Packet Formats of Non-Renegable Selective Acknowledgments (NR-SACKs) for MPTCP

I. MODIFIED MULTIPATH CAPABLE (MP_CAPABLE) Option

Before sending/receiving NR-SACKs, two end hosts must negotiate NR-SACK usage during the connection initiation phase. A proposed modified MP_CAPABLE option is shown in Figure 1. Two bits — 'N' and 'n' — are used. During the three-way handshake, N bits of the two SYNs (SYN and SYN/ACK) indicates "NR-SACK capability of the SYN's sender". The decision of using NR-SACKs in data transfer is confirmed by the setting of N bit in the third packet (the ACK). N bit in the ACK packet = $N_{SYN}ANDN_{SYN/ACK}$, which means NR-SACK is used only if both endpoints are NR-SACK capable.

In a packet, the *n* bit has meaning only if N = 1, otherwise the *n* bit MUST be ignored. n = 1 indicates the size of one NR-SACK block is 6 bytes, and n = 0 means the size of one NR-SACK block size is explained in section 3.2. The decision of the size of one NR-SACK block in data transfer is confirmed by the setting of *n* bit in the ACK packet. n bit in the ACK = $n_{SYN}ANDn_{SYN/ACK}$, which means the size of one NR-SACK block is 6 bytes only if both endpoints set n = 1 in their SYNs, else the size is 8 bytes.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9	0 1
---	-----

II. MODIFIED DATA SEQUENCE SIGNAL (DSS) OPTION INCLUDING NR-SACK

Before talking about the proposed DSS option, consider how many NR-SACK blocks can be present in the TCP option field. During unidirectional MPTCP data transfers, the NR-SACKs are carried by pure acks (acks without application data). The maximum size of the TCP option field is 40 bytes. A timestamp option occupies 12 bytes (with padding) leaving 28 bytes. Assuming no SACK information, a DATA ACK needs 8 or 12 bytes (depending on flag 'a'), thus only up to 20 bytes can be used for NR-SACKs. To decrease the number of bytes needed to represent one NR-SACK block, the left and right edge values of a reported NR-SACK block can be defined relative to the DATA ACK value. For example, if the MPTCP receiver receives out-oforder data with DSNs from DSN_{start} to DSN_{end} , the left and right edge values of the reported NR-SACK block are $DSN_{start} - DATAACK$ and $DSN_{end} + 1 - DATAACK$, respectively. With 6-byte NR-SACK block, up to 3 blocks can be present and out-of-order bytes within 2^{24} (16MB) from the DATA ACK can be reported. When an MPTCP receive buffer size is $\leq 16MB$, 6 bytes is sufficient. However, when an MPTCP receive buffer size is >= 16MB, 6 bytes may not be enough. In this situation, the size of one NR-SACK block can be negotiated to be 8 bytes during connection establishment. Only 2 NR-SACK blocks will fit if the size of one NR-SACK block is 8 bytes.

The proposed modified DSS options with NR-SACKs are shown in Figure 2 (each NR-SACK is 6 bytes) and 3 (each NR-SACK is 8 bytes). A 2-bit unsigned integer — C' — is used to indicate the number of presented NR-SACK blocks. When the size of one NR-SACK block is 6 bytes and 1 or 3 NR-SACK blocks are present, two bytes paddings are used for alignment. The NR-SACKs can be present only when DATA ACK is present, and NR-SACKs yield the TCP option space to all TCP and other MPTCP options. As specified for SACKs in TCP, NR-SACKs always report the block containing the most recently received data, because this approach provides a MPTCP sender with the most up-todate information about the state of a MPTCP receive buffer.

Kind	Length	Subty	pe (reserved)	C F m M a P
Data	ACK (4 or 8 o	ctets, d	epending on f	lags)
Data Sequence	e Number (4 or	8 octet	s, depending	on flags)
St	ubflow Sequenc	e Number	(4 octets)	
Data-level Ler	ngth (2 octets) [Checksum (2	octets)
Left Edg	ge of NR-SACK	Block #1	i	Right Edge of
NR-SACK Block	¢ #1	I	Left Edg	e of NR-SACK
Block #2	Right	Edge of	NR-SACK Bloc	k #2
Left Edg	ge of NR-SACK	Block #3	I	Right Edge of
NR-SACK Block	c #3	1	Paddin	g:

Figure 2. Modified DSS Option (each NR-SACK is 6 bytes)

 Kind Length Subtype (reserved) C F m M a A
Data ACK (4 or 8 octets, depending on flags)
Data Sequence Number (4 or 8 octets, depending on flags)
Subflow Sequence Number (4 octets)
Data-level Length (2 octets) Checksum (2 octets)
Left Edge of NR-SACK Block #1 (4 octets)
Right Edge of NR-SACK Block #1 (4 octets)
Left Edge of NR-SACK Block #2 (4 octets)
Right Edge of NR-SACK Block #2 (4 octets)

Figure 3. Modified DSS Option (each NR-SACK is 8 bytes)