates, and 2 transport services. there are
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twelve experiments in al l .  For each of the twelve,  we performed rates greater than zero, progressive display of bytes
40 runs, for a total of 480 repetitions. and pixels will be better when using PO/R service

Table 1. Experiment Parameters rather than O/R service.

Experiment Number
Parameter 1 2
Transoorl  Services PO/R vs. O/R

Pkt  Loss Rates
Network
Bit rate

0%,5%,10%

Ref lector

512Kbw

3. I .4 Number of runs performed
We discarded runs in which there was packet loss during the
initial connection establishment. Our reason for doing is that
given the  in i t ia l  RTO values  used in  most  TCP implementa t ions
(which values we also use in UTL) cause a delay of several
seconds i f  there is  a  packet  t imeout  before the t rue RTT has been
measured. Inclusion of these runs can distort the results in ways
that  are  ent i re ly  unre la ted  to  the  use  of  ordered vs .  unordered or
partially ordered transport. We claim that discarding such runs:

(1) introduces no bias, since the initial connection
establishment is equivalent regardless of the ordering
used, and we applied the same discard criteria to all
experiments regardless of the ordering being used, and

(2) provides a more accurate comparison among protocols,
since it reduces variance unrelated to the aspect of
protocol  performance being s tudied.

Table 2 shows the number of observations on which each
experiment  is  based.  In  no case do we report  any numbers  based
on fewer than 26 repetitions.

Table 2.  Number of runs

3.1.5 Experiment Hypotheses
Our hy rpotheses  for these experiments were as follows:

. Hypothesis  1:  No difference at  0% l o s s :  There
will be no significant gain or penalty for using
PO/R service vs. O/R service at 0% loss from the
standpoint of (a) progressive display of
bytes/pixels, (b) or in any of the audio metrics.

. Hypothesis  2:  Better graceful  degradation of
progressive display of bytes and pixels: At loss

Hypothesis 3: Gain increases with loss rate: In
terms of the graceful  degradation of the
progressive display of bytes and pixels, there will
be increasing gains from using PO/R service vs.
O/R service at 10% loss vs 5% loss.

Hypothesis  4:  Better graceful  degradation of
audio: At loss rates greater than zero, all three
audio metrics will degrade more slowly when
PO/R service is used rather than O/R service.

Hypothesis 5: Throughput will  improve with
larger receive window sizes: As the  window s ize
is increased from 4096 bytes to 8192 bytes, the
throughput will improve for both PO/R and O/R
service.

3.2 Results for Bytes and Pixels
In this section, we report results for the progressive delivery of
bytes to the application, as well as the progressive display of
pixels to the end user.

3.2. I Observations for Bytes and Pixels
Figures  2  through 7 and Figure  21 show performance graphs f rom
Experiments 1 and 2. We make the following observations
concerning these graphs:

(1) At 0% loss there is little difference between the bytes
and pixels graphs for PO/R service vs. O/R service.

Observation (1) is visible in Figures 2 and 5, where the lines
representing PO/R  and O/R service are directly on top of one
another .  This  offers  support  for  Hypothesis  l (a) .  Observat ion (1)
can also be seen in Figure 21 in the lines representing 0% loss.
Each point in Figure 21 shows the difference between the average
performance of PO/R and the average performance of O/R  at  each
point in time. These points are plotted for all three loss rates, for
bo th  PO/R and  O/R. We observe that the line in each graph that
represents  the performance at  0% loss remains close to the x-axis
throughput  the  en t i re  presenta t ion  of  the  document ,  showing tha t
the performance of PO/R and O/R are nearly identical.

(2) The first derivative of the pixels graphs for the 0% loss
case (Figure 5)varies over time, while the byte graph for
the 0% loss case (Figure 2) is close to linear.

The near  l inear  shape of  the bytes  graph ref lects  the fact  that  the
flow control is effectively regulating the throughput; the
application is consuming data at a steady rate, thereby opening up
space for new packets to be submitted at a steady rate.
The curves in  the pixels  graph represent  the fact  that  a t  different
points in the linear extension, the fraction of the byte stream
devoted to pixels vs. other data, most notably audio, changes over
time. When present ,  audio  is  g iven preferent ia l  t rea tment  in  the
linear extension selection algorithm. The linear extension used in
this case was tuned so that audio would receive, on average, 50%
of the bandwidth during periods where an audio element was
available for transmission.
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(3)

(4)

(5)

(6)

As compared to O/R service,  PO/R service offers
significant gains in both the progressive display of bytes
and pixels at two different window sizes, for both 5% and
10% loss, offering support for Hypothesis 2.

The fact that there is a gain for PO/R service, and that the
gain increases for 10% vs. 5% loss provides evidence to
support Hypothesis 3

Throughput increases with increased window size,
regardless of the loss rate, providing evidence to support
Hypothesis 5

The advantage of PO/R over O/R service is reduced as the
window size is increased from 4096 to 8192.

Observations (3) through (6) can be seen in Figures 3, 4, 5 and 7
where  the  performance gain  is  shown by the  gap between the  top
l ine  represent ing  PO/R serv ice ,  and  the  bot tom l ine  represent ing
O/R service. The gain, relative to the entire size of the document,
may appear small on these graphs, therefore Figure 21 is more
useful in putting the absolute gain into perspective. In Figure 21,
we see  tha t  the  l ines  represent ing  5% and 10% loss  show a  ga in
that for bytes, starts at zero and increases in a near linear fashion,
until near the end of the document. For the 8192 byte receive
window, the gain tops out at 30-35KB, while for the 4096 byte
receive window,  the  gain  is  even larger :  a  gain  of  50-70KB. The
drop in gain near the end can be explained by the fact that with
out-of-sequence delivery, the end of the transmission is marked by
a dramatic decrease in throughput, while the transport protocol
retransmits the last few remaining packets. The decrease in
throughput due to packet losses for the average performance of an
ordered protocol is more evenly distributed over the entire
transmission.
For pixels, the gain rises and falls with an interesting shape with
three smaller  peaks fol lowed by a  fourth larger  peak.  This  shape
is consistent across all four combinations for loss rate (5% or
10%) and window size (4096, 8 192). This shape is an artifact of
the proportion of data in the document devoted to pixels vs. other
data, and can be easily understood via an analogy. Consider a
race between two runners ,  A and B,  where A is  fas ter  than B on
average,  but  both  runners  s low down and speed up f rom t ime to
time. During periods where A is speeding up and B is slowing
down, the distance between them will increase. Dur ing  the
periods where A is slowing down and B is increasing in speed, the
distance between them will decrease.
The comparison between the progressive display of pixels for
PO/R  and O/R  service is analogous to the distance between the
runners .  The  “speed ing  up”  and  “s lowing  down”  of  the  runners
corresponds to the fact that the proportion of the bandwidth
available to pixels is larger at certain parts of the document, and
smaller at other parts. The user accessing a document via PO/R
service arrives earlier at each of the points in the document where
pixels are displayed rapidly, on average, than the user accessing
the same document via O/R  service. The gain for PO/R service
“shoots  up”  when  the  PO/R user  a r r ives  a t  each  o f  these  po in t s .
The gain  for  PO/R service  then fa l ls  when the  O/R user  “catches
up” to the point where pixels are displayed more rapidly.
The exact shape of the curve is tied to the particular document
content ;  o ther  documents  would have different  curved shapes ,  as

would the same document, if audio were scheduled with a
different priority with respect to non-audio data.
Note that for 5% and 10% loss, the average gain over time is
strictly positive, and increases steadily almost to the end of the
document, and once established, for the bulk of the document,
never falls below:
. 30,000 pixels for receive window of 4096, and
. 15,000 pixels for receive window of 8192.

3.2.2 Conclusions related to bytes/pixels
Overall, we conclude that we have found a set of parameters and a
document where partial order delivery offers user-perceivable
performance benefi ts  in terms of  progressive display of  pixels  and
bytes. These results can provide a starting point for future
investigations aimed at establishing the limits of the parameter
space in which PO/R  service can offer such perceptible
improvements. Based on the observations above, along with
those of all previous experiments, we conclude that this parameter
space should be explored further along the dimensions of
document size and structure, round-trip delay, bitrate,  sender
window size, and receiver window size, and loss rate.

Figure 2: avg bytes received vs. time.
rev  window=4096 bytes, packet loss rate = 0%.
Both PO/R and O/R give ident ical  performance.
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Figure 3: avg bytes received vs. time.
,CY  window=4096 bytes, packet loss rate = 5%.
PO/R  (too  l ine)  outperforms O/R  @mom  l ine)

3m msb”,, ml
2sa=  m

Figure 4: avg bytes received vs. time.
xv window=4096 bytes, packet loss rate = 10%.
PO/R (top line) outperforms O/R  (bottom line)
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Figure 5: avg % of pixels displayed vs. time.
KY  window=4096 bytes, packet loss rate = 0%.
Both  PO/R  and O/R give identical  performance.
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Figure 6: avg % of pixels displayed vs. time.
rev  window=4096 bytes, packet loss rate = 5%.
PO/R (top line) outperforms O/R  (bottom line)

Figure 7: avg % of pixels displayed vs. time.
ICY  window=4096 bytes, packet loss rate = 10%.

PO/R  (top line) outperforms OIR (bottom line)

3.3 Results for Audio Quality
In this section, we describe statistics that measure the smoothness
of the audio presentation. The audio encoding used is the
standard SUN. au format (8Khz  p-law), which requires 64Kbps
of throughput.

3.3.1 Three proposed metrics for audio performance

When audio is streamed over a network with a iully reliable
service, the goal is to ensure that the audio device never
underflow, because underflow introduce interruptions during
playout.  The method typically used is described in [ 11,121.  A
small initial playout  delay is introduced, during which a queue is
allowed to accumulate packets. Once audio playout  begins, this
queue is drained at a constant rate--for  example, at 64Kbps in the
case of the 8Kbz  ~-law  encoding used in the ReMDoR  system.
Since the service rate is constant, we can measure the queue
length  in  seconds  ra ther  than  in  b i t s .  The  length  of  the  queue  in
seconds detetines  how much time is available for the transport
layer to achieve a retransmission of any missing packets.
If the queue length is too short, using a iully reliable service with
audio has the potential to introduce defects in the form of
inrerruptions  when the  audio  queue  underf low.  In ter rupt ions  can
be measured in  two ways:  the  number  of  in terrupt ions  that  occur ,
and the length of each intermption.
Suppose the network delay is constant, or has relatively low
variance (say,  a  s tandard deviat ion of  5% of the mean value) . In
this case, a fixed playout  delay of, say, twice the round-trip time
should provide enough time ior a single retransmission of a
missing packet. However, several factors may cause a reliable
service to underflow:
. The network delay may vary. causing the playout  delay to be

too  small for even a single retransmission.
. The loss rate  may be sufiiciently high that multiple

retransmissions  are  required.
. Retransmissions  may rob bandwidth from original

transmissions, causing the source to  be unable to  provide
packets fast enough.

We would expect that for the case where the audio stream is
transmitted in parallel with other streams (e.g., image data) that
PO/R  service would result in fewer underflow than O/R service.
‘Ibis is because missing packets in the non-audio streams will
impact the delivery of the audio stream for O/R service, while
with PO/R  service, only missing audio packets would cause
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underf lows. Therefore,  we would l ike to measure the impact  of
underflows on audio quality, to assess the performance
improvement offered by PO/R service.
There is a complicating factor, however. We can measure audio
underflows in several ways, and it is unclear which way correlates
best with perceived end-user audio quality. For example, suppose
a user is listening to an excerpt from the French National Anthem
las t ing  approximate ly  120  seconds . Which scenario would that
user prefer?

(a) a single audio interruption of 3 seconds,
occurring right in the middle of the piece

(b) 9 interruptions of one-third of a second each,
uniformly distributed across the 120 seconds

(c) 3000 interruptions of 1 millisecond each,
occurring every 40 ms (that is, between every
single audio packet)?

The authors’ anecdotal experience is that scenario (c) is perceived
only as a slowing in the tempo of the music, and for some
listeners may be the least objectionable defect. On the other hand,
(a) is probably much less annoying than (b), since with (a) once
the defect has passed, it is easily forgotten, while with (b), there is
a constant reminder of noticeable problems.
This simple example illustrates that, when considered in isolation,
ne i ther  the  number  of  in ter rupt ions ,  nor  the  to ta l  dura t ion  of  the
interruptions (which is the same for all three cases above) nor the
mean duration of the interruptions is necessarily a good indicator
of the impact on quality.

Further, the impact on perceived quality of various kinds of
defects will vary among listeners. The impact may also depend on
the media content ,  and the media purpose. A user retrieving a
cl ip  sole ly  for  enter ta inment  purposes  may be intolerant  of  even
slight defects, and may give up on the transmission altogether
rather than listen to less than perfect playback. On the other hand,
a student replaying a lecture the night before an exam, or a soldier
retrieving useful intelligence information in a hostile environment
may prefer a clip with fewer defects, but may nevertheless be
grateful for any information at all.
Because of the subjective nature of perceived audio quality, a
subjective metric called the Mean Opinion Score (MOS) has often
been  used . The MOS metric has frequently been applied to
investigate defects in audio quality introduced by distortion
resulting from A-D or D-A conversion, quantization, and lossy
compression schemes. However, we are not aware of previous
work that assigns Mean Opinion Scores to reliable playback of
audio with interruptions. Such a study would be useful as future
work .
Therefore,  pending the outcome of  such a s tudy,  [13]  in t roduced
three  object ive  metr ics  for  defects  in t roduced by in ter rupt ions  of
reliable audio streams: The purpose of these metrics is to
compare the difference between using O/R and PO/R service for
documents containing audio.
1) INT (Absolute number of  interruptions)

Zero interruptions represents perfect playback. The more
interruptions there are, the worse the performance. While this is a
useful metric, it does not capture all the information we might find
useful. In particular, it would assign a much worse metric to a
playout  with 10 barely perceptible (or possibly imperceptible)
interruptions of 1 millisecond, than it would to a playout  with five

in ter rupt ions  of  3  seconds  each,  which might  be  more  annoying.
This fact motivates the next metric.
2) FRACPLAY (Fraction Playing ).

Let P be the total playing time of an audio clip (if played without
interruption) and let A be the sum o the duration of all audio
interruptions. We define FRACPLAY = P/(A+P),  that is, the
fraction of time during the playout  of the audio that the user is
actually hearing the audio playing, as opposed to hearing the
silence of an interruption.
If there are no interruptions, then FRACPLAY = 1; this represents
perfect playout.  But  i f ,  for  example,  a  9-second cl ip is  interrupted
once for 1 second, than the metric would be 9/10,  since the total
playout  time will now be 10 seconds.
The FRACPLAY metr ic  makes a  useful  dis t inct ion between an 18
second clip interrupted twice for one second each, and an 18
second clip interrupted 10 times for ,001 seconds each time, we
assume that  users  wil l  not ice  the  former ,  and barely  not ice  (or  be
altogether unaware of) the latter.
However, the FRACPLAY metric also fails to capture exactly
what we might want. It does not distinguish between a 18 second
clip interrupted once for 2 seconds, or the same 18 second clip
interrupted 10 t imes for  0 .2 seconds each t ime. We assume’ that
most users would find the second case more annoying.
The need to capture both the number of interruptions and the
length of the interruptions motivates the third metric:

3) FRACPLAYINT

To capture both the influence of the number of interruptions as
well as the size of the interruptions, we propose the metric
FRACPLAYiNT (signifying FRACPLAY raised to the INT
power). The intuition behind this formula is that each time there is
an interruption, there is a cumulative effect on the degree to which
the  user  i s  annoyed;  i . e . ,  we  sugges t  tha t  annoyance multiplies.
As with the INT and FRACPLAY metrics, we can assert that a
value 1 represents perfect performance, and that interruptions will
cause the value to tend towards zero.

3.3.2 Observations concerning audio metrics
Figures 8 through 20 show performance graphs for  audio.  Before
comparing the performance of  PO/R and O/R at  5% and 10% loss,
we present several graphs for 0% loss to provide a baseline, and to
familiarize the reader with the interpretation of the three proposed
audio metrics. Figure 8 shows a histogram of the INT metric for
Experiment 1 at 0% loss. As explained earlier, we eliminated
runs where there was a packet loss during connection
establishment, therefore the number of runs for each parameter
value varied slightly (as seen in Table 2). To normalize our
reporting of these metrics, rather than using histograms, the
remainder of graphs will take the form of Figure 9, which shows
the cumulative distribution of the same data as Figure 8.
Figure 9 shows that for both PO/R and O/R
. none of the runs had zero interruptions,
. around 80% of the runs had a value for the INT metric less

than or equal to 1, and

’ Testing the validity of this assumption is outside the scope of
this paper; human subject research in this area is suggested as
future  work.
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. 100% of the mm  had a value for  the INT metr ic  less  than or
equal to 2.

The  intermptions in this  case s tem from the fact  that  at  a  receiver
window s ize  of  4096 bytes ,  there  was  insuf f ic ien t  th roughput  to
prevent at least one underflow (and in some cases, two) from
waxing. Contrast this with the similar graph for window size
8192 case .  shown in  Figure  IO.  Here  we see  what  the  cumluative
distribution graph looks like in the case of near perfect
performance. In this experiment,  for both PO/R  and O/R,  exactly
39 out of 40 rims had zero  intermptions, and exactly I run  had
exactly I interruptton.
Figures 1 I through 14 present the graphs for 0% for the other two
audio metrics for Experiments 1 and 2. By compating  Figures 9,
IO  and 11, with figures 12, I3 and 14 respectively, we can make
the following observations concerning these graphs:

(7)

(8)

At 0% loss, there are some  minor audio performance
problems a t  a  window s i re  of  4096 due to  underf low,  but
virtually no problems at a window size of 8192.

At 0% loss,  the performance of PO/R vs.  O/R  service was
virtually identical, even down to the distribution of
interruptions occurring for the receiver window 4096
case, offering support for Hypothesis l(b).

L- I
Figure 8: Audio Interruptions, win 4096, LR 0%
Histogram of INT metric;  PO/R (left)  O/R  ( r i g h t )

Figure 9: INT, win 4096, LR 0%
Cumulative Distribution of observed INT metric

PO/R (bottom) virtually identical to O/R  (top)

Figure 10: INT metric, win 8192, LR 0%
Cumulative Distribution of observed INT metric

POlR  (bottom) virtually identical to O/R  (top)

Figure 11: FRACPLAY, win 4096, LRO%
Cumulat ive  Dis t r ibut ion  of  observed FRACPLAY

PO/R virtually identical to O/R
I

I
Figure 12: FRACPLAYrNT  win 4096, LRO%
Cumulat ive Dist .  of  observed FRACPLAYlm
PO/R (top) virtually identical to OIR  (bottom)

Figure 13: FRACPLAY, win 8192, LRO%
Cumulat ive  Dis t r ibut ion  of  observed FRACPLAY

PO/R  virtually identical to OIR

Figure 14: FRACPLAYINT  win 8192, LRO%
Cumulat ive Dist .  of  observed FRACPLAYlm
PO/R (top) virtually identical to O/R (bottom)

Figures  15  th rough  I7 present  the graphs for  5% and 10% for  al l
three audio metrics for Experiment I. Figures I5 through I7
show that there is a measurable advantage to PO/R  vs. O/R
service for audio performance when the receiver window is
limited to 409 hbytes.  Tne  advantage is somewhat modest at 5%
loss: as Figure I5 shows, PO/R service nearly always experiences
only 2 interruptions, while this is only tree of O/R service about
314 of the time. However ,  a t  10% loss  the  advantage is  c learer .
The  average number of interruptions  is only 2.46 for PO/R
service, vs. 3.41 for OIR  service. A more telling statistic is that
for PO/R  service ,  the  number  of  in ter rupt ions  is  3  or  less  97% of
the time. For O/R  service, the number of intermptions is 3 or less
only 56% of the time. Tbe other metrics (FRACPLAY and
FRACPLAYlw) show similar trends: a slight advantage for PO/R
vs. O/R  at 5% loss, and a larger advantage at 10% loss.
In general, we can make the following observations concemmg
these graphs:
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Figure 15: INT metric, win 4096,
cumulative distribution of observed INT metric

LR 5% (top graph),lO% (bot tom graph)
POIR  (top, left)  outperforms OIR  (bot tom -right)

1

Figure 16: FRACPLAY metric, win 4096,
cumula t ive  d is t r ibut ion  of  observed FRACPLAY

LR 5% (top graph),lO% (bot tom graph)
PO/R  (bottom, right) outperforms O/R  (top, left)

I ’ I

Fieure  17: FRACPLAY’NT  metric, win 4096,
“cum. dist. of observed FRACPiAYmT’

10% loss shown (5% omitted for space reasons)
PO/R  (bottom, right) outperforms OIR  (top, left)

(9) For a receive window size of 4096, all three metrics
indicate that a user can expect better audio quality from
PO/R service than O/R  service at both 5% and 10% loss.

(IO) For a receive window size of 4096, the performance
advantage of POfl(  over O/R service is higher for 10%
loss than for 5% loss.

Figure 18:  INT metric ,  win 8192,
cumulative distribution of observed INT metric

LR 5% (top graph),lO% (bot tom graph)
PO/R (top. left) outperforms O/R  (bottom, right)

Figure 19: FRACPLAY metric, win 8192,
cumula t ive  d is t r ibut ion  of  observed FRACPLAY

LR 5% (top graph),lO% (bot tom graph)
PO/R  (bottom, right) outperforms O/R  (top, left)

._

I
I

Figure 20: FRACPLAYINT  metric, win 8192,
cum. dist .  of  observed FRACPLAYrNT.

10% loss shown (5% omitted for space reasons)
PO/R  (bottom, right) outperforms O/R  (top, left)

Figures  18 through 20 present  the  graphs  for  5% and 10% for  a l l
three audio metrics for Experiment 2.  We can make the following
observations concerning these graphs:
(I I) For a receive window size of 8192, the difference

between PO/R and O/R  service ranges from practically
nothing, to  only a slight advantage for PO/R  sewice.

As with our  results for bytes and pixels, the gains for PO/R
service were reduced when the window size was increased from
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4096 to 8192. As stated before, as the receiver window size
increases, this effectively increases the playout  delay that is
available for retransmission of missing audio packets. When
playout  delay in increased, out-of-sequence delivery is less
helpful in reducing audio interruptions.

3.3.3 Conclusions concerning audio metrics
Overall, with respect to audio, we conclude that PO/R service
certainly does no harm with respect  to audio,  and may offer  some
help. It would be interesting to investigate what subjective score
human subjects give to the audio performance at 4096 for both
5% and 10% loss, for both PO/R and O/R service. This would be
useful in determining whether the gains seen in the metrics are
perceived to be useful by end users.

3.4 The role of flow control in out-of-sequence
delivery
The transport services used in this experiment (R3 and T3)
provide a mechanism for end-to-end flow control similar to that
provided by TCP. Specifically, the service user (the application)
can speci fy  a  s t r ic t  upper  bound ( in  bytes)  on  the  amount  of  da ta
that may be buffered at the receiver waiting to be delivered to the
application. The sending transport entity maintains a
conservative estimate of the available buffer space at the receiver,
and sends packets only when there is buffer space available in the
window. Thus, the sending rate at the transport sender is
regulated by the occupancy of the transport receiver’s buffer.
The exper iments  repor ted in  th is  paper ,  combined with  those  in
[ 131  make it clear that flow control is an essential factor in
evaluat ing out-of-sequence del ivery.  The di lemma regarding f low
control and the benefits of out-of-sequence delivery can be
summarized as follows:

If the receiving transport entity builds up a receive buffer that,
in terms of document playout  delay, is larger than the time
required to do a retransmission, than out-of-sequence delivery
cannot possibly be of any benefit to the application.

On the other hand, if the receiving transport entity’s buffer is
too small, or the transmission speed is too slow to keep the
buffer occupancy strictly greater than zero, then the
application may frequently underflow regardless of whether
ordered or partially-ordered service is used.

We conclude that  when assess ing of  the  benef i t s  of  par t ia l  order
delivery, the choice of window size is important, as is the accurate
modeling the dynamics of the effective window, as it is shaped by
congestion control algorithms, and flow control algorithms
(including application backpressure).

4. RELATED WORK
4.1 Related work on partial order transport
[ 141  presents a more abstract comparison of unordered vs. ordered
service in general. A limitation of this work is that it considers
the benefi ts  of  unordered del ivery only in terms of  improvements
in throughput, buffer utilization, and jitter, with the main
emphas i s  dec ided ly  on  th roughput . Th i s  v i ewpo in t  ove r looks  a
key benefi t  of  out-of-sequence del ivery,  namely the progressive
display (or in the general case, the progressive processing) of
information.

[14]  makes the useful observation that a crucial factor in
determining the throughput benefit of out-of-sequence delivery is
the relationship among the round-trip delay, the bitrate,  and the
application’s ADU processing time. This relationship can be best
unders tood  by  cons ider ing  what  happens  when there  i s  a  packe t
loss with an ordered service. A packet loss results in a gap in the
sequence number space of bytes or packets. Until this gap is
filled, data delivery is suspended, and packets that follow the gap
must be buffered. The impact of this gap on throughput depends
on the relationship between application processing time, and
round-trip delay.

4.2 Related Multimedia Research
There are many examples of systems for creating multimedia
documents (authoring systems) and client/server systems for
making multimedia documents available over a network
(multimedia document retrieval systems.) In this section we
provide just two examples of these systems.

4.2.1 MEDIADOUMEDIABASE
The notion of adding transport QoS  to document specification
schemes has been previously addressed in the
MEDIADOC/MEDIABASE  project [ 1.51 which has several
features in common with our work. In both projects (1) a
client/server system is used to serve multimedia documents over a
network, (2) QoS  (e.g., reliability) can be defined on a per object
level, and (3) the transport layer assists with synchronization. Our
work differs in both focus and architecture. The
MEDIABASElMEDIADOC  project focuses on the design of
“an advanced high-performance distributed mult imedia
information and communications system with a particular focus
on document archi tectures,  database models ,  communicat ion and
synchronization, and . . . storage.” As such their architecture is
quite sophisticated.
By contrast, our emphasis is on exploring the usefulness of PO/R
transpor t  protocols ;  we use  mul t imedia  document  re t r ieval  mainly
as an example application to explore this concept. Hence we limit
the  scope of  our  document  model  and appl icat ion archi tecture  to
the minimal  framework necessary to test  certain ideas.  Our hope
is  tha t  by  developing  PO/R mechanisms and  demonst ra t ing  the i r
utility for multimedia document retrieval, we can provide useful
ideas to the developers of systems such as
MEDIABASEIMEDIADOC.

4.2.2 Fiets, HyTime, DSSSL and SMIL
[16]  presents several issues related to the mapping between the
semantic relationships of objects in a multimedia presentation,
and their eventual spatial and temporal layout. They argue that
rather than nailing down the exact spatial and temporal layout of a
document, it is better to represent the semantic relationships
between objects ,  and al low the computer  system to  determine an
appropriate spatial/temporal layout. They present their findings in
the context of a system called Fiets (Foundation for Interactive
Electronic Touring Systems.) Fiets is an example hypermedia
appl ica t ion  provid ing  geographic  and  h i s tor ic  in format ion  about
tourist attractions in the city of Amsterdam. Of particular interest
is the fact that [ 161. discusses the use of three standard SGML-
based standard multimedia specification languages in the
construction of the Fiets system: HyTime (ISOIIEC  10744
(1992)),  DSSSL (ISO/IEC 10179 (1994)),  and SMIL (W3C
1998). HyTime is a language for specifying Hypermedia
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documents, including their spatial and temporal layout. DSSSL is
a Scheme-like language for specifying transformations from one
SGML-based representation of a document to another. SMIL is a
more recent format for specifying coarse-grained synchronization
for temporal media in Web documents; its recent incorporation
into a commercial system from RealNetworks  gives it a chance at
more widespread acceptance than previous standards in this area
have enjoyed. As such, SMIL,  seems like a good candidate for
forward progress with ReMDoR [ 171.

5. REMARKS
Until recently, partial order transport was mainly an idea of
academic interest. However, in October 2000, the Internet
Engineering Task Force (IETF) issued RFC2960, a standards-
track specification of the Stream Control Transmission Protocol
(SCTP)[S].  SCTP emerged from efforts in the telecommunications
community to enable telecom switching protocols to run over IP
networks. However, SCTP is also suitable for use as a general-
purpose transport protocol.
Given the results in this paper, a particularly interesting aspect of
SCTP is its ability to provide a limited form of partial order
transport service: namely, reliable delivery of messages over
multiple ordered streams. It is reasonable to expect that the
performance gains for PO/R service demonstrated in this paper
should also be obtainable by comparing SCTP to TCP. Such a
comparison would be particularly compelling, since SCTP and
TCP have been shown to compete “fairly” in terms of TCP-
friendly congestion control [ 181.

6. ACKNOWLEDGMENTS
The authors thank Ed Golden, Sami  Iren, and Mason Taube for
their contributions to the software used in the experiments
reported in this paper, and the anonymous referees for their
helpful suggestions. This work was supported in part by grants
from the US Army Research Laboratory under the Federated
Laboratory Program, Cooperative Agreement number
DAALOl-96-2-0002,  and by the National Science Foundation
(NCR-93 14056).

7. REFERENCES
[l]  Perez-Luque and Little, 1996: M. Perez-Luque and

T. Little. A Temporal Reference Framework for
Multimedia Synchronization. IEEE Journal on Selected
Areas in Communication. 14(l),  26-5 1, Jan. 1996

[2] R. Marasli, P. Amer, P. and P. Conrad. An analytic
model of partially ordered transport. Computer
Networks and ISDN Systems, 29(6).  675-699, May
1997.

[3]  Marasli, 1997b: R. Marasli. Partially Ordered and
Partially Reliable Transport Protocols: Performance
Analysis, 1997, PhD  Dissertation, CIS Dept.,
University of Delaware.

[4]  Marasli et al., 1998: R. Marasli, P. Amer , and P.
Conrad. Metrics for quantifying partially ordered
transport services. Proc. 6th Int’l Conf on
Telecommunication Systems, Nashville, Mar. 1998.

[5]  R. Stewart, Q.  Xie, K. Morneault, C. Sharp,
H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla,

L. Zhang, V. Paxson.  Stream control transmission
protocol. RFC2960, October 2000.

[6]  Conrad et al., 1996: P. Conrad, E. Golden, P. Amer,
and R. Marasli. A multimedia document retrieval
system using partially-ordered/partially reliable
transport service. Proc. Multimedia Computing and
Networking (MMCN’96). San Jose, CA, Jan. 1996.

[7]  P. Conrad, P. Amer, M. Taube, G. Sezen. S. Iren,  and
A. Caro. Testing environment for innovative transport
protocols. Proc. IEEE MILCOM ‘98, Boston,
Oct. 1998

[8]  A. Caro, ReMDoR 2.0:Remote  Multimedia Document
Retrieval Over Partially-Ordered, Partially-Reliable
Transport Protocols. Honors Thesis for the degree
Bachelor of Science with Distinction, University of
Delaware, May1998

[9]  P. Amer, S. Iren, G. Sezen, P. Conrad, M. Taube, and
A. Caro. Network-conscious GIF image transmission
over the Internet. Computer Networks, 31(7) , 693-
708, Apr. 1999

[lO]T.  Connolly, P. Amer, and P. Conrad. An Extension to
TCP: Partial Order Service. Internet RFC1693, Nov.
1994

[ 1 I] B. Dempsey. Retransmission-Based Error Control For
Continuous Media Traffic In Packet-Swithced
Networks, Ph. D. Dissertation, University of Virginia,
1994

[12]B.  Dempsey, J. Liebeherr, and A.C. Weaver. On
Retransmission-Based Error Control for Continuous
Media Traffic in Packet-Switching Networks.
Computer Networks and ISDN Systems, 28(5),  719-
736

[ 131 P. Conrad. Partial Order and Partial Reliability
Transport Service Innovations in a Multimedia
Application Context. Ph.D. Dissertation, Department
of Computer and Information Sciences, University of
Delaware, 1999

[14] C. Diot, F. Gagnon. Impact of out-of-sequence
processing on the performance of data transmission.
Computer Networks, 31(5),  475-492, Mar. 1999

[15] A Remote Presentation Agent for Multimedia
Databases. Proc. IEEE International Conference on
Multimedia Computing and Systems (ICMCS’95),
223-230, Washington DC, May 1995

[16]L.  Rutledge, L. Hardman, J. van Ossenbruggen and D.
C. A. Bulterman. Structural distinctions between
hypermedia storage and presentation Proceedings of
the sixth ACM international conference on Multimedia
September, 1998, Bristol, United Kingdom pp 145-
150

[ 17 ] J. Urbano, A. Mendes, E. Monteiro, and P. Amer.
Specification of order and reliability in SMIL
documents. Proc WIAPP ‘99, IEEE Workshop on
Internet Applications, San Jose, Jul. 1999.

179



[18] Jungmaier, A.; Schopp, M.; Tttxen,  M.: Performance
evaluation of the stream control transmission protocol.

High Performance Switching and Routing, 2000. pp.
141-148.

ATM 200&-Proceedings  of the IEEE Confebce  on
I hvtes I oixels

Figure 21: Advantage of PO/R  over  O/K  for both bytes  ana  peels

180


