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INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

INFORMATION TECHNOLOGY – 

JPEG 2000 IMAGE CODING SYSTEM

1 Scope

This Recommendation | International Standard defines a set of lossless (bit-preserving) and lossy compression methods
for coding continuous-tone, bi-level, grey-scale, or colour digital still images.

This Recommendation | International Standard 

— specifies decoding processes for converting compressed image data to reconstructed image data

— specifies a codestream syntax containing information for interpreting the compressed image data

— specifies a file format

— provides guidance on encoding processes for converting source image data to compressed image data

— provides guidance on how to implement these processes in practice

2 References

The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

2.1 Identical Recommendations | International Standards

— ITU-T Recommendation T.81 | ISO/IEC 10918-1:1994, Information technology - Digital compression
and coding of continuous-tone still images: Requirements and guidelines.

— ITU-T Recommendation T.82 | ISO/IEC 11544:1994, Information technology - Coded representation
of picture and audio information — Progressive bi-level image compression

— ITU-T Recommendation T.83 | ISO/IEC 10918-2:1995, Information technology - Digital compression
and coding of continuous-tone still images: Compliance testing.

— ITU-T Recommendation T.84 | ISO/IEC 10918-3:1996, Information technology - Digital compression
and coding of continuous-tone still images: Extensions.

— ITU-T Recommendation T.84 | ISO/IEC 10918-3 Amd 1 (In preparation), Information technology -
Digital compression and coding of continuous-tone still images: Extensions - Amendment 1. 

— ITU-T Recommendation T.86 | ISO/IEC 10918-4, Information technology - Digital compression and
coding of continuous-tone still images: Registration of JPEG Profiles, SPIFF Profiles, SPIFF Tags,
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SPIFF colour Spaces, APPn Markers, SPIFF, Compression types and Registration authorities
(REGAUT).

— ITU-T Recommendation T.87 | ISO/IEC 14495-1, Lossless and near-lossless compression of
continuous-tone still images-baseline. 

— ITU-T Recommendation T.88 | ISO/IEC 14492-1, Lossy/lossless coding of bi-level images

2.2 Additional references

— ISO/IEC 646:1991, ISO 7-bit coded character set for information interchange.

— ISO 5807:1985, Information processing - Documentation symbols and conventions for data, program
and system flowcharts, program network charts and system resources charts.

— International Color Consortium, ICC profile format specification. ICC.1:1998–09

— International Electrotechnical Commission. Color management in multimedia systems: Part 2: Colour
Management, Part 2–1: Default RGB colour space—sRGB. IEC 61966–2–1 1998. 9 October 1998.

— W3C, Extensible Markup Language (XML 1.0), Rec-xml-19980210

— Digital Imaging Group, Flashpix digital image file format. Version 1.0.1. 10 July 1997

3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply.

, floor function, Indicates the largest integer not exceeding x.

, ceiling function, Indicates the smallest integer not exceeded by x.

arithmetic coder: An entropy coder used to represent the data compactly.

auxiliary component: A component from the codestream that is used by the application outside the scope of
colour space conversion. For example, an opacity component or a depth component would be an auxiliary
component. 

bit-plane: A two dimensional array of bits. In this Recommendation | Specification a bit-plane refers to all the
bits of the same magnitude in all coefficients or samples. Could refer to a bit-plane in a component, tile-
component, code-block, region of interest, or other.

bit stream: The actual sequence of bits resulting from the coding of a sequence of symbols. It does not include
the marker segments in the main and tile headers.

box: A building block defined by a unique type identifier and length. Some particular boxes may contain other
boxes.

box contents: Refers to the data wrapped within the box structure and stored within the DBox field within the
Box data structure

box type: Specifies the kind of information that shall be stored with the box and stored within the TBox field
within the Box data structure.

cell: An optional subdivision of a tile used for low-memory encoding and decoding.

cleanup pass: A coding pass performed on a single bit-plane of a code-block of coefficients. It is the first pass
and only coding pass for the first significant bit-plane; the third and the last pass of all the remaining bit-planes.

codestream: A collection of one or more bit streams and associated (overhead) information required for their
decoding and expansion into image data. Such overhead information is restricted to that required for expansion
and may include, but is not limited to, marker segments indicating locations of particular bit streams,
indicating transform, quantization and coding types, etc.

code-block: A rectangular grouping of coefficients from the same sub-band of a tile-component. 

x

x
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code-block scan: The order in which the coefficients within a code-block are visited during a coding pass. The
code-block is processed in stripes, each consisting of four rows and spanning the width of the code-block.
Each stripe is processed column by column from left to right and from top to bottom.

coder: An embodiment of either an encoding or decoding process.

coding pass: A complete pass through a code-block where the appropriate coefficient values and context are
applied. There are three types of coding passes: significance propagation pass, magnitude refinement pass and
cleanup pass.

colour image: An image that has more than one component.

component: An image consists of one or more components. Each component is a two-dimensional array of
samples. A colour image typically consists of several components such as RGB.

compressed data: Portion of the codestream, tile, or packet that contains the bit stream description.

conforming reader: An application that reads and interprets a JP2 file correctly as defined by this
Recommendation | International Standard.

context: Function of samples previously decoded used to condition the coding of the present sample.

context label: The arbitrary index used to distinguish different context values. The labels are used as a
convenience of notation rather than being normative.

context modelling: Procedure determining the probability distribution of difference with predicted bit from
the context.

context vector: The binary vector consisting of the significance states of its context neighbor coefficients

decoder: An embodiment of a decoding process, and optionally a colour transformation process.

decoding process: A process which takes as its input compressed data and outputs a reconstructed image data.

decomposition level: A collection of wavelet sub-bands where each coefficient has the same span with respect
to the original samples. These include HL, LH, HH and, for the highest decomposition level, LL sub-bands. In
this specification, only the LL sub-band can be further decomposed.

discrete wavelet transform: DWT. A wavelet transformation performed on, and resulting in, spatially
discrete coefficients.

encoder: An embodiment of an encoding process.

encoding process: A process, which takes as its input a source image and outputs compressed image data.

file format: This consists of a codestream and additional support data and information not explicitly required
for the decoding of image data. Examples of such support data are text fields providing titling, security and
historical information, markers to support placement of multiple codestreams within a given data file, and
markers to support exchange between platforms or conversion to other file formats 

HH sub-band: The sub-band obtained by forward horizontal high-pass analysis filtering and vertical high-
pass analysis filtering. This sub-band contributes to reconstruction with inverse horizontal low-pass synthesis
filtering and vertical low-pass synthesis filtering.

HL sub-band: The sub-band obtained by forward horizontal high-pass analysis filtering and vertical low-pass
analysis filtering. This sub-band contributes to reconstruction with inverse horizontal low-pass synthesis
filtering and vertical high-pass synthesis filtering.

image: A set of two-dimensional arrays (components) of data.

image area: A rectangular part of the reference grid, registered by offsets from the origin and having the size
of the image. The components are contained within this area and are related to the reference grid with respect
to this area.

image area offset: The width and height down and to the right of the reference origin where the origin of the
image area can be found.
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image data: Either source image data or reconstructed image data.

irreversible: A transformation, progression, system, or quantization that, due to systemic or quantization error,
disallows lossless recovery signal.

JPEG 2000: Used to refer globally to the encoding and decoding processes in this Recommendation |
International Standard and their embodiment in applications.

LH sub-band: The sub-band obtained by forward horizontal low-pass analysis filtering and vertical high-pass
analysis filtering. This sub-band contributes to reconstruction with inverse horizontal high-pass synthesis
filtering and vertical low-pass synthesis filtering.

LL sub-band: The sub-band obtained by forward horizontal low-pass analysis filtering and vertical low-pass
analysis filtering. This sub-band contributes to reconstruction with inverse horizontal high-pass synthesis
filtering and vertical high-pass synthesis filtering.

layer: A collection of coding passes from one, or more, code-blocks of a tile-component. Layers have an order
for encoding and decoding that must be preserved.

lossless: A descriptive term for the encoding and decoding processes in which the output of the decoding
process is identical to the input to the encoding process. Lossless processes require reversible systems.

lossless coding: The mode of operation that refers to any one of the coding processes defined in this
Recommendation | International Standard in which all of the procedures are lossless.

lossy: A descriptive term for encoding and decoding processes which are not lossless. This includes both
systems that are irreversible and those that include quantization.

magnitude refinement pass: A coding pass performed on a single bit-plane of a code-block of coefficients.

main header: A group of markers and marker segments at the beginning of the codestream that describe the
image parameters and universal coding parameters.

marker: A two-byte code in which the first byte is hexadecimal FF (0xFF) and the second byte is a value
between 1 (0x01) and hexadecimal FE (0xFE).

marker segment: A marker and associated set of parameters.

mod: mod(y,x) = z, where z is an integer such that , and such that y-z is a multiple of x.

packet: A part of the bit stream comprising a packet header and the coded data from one layer of one
decomposition level of one component of a tile.

packet header: Portion of the packet that describes the layer, decomposition level, component, and the code-
block segment lengths.

precision: Number of bits allocated to a particular sample.

progressive: The order a codestream where the decoding of each successive bit contributes to a “better”
reconstruction of the image. What metrics make the reconstruction “better” is a function of the application.
Some examples of progression are increasing resolution or improved pixel fidelity.

quantization: A method of reducing the precision of the individual coefficients to reduce the number of bits
used to entropy code them.

reconstructed image (data): An image, which is the output of a decoder.

reconstructed sample (value): The sample value reconstructed by the decoder. This always equals the
original sample value in lossless coding but may differ from the original sample value in lossy coding.

reference grid: A regular rectangular array of points to which all other planes (image, component, tile, sub-
band, etc.) are associated. 

reference tile: A rectangular sub-grid of any size associated with the reference grid.

region of interest: A part of the image, component, or tile-component that is considered more important than
the rest.

0 z x<≤
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resolution: The spatial mapping of samples to a physical space. In this Recommendation | Specification the
decomposition levels of the wavelet transform relate to each other with different relative resolutions.

reversible: A transformation, progression, system, or quantization that does not suffer systemic or
quantization error and, therefore, allows lossless signal recovery. 

sample: One element in the two-dimensional array, which comprises a component.

selective arithmetic coding bypass: A coding style where some of the code-block passes are not coded by the
arithmetic coder.

shift: Multiplication or division of a binary number by factors of two.

sign-magnitude notation: A binary representation of an integer number where the distance from the origin is
expressed with a positive number and the direction from the origin (positive or negative) is expressed with a
separate single bit.

significance propagation pass: A coding pass performed on a single bit-plane of a code-block of coefficients.

significance state: Binary state variable that indicates whether the most significant 1 bit of a target coefficient
in the current or more significant bit-planes or not.

source image (data): An image used as input to an encoder.

sub-band: A group of transform coefficients resulting from the same sequence of low-pass and high-pass
filtering operation, both vertically and horizontally.

sub-band coefficient: A transform coefficient within a given sub-band.

sub-band decomposition: A transformation of an image tile component into sub-bands.

sub-band decomposition level: The number of decompositions performed on the original tile-component
samples.

sub-band recomposition: The inverse of sub-band decomposition.

sub-band recomposition level: The remaining number of recompositions needed to reconstruct the original
image tile component samples.

superbox: A box that itself contains a contiguous sequence of boxes (and only a contiguous sequence of
boxes). As the JP2 file contains only a contiguous sequence of boxes, the JP2 file is itself considered a
superbox. When used as part of a relationship between two boxes, the term superbox refers to the box which
directly contains the other box.

tile: An array of rectangular points on the reference grid, registered with and offset from the reference grid
origin and defined by a base width and height. This tile array overlaps the image area and is used to define
image tiles.

tile-component: A rectangular sub-component of any size which is part of a larger component. There is a tile-
component for every component and every tile.

tile-part header: A group of markers and marker segments at the beginning of each tile-part codestream that
describe the tile-part coding parameters.

tile number: The index of the current tile ranging from zero to the number of tiles minus one.

tile-part: A portion of the codestream that make up some, or all, of a tile. The tile-part includes at least one,
and up to all, of the packets that make up the tile.

tile-part number: The tile number of the tile with which the tile-part is associated.

transform: A mathematical mapping from one signal space to another.

transform coefficient: A value that is the result of a transformation.

wavelet transform: A transformation which iteratively transforms one signal into two or more filtered and
decimated signals corresponding to different frequency bands.

XOR: Exclusive OR logical operator.
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4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply.

CCITT: International Telegraph and Telephone Consultative Committee, now ITU-T

ICC: International Colour Consortium

IEC: International Electrotechnical Commission

ISO: International Organization for Standardization

ITTF: Information Technology Task Force

ITU: International Telecommunication Union

ITU-T: International Telecommunication Union – Telecommunication Standardization Sector (formerly the
CCITT)

JPEG: Joint Photographic Experts Group - The joint ISO/ITU committee responsible for developing standards
for continuous-tone still picture coding. It also refers to the standards produced by this committee: ITU-
T T.81 | ISO/IEC 10918-1, ITU-T T.83 | ISO/IEC 10918-2, ITU-T T.84 | ISO/IEC 10918-3 and T.87 |
ISO/IEC 14495.

JURA: JPEG Utilities Registration Authority

1D-DWT: One dimensional discrete wavelet transform

DWT: Discrete wavelet transform

FDWT: Forward discrete wavelet transform

IDWT: Inverse of the forward discrete wavelet transform

LSB: Least significant bit.

MSB: Most significant bit.

PCS: Profile Connection Space

SNR: Signal to noise ratio. In this context it usually refers to reconstructed sample fidelity.

5 Symbols

For the purposes of this Recommendation | International Standard, the following symbols apply.

0x-: Denotes a hexadecimal number.

CME: Comment and extension marker

COC: Coding style component marker

COD: Coding style default maker

EOI: End of image marker

IEM: Packet, main marker

IET: Packet, tile marker

QCC: Quantization component marker

QCD: Quantization default marker

RIM: Region of interest marker

SIZ: Size of image marker

SOC: Start of image (codestream) marker
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SOS: Start of scan marker

SOT: Start of tile marker

TLM: Tile length marker

URI: Uniform Resource Identifier

URL: Uniform Resource Location

6 General description

This specification describes an image compression system that allows great flexibility, not only for the compression of
images, but also for the access into the compressed data. The codestream provides a number of mechanisms for locating
and extracting data for the purpose of retransmission, storage, display, or editing. This access allows the storage and the
retrieval of data appropriate for a given application, without decoding.

The division of the both the original data and the compressed data in a number of ways leads to the ability to extract data
from the compressed codestream to form reconstructed images with lower resolution, lower bit-rate, or regions of the
original images. This allows the matching of a codestream to the transmission channel, storage device, or display device,
regardless of the size, number of components, and sample precision of the original image. The codestream can be
manipulated without decoding to achieve a more efficient arrangement for a given application.

Thus, the sophisticated features of this specification allow a single codestream to be used efficiently by a number of
applications. The largest image source devices can provide a codestream that is easily processed for the smallest image
display device, for example.

6.1 Purpose

There are three main elements described in this Recommendation | International Standard:

Encoder: An embodiment of an encoding process. An encoder takes as input digital source image data and
parameter specifications, and by means of a set of procedures generates as output compressed image
data.

Decoder: An embodiment of a decoding process and a sample transformation process. A decoder takes as
input compressed image data and parameter specifications, and by means of a specified set of
procedures generates as output digital reconstructed image data.

Codestream format: A compressed image data representation that includes all parameter specifications used in
the encoding process. The interchange format is for exchange between application environments. The
interchange format is specified in Annex. A
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6.2 Coding principles

The main procedures for this Recommendation | International Standard are shown in Figure 6-1. Procedures are
presented in the Annexes in the order of the decoding process.

The key to this specification is the multiple ways that both the image and the codestream can be divided. Many images
have multiple components. This specification has a facility to decorrelate three component planes. Other than that, the
components can be extracted and reconstructed without regard to the other components. (See Annex G.)

The image may be divided into tiles. These tiles are rectangular arrays that include the same relative portion of all the
components. These tile-components can also be extracted and reconstructed independently. This tile independence
provides one of the methods for extracting a region of the image. (See Annex D.)

The tile-components are decomposed into different decomposition levels using a wavelet transform. These
decomposition levels contain a number of sub-bands populated with coefficients that describe the horizontal and vertical
spatial frequency characteristics of the original tile-component planes. The coefficients provide local frequency
information. That is, a small number of coefficients completely describe a single sample. A decomposition level is related
to the next decomposition level by spatial powers of two. That is, each successive decomposition level of the sub-bands is
has approximately half the horizontal and half the vertical resolution of the previous. Images of lower resolution than the
original are generated by decoding a selected sub-set of these sub-bands. (See Annex F.)

Although there are the same number of coefficients as samples, the information content tends to be concentrated in just a
few coefficients. Through quantization, the information content of a large number of small magnitude coefficients is
further reduced. Additional processing reduces the bits required to represent these quantized coefficients, sometimes
significantly compared to the original image. With the same bits, however, the reconstructed image suffers proportionally
less loss in terms of visual quality. This holds true for a large enough range of bit-rates and quality factors to make this
image compression system useful for a number of applications. (See Annex E.)

The individual sub-bands of a tile-component are further divided into code-blocks. These rectangular arrays of
coefficients can be extracted independently. The individual bit-planes of the coefficients in a code-block are coded with
three coding passes. Each of these coding passes collects contextual information about the bit-plane data. (See Annex C.)
An arithmetic coder uses this contextual information, and its internal state, to decode a compressed bit-stream. (See
Annex B.) Different termination mechanisms allow different levels of independent extraction of this coding pass data.

The bit stream data created from these coding passes is conceptually grouped in layers. Layers are an arbitrary number of
groupings of coding passes from each code-block. Although there is great flexibility in layering, the basic premise is that
each successive layer contributes to a higher quality image. (See Annex D.)

Figure 6-1 — Specification block diagram
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Packets are a fundamental unit of the compressed codestream. A packet is a particular partition of one layer of one
decomposition level of one tile-component. This partition provides another method for extracting a spatial region
independently from the codestream. These packets may be interleaved in the codestream using a few different methods.
(See Annex D.)

A mechanism is provided that allows the data corresponding to regions of interest in the original tile-components to be
coded and placed earlier in the bit stream. (See Annex H.)

Several mechanisms are provided to allow the detection and concealment of bit errors that might occur over a noisy
transmission channel. (See Annex I.)

The compressed data relating to a tile, organized in packets, are arranged in one, or more, tile-parts. A tile-part header,
comprising a series of markers and marker segments, contains information about the various mechanisms and coding
styles that are needed to locate, extract, decode, and reconstruct every tile-component. At the beginning of the entire
codestream is a main header, comprised of markers and marker segments, that offer similar information as well as
information about the original image. (See Annex A.)

The codestream is wrapped in a file format that allows applications to interpret the meaning of, and other information
about, the image. The file format may also contain other data besides the codestream. (See Annex J.) 

To review, procedures that divide the original image are the following:

— The image is decomposed into components. 

— The image and its components are decomposed into rectangular tiles. The tile-component is the basic
unit of the original or reconstructed image.

— Performing the wavelet transform on a tile-component creates decomposition levels that are related to
the original resolution by powers of two.

— These decomposition levels are made up of sub-bands of coefficients that describe the local frequency
characteristics of the tile-component.

— The sub-bands of coefficients are quantized and collected into rectangular arrays of code-blocks.

— The bit-planes of the coefficients in a code-block are entropy coded in three coding passes.

— Some of the coefficients can be coded first to provide a region of interest.

At this point the data is fully decomposed and coded. The procedures that reassemble these bit stream units into the
codestream are the following:

— The coding-passes from the code-blocks are collected in layers.

— Packets are composed of a single partition of a single layer of a single decomposition level of a single
tile-component. The packets are the basic unit of the compressed data.

— All the packets from a tile are interleaved in one of several orders and placed in one, or more, tile-parts.

— The tile-parts have a descriptive tile-part header and can be interleaved in any order.

— The codestream has a main header at the beginning that describes the original image and the various
recomposition and coding styles that shall be used to locate, extract, decode, and reconstruct the image
that is appropriate.

— The file format describes the meaning of the image and its components in the context of the
application.

7 Interchange format requirements 

The interchange format is the coded representation of compressed image data for exchange between application
environments. This specification differentiates between file format and codestream syntax (Annex A). The codestream
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syntax is the required description of the coded data in the codestream. The file format contains medatata about the image
in addition to the codestream, for example to allow for visualization, printing.

The interchange format requirements are that any compressed image data represented in interchange format shall comply
with the syntax and code assignments appropriate for the coding processes defined in this Recommendation |
International Standard, as specified in Annex A.

8 Encoder requirements 

An encoding process converts source image data to compressed image data. Annexes A, B, C, D, E, F, G, and H describe
the encoding process. Note that all encoding processes are specified informatively. 

An encoder is an embodiment of the encoding process. In order to conform to this Recommendation | International
Standard, an encoder shall convert source image data to compressed image data, which conform to the interchange
format syntax specified in Annex A.

9 Decoder requirements 

A decoding process converts compressed image data to reconstructed image data. Annexes A, B, C, D, E, F, G, and H
describe and specify the decoding process. 

A decoder is an embodiment of the decoding process. In order to conform to this Recommendation | International
Standard, a decoder shall convert all, or specific parts of any compressed image data which conforms to the interchange
format syntax specified in Annex A to a reconstructed image that is related to the source image.
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Annex A

Compressed data syntax

(This annex forms an integral part of this Recommendation | International Standard)

This Annex specifies the marker and marker segment syntax defined by this Recommendation | International Standard.
These marker segments provide codestream signaling for this Recommendation | International Standard. Further, it
anticipates signaling needed for future specifications that include this Recommendation | International Standard as a
normative reference.

A.1 Headers and marker segments

This Recommendation | International Standard uses marker segments to delimit and signal the characteristics of the
codestream. This set of markers and marker segments is the minimal information needed to achieve the features of this
Recommendation | International Standard and is not a complete or generic file format.

A.1.1 Markers and marker segments

Every marker is two bytes long. The first byte is all ones or 0xFF. The second byte denotes which marker and ranges
between 0x01 and 0xFE. Many of these markers are already used in ITU-T Rec. T.81 | ISO/IEC 10918-1 and ITU-T Rec.
T.84 | ISO/IEC 10918-3.

A marker segment includes a marker and associated parameters. Many marker segments just contain the marker. If there
are more parameters in a marker segment than just the marker then there is a two byte value that denotes the length of the
marker segment (not including the marker).

A.1.2 Types of marker segments

Six types of marker segments are used: delimiting, fixed information, functional, in bit stream, pointer, and informational
marker segments. Delimiting marker and marker segments must be used to frame the headers and the data. Markers are
only used for delimiting. However, there are delimiting marker segments as well.

Fixed information marker segments give required information about an image. The location of these marker segments,
like delimiting marker segments, is specified. 

Functional marker segments must be used to describe the coding functions used. 

In bit stream markers are used for error resilience. These marker segments are the only ones without a length field. 

Pointer marker segments point to specific places in the bit stream. 

Informational marker segments provide optional information about the data.

A.1.3 Syntax compatibility with ITU.T Rec.T.81 | IS0/IEC 10918-1

The marker segment syntax uses the same construction as the JPEG standard. Some of the marker segments are exactly
the same. Those that are not, have numbers that were reserved in ITU.T Rec. 81 | IS 10918-1 and are registered by
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JURA. Some of this marker field (0xFF30 — 0xFF3F) is reserved by this specification as markers without marker
segments. This will enable backward compatibility. Table A-1 shows in which specification these marker are defined. 

A.1.4 Marker segment and codestream rules

— Marker segments, and therefore the headers, are a multiple of 8 bits (one byte). Further, the bit stream
data between the headers are padded to also be aligned to a multiple of 8 bits.

— All marker segments in a tile-part header apply only to the tile to which it belongs.

— All marker segments in the main header apply to the whole image unless specifically overridden by
marker segments in a tile-part header.

— Packets are located at 8 bit (one byte) boundaries. The data before a packet are padded with enough
extra bits to make a multiple of 8 bits.

— Delimiting and fixed information marker segments must appear at specific points in the codestream.

— The marker segments should always correctly describe the image as represented by the codestream. If
truncation, alteration, or editing of the codestream has been performed, the marker segments shall be
updated accordingly.

— Marker segments include a length parameter (except for some delimiting markers) that indicates the
length of marker segment, excluding the two byte marker. This allows a decoder to skip over a marker
and marker segment as needed.

— All parameter values in marker segments are big endian (most significant byte first).

— All markers with the marker value between 0xFF30 to 0xFF3F are defined to only have the two byte
marker, i.e. there are no length parameter or other parameters. 

A.1.5 Key to graphical descriptions

Each marker segment is described in terms of function, usage, and length. The function describes the information
contained in the marker segment. The usage describes the logical location and frequency of this marker segment in the
codestream. The length describes which parameters determine the length of the marker segment.

These descriptions are followed by a figure that shows the order and relationship of the parameters in the marker
segment. Figure A-1 shows an example of this type of figure. The marker segments are designated by a three letter
abbreviation. The parameter values have capital letter designations with the markers abbreviation as a sub-script. A
rectangle is used to indicate the parameters in the marker segment. The width of the rectangle is proportional to the
number of bytes in the field. A shaded rectangle indicates that the parameter is of varying size. Two parameters with

Table A-1 — Marker definitions

Marker value range Standard definition

0xFF00, 0xFF01, 
0xFFFE, 0xFFC0 — 

0xFFDF
Defined in ITU-T Rec. T.81 | ISO/IEC 10918-1

0xFFF0 — 0xFFF6 Defined in ITU-T Rec. T.84 | ISO/IEC 10918-3

0xFFF7 — 0xFFF8 Defined in ITU-T Rec. T.87 | ISO/IEC 14495-1

0xFF4F — 0xFF6F Defined in this International Standard | Recommendation

0xFF30 — 0xFF3F Reserved for definition as markers only (no marker segments)
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superscripts and a gray area between indicate a run of several of these parameters. A dashed rectangle indicates that the
parameter is only present if necessary.   

The meaning of each parameter in the marker segment is defined in a list. If there is a run of the same parameter, the
length and nature of that run is defined. The first rectangle is the marker value and is always 16 bits. The second rectangle
is the length and is 16 bits. 

There is a table that describes the parameter values or references which refer to other tables. Tables for individual
parameters are provided to describe any parameter without a simple numerical value. The term “use Table A-x” will be
used to specify a parameter. The term “refer to Table A-x” means that Table A-x will define which other table describes a
parameter.

Some marker segments use an Sxxx and SPxxx syntax for the XXX marker segment. The Sxxx parameter selects
between many possible states. According to this selection, the SPxxx parameter, or parameter, list is modified.

A.2 Information in the marker segments

Table A-2 lists the markers specified in this Recommendation | International Standard. Table A-3 shows a list of the
information provided by the syntax and which marker segment contains that information.   

Table A-2 — List of marker segments

Name Code Main header Tile-part header

Delimiting marker segments

Start of codestream SOC 0xFF4F required xa

Start of tile-part SOT 0xFF90 x required

Start of data SOS 0xFFDA x last marker

End of imageb
EOI 0xFFD9 x

Fixed information marker segments

Image and tile size SIZ 0xFF51 required x

Functional marker segments

Coding style default COD 0xFF52 required optional

Coding style component COC 0xFF53 optional optional

Region-of-interest RGN 0xFF5E optional optional

Figure A-1 — Example of the marker segment description figures
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Quantization default QCD 0xFF5C required optional

Quantization component QCC 0xFF5D optional optional

Progression order change, main POM 0xFF5D optionalc x

Progression order change, tile POT 0xFF5F x optionalc

Error resilience style ERS 0xFF59 optional optional

Pointer marker segments

Tile-part lengths, main header TLM 0xFF55 optional x

Packet length, main header PLM 0xFF57 optional x

Packet length, tile-part header PLT 0xFF58 x optional

Packed packet headers, main header PPM 0xFF60 optionald x

Packed packet headers, tile-part header PPT 0xFF61 x optionald

In bit stream marker segments

Start of partition SOP 0xFF91 optional, in bit stream

Informational marker segments

Comment and extension CME 0xFF64 optional optional

a. Required means the marker segment shall be in this header, optional means it may be, and “x” means not used in this header.
b. The EOI marker is the last in the image. It is in neither the main nor the tile-part headers.
c. Either the POM or POT marker segment is required if there are progression order changes. If the POM marker segment is used then

POT marker segments shall not be used, and visa versa.
d. Either the PPM or PPT marker segment is required if there packet headers are not distribuited in the bit stream. If the PPM marker

segment is used then PPT marker segments shall not be used, and visa versa.

Table A-3 — Information in the marker segments

Information Marker segment

Capabilities
Image size or reference grid size (height and width)
Tile size (height and width)
Number of components
Decorrelating transform used
Component precision
Component mapping to the reference grid (sub-sampling)

SIZ

Tile number
Tile-part data length

SOT, TLM

Table A-2 — List of marker segments

Name Code Main header Tile-part header



ISO/IEC CD15444-1 : 1999 (V1.0, 9 December 1999)

ITU-T Rec. T.800 (1999 CDV1.0) 15

A.3 Construction of the codestream

Figure A-2 shows the construction of the codestream. Figure A-3 shows the main header construction. Note that all of the
solid lines show required marker segments. The marker segments on the left are required to be in a specific location. The
dashed lines show optional or possibly not required marker segments. Figure A-4 shows the construction of a tile-part
header.

Coding style (wavelet coding, uncoded, etc.)
Number of decomposition levels
Progression style
Number of layers
Code-block size
Coding contexts
Wavelet transform

COD, COC

Region of interest location
Region of interest size
Region of interest shift

RGN

No quantization
Quantization implicit
Quantization explicit

QCD, QCC

Progression point (layer, resolution, component)
Progression order change

POM, POT

Error resilience ERS, SOP

Code-block values for new layers
Code-block layer number
Code-block inclusion
Maximum bit depth
Truncation point
Bit stream length for decomposition level and layer in a block

packet header, 
PPM, PPT

Packet lengths PLM, PLT

Optional information CME

Table A-3 — Information in the marker segments

Information Marker segment



ISO/IEC CD15444-1 : 1999 (V1.0, 9 December 1999)

16 ITU-T Rec. T.800 (1999 CDV1.0)

 

SOC

main

SOT

tile 1 marker

SOS

SOT

tile 2 marker

SOS

tile-part 2

EOI

Required at the beginning of each tile-part header.

Tile-part header marker segments

Required at the end of each tile-part header.

Tile-part bit stream. Might include SOP.

Main header marker segments

Required as the first marker.

Required as the last marker in the codestream.

Figure A-2 — Construction of the codestream

tile-part 1

Main header

Tile header

Tile header
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SOC

SIZ

COD

COC

QCD

QCC

RGN

TLM

PLM

CME

Required.

Optional, no more than one COC per component.

Required.

Optional, no more than one QCC per component.

Required as the second marker segment.

Required as the first marker.

Optional, as many as ROIs. May also be present in the tile-part 
headers.

Optional.

Optional, not to be used with the PLT marker segment.

Optional.

Figure A-3 — Construction of the main header
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Optional, either POM or POT is required if any progression 
order changes.
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The COD and COC marker segments and the QCD and QCC marker segments have hierarchy of usage. This is designed
to allow tile-components to have dissimilar coding and quantization characteristics with a minimum of signalling. 

For example, the COD marker segment is required in the main header. If all components in all the tiles are coded the
same way, this is all that is required. If there is one component that is coded differently than the others (for example the
luminance component of an image composed of luminance and chrominace components) then the COC can denote that in
the main header. If one or more components are coded differently in different tiles, then the COD and COC are used in a
similar manner to denote this in the tile header.

SOT

SOS

COD

COC

QCD

QCC

RGN

PLT

CME

Optional, no more than one per tile-part.

Optional, no more one COC per component.

Optional, no more than one per tile-part.

Optional, no more one QCC per component.

Required as the first marker segment of every tile-part header.

Optional, as many as ROIs in tile-part. May also be present in 
the main header.

Optional, not to be used with the PLM marker segment.

Optional.

Required as the last marker of every tile or tile-part header.

Figure A-4 — Construction of a tile-part header

POT

Optional, either PPM or PPT or codestream packet headers 
required.
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Optional, either POM or POT required if any progression order 
changes.



ISO/IEC CD15444-1 : 1999 (V1.0, 9 December 1999)

ITU-T Rec. T.800 (1999 CDV1.0) 19

A.4 Delimiting markers

The delimiting marker segments are strictly required. Each codestream has only one SOC marker, one EOI marker, and
at least one tile-part (SOT and SOS). Each tile-part has one SOT and one SOS marker. The SOC, SOS, and EOI
delimiting markers are 16 bits in length with no explicit length information. 

A.4.1 Start of codestream (SOC)

Function: Marks the beginning of a codestream specified in this International Standard | Recommendation.

Usage: Shall be the first marker in codestream. There shall be only one SOC per codestream.

Length: Fixed. 

SOC: Marker value.

Table A-4 — Start of codestream parameter values

Parameter Size (bits) Values

SOC 16 0xFF4F
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A.4.2 Start of tile-part (SOT)

Function: Marks the beginning of a tile-part and the index of that tile within a codestream. 

Usage: Shall be the first marker segment in a tile-part section. There shall be at least one SOT in a codestream. There
shall be only one SOT per tile-part.

Length: Fixed. 

SOT: Marker value. Table A-5 shows the size and values for start of tile-part.

Lsot: Length of marker segment in bytes (not including the marker).

Isot: Tile number. This number refers to the tiles in raster order starting at the number 0.

Psot: Length, in bytes, from the beginning of the first byte of this SOT marker segment of the tile-part to the
end of the data of that tile-part. Figure A-15 shows this alignment.

TPsot:Tile-part instance. If this is a tile-part there is a specific order required for decoding tile-parts, this index
denotes the order from 0. If there is only one tile-part for a tile then this value is zero.  

Table A-5 — Start of tile-part parameter values

Parameter Size (bits) Values

SOT 16 0xFF90

Lsot 16 9

Isot 16 0 — 65534

Psot 32 0 — (232-2)

TPsot 8 0 — 255

Figure A-5 — Start of tile-part syntax
TPsot

SOT Lsot Isot Psot
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A.4.3 Start of data (SOS)

Function: Indicates the beginning of bit stream data for the current tile-part. The SOS also indicates the end of a tile-part
header.

NOTE — This marker shares the same number as the SOS marker in ITU-T Rec. T.81 | ISO/IEC 10918-1.

Usage: Shall be the last marker in a tile-part header. Data between an SOS and the next SOT or EOI (end of image) shall
be a multiple of 8 bits — the codestream is padded with bits as needed (see Annex C.5.2). There shall be at least one SOS
in a codestream. There shall be one SOS per tile-part.

Length: Fixed.

SOS: Marker value  

Table A-6 — Start of data parameter values

Parameter Size (bits) Values

SOS 16 0xFFDA
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A.4.4 End of image (EOI)

Function: Indicates the end of the image. EOI acts as a check to ensure that the stream is still byte aligned.

NOTE — This marker shares the same number as the EOI marker in ITU-T Rec. T.81 | ISO/IEC 10918-1.

Usage: Shall be the last marker in a codestream. There shall be one EOI per codestream. 

Length: Fixed.

EOI: Marker value     

Table A-7 — End of image parameter values

Parameter Size (bits) Values

EOI 16 0xFFD9
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A.5 Fixed information marker segment

This marker segment describes required information about the image.The SIZ marker segment is required in the main
header immediately after the SOC marker segment.

A.5.1 Image and tile size (SIZ)

Function: Provides information about the uncompressed image such as the width and height of the reference grid, the
width and height of the tiles, the number of components, component size (depth), and how the components span the
reference grid. 

Usage: Shall be one and only one in the main header immediately after the SOC marker segment. There shall be only one
SIZ per codestream.

Length: Variable depending on the number of components.   

SIZ: Marker value. Table A-8 shows the size and parameter values for image and tile size.

Lsiz: Length of marker segment in bytes (not including the marker).

Rsiz: Denotes capabilities of the codestream.

Xsiz: Width of the reference grid. Optimally, this value provided the least common multiple for all the XRsiz
parameters.

Ysiz: Height of the reference grid. Optimally, this value provided the least common multiple for all the YRsiz
parameters.

XOsiz:Horizontal offset from the origin of the reference grid to the left side of the image area.

YOsiz:Vertical offset from the origin of the reference grid to the top side of the image area.

XTsiz:Width of one reference tile with respect to the reference grid.

YTsiz:Height of one reference tile with respect to the reference grid.

XTOsiz:Horizontal offset from the origin of the reference grid to the left side of the first tile.

YTOsiz:Vertical offset from the origin of the reference grid to the top side of the first tile.

Csiz: Number of components in the image.

CSsiz:Multiple component transformation used.

Ssizi: Precision (depth) in bits of the ith component. (If a multi-component transform is performed, this is the
precision afterwards.) This parameter is repeated for all components. The most significant bit of this
field indicates whether the component is signed or not, a one bit indicates signed components. The
remaining seven bits indicate the component depth which must be between 1 and 127 inclusive. One
value for each component.

XRsizi:Horizontal separation of a sample of ith component with respect to the reference grid. One value for
each component.

Ssizi YRsizi YRsiznSsizn

CSsiz XRsizi XRsizn

Figure A-6 — Image and tile size syntax

SIZ Lsiz Rsiz Xsiz Ysiz XOsiz YOsiz

Csiz

XTsiz YTsiz

XTOsiz YTOsiz
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YRsizi:Vertical separation of a sample of ith component with respect to the reference grid. One value for each
component.     

Table A-8 — Image and tile size parameter values

Parameter Size (bits) Values

SIZ 16 0xFF51

Lsiz 16 42 — 65534

Rsiz 16 use Table A-9

Xsiz 32 1 — (232 - 1)

Ysiz 32 1 — (232 - 1)

XOsiz 32 1 — (232 - 2)

YOsiz 32 1 — (232 - 2)

XTsiz 32 1 — (232 - 1)

YTsiz 32 1 — (232 - 1)

XTOsiz 32 0 — (232 - 2)

YTOsiz 32 0 — (232 - 2)

Csiz 16 1 — 16384

CSsiz 8 use Table A-10

Ssizi 8 use Table A-11

XRsizi 8 1 — 255

YRsizi 8 1 — 255

Table A-9 — Capability Rsiz parameter

Value (bits)
MSB           LSB

Capability

0000 0000 0000 0000 Capabilities specified in this Recommendation | International Standard only

All other values reserved

Table A-10 — Multiple component transformation CSsiz parameter

Values (bits)
MSB           LSB

Multiple component transformation type

0000 0000
No multiple component transform specified. (A multiple component transform 

may be specified by the file format level.)
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0000 0001 Reversible component transform on components 0, 1, 2 (see Annex G.1)

0000 0010 YCbCr transform on components 0, 1, 2 (see Annex G.1)

All other values reserved

Table A-11 — Component Ssiz parameter

Values (bits)
MSB           LSB

Coefficient size

x000 0001
x111 1111

Components are 1 bit deep through 127 bits deep respectively 

0xxx xxxx Components are unsigned values

1xxx xxxx Components are signed values

All other values reserved.

Table A-10 — Multiple component transformation CSsiz parameter

Values (bits)
MSB           LSB

Multiple component transformation type
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A.6 Functional marker segments

These marker segments describe the functions used to code the entire tile, if found in the tile-part header, or image, if
found in the main header. If there are multiple tile-parts in a tile, then these marker segments shall be found only in the
first tile-part.

A.6.1 Coding style default (COD)

Function: Describes the coding style, decomposition, and layering used for compressing all components of an image (if
in the main header) or a tile (if in the tile-part header). The parameter values can be overridden for an individual
component by a COC marker segment in either the main or tile-part header.

Usage: Shall be one and only one in the main header. May be one and only one in each tile-part headers. If there are
multiple tile-parts in a tile, and this marker segment is present, it shall be found only in the first tile-part.

When used in the main header, the COD marker segment parameter values are used for all tile-components that do not
have a corresponding COC marker segment in either the main or tile-part header. When used in the tile-part header it
overrides the main header COD and COCs and is used for all components in that tile without a corresponding COC
marker segment in the tile-part. Thus, the hierarchy is the following:

Tile-part COC > Tile-part COD > Main COC > Main COD

Length: Variable depending on the value of Scod. 

COD: Marker value. Table A-12 shows the size and parameter values for coding styles.

Lcod: Length of marker segment in bytes (not including the marker).

Scod: Coding style for all components. Table A-13 shows the value for the Scod parameter.

SPcodi:Parameters for coding style designated in Scod. The parameters are designated, in order from top to
bottom, in the appropriate table.                       

Table A-12 — Coding style default parameter values

Parameter Size (bits) Values

COD 16 0xFF52

Lcod 16 4 — 65534

Scod 8 use Table A-13

SPcodi variable refer to Table A-13

SPcodi

Figure A-7 — Coding style default syntax

COD Lcod

Scod SPcodn
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Table A-13 — Coding style parameter values for the Scod parameters

Values (bits)
MSB    LSB

Coding style SPcod usage

0000 0000 Entropy coder, PARTITION = 0 use Table A-14

0000 0001 Entropy coder, PARTITION = 1 use Table A-14

All other values reserved

Table A-14 — Coding style parameter values from SPcod parameters

Parameters (in order) Size (bits) Values Meaning of SPcod values

Decomposition levels 8 bits 0 — 255
Number of decomposition levels, dyadic decomposition.

(Zero implies no transform.)

Progression style 8 bits use Table 
A-15

Progression style

Number of layers 16 bits 0 — 65535 Number of layers

Code-block size width 8 bits
use Table 

A-16
Code-block width exponent value, xcb

Code-block size height 8 bits
use Table 

A-16
Code-block height exponent value, ycb

Code-block context 8 bits Table A-17 Style of the code-block coding passes

Transform 8 bits
use Table 

A-18
Wavelet transform used.

Packet partition size
0 bits

variable

use Table 
A-19

If PARTITION = 0, no value
If PARTITION = 1, indicates partition

 size width and height, repeat for every decomposition level

Table A-15 — Progression style for the SPcod, Ppom, and Ppot parameters

Values (bits)
MSB        LSB

Progression style

0000 0000 Layer progressive

0000 0001 Resolution-layer progressive

0000 0010 Resolution-position progressive

0000 0011 Position-component progressive

0000 0100 Component-position progressive

All other values reserved
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Table A-16 — Width and height of the code-blocks for the SPcod and SPcoc parameters

Values (bits)
MSB        LSB

Code-block width or height

0000 0000 —
0000 1000

Offset exponent value for code-block width or height (xcb=value+2 or 
ycb=value+2)

All other values reserved

Table A-17 — Code-block style for the SPcod and Scoc parameters

Values (bits)
MSB           LSB

Code-block style

xxxx xxx0
xxxx xxx1

No selective arithmetic coding bypass
Selective arithmetic coding bypass

xxxx xx0x
xxxx xx1x

No reset of context probabilities on coding pass boundaries
Reset context probabilities on coding pass boundaries

xxxx x0xx
xxxx x1xx

No termination on each coding pass
Termination on each coding pass

xxxx 0xxx
xxxx 1xxx

No vertically stripe causal context
Vertically stripe causal context

xxx0 xxxx
xxx1 xxxx

No predictable termination
Predictable termination

All other values reserved

Table A-18 — Transform for the SPcod and Scoc parameters

Values (bits)
MSB           LSB

Transform type

0000 0000 9-7 irreversible wavelet transform

0000 0001 5-3 reversible wavelet transform

All other values reserved

Table A-19 — Packet partition width and height for the SPcod parameters

Values (bits)
MSB           LSB

Packet partition size

xxxx 0000 —
xxxx 1111

Packet partition width exponent, PPx

0000 xxxx —
1111 xxxx

Packet partition height exponent, PPy
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A.6.2 Coding style component (COC)

Function: Describes the coding style, decomposition, and layering used for compressing a particular component.

Usage: Optional in both the main and tile-part headers. No more than one per component may be present in either the
main or tile-part headers. If there are multiple tile-parts in a tile, and this marker segment is present, it shall be found only
in the first tile-part.

When used in the main header it overrides the main COD marker segment for the specific component. When used in the
tile-part header it overrides the main COD, main COC, and tile COD for the specific component. Thus, the hierarchy is
the following:

Tile-part COC > Tile-part COD > Main COC > Main COD

Length: Variable depending on the value of Scoc. 

COC: Marker value. Table A-20 shows the size and parameter values for coding styles.

Lcoc: Length of marker segment in bytes (not including the marker).

Ccoc: The number of the component to which this marker segment relates. The components are numbered 0,
1, 2, etc. (Either 8 or 16 bits depending on Csiz value.)

Scoc: Coding style for this component. Table A-21 shows the value for each Scoc parameter.

SPcoci:Parameters for coding style designated in Scoc. The parameters are designated, in order from top to
bottom.      

Table A-20 — Coding style component parameter values

Parameter Size (bits) Values

COC 16 0xFF53

Lcoc 16 5 — 65534

Ccoc
8
16

0 — 255; if Csiz < 257
0 — 65534; Csiz ≥ 257

Scoc 8 use Table A-21

SPcoci variable refer to Table A-21

Table A-21 — Coding style parameter values for the Scoc parameters

Values (bits)
MSB    LSB

Coding style SPcoc usage

0000 0000 Entropy coder, PARTITION = 0 use Table A-22

SPcociCcoc

Figure A-8 — Coding style component syntax

COC Lcoc

Scoc SPcocn
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0000 0001 Entropy coder, PARTITION = 1 use Table A-22

All other values reserved

Table A-22 — Coding style parameter values from SPcoc parameters

Parameters (in order) Size (bits) Values Meaning of SPcoc values

Decomposition levels 8 bits 0 — 255
Number of decomposition levels, dyadic decomposition. (Zero implies 

no transform.)

Code-block size width 8 bits
use Table 

A-16
Code-block width exponent value, xcb

Code-block size height 8 bits
use Table 

A-16
Code-block height exponent value, ycb

Code-block context 8 bits
Table A-

17
Style of the code-block coding passes

Transform 8 bits
use Table 

A-18
Wavelet transform used.

Packet partition size
0 bits

variable

use Table 
A-19

If PARTITION = 0, no value
If PARTITION = 1, indicates partition

 size width and height, repeat for every decomposition level

Table A-21 — Coding style parameter values for the Scoc parameters

Values (bits)
MSB    LSB

Coding style SPcoc usage
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A.6.3 Region-of-interest (RGN)

Function: Signals the location, shift, and type of RGN in the codestream.

Usage: May be used in the main or tile-part header. If used in the main header it refers to an ROI of the whole image,
regardless of tiling. In other words, the RGN defined in the main header could imply ROIs in several tiles. In fact, entire
tiles could be part of the ROI. When used in the tile-part header only that tile is affected. Redundant description of a
single RGN (defined in both the main and tile-part headers) is not permitted. There can be multiple uses of this marker
segment in both the main and tile-part headers. Each use implies a separate RGN. It there are multiple tile-parts in a tile,
then this marker segment shall be found only in the first tile-part.

Length: Variable. 

RGN: Marker value. Table A-23 shows the size and parameter values for coding styles.

Lrgn: Length of marker segment in bytes (not including the marker).

Crgn: The number of the component to which this marker segment relates. The components are numbered 0,
1, 2, etc. (Either 8 or 16 bits depending on Csiz value.)

Srgn: ROI style for the current ROI. Table A-24 shows the value for the Srgn parameter.

SPrgni:Parameters for ROI style designated in Srgn. The parameters are designate, in order from top to
bottom, in the appropriate table.          

Table A-23 — Region-of-interest parameter values

Parameter Size (bits) Values

RGN 16 0xFF5E

Lrgn 16 4 — 65534

Crgn
8
16

0 — 255; if Csiz < 257
0 — 65534; Csiz ≥ 257

Srgn 8 use Table A-24

SPrgni variable refer to Table A-24

Table A-24 — Region-of-interest parameter values for the Srgn parameter

Values ROI style (Srgn) SPrgn usage

0 Implicit ROI (maximum shift) use Table A-25

All other values reserved

Crgn SPrgni

Figure A-9 — Coding style default syntax

RGN Lrgn

Srgn SPrgnn
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Table A-25 — Region-of-interest values from SPrgn parameter (Srgn = 0)

Parameters (in order) Size (bits) Values Meaning of SPrgn value

Implicit ROI shift 8 bits 0 — 255 Binary shifting of ROI coefficients above the background
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A.6.4 Quantization default (QCD)

Function: Describes the quantization used for compressing all components. The parameter values can be overridden for
an individual component by a QCC marker segment in either the main or tile-part header. 

Usage: Shall be one and only one in the main header. May be one and only one in each tile-part headers. If there are
multiple tile-parts in a tile, and this marker segment is present, it shall be found only in the first tile-part.

When used in the tile-part header it overrides the main QCD, main QCC, and tile QCD for the specific component. Thus,
the hierarchy is the following:

Tile-part QCC > Tile-part QCD > Main QCC > Main QCD

Length: Variable depending on the number of quantized elements. 

QCD: Marker value. Table A-26 shows the size and parameter values for coding styles.

Lqcd: Length of marker segment in bytes (not including the marker).

Sqcd: Quantization style for all components.

SPqcdi:Quantization step size value for the ith sub-band in the defined order (see Annex D.4). The number of
parameters is the same as, or larger than, the number of sub-bands in the tile-component with the
greatest number of decomposition levels.           

Table A-26 — Quantization default parameter values

Parameter Size (bits) Values

QCD 16 0xFF5C

Lqcd 16 5 — 65534

Sqcd 8 use Table A-27

SPqcdi variable refer to Table A-27

Table A-27 — Quantization default values for the Sqcd and Sqcc parameters

Values (bits)
MSB     LSB

Quantization style SPqcx size SPqcx usage

xxx0 0000 No quantization 8 bits use Table A-28

xxx0 0001
Scalar implicit (values signalled for LL sub-

band only)
16 bits use Table A-29

xxx0 0010
Scalar explicit (values signalled for each sub-

band)
16 bits use Table A-29

SPqcdi

Figure A-10 — Quantization default syntax

QCD Lqcd

Sqcd SPqcdn
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000x xxxx —
111x xxxx

Number of guard bits 0 — 7

Table A-28 — Reversible step size values for the SPqcd and SPqcc parameters

Values (bits)
MSB                      LSB

Reversible step size values

xxx0 0000 —
xxx1 1111

Exponent, , of the reversible dynamic range (repeated for every sub-band)

Table A-29 — Quantization values for scalar quantization for the SPqcd and SPqcc parameters

Values (bits)
MSB                      LSB

Quantization step size values

xxxx x000 0000 0000 —
xxxx x111 1111 1111

Mantissa, , of the quantization step size value (see Equation E.2)

0000 0xxx xxxx xxxx —
1111 1xxx xxxx xxxx

Exponent, , of the quantization step size value (see Equation E.2)

Table A-27 — Quantization default values for the Sqcd and Sqcc parameters

Values (bits)
MSB     LSB

Quantization style SPqcx size SPqcx usage

εb

µb

εb
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A.6.5 Quantization component (QCC)

Function: Describes the quantization used for compressing a particular component.

Usage: Optional in both the main and tile-part headers. No more than one per component may be present in either the
main or tile-part headers. If there are multiple tile-parts in a tile, and this marker segment is present, it shall be found only
in the first tile-part.

Optional in both the main and tile-part headers. When used in the main header it overrides the main QCD marker
segment for the specific component. When used in the tile-part header it overrides the main QCD, main QCC, and tile
QCD for the specific component. Thus, the hierarchy is the following:

Tile-part QCC > Tile-part QCD > Main QCC > Main QCD

No more one QCC marker segment per component may be used. It there are multiple tile-parts in a tile, then these
marker segments shall be found only in the first tile-part.

Length: Variable depending on the number of quantized elements. 

QCC: Marker value. Table A-30 shows the size and parameter values for coding styles.

Lqcc: Length of marker segment in bytes (not including the marker).

Cqcc: The number of the component to which this marker segment relates. The components are numbered 0,
1, 2, etc. (Either 8 or 16 bits depending on Csiz value.)

Sqcc: Quantization style for this component.

SPqcci:Quantization value for each sub-band in the defined order (see Annex D.4). The number of parameters
is the same as, or larger than, the number of sub-bands in the tile-component with the greatest number
of decomposition levels.  

Table A-30 — Quantization component parameter values

Parameter Size (bits) Values

QCC 16 0xFF5D

Lqcc 16 6 — 65534

Cqcc
8
16

0 — 255; if Csiz < 257
0 — 65534; Csiz ≥ 257

Sqcc 8 use Table A-27

SPqcci variable refer to Table A-27

SPqcciCqcc

Figure A-11 — Quantization component syntax

QCC Lqcc

Sqcc SPqccn
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A.6.6 Progression order change, main (POM)

Function: Describes the origin and progression order for any progression order changes in the tile.

Usage: Either POM or POT is required if there are progression order changes. May not be used when there are POT
marker segments is used.

Length: Variable depending on the number of changes in the progression. 

POM: Marker value. Table A-32 shows the size and parameter values for coding styles.

Lpom:Length of marker segment in bytes (not including the marker).

Npomi:Number of progression changes for the ith tile in raster order in the codestream. There is one entry for
each tile. Note that a zero value indicates there are no progression

LYpomij:Layer index for the start of a new progression for the ith tile. One value for each progression change
in each tile multiplied by the number of tiles.

Rpomij:Resolution index for the start of a new progression for the ith tile. One value for each progression
change in each tile multiplied by the number of tiles.

Cpomij:Component index for the start of a new progression. The components are numbered 0, 1, 2, etc.
(Either 8 or 16 bits depending on Csiz value.) One value for each progression change in each tile
multiplied by the number of tiles.

Ppomij:New progression order. One value for each progression change in each tile multiplied by the number
of tiles.    

Table A-31 — Progression order change, main parameter values

Parameter Size (bits) Values

POM 16 0xFF5E

Lpom 16 3 — 65534

Npomi 8 0 — 255

LYpomij 16 0 — 65534

Rpomij 8 0 — 255

Cpomij 8
16

0 — 255; if Csiz < 257
0 — 65534; Csiz ≥ 257

Ppomij 8 use Table A-15

CpomnjLYpomnj

Figure A-12 — Progression order change, main syntax

POM Lpom

Rpomnj

CpomnmLYpomn

Rpomnm

CpomijLYpomij

Rpomij

CpomimLYpomim

RpomimNpom NpomnPpomij Ppomim Ppomnj Ppomnm



ISO/IEC CD15444-1 : 1999 (V1.0, 9 December 1999)

ITU-T Rec. T.800 (1999 CDV1.0) 37

A.6.7 Progression order change, tile (POT)

Function: Describes the origin and progression order for any progression order changes in the tile.

Usage: Either POM or POT is required if there are progression order changes. May not be used when the POM marker
segment is used.

Length: Variable depending on the number of changes in the progression. 

POT: Marker value. Table A-32 shows the size and parameter values for coding styles.

Lpot: Length of marker segment in bytes (not including the marker).

LYpoti:Layer index for the start of a new progression. One value for each progression change in each tile.

Rpoti: Resolution index for the start of a new progression. One value for each progression change in each tile.

Cpoti: Component index for the start of a new progression. The components are numbered 0, 1, 2, etc. (Either
8 or 16 bits depending on Csiz value.) One value for each progression change in each tile.

Ppomi:New progression order. One value for each progression change in each tile.  

Table A-32 — Progression order change, tile parameter values

Parameter Size (bits) Values

POT 16 0xFF5F

Lpot 16 6 — 65534

LYpoti 16 0 — 65534

Rpoti 8 0 — 255

Cpoti
8
16

0 — 255; if Csiz < 257
0 — 65534; Csiz ≥ 257

Ppoti 8 use Table A-15

CpotiLYpoti

Figure A-13 — Progression order change, tile syntax

POT Lpot

Rpoti

CpotnLYpotn

RpotnPpoti Ppotn
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A.6.8 Error resilience style (ERS)

Function: Indicates that error resilience tools are present and which set of error resilience tools are used.

Usage: One marker segment only may be in the main header or any tile-part header. If present in the main header, it
applies for all components of all tiles. If present in a tile header, it applies for all components in that tile and overrides an
ERS in the main header.

Length: Fixed. 

ERS: Marker value. Table A-33 shows the size and parameter values for coding styles.

Lers: Length of marker segment in bytes (not including the marker).

Sers: Indicates which error resilience tools are present.     

Table A-33 — Error resilience bit stream parameter values

Parameter Size (bits) Values

ERS 16 0xFF59

Lers 16 3

Sers 8 use Table A-34

Table A-34 — Error resilience bit stream tools for the Sers parameter

Values (bits)
MSB    LSB

Error resilience tools

xxxx xxx0
xxxx xxx1
xxxx xx0x
xxxx xx1x

No SOP marker segments used
SOP marker segments are used

No segmentation symbols are used
Segmentation symbols are used

All other values reserved

Figure A-14 — Error resilience bit stream syntax

ERS Lers

Sers
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A.7 Pointer marker segments

Pointer marker segments either provide a length or point into the codestream.The TLM marker segment describes the
length of the tile-parts. It has the same length information as the SOT marker segment. The PLM or PLT marker segment
describes the length of the packets in the bit stream of the packets.

NOTE — Having the pointer marker segments all occur in the main header allows direct access into the compressed data. Having
the pointer information in the tile-part headers removes the burden on the encoder of rewinding to store the information.

The TLM (Ptlm) or the SOT (Psot) parameters point from the beginning of the current tile-part’s SOT marker segment to
the end of the data in that tile-part. Because tile-parts are required to be a multiple of 8 bits, these values are always a
byte length. Figure A-15 shows the length of a tile-part.

The PLM or PLT marker segments are optional if all the components in a tile have the same progression style and
number of layers specified in the appropriate COD marker segment (see Annex A.6.1). Either a PLM marker segment is
used in the main header, or PLT marker segments are used in tile-part headers, or neither are used, but both shall not be
used. The PLM and PLT marker segments are lengths of each packet in the tile-part. 

A.7.1 Tile-part lengths, main header (TLM)

Function: Describes the length of every tile-part in the codestream. Each tile-part’s length is measured from the first byte
of the SOT marker segment to the end of the data of that tile-part. The value of each individual tile-part length in the
TLM marker segment is the same as the value in the corresponding Psot in the SOT marker segment.

Usage: Optional use in the main header. There may be multiple TLM marker segment in the main header.

Length: Variable depending on the number of tile-parts in the image.   

TLM: Marker value. Table A-35 shows the size and values for the tile-part length main header parameters.

Ltlm: Length of marker segment in bytes (not including the marker).

Ztlm: Index of this marker segment relative to all other TLM markers present in the current header. For the
full list of parameters that follow, the lists of every like marker segment are concatenated in order.

Stlm: Size of the Ttlm and Ptlm parameters.

Ttlmi: Tile number of the ith tile-part. The Ttlm parameter is in the same order as the tile-parts the
codestream. Either none or one value for every tile-part. The number of tile-parts can be derived from
the length of this marker segment.

NOTE — The highest numerical values (255 or 65535) are reserved to indicate data other than tile data.

Tile-part length (TLM, SOT(Psot))

SOT SOSTile head

Figure A-15 — Tile-part lengths

Compressed bit stream

Ztlm Ttlmi Ptlmi

Stlm

Figure A-16 — Tile-part length, main header syntax

TLM Ltlm

Ttlmn Ptlmn
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Ptlmi: Length, in bytes, from the beginning of the SOT marker of the ith tile-part to the end of the data for that
tile-part. One value for every tile-part. The number of tile-parts can be derived from the length of this
marker segment.  

Table A-35 — Tile-part length, main header parameter values

Parameter Size (bits) Values

TLM 16 0xFF55

Ltlm 16 5 — 65534

Ztlm 8 0 — 255

Stlm 8 use Table A-36

Ttlmi
0 if ST = 0
8 if ST = 1
16 if ST = 2

tile in order
0 — 254

0 — 65334

Ptlmi 16 if SP = 0
32 if SP = 1

2 — 65534
2 — (232-2)

Table A-36 — Size parameters for Stlm

Values (bits)
MSB      LSB

Parameter size 

xx00 xxxx
ST = 0; Ttlm parameter is 0 bits, only one tile-part per tile, and tile-

parts are in index order without omission or repetition

xx01 xxxx ST = 1; Ttlm parameter 8 bits

xx10 xxxx ST = 2; Ttlm parameter 16 bits

x0xx xxxx SP = 0; Ptlm parameter 16 bits

x1xx xxxx SP = 1; Ptlm parameter 32 bits

All other values reserved
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A.7.2 Packet length, main header (PLM)

Function: A list of packet lengths in the tile-parts. This exists for every tile-part in order.

Usage: Can be used only in the main header, if there are packets in the file and an PLT marker segment is not used. There
may be multiple PLM marker segments. Both the PLM and PLT marker segments are optional.

Length: Variable depending on the number of tile-parts in the image and the number of packets in each tile-part. 

PLM: Marker value. Table A-37 shows the size and values for the packets, main header parameters.

Lplm: Length of marker segment in bytes (not including the marker).

Zplm: Index of this marker segment relative to all other PLM markers present in the current header. For the
full list of parameters that follow, the lists of every like marker segment are concatenated in order.

Nplmi:Number of bytes of Iplm information for the ith tile-part in the order found in the codestream. One
value for each tile.

Iplmij: Length of the jth packet in the ith tile-part. If packet header is stored with the packet this length
includes the packet header, if packet headers are stored in PPM or PPT this length does not include the
packet header length. One range of values for each tile-part. One value for each packet in the tile.    

Table A-37 — Packets length, main header parameter values

Parameter Size (bits) Values

PLM 16 0xFF57

Lplm 16 4 — 65534

Zplm 8 0 — 255

Nplmi 8 0 — 255

Iplmij variable use Table A-38

Table A-38 — Iplm, Iplt list of lengths for regular progression of packets

Parameters
(in order)

Size (bits) Values Meaning of Iplm or Iplt values

Packet length
8 bits 

repeated as 
necessary

0xxx xxxx
1xxx xxxx

x000 0000 — 
x111 1111

Last 7 bits of packet length, terminate numbera

Continue readingb

7 bits of packet length

a. This is the last 7 bits that make up the packet length. 
b. This is not the last 7 bits that make up the packet length. Note that each 7 bit portion of the packet length is read from the
codestream and packed MSB first to make up the length of the packet.

Nplmn

Figure A-17 — Packets length, main header syntax

PLM Lplm

Nplmi

IplmnmIplmnjIplmimIplmijZplm
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A.7.3 Packets length, tile-part header (PLT)

Function: A list of packet lengths in the tile-part.

Usage: Can be used in any tile header, if there are packets in the file and an PLM marker segment is not used. There may
be multiple PLT marker segments per tile. The PLT marker is found only in the first tile-part. Both the PLM and PLT
marker segments are optional.

Length: Variable depending on the number of packets in each tile-part.       

PLT: Marker value. Table A-39 shows the size and values for the packet parameters.

Lplt: Length of marker segment in bytes (not including the marker).

Zplt: Index of this marker segment relative to all other PLT markers present in the current header. For the full
list of parameters that follow, the lists of every like marker segment are concatenated in order.

Iplmi: Length of the ith packet. If packet headers are stored with the packet this length includes the packet
header, if packet headers are stored in PPM or PPT this length does not include the packet header
length. One value for each packet in the tile.  

Table A-39 — Packet length, tile-part headers parameter values

Parameter Size (bits) Values

PLT 16 0xFF58

Lplt 16 3 — 65534

Zplt 8 0 — 255

Iplti variable refer to Table A-38

Figure A-18 — Packet length, tile header syntax

PLT Lplt

Iplti Ipltn

Zplt
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A.7.4 Packed packet headers, main header (PPM)

Function: A collection of the packet headers so multiple reads are not required to decode headers.

Usage: May be used in the main header for all tile-parts with packets unless a PPT marker is used in the tile header. 

The packet headers shall be in only one of three places though the codestream. If the PPM marker segment is present, all
the packet headers are found in that marker segment. In this case, the PPT marker segment and packets distributed in the
bit stream of the tile-parts are disallowed.

If there is no PPM marker segment than the packets can be distributed either in a PPT marker segment in the first tile-part
or distributed in the in the codestream as defined in Annex D.7. The packet headers shall not be in both a PPT marker
segment and the codestream for the same tile. there may be multiple PPM marker segments in this header.

Length: Variable depending on the number of packets in each tile-part and the compression of the packet headers. 

PPM: Marker value. Table A-40 shows the size and values for the parameters.

Lppm:Length of marker segment in bytes, not including the marker.

Zppm:Index of this marker segment relative to all other PPM markers present in the current header. For the
full list of parameters that follow, the lists of every like marker segment are concatenated in order.

Nppmi:Number bytes of Iplm information for the ith tile-part in the order found in the codestream. One value
for each tile.

Ippmij: Packet header for every packet in order in the tile-part. The component number, layer, and resolution
are determined from the method of progression or the POM or POT marker. The contents are exactly
the packet header which would have been distributed in the bit stream as described in Annex D.5
packet header information. One range of values for each tile-part. One value for each packet in each
tile.    

Table A-40 — Packed packet headers, main header parameter values

Parameter Size (bits) Values

PPM 16 0xFF60

Lppm 16 8 — 65535

Zppm 8 0 — 255

Nppmi 16 0 - 65535

Ippmij variable packet headers

Figure A-19 — Packed packet headers, main header syntax

PPM Lppm

Ippmij Ippmim

Nppmn

Ippmnj Ippmnm

Nppmi

Zppm
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A.7.5 Packed packet headers, tile-part header (PPT)

Function: A collection of the packet headers so multiple reads are not required to decode headers.

Usage: May be used in the every tile-part header for a tile-part with packets unless a PPM marker is used in the main
header.

The packet headers shall be in only one of three places though the codestream. If the PPM marker segment is present, all
the packet headers are found in that marker segment. In this case, the PPT marker segment and packets distributed in the
bit stream of the tile-parts are disallowed.

If there is no PPM marker segment than the packets can be distributed either in a PPT marker segment in the first tile-part
or distributed in the in the codestream as defined in Annex D.7. The packet headers shall not be in both a PPT marker
segment and the codestream for the same tile. There may be multiple of the PPT marker segment in a tile-part header.

Length: Variable depending on the number of packets in each tile-part and the compression of the packet headers. 

PPT: Marker value. Table A-41 shows the size and values for the parameters.

Lppt: Length of marker segment in bytes, not including the marker.

Zppt: Index of this marker segment relative to all other PPT markers present in the current header. For the full
list of parameters that follow, the lists of every like marker segment are concatenated in order.

Ippti:  Packet header for every packet in order in the tile-part. The component number, layer, and resolution
are determined from the method of progression or the POM or POT marker. The contents are exactly
the packet header which would have been distributed in the bit stream as described Annex D.5 packet
header information. One value for each packet in the tile.  

Table A-41 — Packet header, tile headers parameter values

Parameter Size (bits) Values

PPT 16 0xFF61

Lppt 16 3 — 65535

Zppt 8 0 — 255

Ippti variable packet headers

Zppt

Figure A-20 — Packed packet headers, tile header syntax

PPT Lppt

Ippmi Ippmn
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A.8 In bit stream marker segments

These marker segments are used for error resilience. The marker segments are different because they have no length field
and they are found in the bit stream, not the main or a tile-part header.

A.8.1 Start of partition (SOP)

Function: Marks the beginning of a partition and the index of that partition within a codestream. 

Usage: Optional. Using in the bit stream in front of every packet. The first packet in a tile are assigned 

Length: Fixed 4 bytes. 

SOP: Marker value. Table A-42 shows the size and values for start of tile-part.

Nsop: Packet sequence number. The first packet in a tile is assigned the value zero. For every successive
packet this number is incremented by one. When the maximum number is reached, the number rolls
over to zero.  

Table A-42 — Start of partition parameter values

Parameter Size (bits) Values

SOP 16 0xFF91

Nsop 16 0 — 65535

Figure A-21 — Start of partition syntax

SOP Nsop
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A.9 Informational markers

These marker segments are strictly information and are not necessary for a decoder. However, these marker segments
might assist a parser or decoder. More information about the source and characteristics of the image can be obtained by
using a file format such as SPIFF, TIFF, or JP2 (see Annex J).

A.9.1 Comment and extension (CME)

Function: Allows unstructured data in the header. 

Usage: Repeatable as many times as desired in either or both the main or tile-part headers.

Length: Variable depending on the length of the message. 

CME: Marker value. Table A-43 shows the size and values for the comment parameters.

Lcme: Length of marker segment in bytes (not including the marker).

Rcme:Registration value of the marker segment.

Ccmei:Byte of unstructured data.  

Table A-43 — Comment and extension parameter values

Parameter Size (bits) Values

CME 16 0xFF64

Lcme 16 5 — 65534

Rcme 16 use Table A-44

Ccmei 8 0 — 255

Table A-44 — Registration values for the Rcme parameter

Values Registration values

0 General use (binary values)

1 General use (ISO 8859-1 (latin-1) values)

2 — 65534 Reserved for registration

65535 Reserved for extension

Ccmei

Figure A-22 — Coding style component syntax

CME LCME Rcme

Ccmen
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Annex B

Arithmetic entropy coding

(This annex forms an integral part of this Recommendation | International Standard)

This annex defines the lossless arithmetic entropy coding. This annex is compatible with the arithmetic coder defined in
ITU-T Rec.T.87 | ISO/IEC 14496-1.

In this Annex and all of its subclauses, the flow charts and tables are normative only in the sense that they are defining an
output that alternative implementations shall duplicate.

B.1 Binary encoding (informative)

Figure B-1 shows a simple block diagram of the binary adaptive arithmetic encoder. The decision (D) and context (CX)
pairs are processed together to produce compressed data (CD) output. Both D and CX are provided by the model unit
(not shown). CX selects the probability estimate to use during the coding of D. In this International Standard, CX is a
label for a context. 

B.1.1 Recursive interval subdivision (informative)

The recursive probability interval subdivision of Elias coding is the basis for the binary arithmetic coding process. With
each binary decision the current probability interval is subdivided into two sub-intervals, and the code string is modified
(if necessary) so that it points to the base (the lower bound) of the probability sub-interval assigned to the symbol which
occurred.

In the partitioning of the current interval into two sub-intervals, the sub-interval for the more probable symbol (MPS) is
ordered above the sub-interval for the less probable symbol (LPS). Therefore, when the MPS is coded, the LPS sub-
interval is added to the code string. This coding convention requires that symbols be recognized as either MPS or LPS,
rather than 0 or 1. Consequently, the size of the LPS interval and the sense of the MPS for each decision must be known
in order to code that decision.

Since the code string always points to the base of the current interval, the decoding process is a matter of determining, for
each decision, which sub-interval is pointed to by the compressed data. This is also done recursively, using the same
interval sub-division process as in the encoder. Each time a decision is decoded, the decoder subtracts any interval the
encoder added to the code string. Therefore, the code string in the decoder is a pointer into the current interval relative to
the base of the current interval. Since the coding process involves addition of binary fractions rather than concatenation
of integer code words, the more probable binary decisions can often be coded at a cost of much less than one bit per
decision.

B.1.2 Coding conventions and approximations (informative)

The coding operations are done using fixed precision integer arithmetic and using an integer representation of fractional
values in which 0x8000 is equivalent to decimal 0.75. The interval A is kept in the range 0.75 ≤ A < 1.5 by doubling it
whenever the integer value falls below 0x8000.

Figure B-1 — Arithmetic encoder inputs and outputs

ENCODER CD

D

CX
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The code register C is also doubled each time A is doubled. Periodically – to keep C from overflowing – a byte of data is
removed from the high order bits of the C-register and placed in an external compressed data buffer. Carry-over into the
external buffer is resolved by a bit stuffing procedure.

Keeping A in the range 0.75 ≤ A < 1.5 allows a simple arithmetic approximation to be used in the interval subdivision.
The interval is A and the current estimate of the LPS probability is Qe, a precise calculation of the sub-intervals would
require:

A - (Qe * A) = sub-interval for the MPS B.1

Qe * A = sub-interval for the LPS B.2

Because the value of A is of order unity, these are approximated by

A - Qe = sub-interval for the MPS B.3

Qe = sub-interval for the LPS B.4

Whenever the MPS is coded, the value of Qe is added to the code register and the interval is reduced to A - Qe. Whenever
the LPS is coded, the code register is left unchanged and the interval is reduced to Qe. The precision range required for A
is then restored, if necessary, by renormalization of both A and C.

With the process illustrated above, the approximations in the interval subdivision process can sometimes make the LPS
sub-interval larger than the MPS sub-interval. If, for example, the value of Qe is 0.5 and A is at the minimum allowed
value of 0.75, the approximate scaling gives 1/3 of the interval to the MPS and 2/3 to the LPS. To avoid this size
inversion, the MPS and LPS intervals are exchanged whenever the LPS interval is larger than the MPS interval. This
MPS/LPS conditional exchange can only occur when a renormalization is needed.

Whenever a renormalization occurs, a probability estimation process is invoked which determines a new probability
estimate for the context currently being coded. No explicit symbol counts are needed for the estimation. The relative
probabilities of renormalization after coding an LPS and MPS provide an approximate symbol counting mechanism
which is used to directly estimate the probabilities.

B.2 Description of the arithmetic encoder (informative)

The ENCODER (Figure B-2) initializes the encoder through the INITENC procedure. CX and D pairs are read and
passed on to ENCODE until all pairs have been read. The probability estimation procedures which provide adaptive
estimates of the probability for each context are imbedded in ENCODE. Bytes of compressed data are output when no
longer modifiable. When all of the CX and D pairs have been read (Finished?), FLUSH sets the contents of the C-register
to as many 1-bits as possible and then outputs the final bytes. FLUSH also terminates the encoding and generates the
required terminating marker.

NOTE — While FLUSH is required in ITU-T Rec.T.87 | ISO/IEC 14496-1 it is informative in this specification. Other methods are
acceptable.
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B.2.1 Encoder code register conventions (informative)

The flow charts given in this Annex assume the register structures for the encoder shown in Table B-1.

The “a” bits are the fractional bits in the A-register (the current interval value) and the “x” bits are the fractional bits in
the code register. The “s” bits are spacer bits which provide useful constraints on carry-over, and the “b” bits indicate the
bit positions from which the completed bytes of the data are removed from the C-register. The “c” bit is a carry bit.

The detailed description of bit stuffing and the handling of carry-over will be given in a later part of this Annex.

Table B-1 — Encoder register structures

MSB LSB

C-register 0000 cbbb bbbb bsss xxxx xxxx xxxx xxxx

A-register 0000 0000 0000 0000 aaaa aaaa aaaa aaaa

Figure B-2 — Encoder for the MQ-coder
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B.2.2 Encoding a decision (ENCODE) (informative)

The ENCODE procedure determines whether the decision D is a 0 or not. Then a CODE0 or a CODE1 procedure is
called appropriately. Often embodiments will not have an ENCODE procedure, but will call the CODE0 or CODE1
procedures directly to code a 0-decision or a 1-decision. Figure B-3 shows this procedure.

B.2.3 Encoding a 1 or a 0 (CODE1 and CODE0) (informative)

When a given binary decision is coded, one of two possibilities occurs – the symbol is either the more probable symbol or
it is the less probable symbol. CODE1 and CODE0 are illustrated in Figure B-4 and Figure B-5. In these figures, CX is
the context. For each context, the index of the probability estimate which is to be used in the coding operations and the
MPS value are stored. MPS(CX) is the sense (0 or 1) of the MPS for context CX. 

Figure B-3 — ENCODE procedure

Figure B-4 — CODE1 procedure
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B.2.4 Encoding an MPS or LPS (CODEMPS and CODELPS)

The CODELPS (Figure B-6) procedure usually consists of a scaling of the interval to Qe(I(CX)), the probability estimate
of the LPS determined from the index I stored for context CX. The upper interval is first calculated so it can be compared
to the lower interval to confirm that Qe has the smaller size. It is always followed by a renormalization (RENORME). In
the event that the interval sizes are inverted, however, the conditional MPS/LPS exchange occurs and the upper interval
is coded. In either case, the probability estimate is updated. If the SWITCH flag for the index I(CX) is set, then the
MPS(CX) is inverted. A new index I is saved at CX as determined from the next LPS index (NLPS) column in Table B-2.

Figure B-5 — CODE0 procedure
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Table B-2 — Qe values and probability estimation process

Index Qe_Value NMPS NLPS SWITCH

(hexadecimal) (binary) (decimal)

0 0x5601 0101 0110 0000 0001 0.503937 1 1 1

1 0x3401 0011 0100 0000 0001 0.304715 2 6 0

2 0x1801 0001 1000 0000 0001 0.140650 3 9 0

3 0x0ACl 0000 1010 1100 0001 0.063012 4 12 0

Figure B-6 — CODELPS procedure with conditional MPS/LPS exchange
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4 0x0521 0000 0101 0010 0001 0.030053 5 29 0

5 0x0221 0000 0010 0010 0001 0.012474 38 33 0

6 0x5601 0101 0110 0000 0001 0.503937 7 6 1

7 0x5401 0101 0100 0000 0001 0.492218 8 14 0

8 0x4801 0100 1000 0000 0001 0.421904 9 14 0

9 0x3801 0011 1000 0000 0001 0.328153 10 14 0

10 0x3001 0011 0000 0000 0001 0.281277 11 17 0

11 0x2401 0010 0100 0000 0001 0.210964 12 18 0

12 0x1C01 0001 1100 0000 0001 0.164088 13 20 0

13 0x1601 0001 0110 0000 0001 0.128931 29 21 0

14 0x5601 0101 0110 0000 0001 0.503937 15 14 1

15 0x5401 0101 0100 0000 0001 0.492218 16 14 0

16 0x5101 0101 0001 0000 0001 0.474640 17 15 0

17 0x4801 0100 1000 0000 0001 0.421904 18 16 0

18 0x3801 0011 1000 0000 0001 0.328153 19 17 0

19 0x3401 0011 0100 0000 0001 0.304715 20 18 0

20 0x3001 0011 0000 0000 0001 0.281277 21 19 0

21 0x2801 0010 1000 0000 0001 0.234401 22 19 0

22 0x2401 0010 0100 0000 0001 0.210964 23 20 0

23 0x2201 0010 0010 0000 0001 0.199245 24 21 0

24 0x1C01 0001 1100 0000 0001 0.164088 25 22 0

25 0x1801 0001 1000 0000 0001 0.140650 26 23 0

26 0x1601 0001 0110 0000 0001 0.128931 27 24 0

27 0x1401 0001 0100 0000 0001 0.117212 28 25 0

28 0x1201 0001 0010 0000 0001 0.105493 29 26 0

Table B-2 — Qe values and probability estimation process

Index Qe_Value NMPS NLPS SWITCH

(hexadecimal) (binary) (decimal)
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The CODEMPS (Figure B-7) procedure usually reduces the size of the interval to the MPS sub-interval and adjusts the
code register so that it points to the base of the MPS sub-interval. However, if the interval sizes are inverted, the LPS sub-
interval is coded instead. Note that the size inversion cannot occur unless a renormalization (RENORME) is required
after the coding of the symbol. The probability estimate update changes the index I(CX) according to the next MPS index
(NMPS) column in Table B-2.

29 0x1101 0001 0001 0000 0001 0.099634 30 27 0

30 0x0ACl 0000 1010 1100 0001 0.063012 31 28 0

31 0x09C1 0000 1001 1100 0001 0.057153 32 29 0

32 0x08A1 0000 1000 1010 0001 0.050561 33 30 0

33 0x0521 0000 0101 0010 0001 0.030053 34 31 0

34 0x0441 0000 0100 0100 0001 0.024926 35 32 0

35 0x02Al 0000 0010 1010 0001 0.015404 36 33 0

36 0x0221 0000 0010 0010 0001 0.012474 37 34 0

37 0x0141 0000 0001 0100 0001 0.007347 38 35 0

38 0x0111 0000 0001 0001 0001 0.006249 39 36 0

39 0x0085 0000 0000 1000 0101 0.003044 40 37 0

40 0x0049 0000 0000 0100 1001 0.001671 41 38 0

41 0x0025 0000 0000 0010 0101 0.000847 42 39 0

42 0x0015 0000 0000 0001 0101 0.000481 43 40 0

43 0x0009 0000 0000 0000 1001 0.000206 44 41 0

44 0x0005 0000 0000 0000 0101 0.000114 45 42 0

45 0x0001 0000 0000 0000 0001 0.000023 45 43 0

46 0x5601 0101 0110 0000 0001 0.503937 46 46 0

Table B-2 — Qe values and probability estimation process

Index Qe_Value NMPS NLPS SWITCH

(hexadecimal) (binary) (decimal)
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B.2.5 Probability Estimation

Table B-2 shows the Qe value associated with each Qe index. The Qe values are expressed as hexadecimal integers, as
binary integers, and as decimal fractions. To convert the 15 bit integer representation of Qe to the decimal probability, the
Qe values are divided by (4/3) * (0x8000).

The estimator can be defined as a finite-state machine – a table of Qe indexes and associated next states for each type of
renormalization (i.e., new table positions) – as shown in Table B-2. The change in state occurs only when the arithmetic
coder interval register is renormalized. This is always done after coding the LPS, and whenever the interval register is
less than 0x8000 (0.75 in decimal notation) after coding the MPS.

After an LPS renormalization, NLPS gives the new index for the LPS probability estimate. After an MPS
renormalization, NMPS gives the new index for the LPS probability estimate. If Switch is 1, the MPS symbol sense is
reversed.

Figure B-7 — CODEMPS procedure with conditional MPS/LPS exchange
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The index to the current estimate is part of the information stored for context CX. This index is used as the index to the
table of values in NMPS, which gives the next index for an MPS renormalization. This index is saved in the context
storage at CX. MPS(CX) does not change.

The procedure for estimating the probability on the LPS renormalization path is similar to that of an MPS
renormalization, except that when SWITCH(I(CX)) is 1, the sense of MPS(CX) is inverted.

The final index state 46 can be used to establish a fixed 0.5 probability estimate.

B.2.6 Renormalization in the encoder (RENORME) (informative)

Renormalization is very similar in both encoder and decoder, except that in the encoder it generates compressed bits and
in the decoder it consumes compressed bits.

The RENORME procedure for the encoder renormalization is illustrated in Figure B-8. Both the interval register A and
the code register C are shifted, one bit at a time. The number of shifts is counted in the counter CT, and when CT is
counted down to zero, a byte of compressed data is removed from C by the procedure BYTEOUT. Renormalization
continues until A is no longer less than 0x8000. 

B.2.7 Compressed data output (BYTEOUT) (informative)

The BYTEOUT routine called from RENORME is illustrated in Figure B-9. This routine contains the bit-stuffing
procedures which are needed to limit carry propagation into the completed bytes of compressed data. The conventions

Figure B-8 — Encoder renormalisation procedure
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used make it impossible for a carry to propagate through more than the byte most recently written to the compressed data
buffer. 

The procedure in the block in the lower right section does bit stuffing after a 0xFF byte; the similar procedure on the left
is for the case where bit stuffing is not needed.

B is the byte pointed to by the compressed data buffer pointer BP. If B is not a 0xFF byte, the carry bit is checked. If the
carry bit is set, it is added to B and B is again checked to see if a bit needs to be stuffed in the next byte. After the need for
bit stuffing has been determined, the appropriate path is chosen, BP is incremented and the new value of B is removed
from the code register “b” bits.

Figure B-9 — BYTEOUT procedure for encoder
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B.2.8 Initialisation of the encoder (INITENC) (informative)

The INITENC procedure is used to start the arithmetic coder. The basic steps are shown in Figure B-10. 

The interval register and code register are set to their initial values, and the bit counter is set. Setting CT = 12 reflects the
fact that there are three spacer bits in the register which need to be filled before the field from which the bytes are
removed is reached. Note that BP always points to the byte preceding the position BPST where the first byte is placed.
Therefore, if the preceding byte is a 0xFF byte, a spurious bit stuff will occur, but can be compensated for by increasing
CT. The default settings for MPS and I are shown in Table C-6.

B.2.9 Termination of coding (FLUSH) (informative)

The FLUSH procedure shown in Figure B-11 is used to terminate the encoding operations and generate the required
terminating marker. The procedure guarantees that the 0xFF prefix to the marker code overlaps the final bits of the
compressed data. This guarantees that any marker code at the end of the compressed data will be recognized and
interpreted before decoding is complete.

Figure B-10 — Initialisation of the encoder
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The first part of the FLUSH procedure sets as many bits in the C-register to 1 as possible as shown in Figure B-12. The
exclusive upper bound for the C-register is the sum of the C-register and the interval register. The low order 16 bits of C
are forced to 1, and the result is compared to the upper bound. If C is too big, the leading 1-bit is removed, reducing C to
a value which is within the interval.

�
✒

✏
✑FLUSH

❄
SETBITS

❄
C = C << CT

❄
BYTEOUT

❄
C = C << CT

❄
BYTEOUT

❄

✧✧✧✧✧

❜❜❜❜❜

✧✧✧✧✧

❜❜❜❜❜

B = 0xFF?
Yes

No

❄
BP = BP + 1

❄�
✒

✏
✑Done

❄
Discard B

✛

Figure B-11 — FLUSH procedure
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The byte in the C-register is then completed by shifting C, and two bytes are then removed. If the byte in buffer, B, an
0xFF then it is discarded. Otherwise, buffer B is output to the bit stream.

NOTE — This is the only normative option for termination in ITU-T Rec.T.87 | ISO/IEC 14496. However, further reduction of the
bit stream is allowed provided correct decoding is assured (see Annex C.5.2).

B.3 Arithmetic decoding procedure

Figure B-13 shows a simple block diagram of a binary adaptive arithmetic decoder. The compressed data CD and a
context CX from the decoder's model unit (not shown) are input to the arithmetic decoder. The decoder's output is the
decision D. The encoder and decoder model units need to supply exactly the same context CX for each given decision. 

The DECODER (Figure B-14) initializes the decoder through INITDEC. Contexts, CX, and bytes of compressed data (as
needed) are read and passed on to DECODE until all contexts have been read. The DECODE routine decodes the binary
decision D and returns a value of either 0 or 1. The probability estimation procedures which provide adaptive estimates of

Figure B-12 — Setting the final bits in the C register

Figure B-13 — Arithmetic decoder inputs and outputs

DECODER D

CD

CX
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the probability for each context are embedded in DECODE. When all contexts have been read (Finished?), the
compressed data has been decompressed. 

B.3.1 Decoder code register conventions

The flow charts given in this Annex assume the register structures for the decoder shown in Table B-3. 

Chigh and Clow can be thought of as one 32 bit C-register in that renormalization of C shifts a bit of new data from the
MSB of Clow to the LSB of Chigh. However, the decoding comparisons use Chigh alone. New data is inserted into the
“b” bits of Clow one byte at a time.

The detailed description of the handling of data with stuff-bits will be given later in this Annex.

Note that the comparisons shown in the various procedures in this section assume precisions greater than 16 bits. Logical
comparisons can be used with 16 bit precision.

Table B-3 — Decoder register structures

MSB LSB

Chigh register xxxx xxxx xxxx xxxx

Clow register bbbb bbbb 0000 0000

A-register aaaa aaaa aaaa aaaa

Figure B-14 — Decoder for the MQ-coder
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B.3.2 Decoding a decision (DECODE)

The decoder decodes one binary decision at a time. After decoding the decision, the decoder subtracts any amount from
the compressed data that the encoder added. The amount left in the compressed data is the offset from the base of the
current interval to the sub-interval allocated to all binary decisions not yet decoded. In the first test in the DECODE
procedure illustrated in Figure B-15 the Chigh register is compared to the size of the LPS sub-interval. Unless a
conditional exchange is needed, this test determines whether a MPS or LPS is decoded. If Chigh is logically greater than
or equal to the LPS probability estimate Qe for the current index I stored at CX, then Chigh is decremented by that
amount. If A is not less than 0x8000, then the MPS sense stored at CX is used to set the decoded decision D. 

When a renormalization is needed, the MPS/LPS conditional exchange may have occurred. For the MPS path the
conditional exchange procedure is shown in Figure B-16. As long as the MPS sub-interval size A calculated as the first
step in Figure B-16 is not logically less than the LPS probability estimate Qe(I(CX)), an MPS did occur and the decision
can be set from MPS(CX). Then the index I(CX) is updated from the next MPS index (NMPS) column in Table B-2. If,
however, the LPS sub-interval is larger, the conditional exchange occurred and an LPS occurred. The probability update
switches the MPS sense if the SWITCH column has a “1” and updates the index I(CX) from the next LPS index (NLPS)
column in Table B-2. Note that the probability estimation in the decoder needs to identical to the probability estimation in
the encoder.

Figure B-15 — Decoding an MPS or an LPS
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For the LPS path of the decoder the conditional exchange procedure is given the LPS_EXCHANGE procedure shown in
Figure B-17. The same logical comparison between the MPS sub-interval A and the LPS sub-interval Qe(I(CX))
determines if a conditional exchange occurred. On both paths the new sub-interval A is set to Qe(I(CX)). On the left path
the conditional exchange occurred so the decision and update are for the MPS case. On the right path, the LPS decision
and update are followed.

Figure B-16 — Decoder MPS path conditional exchange procedure
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Figure B-17 — Decoder LPS path conditional exchange procedure
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B.3.3 Renormalization in the decoder (RENORMD)

The RENORMD procedure for the decoder renormalization is illustrated in Figure B-18. A counter keeps track of the
number of compressed bits in the Clow section of the C-register. When CT is zero, a new byte is inserted into Clow in the
BYTEIN procedure. 

Both the interval register A and the code register C are shifted, one bit at a time, until A is no longer less than 0x8000.

B.3.4 Compressed data input (BYTEIN)

The BYTEIN procedure called from RENORMD is illustrated in Figure B-19. This procedure reads in one byte of data,
compensating for any stuff bits following the 0xFF byte in the process. It also detects the marker codes which must occur

Figure B-18 — Decoder renormalisation procedure
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at the end of a scan or resynchronization interval. The C-register in this procedure is the concatenation of the Chigh and
Clow registers. 

B is the byte pointed to by the compressed data buffer pointer BP. If B is not a 0xFF byte, BP is incremented and the new
value of B is inserted into the high order 8 bits of Clow.

If B is a 0xFF byte, then B1 (the byte pointed to by BP+1) is tested. If B1 exceeds 0x8F, then B1 must be one of the
marker codes. The marker code is interpreted as required, and the buffer pointer remains pointed to the 0xFF prefix of the
marker code which terminates the arithmetically compressed data. 1-bits are then fed to the decoder until the decoding is
complete. This is shown by adding 0xFF00 to the C-register and setting the bit counter CT to 8.

If B1 is not a marker code, then BP is incremented to point to the next byte which contains a stuffed bit. The B is added to
the C-register with an alignment such that the stuff bit (which contains any carry) is added to the low order bit of Chigh.

Figure B-19 — BYTEIN procedure for decoder
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B.3.5 Initialisation of the decoder (INITDEC)

The INITDEC procedure is used to start the arithmetic decoder. The basic steps are shown in Figure B-20. 

BP, the pointer to the compressed data, is initialized to BPST (pointing to the first compressed byte). The first byte of the
compressed data is shifted into the low order byte of Chigh, and a new byte is then read in. The C-register is then shifted
by 7 bits and CT is decremented by 7, bringing the C-register into alignment with the starting value of A. The interval
register A is set to match the starting value in the encoder.

B.3.6 Resetting arithmetic coding statistics

At certain points during the decoding some or all of the arithmetic coding statistics are reset. This process involves
setting I(CX) and MPS(CX) equal to zero for some or all values of CX.

B.3.7 Saving arithmetic coding statistics

In some cases, the decoder needs to save or restore some values of I(CX) and MPS(CX).

Figure B-20 — Initialisation of the decoder
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Annex C

Coefficient bit modeling

(This annex forms an integral part of this Recommendation | International Standard)

This annex defines the modeling of the transform coefficient bits. It describes how the coefficients are arranged into
code-blocks, bit-planes, and coding passes.

The coefficients are associated with different sub-bands arising from the transform applied (see Annex F). These
coefficients are then arranged into rectangular blocks within each sub-band, called code-blocks. These code-blocks are
then coded a bit-plane at a time starting with the most significant bit-plane with a non-zero element to the least significant
bit-plane. 

For each bit-plane in a code-block, a special code-block scan pattern is used for each of three passes. Each coefficient bit
in the bit-plane is coded in only one of the three passes. The passes are called significance propagation, magnitude
refinement, and cleanup. For each pass contexts are created which is passed to the arithmetic coder, CX, along with the
bit stream, CD, (see Annex B.3). The arithmetic coder is reset according to selected rules.

C.1 Division of the frequency sub-bands into code-blocks

As described in Annex F, all the transform coefficients Jt,c(u,v) of an image tile component or of a cell of an image tile
component are grouped into sub-bands to form sub-band coefficients ab(u,v) for each sub-band, b. The sub-bands are
further partitioned into rectangular code-blocks. The basic size of these code-blocks is signalled in the COD or COC
markers (see Annex A.6.1 and Annex A.6.2) and is the same for all sub-bands. With the possible exception is code-
blocks on the boundary of sub-bands, all code-blocks have the same width (2xcb’) and height (2ycb’) for a given tile
component. The code-block width and height are limited to powers of two with the minimum size being 22 and the
maximum being 210. Further the code-block size is restricted to the xcb+ycb <= 12. 

The code-block size is further constrained by the partition size. This is shown in Equation D.14 and Equation D.15.

A sub-band of coefficients ab(x,y) is partitioned into code-blocks in the following way. Figure C-1 shows the partition as
defined by the width and height of the code-block. All first rows of code-blocks are located at x = (m * 2xcb’) and all first
columns of code-blocks are located at y = (m * 2ycb’). 

C.2 Code-block scan pattern within code-blocks

Each bit-plane of a code-block is scanned in a particular order. Starting at the top left, the first four bits of the column are
scanned. Then the first four bits of the second column, until the width of the code-block has been covered. Then the

2xc
b’

0

2ycb’

2.2ycb’

3.2ycb’

0

2.
2xc

b’

3.
2xc

b’

4.
2xc

b’

Figure C-1 — Partition of sub-band ab(x,y)

coefficients ab(x,y) of sub-band b
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second four bits of the first column are scanned and so on. A similar vertical scan is continued for any leftover rows on
the lowest code-blocks in the sub-band. Figure C-2 shows an example of the code-block scan pattern for a code-block. 

C.3 Coefficient bits and significance

All quantized transform coefficients are signed values even when the original components are unsigned. These
coefficients are expressed in a sign-magnitude representation prior to coding. For a particular sub-band, there is a
maximum number of magnitude bits, Mb. The interesting point in a coefficient is the most significant 1 value magnitude
bit. This is where the significance state will change (see the section below). For a code-block, the number of bit-planes
from the most significant bit-plane that are all zero, is signalled in the packet header (see Annex D.7.5). No other coding
of those insignificant bit-planes is made.

C.4 Decoding passes over the bit-planes

Each coefficient in a code-block has an associated binary state variable called its significance state. Significance states are
initialized to 0 (coefficient is insignificant) and may become 1 (coefficient is significant) during the course of the coding
of the code-block. The context vector for a given current coefficient is the binary vector consisting of the significance
states of its 8 nearest-neighbor coefficients, as shown in Figure C-3. Any nearest neighbor lying outside the current
coefficient’s code-block is regarded as insignificant (i.e., it is treated as having a zero significance state) for the purpose of
coding a bit in the current coefficient.

In general, a current coefficient can have 256 possible context vectors. These are clustered into a smaller number of
contexts according to the rules specified below for context formation. Four different context formation rules are defined,
one for each of the four coding operations: significance coding, sign coding, magnitude refinement coding, and cleanup
coding. These coding operations are performed in three coding passes over each bit plane: significance and sign coding in
a significance propagation, magnitude refinement coding in a magnitude refinement pass, and cleanup and sign coding in
a cleanup pass. For a given coding operation, the context label (or context) provided to the arithmetic coding engine is a
label assigned to the current coefficient’s context.

NOTE — Although (for the sake of concreteness) specific integers are used in the tables below for labeling contexts, the tokens
used for context labels are implementation-dependent and their values are not mandated by this Recommendation | International
Standard.

The number of bit-planes from the most significant bit that have no significant coefficients (only insignificant bits) are
signalled in the packet headers (see Annex D.7.5). The first bit-plane with a non-zero element has a cleanup pass only.
The remaining bit-planes are coded in three passes. Each coefficient bit is coded only once in one of the three passes.
Which pass a coefficient bit is coded in depends on the conditions for that pass. In general, the significance propagation
includes the coefficients that are predicted, or “most likely,” to become significant and their sign bits, as appropriate. The
magnitude refinement pass includes bits from already significant coefficients. And the cleanup pass includes all the
remaining coefficients.

3    7   11 15  19  23 27  31  35 39  43  47  51 55  59  63

64 ...

2    6   10 14  18  22 26  30  34 38  42  46 50  54  58  62

1    5    9  13  17  21 25  29  33 37  41  45 49  53  57  61

0    4    8  12  16  20 24  28  32 36  40  44 48  52  56 60

Code-block 16 wide by N high

Figure C-2 — Example code-block scan pattern of a code-block

65 ...
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C.4.1 Significance propagation decoding pass

The eight surrounding neighbor coefficients of a current coefficient (shown as a X in Figure C-3 where X denotes the
current coefficient) are used to create 9 context bins based on how many and which ones are significant. If a coefficient is
significant then it is given a 1 value for the creation of the context, otherwise it is given a 0 value. The mapping to the
contexts also depends on which sub-band (at a given decomposition level) the code-block is in. Table C-1 shows these
contexts. 

The significance propagation includes only bits of coefficients that were insignificant (the significance bit has yet to be
encountered) and have a non-zero context. All other coefficients are skipped. The context is delivered to the arithmetic
decoder (along with the bit stream) and the decoded coefficient bit is returned is returned. If the value this bit is 1 then the
significance state is set to 1 and the immediate next bit to be decoded is the sign bit for the coefficient. Otherwise, the
significance state remains 0. When the contexts of successive coefficients and passes are considered, the most current
significance state for this coefficient is used. 

Table C-1 — Contexts for the significance propagation and cleanup passes

LL and LH sub-bands
(vertical high-pass)

HL sub-band
(horizontal high-pass)

HH sub-band
(diagonally high-pass)

Context 
labela

a. Note that the context labels are numbered only for identification. The actual identifiers used is a matter of implementation.

∑H ∑V ∑D ∑H ∑V ∑D ∑(H+V) ∑D

2 xb

b. x = do not care.

x x 2 x x ≥3 8

1 ≥1 x ≥1 1 x ≥1 2 7

1 0 ≥1 0 1 ≥1 0 2 6

1 0 0 0 1 0 ≥2 1 5

0 2 x 2 0 x 1 1 4

0 1 x 1 0 x 0 1 3

0 0 ≥2 0 0 ≥2 ≥2 0 2

0 0 1 0 0 1 1 0 1

0 0 0 0 0 0 0 0 0

D0 V0 D1

H0 “X” H1

D2 V1 D3

Figure C-3 — Neighbors states used to form the context
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C.4.2 Sign bit decoding

The context label for sign bit decoding is determined using another context of the neighborhood. Computation of the
context label can be viewed as a two step process. The first step summarizes the contribution of the vertical and the
horizontal neighbors. The second step reduces those contributions to one of 5 context labels.

For the first step, the two vertical neighbors (see Figure C-3) are considered together. Each neighbor may have one of
three states: significant positive, significant negative, or insignificant. If the two vertical neighbors are both significant
with the same sign, or if only one is significant then the vertical contribution is 1 if positive or -1 if negative. If both
vertical neighbors are insignificant, or both are significant with different signs, then the vertical contribution is 0. The
horizontal contribution is created the same way. Once again, if the neighbors fall outside the code-block they are
considered to be insignificant. Table C-2 shows these contributions.

The second step reduces the nine permutations of the vertical and horizontal contributions into 5 context labels. Table C-
3 shows these context labels. This context is delivered to the arithmetic decoder with the bit stream. The bit returned is
then XORed with the XORbit in Table C-3 to produce the sign bit. The following equation is used:

C.1

where signbit is the sign bit of the current coefficient, AC(contextlabel) is the value returned from the arithmetic decoder
given the context label and the bit stream, and the XORbit is found in Table C-3 for the current context label. 

Table C-2 — Contributions of the vertical (and the horizontal) neighbors to the sign context

V0 (or H0) V1 (or H1)
V (or H) 

contribution

significant, positive significant, positive 1

significant, negative significant, positive 0

insignificant significant, positive 1

significant, positive significant, negative 0

significant, negative significant, negative -1

insignificant significant, negative -1

significant, positive insignificant 1

significant, negative insignificant -1

insignificant insignificant 0

Table C-3 — Sign contexts from the vertical and horizontal contributions

Horizontal contribution Vertical contribution XORbit Context label

1 1 0 13

1 0 0 12

1 -1 0 11

signbit AC contextlabel( ) XORbit⊕=
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C.4.3 Magnitude refinement pass

The magnitude refinement pass through the data includes the bits from coefficients that are already significant (except
those that have just become significant in the immediately proceeding significance propagation).

The context used is determined by the summation of the significance state of the horizontal, vertical, and diagonal
neighbors. Further, it is dependent on whether this is the first refinement bit (the bit immediately after the significance
and sign bits) or not. Table C-4 shows the three context bins for this pass. 

C.4.4 Cleanup pass

All the remaining coefficients are insignificant and had the context value of zero during the significance propagation.
These are all included in the cleanup pass. The cleanup pass not only uses the neighbor context, like the significance
propagation, from Table C-1, but also a run-length context.

First, the neighbor context for the coefficients in this pass are recreated using Table C-1. Note that the context label can
now have any value because the coefficients that were found to be significant in the significance propagation are used as
significant in the cleanup pass. Run-lengths are decoded with a unique single context. If the four contiguous coefficients
in the column being scanned are all coded in the cleanup pass and the context label for all is 0 then the unique run-length
context is given to the arithmetic decoder along with the bit stream. If the symbol, 0, is returned then all four contiguous
coefficients in the column remain insignificant.

Otherwise, if a symbol, 1, is returned then at least one of the four contiguous coefficients in the column are significant.
The next two bits, returned with the UNIFORM context (index 46 in Table B-2) denote which coefficient from the top of
the column down is the first to be found significant. That coefficient’s sign bit is determined as described in Annex C.4.2.
The decoding of any remaining coefficients continues in the manner described in Annex C.4.1.

0 1 0 10

0 0 0 9

0 -1 1 10

-1 1 1 11

-1 0 1 12

-1 -1 1 13

Table C-4 — Contexts for the magnitude refinement passes

∑H+∑V First refinement for this coefficient Context label

xa

a. "x" indicates a "don’t care" state.

false 16

≥1 true 15

0 true 14

Table C-3 — Sign contexts from the vertical and horizontal contributions

Horizontal contribution Vertical contribution XORbit Context label
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If the four contiguous coefficients in a column are not all decoded in the cleanup pass or the context bin for any is non-
zero, then the coefficient bits are decoded with the context in Table C-1 as in the significance propagation. Note that the
same contexts as the significance propagation are used here (the state is used as well as the model). Table C-5 shows the
logic for the cleanup pass. 

If there are fewer than four rows remaining in a block, then no run-length coding is used. Once again, the significance
state of any coefficient is changed immediately after decoding the first 1 magnitude bit.

C.5 Initializing and terminating

When the contexts are initialized, or re-initialized, they are set to the values in the Table C-6. The contexts are either re-
initalized at the end of every coding pass, or only at the end of every code-block. Which is used is signaled in the COD or
COC marker (see Annex A.6.1 and Annex A.6.2). 

Table C-5 — Run-length coder for cleanup decoding passes

Four contiguous 
coefficients in a column 
remaining to be decoded 
and each currently have 

the 0 context

Symbols with 
run-length 
context, 17

Four contiguous bits to be coded 
are zero

Symbols decoded 
with UNIFORMa 

context (

a. See Annex B.

Number of 
coefficients to 

decode

true 0 true none none

true 1 false
skip to first coefficient sign
skip to second coefficient sign
skip to third coefficient sign
skip to fourth coefficient sign

00
01
10
11

3
2
1
0

false none x none rest of column

Table C-6 — Initial states for all 18 contexts

Context Initial index from Table B-2 MPS

UNIFORM 46 0

Run-length 3 0

All zero neighbors (context label 0 in Table C-1) 4 0

All other contexts 0 0
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In the normal operation (not selective arithmetic coding bypass), the arithmetic coder shall be terminated either at the end
of all passes or at the end of every pass in a code-block. Figure C-4 shows two examples of termination patterns for the
passes in a code-block. Which case is used is signaled in the COD or COC marker (see Annex A.6.1 and Annex A.6.2). 

When multiple terminations of the arithmetic coder are present, the length of each terminated segment is signalled in the
packet header as described in Annex D.7.7.

C.5.1 Decoder termination

The decoder anticipates that the given number of codestream bytes will decode a given number of coding passes before
the arithmetic coder is terminated. During decoding, bytes are pulled successively from the codestream until all the byte
length for those coding passes has been reached. Often at that point there are more symbols to be decoded. Therefore, the
decoder shall extend the input bit stream to the arithmetic coder with 0xFF bytes, as necessary, until all symbols have
been decoded.

It is sufficient to append no more than two 0xFF bytes. This will cause the arithmetic coder to have at least one pair of
consecutive 0xFF bytes at its input which is interpreted as an end-of-stream marker (see Annex B.3.4). The bit stream
does not actually contain a terminating marker. However, the byte length is explicitly signalled enabling the terminating
marker to be synthesized for the arithmetic coder. 

NOTE — Two 0xFF bytes appended in this way is the simplest method, however, other equivalent extensions exist. This might be
important since some arithmetic coder implementations might attach special meaning to the specific termination marker.

C.5.2 Arithmetic encoder termination

This termination is required if the predictable termination flag is on in the COD or COC markers (see Annex A.6.1 and
Annex A.6.2). Otherwise, it is allowed, but not required.

It is important for the computation of fixed rate coding to be able to compute the number of bytes required to correctly
decode all symbols up to any given truncation point, i.e. up to the end of the relevant coding passes. According to the
termination style selected, a certain number of coding passes are performed before the arithmetic coder is terminated.
The truncated length of the bit stream segment created must be estimated for rate control algorithms.

The FLUSH procedure performs this task adequately (see Annex B.2.9). However, since the FLUSH procedure increases
the length of the codestream, and frequent termination may be desirable, other techniques may be employed. Any
technique that places all of the needed bytes in the codestream in such a way that the decoder need not backtrack to find
the position at which the next segment of the codestream should begin, is acceptable.

Using the notation of Annex B.2, the followings steps can be used:

1 Identify the number of bits in code register, C, which must be pushed out through the byte buffer. This
is given by k = (11 - CTn) +1

1 cleanup pass — Arithmetic Coder (AC)
2 significance propagation — AC

2 magnitude refinement pass — AC
2 cleanup pass — AC

final significance propagation — AC
final magnitude refinement pass — AC
final cleanup pass — AC, terminate

• • •

1 cleanup pass — AC, terminate
2 significance propagation — AC, terminate

2 magnitude refinement pass — AC, terminate
2 cleanup pass — AC, terminate

final significance propagation — AC, terminate
final magnitude refinement pass — AC, terminate

final cleanup pass — AC, terminate

• • •

a) Termination only on last pass b) Termination on every pass

Figure C-4 — Examples of arithmetic coder termination patterns
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2 While (k > 0)

— Shift C left by CT and set CT = 0.

— Execute the BYTEOUT procedure. Note that this sets CT equal to the number of bits cleared out
of the C register.

— Subtract CT from k.

3 Execute the BYTEOUT procedure to push the contents of the byte buffer register out to the codestream.
Note that this step shall be skipped if the byte in the byte buffer has an 0xFF byte value. 

The relevant truncation length in this case is simply the total number of bytes pushed out onto the codestream. The last
byte output by the above procedure can generally be modified, within certain bounds, without affecting the symbols to be
decoded. It will sometimes be possible to augment the last byte to the special value, 0xFF, which shall not be sent. It can
be shown that this happens approximately 1/8 of the time. 

C.6 Selective arithmetic coding bypass

This style of coding allows bypassing the arithmetic coder for the significance propagation and magnitude refinement
passes in the fifth significant bit-plane, and the following bit-planes, of the block. The first cleanup pass (which is the first
bit-plane of a block with a non-zero element) and the successive three significance propagation, magnitude refinement,
and cleanup passes are coded with the arithmetic coder as before. The fourth cleanup pass includes an arithmetic coder
termination (see Figure C-5).

Starting with the fourth significance propagation and magnitude refinement passes the bits that would have been returned
from the arithmetic coder are instead returned after a routine that undoes the effects of bit stuffing. After each magnitude
refinement pass the bit stream is “terminated” by padding to the byte boundary. The cleanup passes continue to receive
data directly from the arithmetic coder and are always terminated.

The sign bit context is determined as in Annex C.4.2. However, the signbit is computed with Equation C.2, not Equation
C.1.

C.2signbit AC contextlabel( )=
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Whether this style is used is signaled in the COD or COC marker (see Annex A.6.1 and Annex A.6.2). Figure C-5 shows
this progression. 

The length of each terminated segment is signalled in the packet header as described in Annex D.7.7.

C.6.1 Undoing the effects of bit stuffing

If a 0xFF value is encountered in the bit stream, then the first bit of the next byte is discarded. The sequence of bits used
in the selective arithmetic coding bypass have been stuffed into bytes using a bit stuffing routine.

At the encoder, bits are packed into bytes from the most significant bit to the least significant bit. Once a complete byte is
assembled, it is emitted to the bit stream. If the value of the byte is an 0xFF a single zero bit is stuffed into the most
significant bit of the next byte. Once all bits of the coding pass have been assembled, the last byte is packed to the byte
boundary and emitted. The last byte shall not be an 0xFF value.

NOTE — Since the decoder appends 0xFF values, as necessary, to the bit stream representing the coding pass (see Annex C.5.1),
truncation of the bit stream may be possible.

C.6.2 Predictable termination

This termination is required if the predictable termination flag is on in the COD or COC markers (see Annex A.6.1 and
Annex A.6.2). Otherwise, it is allowed, but not required.

When all the bits from a the coding pass have been assembled by the encoder, the last byte is packed to the boundary
with the sequence 0101010.

C.7 Vertically code-block scan causal context formation

This style of coding constrains the context formation to the current and past code-block scans (four rows of vertically
scanned samples). That is, any coefficient from the next code-block scan are considered to be insignificant. Whether this
style is used signaled in the COD or COC marker (see Annex A.6.1 and Annex A.6.2).

1 cleanup pass — Arithmetic Coding (AC)
2 significance propagation — AC

2 magnitude refinement pass — AC
2 cleanup pass — AC

final significance propagation — raw
final magnitude refinement pass — raw, terminate

final cleanup pass — AC, terminate

• • •

Figure C-5 — Selective arithmetic coding bypass

3 significance propagation — AC
3 magnitude refinement pass — AC

3 cleanup pass — AC
4 significance propagation — AC

4 magnitude refinement pass — AC
4 cleanup pass — AC, terminate
5 significance propagation — raw

5 magnitude refinement pass — raw, terminate
5 cleanup pass — AC, terminate



ISO/IEC CD15444-1 : 1999 (V1.0, 9 December 1999)

78 ITU-T Rec. T.800 (1999 CDV1.0)

C.8 Flow diagram of the code-block coding

The steps for modeling each bit-plane of each code-block can be viewed graphically in Figure C-6. The decisions made
are in Table C-7 and the bits and context sent to the coder are in Table C-8. These show the context model without the
selective arithmetic coding bypass or the vertically causal model.     

Table C-7 — Decisions in the context model flow chart

Decision Question Description

D0 Is this the first significance bit-plane for the code-block? Annex C.4

D1 Is the current coefficient significant? Annex C.4.1

D2 Is the context bin zero? (see Table C-1) Annex C.4.1

D3 Did the current coefficient just become significant? Annex C.4.1

D4 Are there more coefficients in the significance propagation?

D5 Is the coefficient insignificant? Annex C.4.3

D6 Was the coefficient coded in the last significance propagation? Annex C.4.3

D7 Are there more coefficients in the magnitude refinement pass?

D8 Are four contiguous undecoded coefficients in a column each with a 0 context? Annex C.4.4

D9 Is the coefficient significant? Annex C.4.4

D10 Are there more coefficients remaining of the four column coefficients?

D11 Are the four contiguous bits all zero? Annex C.4.4

D12 Are there more coefficients in the cleanup pass?

Table C-8 — Coding in the context model flow chart

Code Decoded symbol Context Brief explanation Description

C0 — — Goto the next coefficient or column

C1 Newly significant?
Table C-1, 9 

context labels
Decode significant bit of current coefficient 

(significance propagation)
Annex C.4.1

C2 Sign bit
Table C-3, 5 

context labels
Decode sign bit of current coefficient Annex C.4.2

C3
Current magnitude 

bit
Table C-4, 3 

context labels
Decode magnitude refinement pass bit of current 

coefficient
Annex C.4.3

C4
0
1

Run-length 
context label

Decode run-length of four zeros
Decode run-length not of four zeros

Annex C.4.4
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C5

00
01
10
00

UNIFORM

First coefficient is first with non-zero bin
Second coefficient is first with non-zero bin
Third coefficient is first with non-zero bin
Forth coefficient is first with non-zero bin

Annex C.4.4 
and Table B-2

Table C-8 — Coding in the context model flow chart

Code Decoded symbol Context Brief explanation Description
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Figure C-6 — Flow chart for a all passes on a code-block bit-plane
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Annex D

Bit stream ordering

(This annex forms an integral part of this Recommendation | International Standard)

This annex defines the bit stream ordering. It describes the image and image components, and the tiling of the image and
tile-parts. It reviews the decomposition of the image tile-components with the wavelet transform into decomposition
levels and sub-bands (see Annex F). It defines an order for the sub-bands.

The layering of the code-blocks for a decomposition level creating the data of a packet is described, as well as the packet
header.

D.1 Image and components

The reference grid, image area offset, and component separation are defined by dimensional pairs (Xsiz, Ysiz), (XOsiz,
YOsiz), and (XRsiz(i), YRsiz(i)) respectively in reference grid units. These are all from the SIZ marker (see Annex
A.5.1). Thus, the reference grid is a rectangular grid of data points with the indices from (0,0) to (Xsiz-1, Ysiz-1).

The image area is a rectangle that is placed on the reference grid. The bottom right corner of the reference grid (Xsiz-1,
Ysiz-1) corresponds to the bottom right corner of the image. The top left of the image area is offset from the origin of the
reference grid by the image offset (XOsiz, YOsiz). Figure D-1 shows this correspondence. The size of the image is (Xsiz-
XOsiz, Ysiz-YOsiz). 

Images are made up of components related to each other via the reference grid. The number of reference grid points
separated by each component in both the X and Y directions is specified in the SIZ marker (XRsiz (component), YRsiz
(component), see Annex A.5.1). This states that for a given component, i, for every XRsiz(i) reference grid points there
are in the image area, there is one sample of component, i. Thus, the dimensions of component, i, are

 D.1

(XOsiz, 
YOsiz)

Xsiz

Y
si

z

XOsiz

Y
O

si
z

(Xsiz-1, Ysiz-1)

(Xsiz-1, 0)

(0, Ysiz-1)

(0, 0)

Image area

Figure D-1 — Reference grid diagram

Xsiz
XRsiz i( )
---------------------- XOsiz

XRsiz i( )
----------------------– Ysiz

YRsiz i( )
--------------------- YOsiz

YRsiz i( )
---------------------–( , )
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NOTE — Figure D-2 shows an example of how a component might be separated on the reference grid, given XRsiz and YRsiz. It
is equivalent, for the purposes of this annex, to think of a particular grid point as the location of a components sample; e.g. the
upper left. However, this might not be the correct location for proper colour representation.

D.2 Image tiles

The reference grid is partitioned into a regular sized rectangular array of tiles. The tile size and tiling offset are defined by
dimensional pairs (XTsiz, YTsiz), and (XTOsiz, YTOsiz) respectively in reference grid units. These are all from the SIZ
marker (see Annex A.5.1).

Every tile is XTsiz reference grid points wide and YTsiz reference grid points high. The top left corner on the first tile
(tile 0) is offset from the top left corner of the reference grid by (XTOsiz, YTOsiz). The tiles are numbered in raster order.
That is from the top left to the top right, down one and to the left, etc. Thus, the first tile’s starting coordinates are
(XTOsiz, YTOsiz). Figure D-3 shows this relationship. 

The tile offsets are constrained to be no greater than the image area offsets. This is expressed by the following ranges:

D.2

Also, the tile size plus the offset shall be greater than the image area offset. This insures that the first tile (tile 0) will
contain at least one reference grid point from the image area. This is expressed by the following ranges:

a) component mapping to reference 
grid, XRsiz=2, YRsiz=1.

b) component mapping to reference 
grid, XRsiz=2, YRsiz=2.

Figure D-2 — Example of component separation
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Figure D-3 — Tiling of the reference grid diagram
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D.3

The number of tiles in the X direction (numXtiles) and the Ydirection (numYtiles) is the following:

. D.4

For a given tile number, t, of any individual component, i, the number of samples horizontally, xnum (i, t), is the
following:

D.5

Essentially the left side of the equation is all the samples up to the current right hand tile boundary. The right side of the
equation is all the samples in previous tiles to the left. The maximum in the right hand side only comes into play in the
first tile where the offset is subtracted from tile size. The minimum on the left hand side only comes into play when the
last tile is less than the boundary of a tile.

Similarly, for a given tile number, t, of any individual component, i, the number of samples vertically, ynum (i, t), is the
following:

D.6

The coordinates of a particular tile on the reference grid are described by the following equation:

D.7

D.8

D.9

D.10

where (u, v) denotes the horizontal and vertical indices (starting at 0) of the tile, tx0(u,v) and ty0(u,v) are the coordinates
of the upper left corner of the tile, tx1(u,v)-1 and ty1(u,v)-1 are the coordinates of the lower right corner of the tile.

NOTE — As an informative example, consider a case in which one would like to impose a tile structure with width-to-height ratio
of 16:9 upon an image with actual width-to-height of 4:3. Specifically, suppose that the reference grid size of (Xsiz,Ysiz) =
(1024,576), is large enough to accommodate the maximum width and maximum height of any image component. Suppose further
that the component of interest is (640,480) in size.

This component can span only one reference grid point per sample in each direction. Thus, (XRsiz, YRsiz) = (1,1) for this
component. The size of the component is specified by setting the image area offset (XOsiz, YOsiz) to (384,96), so that, from
Equation D.1, the component size is ((1024-384)/1, (576-96)/1) = (640,480).

XTsiz XTOsiz+ XOsiz> YTsiz YTOsiz+ YOsiz>

numXtiles Xsiz XTOsiz–
XTsiz

------------------------------------= numYtiles Ysiz YTOsiz–
YTsiz

-----------------------------------=

xnum i t,( ) min Xsiz
XRsiz i( )
---------------------- mod t numXtiles,( ) 1+( ) XTsiz⋅ XTOsiz+

XRsiz i( )
-----------------------------------------------------------------------------------------------------------( , )=

max XOsiz
XRsiz i( )
---------------------- mod t numXtiles,( )( )( ) XTsiz⋅ XTOsiz+

XRsiz i( )
-------------------------------------------------------------------------------------------------------( , )–

ynum i t,( ) min Ysiz
YRsiz i( )
---------------------

t
numXtiles
-------------------------- 1+ 

  YTsiz⋅ YTOsiz+

YRsiz i( )
--------------------------------------------------------------------------------------------( , )=

max YOsiz
YRsiz i( )
---------------------

t
numXtiles
-------------------------- YTsiz⋅ YTOsiz+

YRsiz i( )
------------------------------------------------------------------------------( , )–

tx0 u v,( ) max XTOsiz u XTsiz XOsiz,⋅+( )=

ty0 u v,( ) max YOsiz v YTsiz YOsiz,⋅+( )=

tx1 u v,( ) min XTOsiz u XTsiz Xsiz,⋅+( )=

ty1 u v,( ) min YOsiz v YTsiz Ysiz,⋅+( )=
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Suppose that the tile size is chosen as (XTsiz,YTsiz) = (192,108). Imposing the tile grid at a reference grid offset of (XTOsiz,
YTOsiz) = (224,12).

The number of tiles in each direction is given (from Equation D.4) by 

The top row of tiles (0-4) will have height (from Equation D.6)

The bottom row of tiles (25-29) will have height

All other tiles will have height Ytsiz = 108.

The left column of tiles (0,5,10,15,20,25) will have width (from Equation D.5) 

The right column of tiles (4,9,14,19,24,29) will have width 

All other tiles will have height Xtsiz = 192.

D.3 Tile-parts

While tiles are coherent geometric areas on the image, the coded data of a single tile may be broken into parts and
distributed throughout the codestream. Each tile-part has at least one packet from that tile. Packets cannot be distributed
across more than one tile-part. The tile number in the SOT marker (see Annex A.4.2) denotes to which tile the tile-part
relates.

Tile-parts are ordered in such a way that the progression of the packets is preserved. Which packets are in the tile-parts is
known dependent on the progression order for the tile (including progression order changes). That is, the first tile-part
contains some number of the first packets. The second tile-part contains some number of packets immediately following
those in the first tile-part, and so on. Tile-parts shall be decoded in order, as are packets. (Packets are described in Annex
D.5.) The order in which tile-parts shall be decoded is signalled in the SOT marker (see Annex A.4.2).

The packet headers describe the contents of a tile-part (see Annex D.5). If a COD, COC, QCD, QCC, RIM, POM, POT or
other marker for the entire tile is used, then it is present only in the first tile-part.

D.4 Wavelet decomposition level, resolution, sub-band, and code-block order

The sub-band order is defined in Annex F.2.9. The code-blocks divide the sub-bands of a tile as shown in Figure C-1 (see
Annex C.1). Within each sub-band the code-blocks are visited in raster order. That is starting on the top left most block,
proceeding across that row to the right most block, and then proceeding to the left most block of the next row, and so on.

Resolution is defined as the size of the image when certain decomposition levels have been decoded. As defined in Annex
F.2.9, the lowest resolution, resolution 0 contains the packets of the nLL band, where n is the number of composition.
Resolution 1 contains the packets from the nHL, nLH, and nHH sub-bands. Resolution 2 contains the packets for the (n-
1)HL, (n-1)LH, and (n-1)HH sub-bands, and so on. There are n+1 resolutions.
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  800

192
--------- 564

108
---------, 

  5 6,( )= = =

ynum min 576
1

--------- 108 12+
1

---------------------, 
  max 96

1
------ 12

1
------, 

 – 120 96– 24= = =

ynum min 576
1

--------- 6 108⋅( ) 12+
1

---------------------------------, 
  max 96

1
------ 5 108⋅( ) 12+

1
---------------------------------, 

 – 576 552– 24= = =

xnum min 1024
1

------------ 192 224+
1

------------------------, 
  max 384

1
--------- 224

1
---------, 

 – 416 384– 32= = =

xnum min 1024
1

------------ 5 192⋅( ) 224+
1

------------------------------------, 
  max 384

1
--------- 4 192⋅( ) 224+

1
------------------------------------, 

 – 1024 992– 32= = =



ISO/IEC CD15444-1 : 1999 (V1.0, 9 December 1999)

ITU-T Rec. T.800 (1999 CDV1.0) 85

D.5 Layering and packets

Layerings are groupings of bit-plane coding passes from blocks at the same decomposition level of the same component
within a tile. Each layer is created by collecting some number of complete coding passes in order from each block. The
actual number of coding passes for a given block can range from none to the entire block. The number of layers for each
decomposition level is the same and is signaled in the COD marker (see Annex A.6.1).

Each layer successively and monotonically improves the image quality at the given resolution. Layers have an order in
which the decoder shall be able to decode starting from the zeroth layer to the final layer contained in the bit-stream.
Layers shall be decoded in this order.

For a given tile, the packets contain data from a specific layer, a specific resolution, and a specific component.

Packets represent information from a single tile within a single component, resolution, and layer. Within any given tile,
component, and resolution the code-blocks contributing to each layer shall be represented by one, or more, packets in
accordance with a packet partition.

D.5.1 Packet partition

Consider a particular tile, component, and resolution. The tile-component reconstructed from the sub-bands contained in
the present resolution and the previous resolutions is described by the coordinates ax, ay, bx, by as shown in Figure D-4. 

The coordinates are defined by the following

D.11

and

D.12
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P4 P5 P6 P7
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Figure D-4 — Packet partition
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where (tx,ty) are the coordinates of the upper left corner of current tile on the reference grid, r is the resolution, n is the
number of decomposition levels for the tile-component, and i is the component.

The packet partition is described by the parameters PPx and PPy a shown in Figure D-4. The number of packets which
span the tile-component at resolution, r, is given by 

D.13

The packet position index runs from 0 to numpackets - 1 where numpacketswide * numpacketshigh in raster order (see
Figure D-4). This is used for packet ordering in the codestream.

The code-block partition in Annex C.1 shall respect the packet partition. Specifically, the code-block size for the sub-
bands is determined as 2xcb’ by 2ycb’ where 

D.14

and

D.15

It can happen that a packet is empty even when the tile-component contains only one packet. Empty packets shall be
represented by a single byte according to Figure D.7.

NOTE — Packets can have data for only part of the layer. This occurs when the codestream has been truncated. However, if there
is less than a complete layer in a packet, no successive layers can be in the codestream.

D.6 Progression order

For a given tile, the packets contain data from specific a layer, a specific resolution, the a specific component. The order in
which these packets are interleaved is called the progression order. The interleaving of the packets can progress along
four axes: partition position, layer, resolution, or component.

D.6.1 Progression order determination

Which of the five possible progression orders is designated in the COD or COC markers (see Annex A.6.1 and Annex
A.6.2). These are described below

D.6.1.1 Layer progressive

Layer progression is defined as the interleaving of the packets in the following order:

for each l = 0, ... , L-1 where L is the number of layers,

for each r = 0, ... , n where n is the number of decomposition levels,

for each i = 0, ... , Csiz-1

packets for component, i, resolution, r, and layer, l, appear in the order shown in Figure D-4.

D.6.1.2 Resolution-layer progressive

Resolution-layer progression is defined as the interleaving of the packets in the following order:

for each r = 0, ... , n where n is the number of decomposition levels,

for each l = 0, ... , L-1 where L is the number of layers,

numpacketswide bx

2
PPx

----------- ax

2
PPx

-----------–= numpacketshigh by

2
PPy

----------- ay

2
PPy

-----------–=

xcb'
min xcb PPx 1–,( ) r 0>,
min xcb PPx,( ) r, 0=

=
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min ycb PPy 1–,( ) r 0>,
min ycb PPy,( ) r, 0=
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for each i = 0, ... , Csiz-1

packets for component, i, resolution, r, and layer, l, appear in the order shown in Figure D-4.

D.6.1.3 Resolution-position progressive

Resolution-position progression is defined as the interleaving of the packets in the following order:

for each r = 0, ... , n where n is the number of decomposition levels,

for each y = ty0, ... , ty1-1,

for each x = tx0, ... , tx1-1,

for each i = 0, ... , Csiz-1

if (y = ty0 or y divisible by )

if (x = tx0 or x divisible by )

for the next packet position in Figure D-4

for each l = 0, ... , L-1 where L is the number of layers

the packet at that position in component, i, resolution, r, and layer, l, appears.

To use this progression, XRsiz and YRsiz values must be powers of two for each component.

D.6.1.4 Position-component progressive

Position-component progression is defined as the interleaving of the packets in the following order:

for each y = ty0, ... , ty1-1,

for each x = tx0, ... , tx1-1,

for each i = 0, ... , Csiz-1

for each r = 0, ... , n where n is the number of decomposition levels,

if (y = ty0 or y divisible by )

if (x = tx0 or x divisible by )

for the next packet position in Figure D-4

for each l = 0, ... , L-1 where L is the number of layers

the packet at that position in component, i, resolution, r, and layer, l, appears.

To use this progression, XRsiz and YRsiz values must be powers of two for each component.

D.6.1.5 Component-position progressive

Resolution-position progression is defined as the interleaving of the packets in the following order:

for each i = 0, ... , Csiz-1

for each y = ty0, ... , ty1-1,

for each x = tx0, ... , tx1-1,

for each r = 0, ... , n where n is the number of decomposition levels,

if (y = ty0 or y divisible by )

if (x = tx0 or x divisible by )

for the next packet position in Figure D-4

for each l = 0, ... , L-1 where L is the number of layers

YRsiz i( ) 2
PPy r i,( ) n r–+⋅

XRsiz i( ) 2
PPx r i,( ) n r–+⋅

YRsiz i( ) 2
PPy r i,( ) n r–+⋅

XRsiz i( ) 2
PPx r i,( ) n r–+⋅

YRsiz i( ) 2
PPy r i,( ) n r–+⋅

XRsiz i( ) 2
PPx r i,( ) n r–+⋅
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the packet at that position in component, i, resolution, r, and layer, l, appears.

D.6.1.6 Analogy in two dimensions

The progression defined above can be understood, by analogy, as a two progression as shown in Figure D-5.

D.6.2 Progression order change

The progression order in a tile may be limited to a subset of the original space. The component, resolution, and layer
indices are limited to the bounds defined in the POM or POT marker segments are present (see Annex A.6.6 and Annex
A.6.7).

After completing the interleaving of this space, a new progression ordering can be designated. Such a bounding and
progression change is present in a tile only if either the POM or POT marker segments are present (see Annex A.6.6 and
Annex A.6.7). The coordinate indices for each successive bounding shall be equal to, or larger than, those of the previous
bound.

D.7 Packet header information coding

The packets have headers with the following information:

— Zero length packet

— Code-block inclusion 

— Number of “insignificant” most significant bit-planes

— Number of coding passes for each code-block in this packet
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— Length of the code-block data

This packet header is considered part of the bit stream and is integral to the proper decoding of the bit stream. Two items
in the header are coded with a scheme called tag trees described below. The data bits of the packet header are packed into
a whole number of bytes with a bit stuffing routine.

The packet headers are in the bit stream proceeding the packet data unless one of the following marker segments is used.
If the PPM marker segment is used, all of the packet headers are removed from the bit stream and placed in the main
header (see Annex A.7.4). If the PPM is not used, then a PPT marker segment may be used. In this case, all of the packet
headers in that tile are removed from the bit stream and placed in the first tile-part header (see Annex A.7.5).

D.7.1 Bit stuffing routine

Bits are packed into bytes from the MSB to the LSB. Once a complete byte is assembled, it is emitted to the packet
header in the bit stream. If the value of the byte is an 0xFF a single zero bit, not otherwise in the packet header, is stuffed
into the MSB of the next byte. Once all bits of the packet header have been assembled, the last byte is packed to the byte
boundary and emitted. The last byte shall not be an 0xFF value.

D.7.2 Tag trees

A tag tree is a way of representing a two dimensional array of whole numbers in a hierarchical way. It creates reduced
resolution levels of the tree where at every node the minimum number of the (up to four) nodes below it is recorded.
Figure D-7 shows an example of this representation. 

The coding is the answer to a series of questions. Start with a value of zero. A 0 in the tag tree means that the minimum
(or the number in the case of the highest level) is larger than the current value and a 1 means that the minimum (or the
number in the case of the highest level) is equal the current value. For each contiguous 0 in the tag tree the current value
is incremented by one. Nodes at higher levels cannot be coded until lower level nodes values are fixed (i.e a 1 is coded).
The top node on level 0 is queried first. The next corresponding node on level 1 is then queried, and so on.

Only the information needed for the current code-block is stored at the current point in the packet header. The decoding
of bits is ceased when sufficient information has been obtained. Also, the hierarchical nature of the tag trees means that
the answers to many questions will have been answered when adjacent code-blocks and/or layers were coded. This
information is not coded again. Therefore, there is a causality to the information in packet headers.

NOTE — For example, in the case above, the coding for the number at q3(0,0) would be 01111. The two bits, 01, imply that the
top node at q0(0,0) is greater than zero and is, in fact one. The third bit, 1, implies that the node at q1(0,0) is also one. The fourth
bit, 1, implies that the node at q2(0,0) is also one. And the final bit, 1, implies that the target node at q3(0,0) is also one. To decode
the next node q3(1,0) the nodes at q0(0,0), q1(0,0), and q2(0,0) are already known. Thus, the bits coded are 001, the zero says that
node at q3(1,0) is greater than 1, the second zero says it is greater than 2, and the one bit implies that the value is 3. Now that



ISO/IEC CD15444-1 : 1999 (V1.0, 9 December 1999)

90 ITU-T Rec. T.800 (1999 CDV1.0)

q3(0,0) and q3(1,0) are known, the code bits for q3(2,0) will be 101. The first 1 indicates q2(1,1) is one. The following 01 then
indicates q3(2,0) is 2. This process continues for the entire array in Table D-7a. 

D.7.3 Zero length packet

The first bit in the packet header denotes whether the packet is zero-length (not present). A zero value is zero length, a one
value is non-zero length. A layer with zero length is a null layer. No code-blocks are included. No coefficients are coded
or altered.

D.7.4 Code-block inclusion

In the sub-band order specified in Annex D.4, whether a block is included in this packet, or not, is coded. The code-
blocks in a sub-band are tested for inclusion in raster order (top left to top right then second from top left to second from
top right, etc.). For code-blocks that have not been included in a previous layer, this information is signaled with a
separate tag tree code for each sub-band.

The values in the tag tree are the number of the layer in which the code-block is first included. Note that only the bits
needed for determining whether the block is included are placed in the packet header. If some of the tag tree is already
known from previous blocks or previous layers, it is not repeated. Likewise, only as much of the tag tree as is needed to
determine inclusion in the current layer is included. If a code-block is not included until a later layer, then only a partial
tag tree is included at that point in the bit stream.

For blocks that have been included in a previous layer, a 1 bit means that it is also included in this layer; a 0 means that it
is not.

D.7.5 Number of all zero bit-planes before the first pass of a code-block

If a code-block is included for the first time, the number of bit-planes before a bit-plane that includes a coefficient with a
one bit is coded. This number is coded with a separate independent tag tree for every sub-band, in the same manner as the
code-block inclusion.

D.7.6 Number of coding passes

The number of coding passes included from each code-block is coded. The codewords used for this are shown in Table D-
1. 

1 
q3(0,0)

3
q3(1,0)

2 2

3

1 4

2 3

3 2

2 2 2 2 1 2

1

q2(0,0)

2

2 2 1

1

q1(0,0)

1 1

q0(0,0)

a) original array of numbers, level 3 b) minimum of four (or less) nodes, level 2

c) minimum of four (or less) nodes, level 1 d) minimum of four (or less) nodes, level 0

Figure D-7 — Example of a tag tree representation

2
q3(2,0)

1

q2(1,0)
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D.7.7 Length of the data from a given code-block

The packet header identifies the number of bytes contributed each included code-block. There are two cases: the code-
block contains a single terminated bit stream from the arithmetic coder and the code-block contains multiple termination
points.

D.7.7.1 Single termination point

The number of bits used to signal the number of bytes contributed by a code-block is Lblock plus log2 of the number of 
passes added in the code-block rounded down. Thus, layers with more passes are assumed to have more data. The value 
of Lblock is initial set to three. The number of bytes contributed by each block is proceeded by signaling bits that can 
increase value of Lblock, as needed. A signaling bit of zero indicates the current value of Lblock is sufficient. If there are 
k ones followed by a zero, the value of Lblock is incremented by k. While Lblock can only increase, the number of bits 
used to signal the code-block length can increase or decrease depending the number of coding passes included. 

NOTE — For example, say that in successive layers a code-block has 6 bytes, 31 bytes, 44 bytes, and 134 bytes respectively,
further assume that the number of coding passes is 1, 9, 2, and 5. The code for each would be 0 110 (0 delimits and 110=6),
0011111 (0 delimits, log2 9 = 3 bits for the 9 coding passes, 011111=31), 11 0 101100 (110 adds two bits. log2 2 = 1, 101100=44),
and 1 0 10000110 (10 adds one bit, log2 5 = 2, 10000110=134).

NOTE — There is no requirement that the minimum number of bits be used to signal length (any number is valid).

D.7.7.2 Multiple termination points

Let T be the set of terminated coding passes included for the code-block in the packet as indicated in Figure C-4 and
Figure C-5. T is augmented with the final coding pass included in the packet. Let n1 < ... < nK be an enumeration of T. K
lengths are signaled consecutively with each length using the mechanism described in Annex D.7.7.1. The first length is
the number of bytes from the start of the code-block’s contribution to the packet to the end of coding pass n1. The second
length is the number of bytes from the end of coding pass, n1, to the end of coding pass, n2, and so on.

D.7.8 Order code-block packet header

The following is the packet header information order for one packet representing one layer of one decomposition level of
one component in one tile-part.

bit for zero or non-zero length packet

for each sub-band (LL first, then HL, LH, HH for n to 1)

Table D-1 — Codewords for the number of coding passes for each code-block

Number of coding passes Codeword in Packet Header

1 0

2 10

3 1100

4 1101

5 1110

 6 —
36

1111 0000 0 —
1111 1111 0

37 —
164

1111 11111 0000 000 —
1111 11111 1111 111
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for all code-blocks in raster order

code-block inclusion bits (if not previously included then tag tree, else one bit)

if code-block included

if first instance of code-block

zero bit-planes information

number of coding passes included

increase of code-block length indicator

length of code-block contribution

Figure D-8 shows a brief example. This is the information known to the encoder. Table D-2 shows the resulting bit stream
(in part) from this information.    

Table D-2 — Example packet header bit stream

Bit stream (in order) Derived meaning

1 Packet non-zero in length

111 Block 0,0 included for the first time

000111 Block 0,0 insignificant for 3 bit-planes

1100 Block 0,0 has 3 coding passes included

0 Block 0,0 length indicator is unchanged

0100 Block 0,0 has 4 bytes
4 bits are used, 3 + floor(log2 3)

0 0 1

2 1 0

3 4 7

3 3 6

3 2 —

— — 1

4 4 —

— — 2

Inclusion information Zero bit-planes # of coding passes (layer 0) Length information (layer 0)

0 0 3 6
3 — 2

— 1 —

10 — 2

— 1 —

Inclusion tag tree Zero bit-planes tag tree # of coding passes (layer 1) Length information (layer 1)

0 3

Figure D-8 — Example of the information known to the encoder
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1 Block 1,0 included for the first time

01 Block 1,0 insignificant for 4 bit-planes

10 Block 1,0 has 2 coding passes included

10 Block 1,0 length indicator is increased by 1 bit (3 to 4)

00100 Block 1,0 has 4 bytes
5 bits are used 4 + floor(log2 2)

(Note that while this is a legitimate entry, it is not minimal in code length.)

0 Block 2,0 not yet included

0 Block 0,1 not yet included

0 Block 1,1 not yet included

1 Block 2,1 included for the first time

00011 Block 2,1 insignificant for 6 bit-planes

0 Block 2,1 has 1 coding passes included

0 Block 2,1 length information is unchanged (3 bits)

010 Block 2,1 has 2 bytes
3 + log2 1 bits used

••• Packet header data for the other sub-bands,
coded packet data

Packet for the next layer

1 Packet non-zero in length

1 Block 0,0 included again

1100 Block 0,0 has 3 coding passes included

0 Block 0,0 length information is unchanged

1010 Block 0,0 has 10 bytes
3 + log2 (3) bits used

0 Block 1,0 not included in this layer

1 Block 2,0 included for the first time

01 Block 2,0 insignificant for 7 bit-planes

10 Block 2,0 has 2 coding passes included

Table D-2 — Example packet header bit stream

Bit stream (in order) Derived meaning



ISO/IEC CD15444-1 : 1999 (V1.0, 9 December 1999)

94 ITU-T Rec. T.800 (1999 CDV1.0)

0 Block 2,0 length information is unchanged

0010 Block 2,0 has 2 bytes
3 + log2 2 bits used

0 Block 0,1 not yet included

1 Block 1,1 included for the first time

1 Block 1,1 insignificant for 3 bit-planes

0 Block 1,1 has 1 coding passes included

0 Block 1,1 length information is unchanged

001 Block 1,1 has 1 byte

0 Block 2,1 not included in this layer

••• Packet header data for the other sub-bands, packet data

Table D-2 — Example packet header bit stream

Bit stream (in order) Derived meaning
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Annex E

Quantization

(This annex forms an integral part of this Recommendation | International Standard)

This Annex specifies the forms of quantization and dequantization used for encoding and reconstruction of image tile
components. Quantization is the process by which the coefficients are reduced in precision. This operation is lossy unless
the quantization step is one and the coefficients are integer, as produced by the reversible integer 5-3 wavelet.

E.1 Scalar coefficient quantization (informative) 

After the Forward Wavelet Transform (see Annex F), each of the transform coefficients  of the sub-band is
quantized to the value  according to the following equation:

E.1

The quantization step size  is represented relative to the dynamic range of sub-band , by the exponent  and
mantissa  as:

E.2

The dynamic range  depends on the number of bits used to represent the original image tile component and on the
choice of the wavelet transform. The explicit determination of  is presented in Section E.2.

In order to prevent possible overflow or excursion beyond the nominal range of the integer representation of
arising, for example during floating point calculations, the number of bits for the integer representation really

used at the encoder side is: 

 E.3

where the number  of additional bits, called guard bits, has to be specified in the QCD or QCC marker (see Annex
A.6.4 and Annex A.6.5). If a ROI is defined, then the number of magnitude bit is modified accordingly (see Annex H).

NOTE —  Typical values for the number of guard bits are =1 or =2.

For reversible compression, the quantization step size is required to be 1. This implies that  and . In this
case, only the exponent has to be recorded in the bit stream in the QCD or QCC markers (see Annex A.6.4 and Annex
A.6.5). For irreversible compression, no particular selection of the quantization step size is required in this Specification
and different applications may specify the quantization step sizes according to specific image tile component
characteristics. However, one effective way of selecting the quantizer step size for one sub-band is to normalize a
default step size  with respect to the vertical and horizontal synthesis filters which are used in that specific sub-band.
As an example, a typical choice for the quantization step size for sub-band  is:

E.4

with
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 E.5

and where  and  are the impulse response of the low and high pass synthesis 1D filters (see Table E.1) used during
the inverse filtering, and  is a default step size. A typical value for  is  where  is the bit depth of the original
tile image component.

Table E-1 — Impulse response of the low and high pass synthesis filter for the 9-7 wavelet transform

E.2 Scalar coefficient dequantization (normative)

At the decoder, the quantization step-size for each sub-band are retrieved from the bit stream using Equations E.2 where
 and  are derived from the SPqcdi parameters defined in the QCD or QCC markers (see Annex A.6.4 and Annex

A.6.5), and  is the sum of the number of bits used to represent the original image tile component specified by the SIZ
marker (see Annex A.5.1) and the base 2 exponent of the synthesis gain of the current sub-band. If a colour space
transform, such as the RCT, is used, the number of bits used to represent the original image tile component is modified
accordingly (see Annex G). For the 9-7 wavelet transform, all synthesis gains are equal to 1 (i.e. the corresponding base 2
exponent is equal to 0). For the 5-3 wavelet transform, the synthesis gain of a sub-band is recursively defined as the
synthesis gain of the previous sub-band multiplied by the respective gains of the horizontal and vertical filters used to
produced that sub-band. The low-pass filter has a unit gain, while the high-pass filter has a gain of 2. Figure E-1 shows the
synthesis gain of each sub-band for one and two levels of the 5-3 wavelet transform decomposition and Figure E-2
presents the corresponding dynamic range for each sub-band.

The exponent/mantissa pairs  are either explicitly signaled in the bit stream syntax for every sub-band, this is
referred to as explicit quantization, or only signaled in the bit stream for the LL band (see Table A-27). In the latter case,
known as implicit quantization, all other exponent/mantissa pairs  are derived implicitly from the single exponent/
mantissa pair  corresponding to the LL band, according to:

E.6

i

0 1.115087052456994 0.6029490182363579

±1 0.5912717631142470 -0.2668641184428723

±2 -0.05754352622849957 -0.07822326652898785

±3 -0.09127176311424948 0.01686411844287495

±4 0 0.02674875741080976

all other values 0 0
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where  denotes the number of sub-band decomposition levels from the original image tile component to the sub-
band b. 

The maximum number of encoded bit-planes (see Annex C) which can be expected in the code stream for sub-band
 is retrieved by using Equation E.3 where the number of guard bits G is specified in the QCD or QCC markers (see

Annex A.6.4 and Annex A.6.5). Although the encoder might have encoded all the bit-planes of all sample in sub-band ,
due to the embedded nature of the code stream, a decoder may decide to decode only  bit-planes for a particular
coding-block of the sub-band . This is equivalent as to the use of a scalar quantizer with step size for all
the sample of this coding-block. Due to the nature of the three coding passes (see Annex C), the step-size used in practice
when truncation of the bit stream occurs may be different for different samples within the same coding-blocks if one bit-
plane is not completely decoded. However, these step-sizes are always multiples of the reference step size by some power
of two. Each decoded coefficient  of sub-band  is used to reconstruct a transform coefficient  using
for the 9-7 float wavelet transform the following equation

E.7

where  is the number of decoded bit-plane for sample .

NOTE — The value r is the coefficient reconstruction value and is in the range of . It may be chosen to produce the best
visual or objective quality for reconstruction. A typical value is r=1/2.

In the case of the integer 5-3 integer wavelet transform, the reconstructed transform coefficient  is recovered
differently depending whether the bit stream has been truncated or not. If the bit stream is completely decoded (no
truncation occurs) then  otherwise to reconstruct a transform coefficient , the following
formula is used:

nsdb

4

1 2

2 4
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2

a) One level synthesis gain b) Two level synthesis gain

Figure E-1 — Synthesis gain of each sub-band of the 5-3 wavelet transform decomposition
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Figure E-2 — Dynamic range for each sub-band of the 5-3 wavelet transform decompositionRb
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Annex F

Transformation of image tile components

(This annex forms an integral part of this Recommendation | International Standard)

This Recommendation | International Standard describes the forward transformation applied to one image tile component
and specifies the inverse transformation used to reconstruct the image tile component.

F.1 Introduction and overview

Consider the tile defined by the coordinates tx0, tx1, ty0 and ty1 given in Equation D.7, Equation D.8, Equation D.9 and
Equation D.10 in Annex D. Then the sample values  of image tile component c lie in the range defined by:

  and F.1

where

 and , F.2

 and F.3

F.1.1 Forward Transformation

As illustrated in Figure F-1, the forward transformation transforms image tile component samples  into sub-band
samples . First, all the image component samples  of tile Tt,c are DC level shifted into samples I’(x,y).
They are then transformed by the Forward Discrete Wavelet Transform (FDWT) to produce transform samples .
The transform samples  are finally rearranged into sub-bands . 

F.1.2 Inverse Transformation

As illustrated in Figure F-2, the inverse transformation transforms sub-band samples  into image tile component
samples . First, sub-band coefficients  are rearranged into transform samples . They are then
inverse transformed by the Inverse Discrete Wavelet Transform (IDWT) to produce level-shifted image tile component
samples I’(x,y). Finally all the image tile component samples I’(x,y) of tile are inverse-level shifted.

I x y,( )

xtcpos x xtcpos xtcsiz+<≤ ytcpos y ytcpos ytcsiz+<≤

xtcpos
tx0

XRsiz c( )
-----------------------= xtcsiz

tx1

XRsiz c( )
----------------------- xtcpos–=

ytcpos
ty0

YRsiz c( )
----------------------= ytcsiz

ty1

YRsiz c( )
---------------------- ytcpos–=

I x y,( )
ab u v,( ) I x y,( )

J u v,( )
J u v,( ) ab u v,( )

Figure F-1 — Forward Transformation

DC level shifting
I’(x,y) FDWT

J(u,v) ab(u,v)2D_ARRANGEI(x,y)

ab u v,( )
I x y,( ) ab u v,( ) J u v,( )

Figure F-2 — Inverse Transformation

J(u,v) IDWT
I(x,y)I’(x,y)2D-REARRANGE DC inverse level

shifting
ab(u,v)
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F.1.3 One-dimensional sub-band decomposition

To perform the FDWT, this Recommendation | International Standard uses a one-dimensional sub-band decomposition of
a one-dimensional set of samples into low-pass samples, representing a downsampled low-resolution version of the
original set, and high-pass samples, representing a downsampled residual version of the original set, needed to perfectly
reconstruct the original set from the low-pass set.

To perform the IDWT, this Recommendation | International Standard uses a one-dimensional sub-band recomposition of
a one-dimensional set of samples from low-pass and high-pass samples.

F.1.4 Reversible and irreversible transformations

This Recommendation | International Standard uses one reversible transformation and one irreversible transformation.
Given that image tile component samples are integer-valued, a reversible transformation requires the specification of a
rounding procedure for intermediate non-integer-valued transform coefficients.

F.2 Forward Transformation (informative)

This Recommendation | International Standard uses FDWTs to transform image tile components. 

F.2.1 DC level shifting of image tile components

Prior to computation of the FDWT, if the MSB of Ssiz is zero, then all samples  of the image tile component are
level shifted by subtracting the same quantity from each sample:

 F.4

where  is the component’s precision parameter specified in Annex A.

F.2.2 The FDWT procedure

As illustrated in Figure F-3, the FDWT takes as input the level shifted image tile component samples I’(x,y) and produces
as output the transform image tile component samples J(u,v), where NL is a parameter of the FDWT representing a
number of iterations, known as the number of levels of decomposition. The number of decomposition levels NL are
signalled in the COD or COC markers (see Annex A.6.1 and Annex A.6.2). The number of transform samples J(u,v) is
the same as the number of level-shifted image tile component samples I’(x,y). The coordinates (x,y) and (u,v) span the
same range. 

I x y,( )

I
′

x y,( ) I x y,( ) 2
Ssiz

c 1–( )–=

Ssiz
c

FDWT

NL

J(u,v)I’(x,y)

Figure F-3 — Parameters of the FDWT procedure
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As illustrated in Figure F-4, the FDWT procedure starts with the initialization of the variable lev to zero, and the
initialization of the samples J(u,v) to the values of I’(x,y). The 2D_SD procedure is performed at level lev, where the level
lev increases at each iteration, and until NL iterations are performed. 

F.2.3 The 2D_SD procedure

As illustrated in Figure F-5, the 2D_SD procedure modifies a portion of the samples J(u,v), according to the value of the
variable lev, i.e. the current level of decomposition. 

As illustrated in Figure F-6, it begins by applying the VER_SD procedure to all columns of J(u,v) for which u is a
multiple of 2lev-1. It then applies the HOR_SD procedure to all rows of J(u,v) for which y is a multiple of 2lev-1. 

F.2.4 The VER_SD procedure

As illustrated in Figure F-7, the VER_SD procedure modifies the sample values of column u of J(u,v), for which v is a
multiple of 2lev-1. 

FDWT

lev = 0
J(u,v) = I’(u,v)

lev<NL?

Done

2D_SD

lev = lev+1

Figure F-4 — The FDWT Procedure

No

Yes

2D_SD
J(u,v) J(u,v)

lev

Figure F-5 — Parameters of the 2D_SD procedure

VER_SD
J(u,v) J(u,v)

u, lev

Figure F-7 — Parameters of the VER_SD procedure
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As illustrated in Figure F-8, the VER_SD procedure stores all the sample values of column u of J(u,v), for which v is a
multiple of 2lev-1 into an array X, applies the 1D_SD procedure to array X and produces array Y. Then the values of array
Y are replaced into the sample values of column u of J(u,v), for which v is a multiple of 2lev-1.

2D_SD

Done

VER_SD(u,lev)

2
lev 1– xtcpos

2
lev 1–

-----------------⋅←

u u 2
lev 1–

+←

HOR_SD(v,lev)

v 2
lev 1– ytcpos

2
lev 1–

-----------------⋅←

v v 2
lev 1–

+←

NoNo

Yes Yes

Figure F-6 — The 2D_SD procedure
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v 2
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2
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-----------------⋅←

X i( ) J u v,( )←
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Yes

Y=1D_SD(X,i0,i1)

i0 mod ytcpos

2
lev 1–

----------------- 2,
 
 
 

←

v v 2
lev 1–

+←
i i 1+←

v 2
lev 1– ytcpos

2
lev 1–

-----------------⋅←

J u v,( ) Y i( )←

Yes

i i0←
i i0←

v ytcpos ytcsiz+≥
No

Figure F-8 — The VER_SD procedure

i1 i←
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F.2.5 The HOR_SD procedure

As illustrated in Figure F-9, the HOR_SD procedure modifies the sample values of row v of J(u,v), for which u is a
multiple of 2lev-1. 

As illustrated in Figure F-10, the HOR_SD procedure stores all the sample values of row v of Jt,c(u,v), for which u is a
multiple of 2lev-1 into an array X, applies the 1D_SD procedure to array X and produces array Y. Then the values of array
Y are replaced into the sample values of row v of J(x,y), for which u is a multiple of 2lev-1. 

HOR_SD

Figure F-9 — Parameters of the HOR_SD procedure 
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Figure F-10 — The HOR_SD procedure
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F.2.6 The 1D_SD procedure

As illustrated in Figure F-11, the 1D_SD procedure takes as input an array X, the index i0 (which has value of 0 or 1) to
the first sample of array X, an index i1 to the sample following the last sample value of array X. Both i0 and i1 are
calculated by the VER_SD or HOR_SD procedure which is calling the 1D_SD procedure. 

As illustrated in Figure F-12, the 1D_SD procedure first uses the 1D_EXT procedure to extend the signal X beyond its
left and right boundaries resulting in the extended signal Xext, and then uses the 1D_FILT procedure to filter the extended
signal Xext and produce the desired filtered signal Y. 

F.2.7 The 1D_EXT procedure

As illustrated in Figure F-13 and Figure F-14, the 1D_EXT procedure extends signal X by ileft samples to the left and
iright samples to the right. The extension of the signal is required to enable filtering at both boundaries of the signal.

The first sample of signal X is sample i0, and the last sample of signal X is sample i1-1. This extension procedure is
known as “periodic symmetric extension”. Symmetric extension consists in extending the signal with the signal samples
obtained by a reflection of the signal centered on the first sample (sample i0) for extension to the left, and in extending the
signal with the signal samples obtained by a reflection of the signal centered on the last sample (sample i1-1) for
extension to the right. Periodic symmetric extension applies to the case where the number of samples by which to extend

X
Y

1D_SDi0

i1

Figure F-11 — Parameters of the 1D_SD procedure

1D_SD

Done

Xext=1D_EXT(X,i0,i1)

Y=1D_FILT(Xext,i0,i1)

Figure F-12 — The 1D_SD procedure
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the signal on any one side exceeds the signal length: this case may happen at lower levels of decomposition. The
procedure is one among possibly others which implements periodic symmetric extension.   

F.2.8 The 1D_FILT procedure

This Recommendation | International Standard uses exclusively one irreversible or one reversible transformation of
image tile components. The transformation is reversible if the 1D-FILT procedure is reversible. The transformation is
irreversible if the 1D_FILT procedure is irreversible. One irreversible procedure 1D_FILTI and one reversible filtering
procedure 1D_FILTR is described.

As illustrated in Figure F-15, both procedures take as input an extended 1D signal Xext, the index of the first sample i0,
and the index of the sample i1 immediately following the last sample (i1-1) They both produce the output signal Y. The

1D_EXT

i 1←

Xext i0 i–( ) X j( )←

i i 1+←

i ileft> Yes

No

j i0←
dir 1←

j j dir+←

j i1 1–=

dir 1–←

j i0=

dir 1←

No

No

Yes

Yes

i 1←

Xext i1 1– i+( ) X j( )←

i i 1+←

i iright> Yes

No

j i1 1–←
dir 1–←

j j dir+←

j i1 1–=

dir 1–←

j i0=

dir 1←

No

No

Yes

Yes

Done

Figure F-13 — 1D_EXT procedure implementing periodic symmetric extension

       ...EFGFEDCBABCDEFGFEDCBABC...
i0                i1

Figure F-14 — Periodic symmetric extension of signal

irightileft
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even samples of the Y signal are a low-pass downsampled version of the extended signal Xext, while the odd samples of
the signal Y are a high-pass downsampled version of the extended signal Xext. 

Both the irreversible and reversible transformations are described using lifting-based filtering [15], which is a very
efficient implementation of the DWT. Lifting-based filtering consists of a sequence of very simple filtering operations for
which alternately, odd sample values of the signal are updated with a weighted sum of even sample values, and even
sample values are updated with a weighted sum of odd sample values. 

F.2.8.1 Irreversible 1D filtering

The irreversible transformation described in this section is the lifting-based DWT implementation of filtering by the
Daubechies 9/7 filter [4].

Equation F.5 describes the 4 “lifting” steps (1 through 4) and the 2 “scaling” steps (5 and 6) of the 1D filtering performed
on the extended signal Xext(n) to produce the i1 samples of signal Y.

Step 1 is performed for all values of n such that . Step 2 is then performed for all values of n such
that . Step 3 is then performed for all values of n such that . Step 4 is performed
for all values of n such that . Each of these steps is performed on the entire tile component before moving to
the next step.

Step 5 is performed for all values of n such that . Step 6 is performed for all values of n such that
.

F.5

where the values of the parameters  are:

F.6

and the scaling factor K is equal to: K=1,149604

F.2.8.2 Reversible 1D filtering

The reversible transformation described in this section is the reversible lifting-based implementation of filtering by the 5/
3 filter [11].

Xext
Y

1D_FILTi0

Figure F-15 — Parameters of the 1D_FILT procedure 

i1

i0 3– 2n 1+ i1 3+<≤
i0 2– 2n i1 2+<≤ i0 1– 2n 1+ i1 1+<≤

i0 2n i1<≤

i0 2n 1+ i1<≤
i0 2n i1<≤

Y 2n 1+( ) X← ext 2n 1+( ) α Xext 2n( ) Xext 2n 2+( )+( )⋅+ STEP1[ ]

Y 2n( ) X← ext 2n( ) β Y 2n 1–( ) Y 2n 1+( )+( )⋅+ STEP2[ ]

Y 2n 1+( ) Y 2n 1+( )← γ Y 2n( ) Y 2n 2+( )+( )⋅+ STEP3[ ]
Y 2n( ) Y 2n( )← δ Y 2n 1–( ) Y 2n 1+( )+( )⋅+ STEP4[ ]

Y 2n 1+( ) K Y 2n 1+( )⋅← STEP5[ ]
Y 2n( ) 1 K⁄( ) Y 2n( )⋅← STEP6[ ]












α β γ δ, , ,( )

α 1 586134342,–=

β 0 05298011854,–=

γ 0 8829110762,=

δ 0 4435068522,=






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The reversible transformation is also described using lifting-based filtering. Reversible lifting-based filtering consists of a
sequence of simple filtering operations for which alternately, odd sample values of the signal are updated with a weighted
sum of even sample values which is rounded to an integer value, and even sample values are updated with a weighted
sum of odd sample values which is rounded to an integer value. 

The odd samples of output signal Y are computed first for all values of n such that : 

. F.7

Then the even samples of output signal Y are computed from the even values of extended signal Xext and the odd samples
of signal Y for all values of n such that 

F.8

F.2.9 Grouping transform coefficients into sub-bands

As illustrated in Figure F-16, the 2D_ARRANGE procedure rearranges the samples of J(u,v) into a number of sub-bands
ab(u,v). 

The total number of sub-bands is 3.NL+1. The sub-bands are labelled in the following way: an index lev corresponding to
the level of the sub-band decomposition, followed by two letters which are either LL, LH, HL or HH. Coefficients from
the sub-band b=levLH, are the transform coefficients obtained from low-pass filtering horizontally and high-pass filtering
vertically at decomposition level lev. Coefficients from the sub-band b=levHL, are the transform coefficients obtained
from high-pass filtering horizontally and low-pass filtering vertically at decomposition level lev. Coefficients from the
sub-band b=levHH, are the transform coefficients obtained from high-pass filtering horizontally and high-pass filtering
vertically at decomposition level lev. Coefficients from the sub-band b=NLLL, are the transform coefficients obtained
from low-pass filtering horizontally and low-pass filtering vertically at the last decomposition level NL. 

For some functions a sub-band order is used. This is defined as the following:

NLLL, (NL-1)HL, (NL-1)LH, (NL-1)HH, ... , 1HL, 1LH, 1HH

1– 2≤ n 1 i1 1+<+

2n 1+( ) Xext 2n 1+( ) Xext 2n( ) Xext 2n 2+( ) 1–+

2
---------------------------------------------------------------------–=

0 2n≤ i1<

2n( ) Xext 2n( ) Y 2n 1–( ) Y 2n 1+( ) 2+ +
4

----------------------------------------------------------------+=

ab(u,v)2D_ARRANGE
J(u,v)

Figure F-16 — Parameters of 2D_ARRANGE procedure 
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The way these sub-bands are formed from the output J(u,v) of the FDWT procedure is described by the 2D_ARRANGE
procedure illustrated in Figure F-17. The formation of the sub-bands is simply a reordering of the samples of J(u,v). 

As illustrated in Figure F-18, all the sub-bands in the case where NL=2 can be represented in the following way: 

2D_ARRANGE

lev 1←

Done

lev NL>

alevLH u v,( ) J 2
lev

u 2
lev

v 2
lev 1–

+,( )←

alevHL u v,( ) J 2
lev

u 2
lev 1–

+ 2
lev

v,( )←

alevHH u v,( ) J 2
lev

u 2
lev 1–

+ 2
lev

v 2
lev 1–

+,( )←

aNLLL u v,( ) J 2
lev 1–

u 2
lev 1–

v,( )←

lev lev 1+←

Yes

No

Figure F-17 — The 2D_ARRANGE procedure

2D_ARRANGE

J(u,v)

a1LH(u,v)

a1HH(u,v)a1HL(u,v)

a2HL(u,v)

a2LH(u,v)a2LL(u,v)

a2HH(u,v)

Figure F-18 — Arrangement of transform coefficients into sub-bands (NL=2)
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F.3 The inverse transformation (normative)

F.3.1 Rearranging sub-band samples into transform samples

As illustrated in Figure F-19, the 2D_REARRANGE procedure rearranges the sub-bands samples ab(u,v) into the
transform samples J(u,v). 

As illustrated in Figure F-20, the way this rearrangement is performed is described by the 2D_REARRANGE procedure
described below. The formation of the transform samples of J(u,v) is simply a re-arrangement of the samples from the
various sub-bands. 

ab(u,v)
2D_REARRANGE

J(u,v)

Figure F-19 — Parameters of the 2D_REARRANGE procedure 

2D_REARRANGE

lev 1←

Done

lev NL>

J 2
lev

u 2
lev 1–

+ 2
lev

v,( ) alevHL u v,( )←

lev lev 1+←

Yes

No

J 2
lev

u 2
lev

v 2
lev 1–

+,( ) alevLH u v,( )←

J 2
lev

u 2
lev 1–

+ 2
lev

v 2
lev 1–

+,( ) alevHH u v,( )←

J 2
lev 1–

u 2
lev 1–

v,( ) aNLLH u v,( )←

Figure F-20 — The 2D_REARRANGE procedure
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F.3.2 The IDWT procedure

As illustrated in Figure F-21, the IDWT takes as input the transformed image tile component samples J(u,v) and produces
as output the level shifted image tile component samples I’(x,y), where NL is a parameter of the IDWT representing a
number of iterations. 

As illustrated in Figure F-22, the IDWT procedure starts with the initialization of the variable lev to NL, and the
initialization the samples I’(x,y) to those of J(u,v). The 2D_SR procedure is performed at level lev, where the level lev
decreases at each iteration, and until NL iterations are performed.

F.3.3 The 2D_SR procedure

As illustrated in Figure F-23, the 2D_SR (2D sub-band recomposition) procedure modifies a portion of the samples
J(u,v), according to the value of the variable lev. 

IDWT

NL

J(u,v) I’(x,y)

Figure F-21 — Parameters of the IDWT procedure

IDWT

Done

Figure F-22 — The IDWT procedure

lev NL=

lev 0>

lev lev 1–=

2D_SR

2D_SR
J(u,v) J(u,v)

lev

Figure F-23 — Parameters of the 2D_SR procedure
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As illustrated in Figure F-24, it begins by applying the HOR_SR procedure to all rows of J(u,v) for which v is a multiple
of 2lev-1. It then applies the VER_SR procedure to all columns of J(u,v) for which u is a multiple of 2lev-1. 

F.3.4 The HOR_SR procedure

As illustrated in Figure F-25, the HOR_SR procedure modifies the sample values of row v of J(u,v), for which u is a
multiple of 2lev-1. 

2D_SR

Done

HOR_SR(v,lev)

v 2
lev 1– ytcpos

2
lev 1–

-----------------⋅←

v v 2
lev 1–

+←

VER_SR(u,lev)

u 2
lev 1– ytcpos

2
lev 1–

-----------------⋅←

u u 2
lev 1–

+←

NoNo

Yes Yes

v>=ytcpos+ytcsiz u>=xtcpos+xtcsiz

Figure F-24 — The 2D_SR procedure

HOR_SR
J(u,v) J(u,v)

v, lev

Figure F-25 — Parameters of the HOR_SD procedure 
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As illustrated in Figure F-26, the HOR_SR procedure stores all the sample values of row v of J(u,v), for which u is a
multiple of 2lev-1 into an array X, applies the 1D_SR procedure to array X and produces array Y. Then the values of array
Y are replaced into the sample values of row v of J(u,v), for which u is a multiple of 2lev-1. 

F.3.5 The VER_SR procedure

As illustrated in Figure F-27, the VER_SR procedure modifies the sample values of column u of Jt,c(u,v), for which v is a
multiple of 2lev-1. 

HOR_SR

Done

u u 2
lev 1–

+←
i i 1+←

u 2
lev 1– xtcpos

2
lev 1–

-----------------⋅←

X i( ) J u v,( )←

u xtcpos xtcsiz+≥
No

Yes

Y=1D_SR(X,i0,i1)

i0 mod xtcpos

2
lev 1–

----------------- 2,
 
 
 

←

u u 2
lev 1–

+←
i i 1+←

u 2
lev 1– xtcpos

2
lev 1–

-----------------⋅←

J u v,( ) Y i( )←

Yes

i i0← i i0←

u xtcpos xtcsiz+≥
No

Figure F-26 — The HOR_SR procedure

i1 i←

VER_SD
J(u,v) J(u,v)

u, lev

Figure F-27 — Parameters of the VER_SD procedure
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As illustrated in Figure F-28, the VER_SR procedure stores all the sample values of column u of J(u,v), for which v is a
multiple of 2lev-1 into an array X, applies the 1D_SR procedure to array X and produces array Y. Then the values of array
Y are replaced into the sample values of column u of J(u,v), for which v is a multiple of 2lev-1. 

F.3.6 The 1D_SR procedure

As illustrated in Figure F-29, the 1D_SR procedure takes as input an array Y, the index i0 (which has value of 0 or 1) to
the first sample of array Y, and an index i1 to the sample following the last sample value of array Y. Both i0 and i are
calculated by the VER_SR or HOR_SR procedure which is calling the 1D_SR procedure. 

VER_SR

Done

v v 2
lev 1–

+←
i i 1+←

v 2
lev 1– ytcpos

2
lev 1–

-----------------⋅←

X i( ) J u v,( )←

v ytcpos ytcsiz+≥
No

Yes

i0 mod ytcpos

2
lev 1–

----------------- 2,
 
 
 

←

v v 2
lev 1–

+←
i i 1+←

v 2
lev 1– ytcpos

2
lev 1–

-----------------⋅←

J u v,( ) Y i( )←

v ytcpos ytcsiz+≥
No

Yes

i i0←i i0←

Y=1D_SR(X,i0,i1)

Figure F-28 — The VER_SR procedure

i1 i←

Y
X

1D_SRi0
i1

Figure F-29 — Parameters of the 1D_SR procedure
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As illustrated in Figure F-30, the 1D_SR procedure first uses the 1D_EXT procedure to extend the signal Y beyond its left
and right boundaries resulting in the extended signal Yext, and then uses the 1D_IFILT procedure to inverse filter the
extended signal Yext and produce the desired filtered signal X. 

F.3.7 The 1D_EXT procedure

The 1D_EXT procedure is identical to the one described for the forward transformation. 

F.3.8 The 1D_IFILT procedure

One irreversible inverse filtering procedure 1D_IFILTI and one reversible filtering procedure 1D_IFILTR are described.

As illustrated in Figure F-31, both procedures take as input an extended 1D signal Yext, the index of the first sample i0, and
the index of the sample i1 immediately following the last sample (i1-1). They both produce as output signal X. 

Both the irreversible and reversible inverse transformations are described using lifting-based inverse filtering [15], which
is a very efficient implementation of the inverse DWT. Lifting-based filtering consists of a sequence of very simple
filtering operations for which alternately, odd sample values of the signal are updated with a weighted sum of even
sample values, and even sample values are updated with a weighted sum of odd sample values. 

F.3.8.1 Irreversible 1D inverse filtering

The irreversible inverse transformation described in this section is the lifting-based DWT implementation of filtering by
the Daubechies 9/7 filter [4].

Equation F.9 describes the 2 “scaling” steps (1 and 2) and the 4 “lifting” steps (3 through 6) and of the 1D filtering
performed on the extended signal Yext(n) to produce the i1 samples of signal X.

Step 1 is performed for all values of n such that  and step 2 is performed for all values of n such that
.

Step 3 is performed for all values of n such that . Step 4 is performed for all values of n such that
. Step 5 is performed for all values of n such that . Finally, step 6 is performed

for all values of n such that . 

1D_SR

Done

Yext=1D_EXT(Y,i0,i1)

X=1D_IFILT(Yext,i0,i1)

Figure F-30 — The 1D_SR procedure

Yext X
1D_IFILTi0

Figure F-31 — Parameters of the 1D_IFILT procedure
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F.9

where the values of the parameters  are:

F.10

and the scaling factor K is equal to: K=1,149604.

F.3.8.2 Reversible 1D inverse filtering

The reversible inverse transformation is also described using lifting-based filtering. Reversible lifting-based inverse
filtering consists of a sequence of simple filtering operations for which alternately, odd sample values of the signal are
updated with a weighted sum of even sample values which is rounded to an integer value, and even sample values are
updated with a weighted sum of odd sample values which is rounded to an integer value. 

The even sample values of output signal X are computed first from the even sample values of extended signal Yext and the
odd sample values of signal Yext for all values of n such that :

F.11

Then the odd sample values of output signal X are computed from the odd sample values of extended signal Yext and the
even sample values of signal Yext for all values of n such that : 

. F.12

F.3.9 DC level shifting of image tile components

After computation of the IDWT, if the MSB of Ssiz is zero, then all samples I’(x,y) of image tile component c are inverse
level shifted to their original representation by adding the same quantity from each sample, where  is the
component’s precision parameter specified in Annex A:

 . F.13

NOTE — Due to quantization, the reconstructed sample values I(x,y) may exceed the dynamic range of the original image tile
component sample values.

X 2n( ) K Y ext 2n( )⋅← STEP1[ ]

X 2n 1+( ) 1 K⁄( ) Y ext 2n 1+( )⋅← STEP2[ ]

X 2n( ) X 2n( )← δ X 2n 1–( ) X 2n 1+( )+( )⋅– STEP3[ ]
X 2n 1+( ) X 2n 1+( )← γ X 2n( ) X 2n 2+( )+( )⋅– STEP4[ ]

X 2n( ) X← 2n( ) β X 2n 1–( ) X 2n 1+( )+( )⋅– STEP5[ ]
X 2n 1+( ) X← 2n 1+( ) α X 2n( ) X 2n 2+( )+( )⋅– STEP6[ ]
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
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F.4 Row-based wavelet transform (informative)

Described here is a row-based wavelet transform well suited for compression devices which received and transferred
image data in a serial manner. Traditional wavelet transform implementations require the whole image to be buffered and
filtering to be performed in vertical and horizontal directions. While filtering in the horizontal direction is very simple,
filtering in the vertical direction is more involved. Filtering along a row requires one row to be read; filtering along a
column requires the whole image to be read. This explains the huge bandwidth requirements of the traditional wavelet
transform implementation. The row-based wavelet transform overcomes the previous limitation while providing the
exact same transformed coefficients as traditional wavelet transform implementation. However, it has to be underlined
that the row-based wavelet transform alone does not provide a complete row-based encoding paradigm. A complete row-
based coder has to take also into account all the following coding stage up to the entropy coding stage. 

F.4.1 The FDWT_ROW procedure

The FDWT_ROW procedure uses one buffer buf(i,j) of five lines, , for performing a one level wavelet
decomposition on one row of length ytsiz in the vertical direction for the 9/7 wavelet filter. Each line of the buffer buf(i,j)
is of size xtsiz+1. The general description of the FDWT_ROW applied to one image tile component is illustrated in
Figure F-32 for the first level of decomposition. The FDWT_ROW takes as input level shifted image tile component line
of samples and produces as output one line of transform coefficients. It is assumed throughout this section that the image
tile component has at least five rows.

FDWT_ROW

INIT(y,buf)

START_VERT(buf)

buf(0)=1D_SD(buf(0),i0,i1)

No

Done

GET_ROW(y,buf)

RB_VERT_1(buf)

buf(i)=1D_SD(buf(i),i0,i1)

GET_ROW(y,buf)

RB_VERT_2(buf)

END_1(y,buf)

Yes

Yes

No

OUTPUT_ROW(buf(i))

y y 1+←

OUTPUT_ROW(buf(0))

y ytcsiz<

y ytsiz<

i mod y 4– 5,( )←

i0 mod xtpos 2,( )←
i1 xtcpos xtcsiz i0+ +←

y y 1+←
i mod y 4– 5,( )←

buf(i)=1D_SD(buf(i),i0,i1)

OUTPUT_ROW(buf(i))

Done

END_2(y,buf)

y 0←

Figure F-32 — The FDWT_ROW procedure
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F.4.1.1 The GET_ROW procedure

In this description, the level shifted image tile component is supposed to be stored in an external memory . As
illustrated in Figure F-33, the GET_ROW procedure reads one line of samples of the level shifted image tile component
and transfer this line of samples in the buffer buf.

F.4.2 The INIT procedure

As illustrated in Figure F-34, the INIT procedure reads five lines of samples of the level shifted image tile component
and transfer these lines of samples in the buffer, buf.

I
′

x y,( )

GET_ROW

i mod y 5,( )←

No

Yes

Done

mod ytcpos 2,( ) 0= d 1←

d 0←

buf i d j+,( ) I
′

x y ytcpos+,( )←

x xtcpos←
j 0←

x x 1+←
j j 1+←

No
x>=xtcpos+xtcsiz

Yes

Figure F-33 — The GET_ROW procedure

INIT

i 0←

i i 1+←
y y 1+←

i 5≥No

Yes

Done

GET_ROW(y,buf)

Figure F-34 — The INIT procedure
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F.4.3 The START_VERT procedure

As illustrated in Figure F-35, the START_VERT procedure modifies the coefficients in the buffer buf(i,j). In this Figure
as well as in all the following Figure of this section, the expression  is equivalent to

 for 
buf i( ) buf← i( ) α buf i2( )⋅+

buf i j,( ) buf← i j,( ) α buf i2 j,( )⋅+ 0 j xtcsiz 1+<≤

START_VERT

No

Done

mod ytcpos 2,( ) 0=

y ytcsiz<

buf 1( ) buf← 1( ) α buf 0( )⋅+

buf 1( ) buf← 1( ) α buf 2( )⋅+

buf 0( ) buf← 0( ) 2β buf 1( )⋅+

buf 3( ) buf← 3( ) α buf 2( )⋅+

buf 2( ) buf← 2( ) β buf 1( )⋅+

buf 1( ) buf← 1( ) γ buf 0( )⋅+

buf 3( ) buf← 3( ) α buf 4( )⋅+

buf 2( ) buf← 2( ) β buf 3( )⋅+

buf 1( ) buf← 1( ) γ buf 2( )⋅+

buf 0( ) buf 0( )← 2δ buf 1( )⋅+

buf 0( ) 1
K
----buf 0( )←

Yes

Done

buf 0( ) buf← 0( ) 2α buf 1( )⋅+

buf 2( ) buf← 2( ) α buf 1( )⋅+

buf 1( ) buf← 1( ) β buf 0( )⋅+

buf 2( ) buf← 2( ) α buf 3( )⋅+

buf 1( ) buf← 1( ) β buf 2( )⋅+

buf 0( ) buf← 0( ) 2γ buf 1( )⋅+

buf 4( ) buf← 4( ) 2α buf 3( )⋅+

buf 3( ) buf← 3( ) β buf 2( )⋅+

buf 2( ) buf← 2( ) γ buf 1( )⋅+

buf 1( ) buf 1( )← δ buf 0( )⋅+

buf 0( ) Kbuf 0( )←

No

Yes

Done

buf 0( ) buf← 0( ) 2α buf 1( )⋅+

buf 2( ) buf← 2( ) α buf 1( )⋅+

buf 1( ) buf← 1( ) β buf 0( )⋅+

buf 2( ) buf← 2( ) α buf 3( )⋅+

buf 1( ) buf← 1( ) β buf 2( )⋅+

buf 0( ) buf← 0( ) 2γ buf 1( )⋅+

buf 4( ) buf← 4( ) α buf 3( )⋅+

buf 3( ) buf← 3( ) β buf 2( )⋅+

buf 2( ) buf← 2( ) γ buf 1( )⋅+

buf 1( ) buf 1( )← δ buf 0( )⋅+

buf 0( ) Kbuf 0( )←

Figure F-35 — The START_VERT procedure
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F.4.3.1 The RB_VERT_1 procedure

As illustrated in Figure F-36, the RB_VERT_1 procedure modifies the coefficient in buf(i,j). 

F.4.3.2 The RB_VERT_2 procedure

As illustrated in Figure F-37, the RB_VERT_2 procedure modifies the coefficient in buf(i,j).

RB_VERT_1

No

mod ytcpos 2,( ) 0=
Yes

Done

buf mod y 5,( )( ) buf← mod y 5,( )( ) α buf mod y 1– 5,( )( )⋅+

buf mod y 1– 5,( )( ) buf← mod y 1– 5,( )( ) β buf mod y 2– 5,( )( )⋅+

buf mod y 2– 5,( )( ) buf← mod y 2– 5,( )( ) γ buf mod y 3– 5,( )( )⋅+

buf mod y 3– 5,( )( ) buf← mod y 3– 5,( )( ) δ buf mod y 4– 5,( )( )⋅+

buf mod y 4– 5,( )( ) K buf mod y 4– 5,( )( )⋅←

Done

buf mod y 1– 5,( )( ) buf← mod y 1– 5,( )( ) α buf mod y 5,( )( )⋅+

buf mod y 2– 5,( )( ) buf← mod y 2– 5,( )( ) β buf mod y 1– 5,( )( )⋅+

buf mod y 3– 5,( )( ) buf← mod y 3– 5,( )( ) γ buf mod y 2– 5,( )( )⋅+

buf mod y 4– 5,( )( ) buf← mod y 4– 5,( )( ) δ buf mod y 3– 5,( )( )⋅+

buf mod y 4– 5,( )( ) 1
K
---- buf mod y 4– 5,( )( )⋅←

Figure F-36 — The RB_VERT_1 procedure

RB_VERT_2

No

mod ytcpos 2,( ) 0=
Yes

Done

buf mod y 1– 5,( )( ) buf← mod y 1– 5,( )( ) α buf mod y 5,( )( )⋅+

buf mod y 2– 5,( )( ) buf← mod y 2– 5,( )( ) β buf mod y 1– 5,( )( )⋅+

buf mod y 3– 5,( )( ) buf← mod y 3– 5,( )( ) γ buf mod y 2– 5,( )( )⋅+

buf mod y 4– 5,( )( ) buf← mod y 4– 5,( )( ) δ buf mod y 3– 5,( )( )⋅+

buf mod y 4– 5,( )( ) 1
K
---- buf mod y 4– 5,( )( )⋅←

Done

buf mod y 5,( )( ) buf← mod y 5,( )( ) α buf mod y 1– 5,( )( )⋅+

buf mod y 1– 5,( )( ) buf← mod y 1– 5,( )( ) β buf mod y 2– 5,( )( )⋅+

buf mod y 2– 5,( )( ) buf← mod y 2– 5,( )( ) γ buf mod y 3– 5,( )( )⋅+

buf mod y 3– 5,( )( ) buf← mod y 3– 5,( )( ) δ buf mod y 4– 5,( )( )⋅+

buf mod y 4– 5,( )( ) K buf mod y 4– 5,( )( )⋅←

buf mod y 5,( )( ) buf← mod y 5,( )( ) 2α buf mod y 1– 5,( )( )⋅+

buf mod y 1– 5,( )( ) buf← mod y 1– 5,( )( ) β buf mod y 2– 5,( )( )⋅+

buf mod y 2– 5,( )( ) buf← mod y 2– 5,( )( ) γ buf mod y 3– 5,( )( )⋅+

buf mod y 3– 5,( )( ) buf← mod y 3– 5,( )( ) δ buf mod y 4– 5,( )( )⋅+

buf mod y 4– 5,( )( ) K buf mod y 4– 5,( )( )⋅←

y ytcsiz< No

Yes

Figure F-37 — The RB_VERT_2 procedure
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F.4.3.3 The END_1 procedure

The END_1 procedure is detailed in Figure F-38. 

END_1

No

mod ytcpos 2,( ) 0=
Yes

buf mod y 1– 5,( )( ) buf← mod y 1– 5,( )( ) 2β buf mod y 2– 5,( )( )⋅+

buf mod y 2– 5,( )( ) buf← mod y 2– 5,( )( ) γ buf mod y 3– 5,( )( )⋅+

buf mod y 3– 5,( )( ) buf← mod y 3– 5,( )( ) δ buf mod y 4– 5,( )( )⋅+

buf mod y 4– 5,( )( ) K buf mod y 4– 5,( )( )⋅←

Done

buf mod y 2– 5,( )( ) buf← mod y 2– 5,( )( ) γ buf mod y 1– 5,( )( )⋅+

buf mod y 3– 5,( )( ) buf← mod y 3– 5,( )( ) δ buf mod y 2– 5,( )( )⋅+

buf mod y 3– 5,( )( ) 1
K
---- buf mod y 3– 5,( )( )⋅←

OUTPUT_ROW(buf(i))

i mod y 4– 5,( )←

OUTPUT_ROW(buf(i))

i mod y 3– 5,( )←

OUTPUT_ROW(buf(i))

i mod y 4– 5,( )←

OUTPUT_ROW(buf(i))

i mod y 2– 5,( )←

OUTPUT_ROW(buf(i))

i mod y 1– 5,( )←

buf mod y 1– 5,( )( ) buf← mod y 1– 5,( )( ) 2δ buf mod y 2– 5,( )( )⋅+

buf mod y 2– 5,( )( ) K buf mod y 2– 5,( )( )⋅←

buf mod y 1– 5,( )( ) 1
K
---- buf mod y 1– 5,( )( )⋅←OUTPUT_ROW(buf(i))

i mod y 3– 5,( )←

buf mod y 2– 5,( )( ) buf← mod y 2– 5,( )( ) β buf mod y 1– 5,( )( )⋅+

buf mod y 3– 5,( )( ) buf← mod y 3– 5,( )( ) γ buf mod y 2– 5,( )( )⋅+

buf mod y 4– 5,( )( ) buf← mod y 4– 5,( )( ) δ buf mod y 3– 5,( )( )⋅+

buf mod y 4– 5,( )( ) 1
K
---- buf mod y 4– 5,( )( )⋅←

buf mod y 1– 5,( )( ) buf← mod y 1– 5,( )( ) 2γ buf mod y 2– 5,( )( )⋅+

buf mod y 2– 5,( )( ) buf← mod y 2– 5,( )( ) δ buf mod y 3– 5,( )( )⋅+

buf mod y 3– 5,( )( ) K buf mod y 3– 5,( )( )⋅←

buf mod y 2– 5,( )( ) buf← mod y 2– 5,( )( ) δ buf mod y 1– 5,( )( )⋅+

buf mod y 2– 5,( )( ) K buf mod y 2– 5,( )( )⋅←

buf mod y 1– 5,( )( ) 1
K
---- buf mod y 1– 5,( )( )⋅←

buf(i)=1D_SD(buf(i),i0,i1)

buf(i)=1D_SD(buf(i),i0,i1)

buf(i)=1D_SD(buf(i),i0,i1)

buf(i)=1D_SD(buf(i),i0,i1)

Figure F-38 — The END_1 procedure



ISO/IEC CD15444-1 : 1999 (V1.0, 9 December 1999)

ITU-T Rec. T.800 (1999 CDV1.0) 121

F.4.3.4 The END_2 procedure

The END_2 procedure is detailed in Figure F-39

END_2

No

mod ytcpos 2,( ) 0=
Yes

buf mod y 1– 5,( )( ) buf← mod y 1– 5,( )( ) β buf mod y 5,( )( )⋅+

buf mod y 2– 5,( )( ) buf← mod y 2– 5,( )( ) γ buf mod y 1– 5,( )( )⋅+

buf mod y 3– 5,( )( ) buf← mod y 3– 5,( )( ) δ buf mod y 2– 5,( )( )⋅+

buf mod y 3– 5,( )( ) 1
K
---- buf mod y 3– 5,( )( )⋅←

Done

buf mod y 5,( )( ) buf← mod y 5,( )( ) 2β buf mod y 1– 5,( )( )⋅+

buf mod y 1– 5,( )( ) buf← mod y 1– 5,( )( ) γ buf mod y 2– 5,( )( )⋅+

buf mod y 2– 5,( )( ) K buf mod y 2– 5,( )( )⋅←

OUTPUT_ROW(buf(i))

i mod y 3– 5,( )←

OUTPUT_ROW(buf(i))

i mod y 2– 5,( )←

OUTPUT_ROW(buf(i))

i mod y 4– 5,( )←

OUTPUT_ROW(buf(i))

i mod y 1– 5,( )←

OUTPUT_ROW(buf(i))

i mod y 5,( )←

buf mod y 1– 5,( )( ) buf← mod y 1– 5,( )( ) γ buf mod y 5,( )( )⋅+

buf mod y 1– 5,( )( ) K buf mod y 1– 5,( )( )⋅←

buf mod y 5,( )( ) 1
K
---- buf mod y 5,( )( )⋅←OUTPUT_ROW(buf(i))

i mod y 3– 5,( )←

buf mod y 1– 5,( )( ) buf← mod y 1– 5,( )( ) 2β buf mod y 2– 5,( )( )⋅+

buf mod y 2– 5,( )( ) buf← mod y 2– 5,( )( ) γ buf mod y 3– 5,( )( )⋅+

buf mod y 3– 5,( )( ) buf← mod y 3– 5,( )( ) δ buf mod y 4– 5,( )( )⋅+

buf mod y 4– 5,( )( ) K buf mod y 4– 5,( )( )⋅←

buf mod y 2– 5,( )( ) buf← mod y 2– 5,( )( ) γ buf mod y 1– 5,( )( )⋅+

buf mod y 3– 5,( )( ) buf← mod y 3– 5,( )( ) δ buf mod y 2– 5,( )( )⋅+

buf mod y 3– 5,( )( ) 1
K
---- buf mod y 3– 5,( )( )⋅←

buf mod y 1– 5,( )( ) buf← mod y 1– 5,( )( ) δ buf mod y 2– 5,( )( )⋅+

buf mod y 2– 5,( )( ) 1
K
---- buf mod y 2– 5,( )( )⋅←

buf mod y 1– 5,( )( ) K buf mod y 1– 5,( )( )⋅←

OUTPUT_ROW(buf(i))

i mod y 1– 5,( )←

OUTPUT_ROW(buf(i))

i mod y 5,( )←

buf(i)=1D_SD(buf(i),i0,i1)

buf(i)=1D_SD(buf(i),i0,i1)

buf(i)=1D_SD(buf(i),i0,i1)

buf(i)=1D_SD(buf(i),i0,i1)

buf(i)=1D_SD(buf(i),i0,i1)

buf(i)=1D_SD(buf(i),i0,i1)

buf(i)=1D_SD(buf(i),i0,i1)

buf(i)=1D_SD(buf(i),i0,i1)

Figure F-39 — The END_2 procedure
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F.4.4 OUTPUT_ROW procedure

This procedure returns a line buf(i) of transformed coefficients, which correspond either to the 1LL and 1HL sub-band or
to the 1LH and 1HH sub-band. This line of transform coefficient can be either store in an external memory or processed
immediately.
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Annex G

Image component transformations

(This annex forms an integral part of this Recommendation | International Standard)

This Annex specifies a reversible and an irreversible component transformation.

G.1 Reversible component transformation (RCT)

The use of the  reversible component transformation is signalled in the CSsiz parameter in Table A-10 of Annex A. The
RCT is a decorrelating transformation which is applied to the the three first components of an image (indexed as 0, 1 and
2). 

G.1.1 The Forward RCT (informative)

Prior to applying the Forward RCT, the image component samples are DC level shifted, if needed (see Annex F), before
being transformed as described in Annex F.

The Forward RCT is applied to all image component samples I0(x,y), I1(x,y), I2(x,y), corresponding to the first, second,
and third component, and produces transform samples Y0(x,y), Y1(x,y), Y2(x,y):

G.1

G.2

G.3

NOTE — If the first three components are Red, Green and Blue components, then the Forward RCT can be seen as an
approximation of a Yuv transformation.

G.1.2 The Inverse RCT (normative)

After being inverse transformed as described in Annex F, the following transformation is specified to perform the Inverse
RCT:

G.4

G.5

G.6

After applying the Inverse RCT, the image component samples are inverse DC level shifted, if needed (see Annex F).

G.2 Irreversible component transformation (ICT).

This section specifies an irreversible component transformation. The use of the irreversible component transformation is
signalled in the CSsiz parameter in Table A-10 of Annex A. The ICT is a decorrelating transformation which is applied to
the the three first components of an image (indexed as 0, 1 and 2). 

0 x y,( ) I0 x y,( ) 2I1 x y,( ) I2 x y,( )+ +

4
------------------------------------------------------------------------=

1 x y,( ) I0 x y,( ) I1 x y,( )–=

2 x y,( ) I= 2 x y,( ) I1 x y,( )–

1 x y,( ) Y 0 x y,( ) Y 1 x y,( ) Y 2 x y,( )+

4
----------------------------------------------–=

0 x y,( ) Y 1 x y,( ) I1 x y,( )+=

2 x y,( ) Y 2 x y,( ) I1 x y,( )+=
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G.2.1 The Forward ICT

The Forward ICT is applied to all image component samples I0(x,y), I1(x,y), I2(x,y), corresponding to the first, second,
and third component, and produces transform samples Y0(x,y), Y1(x,y), Y2(x,y):

G.7

G.8

G.9

NOTE — If the first three components are Red, Green and Blue components, then the Forward RCT can be seen as an
approximation of a YCbCr transformation.

G.2.2 The Inverse ICT

After being inverse transformed as described in Annex F, the following transformation is specified to perform the Inverse
ICT:

G.10

G.11

G.12

After applying the Inverse ICT, the image component samples are inverse DC level shifted, if needed (see Annex F).

G.3 Chrominance component sub-sampling and the image reference grid (informative)

The relationship between the components and the reference grid is signalled in the SIZ marker (see Annex A.5.1) and
described in Annex D.1.

G.3.1 An example of the interpretation of multiple components

The interpretation of multiple components is unspecified within the scope of the codestream. Interpretations, such as
multiple colour components, may be supplied by the file format, the application, or other source.

An example of a non-traditional interpretation is the coding of Regions of interest (ROIs) in a complex SAR data set.
Each ROI may be thought of as a set of two image chips representing the real (I) and imaginary (Q) parts of the data. The
ensemble of I and Q chips may be assembled into a set of “multiple components,” even though the individual chips are
disjoint and may have different spatial dimensions. By-passing the colour space transform, the ensemble of chips may
then be subjected to lossless or lossy compression. This procedure has two advantages: all the ROIs in a given data set can
be compressed in a single pass; and bit allocation can be optimized across the ensemble of ROIs rather than on a chip-by-
chip basis.

0 x y,( ) 0 299 I⋅, 0 x y,( ) 0 587 I1 x y,( )⋅, 0 114 I⋅, 2 x y,( )+ +=

1 x y,( ) 0 16875 I⋅,– 0 x y,( ) 0– 33126 I1 x y,( )⋅, 0 5 I⋅, 2 x y,( )+=

2 x y,( ) 0 5 I⋅, 0 x y,( ) 0 41869 I1 x y,( )⋅,– 0 08131 I⋅, 2– x y,( )=

I0 x y,( ) I0 x y,( ) 1 402 I⋅, 2 x y,( )+=

I1 x y,( ) I0 x y,( ) 0– 34413 I1 x y,( )⋅, 0 71414 I⋅, 2– x y,( )=

I2 x y,( ) I0 x y,( ) 1 772 I1 x y,( )⋅,+=
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Annex H

Coding of images with Regions-of-interest

(This annex forms an integral part of this Recommendation | International Standard)

This annex describes the Region of Interest (ROI) technology. An ROI is a part of an image that is encoded with higher
fidelity than the rest of the image (the background). The encoding is also done in such a way that the information
associated with the ROI precedes the information associated with the background. The method used (and described in
this annex) is the Maxshift method.

H.1 Description of the Maxshift method 

H.1.1 Encoding (informative)

The encoding of the quantized transform coefficients is done in a similar way as without any ROI coding. At the encoder
side a ROI mask is created describing which quantized transform coefficients must be encoded with better quality (even
up to losslessly) in order to encode the ROI with better quality (up to losslessly). The ROI mask is a bit map describing
these coefficients. See Annex H.2 for details on how the mask is generated.

The quantized transform coefficients outside of the ROI mask (to be called background coefficients) are scaled down so
that the bits associated with the ROI are placed in higher bit-planes than the background. This means that when the
entropy coder encodes the quantized transform coefficients, the bit planes associated with the ROI are coded before the
information associated with the background. The scaling value used must be sufficiently large to make the smallest non-
zero ROI coefficient, qROI(x,y), larger than the largest background coefficient, qBG(x,y), see Annex H.1.2. 

The method can be described using the following steps:

1) Generate ROI mask, M(x,y), see Annex H.2.

2) Find the scaling value, s, seeAnnex H.1.2.

3) Scale down all background coefficients given by M(x,y) using the scaling value s.

4) Write the scaling value s into codestream using the RGN marker described in Annex A.6.3

After these four steps the quantized transform coefficients are entropy coded as usual.

H.1.2 Selection of scaling value, s, at encoder side (normative)

The scaling value, s, must be chosen so that Equation H.1 holds

H.1

where max(Mb) is the largest number of magnitude bit planes, see Equation E.1, for any background coefficient, qBG(x,y)
in any code-block in the current component.

This means that the scaling value used will be sufficiently large to make the smallest non-zero ROI coefficient, qROI(x,y),
larger than the largest background coefficient, qBG(x,y). This, in turn, means that after the scaling of the background
coefficients, all significant bits associated with the ROI will be in higher bit planes than all the significant bits associated
with the background.

s max Mb( )≥
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H.1.3 Decoding (normative)

At the decoder side the received quantized coefficients are compared to the threshold value 2s, where s is the ROI scaling
value for this component obtained from the RGN marker in the codestream (see Annex A.6.3). All coefficients that are
found to be lower than 2s are known to belong to the background. These coefficients are scaled up by 2s.

The method can be described using the following steps:

1) Get the scaling value, s, from the RGN marker in the codestream, see Annex A.6.3.

2) Compare each quantized transform coefficient q(x,y) to 2s. If the coefficient is below 2s scale up
the coefficient by 2s

H.2 Region of interest mask generation

To achieve an ROI with better quality than the rest of the image while maintaining a fair amount of compression, bits
need to be saved by sending less information for the background. To do this an ROI mask is calculated. The mask is a bit
plane indicating a set of quantized transform coefficients whose coding is sufficient in order for the receiver to
reconstruct the desired region with better quality than the background (up to lossless). This mask denotes all coefficients
that are needed in order to reconstruct the ROI. 

To illustrate the concept of ROI mask generation, let us restrict ourselves to a single ROI and a single image component,
and identify the pixels which belong to the ROI in the image domain by a binary mask, M[m,n], where

H.2

M is then bit-wise 1 for all ROI coefficients so that if the first bit of M is 1 then M(x, y) belongs to the first ROI. 

The mask is derived following the same steps as the forward transform (or actually tracing the inverse transform). The
mask thereby gets the same sub-band structure as the wavelet transform. To start out with, the mask is a map of the ROI
in the image domain, so that it has a non-zero value inside the ROI and 0 outside. The LL sub-band of the mask is then in
each step updated line by line and then column by column. The mask will then indicate which coefficients are needed at
this step so that the inverse transform will reproduce the coefficients of the previous mask. 

For example, the last step of the inverse transform is a composition of two sub-bands into one. Then to trace this step
backwards, the coefficients in the two sub-bands that are needed, are found. The step before that is a composition of four
sub-bands into two. To trace this step backwards, the coefficients in the four sub-bands that are needed to give a perfect
reconstruction of the coefficients included in the mask for two sub-bands are found. 

All steps are then traced backwards to give the mask. If the coefficients corresponding to the mask are transmitted and
received, and the inverse transform calculated on them, the desired ROI will be reconstructed with better quality than the
rest of the image (up to lossless if the ROI coefficients were coded lossless). 

Given below is a description of how the expansion of the mask is acquired from the various filters. Similar method can be
used for other filters. Please refer to [25][26][27][28] for more details. 

H.2.1 Region of Interest mask generation using the W5X3 filter (informative)

Successful decoding does not depend upon the selection of samples to be scaled. In order to get the optimal set of
quantized coefficients to be scaled, the following equations described in this section should be used. 

To see what coefficients need to be in the mask, the inverse transform is studied: 

M x y,( ) 1 wavelet coefficient (x,y) is needed

0 accuracy on (x,y) can be sacrificed without affecting ROI



=
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H.3

The coefficients needed to reconstruct X(2n) and X(2n+1) up to lossless can immediately be seen to be L(n), L(n+1),
H(n-1), H(n), H(n+1). Hence if X(2n) or X(2n+1) are in the ROI, the listed L:s and H:s are in the mask. Figure H-1
shows that the coefficients needed to reconstruct X(2n) and X(2n+1) lossless are L(n), L(n+1), H(n-1), H(n), H(n+1).
Notice that X(2n) and X(2n+1) are even and odd indexed points respectively, related to the partition reference point. 

H.2.2 Region of Interest mask generation using the W9X7 filter (informative)

Successful decoding does not depend upon the selection of samples to be scaled. In order to get the optimal set of
quantized coefficients to be scaled the following equations described in this section should be used.

To see what coefficients need to be in the mask, the inverse transform is studied in similar manner as for the filters above.
Figure H-2 shows this. Notice that X(2n) and X(2n+1) are even and odd indexed points respectively, related to the
partition reference point 

The coefficients needed to reconstruct X(2n) and X(2n+1) lossless can immediately be seen to be L(n-1) to L(n+2) and
H(n-2) to H(n+2). Hence if X(2n) or X(2n+1) are in the ROI, those L:s and H:s are in the mask

X 2n( ) L n( ) H n 1–( ) H n( )+

4
-----------------------------------------–=

X 2n 1+( ) L n( ) L n 1+( )+

2
--------------------------------------- H n 1–( )– 6H n( ) H n 1+( )–+

8
-----------------------------------------------------------------------------+=

Figure H-1 — The inverse 5x3 transform

Figure H-2 — The inverse 9x7 transform
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H.3 Remarks on Region of Interest coding

H.3.1 Multi-component remark

For the case of color images, the method applies separately in each color component. If some of the color components are
down-sampled, the mask for the down-sampled components is created in the same way as the mask of the non-down-
sampled components.

H.3.2 Disjoint regions remark

If the ROI consists of disjoint parts then all parts have the same scaling value s.

H.3.3 Implementation Precision remark

This ROI coding method might in some cases create situations were the dynamic range is exceeded. This is however
easily solved by simply discarding the least significant bit planes that exceeds the limit due to the down scaling operation.
The effect will be that the ROI will have better quality compared to the background, even though the entire bit stream is
decoded. It might however create problems when the image is coded with ROI's in a lossless mode. Discarding least
significant bit-planes for the background might result that the background is not coded lossless and in the worst case not
be reconstructed at all. This depends on the dynamic range available.
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Annex I

Error resilience

(This annex forms an integral part of this Recommendation | International Standard)

This annex describes a method for decoding images, which have been coded using an error resilient syntax.

Many applications require the delivery of image data over different types of communication channels. Typical wireless
communications channels give rise to random and burst bit errors. Internet communications are prone to loss due to
traffic congestion. To improve the performance of transmitting compressed images over these error prone channels, error
resilient bit stream syntax and tools are included in this specification.

The error resilience tools in this specification deal with channel errors using the following approaches: data partitioning
and resynchronization, error detection and concealment, and Quality of Service (QoS) transmission based on priority.
Error resilience tools are described for in each category.

The entropy coding of the quantized coefficients is done with code-blocks. Since encoding and decoding of the code-
blocks are independent, bit errors in the bit stream of a code-block will be contained to that code-block (see Annex C).

Termination of arithmetic coder is allowed after every coding pass. Also the contexts may be reset after each pass. This
allows arithmetic coder continue to decode coding passes after errors (see Annex C-5).

The selective arithmetic coding bypass style puts raw bits into the bit stream without arithmetic coding. This prevents
error propagation to which variable length coding is susceptible (see Annex C.6).

Short packets are achieved by removing the packet headers to the PPM or PPT marker segments (see Annex A.7.4 and
Annex A.7.5). If there are errors the packet headers in the PPM or PPT marker segments can still be associated with the
correct packet by using the sequence number in the SOP.

Segmentation symbols is a special symbol coded at the end of each coding pass. The correct decoding of this symbol will
confirm the correctness of the decoding of this pass. This enables decoders to detect errors. A segmentation symbol is
encoded with uniform context at the end of each coding pass. At the decoder, a segmentation marker “1010” should be
decoded at the end of each sub-bit plane. If the segmentation symbol is not decoded correctly, then bit errors occurred for
this coding pass.

Packet with resynchronization marker SOP (see Annex A.8.1) allows the spatial partitioning and resynchronization. This
is placed in front of every packet in a tile with a sequence number starting at zero. It is increment with each packet.
Packet ordering is described in Annex D.6.

Table I-1 — Error resilience tools

Type of tool Name Reference

Entropy coding level code-blocks
termination of the arithmetic coder for each pass

reset of contexts after each coding pass
selective arithmetic coding bypass

Annex C

segmentation symbols Annex I

Packet level short packet format
packet with resynchronization marker

Annex D
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Annex J

JP2 File format syntax

(This annex forms an integral part of this Recommendation | International Standard)

This normative annex defines an optional file format that applications may choose to use for JPEG 2000 compressed
image data. While not all applications will use this format, many applications will find that this format meets their needs.

J.1 Scope

This normative annex of this Recommendation | International Standard defines an optional file format that applications
may choose to use to contain JPEG 2000 compressed image data. While not all applications will use this format, many
applications will find that this format meets their needs.

This annex of this Recommendation | International Standard 

— specifies a binary container for both image and metadata

— specifies a mechanism to indicate the tonescale or colorspace of the image

— specifies a mechanism by which readers may recognize the existence of intellectual property rights
information in the file

— specifies a mechanism by which metadata (including vendor specific information) can be included in
files specified by this Recommendation | International Standard

J.2 Definitions

J.2.1 Glossary

Box: A building block defined by a unique type identifier and length. Some particular boxes may contain
other boxes.

Box contents: Refers to the data wrapped within the box structure. The contents of a particular box are
stored within the DBox field within the Box data structure

Box type: Specifies the kind of information that shall be stored with the box. The type of a particular box
is stored within the TBox field within the Box data structure.

JP2 file: The name of file in the file format described in this specification. Structurally, a JP2 file is a
contiguous sequence of boxes. 

SuperBox: A Box that itself contains a contiguous sequence of boxes (and only a contiguous sequence of
boxes). As the JP2 file contains only a contiguous sequence of boxes, the JP2 file is itself considered a
SuperBox. When used as part of a relationship between two boxes, the term SuperBox refers to the box
which directly contains the other box.

Conforming reader: An application that reads and interprets a JP2 file correctly as defined by Annex J of this
Recommendation | International Standard.

Color component: A component from the codestream that functions as an input to a color transformation
system. For example, a red component or a L* component would be a color component.

Auxiliary component:A component from the codestream that is used by the application outside the scope of
colorspace conversion. For example, an opacity component or a depth component would be an
auxiliary component.

J.2.2 Acronyms

ICC: International Color Consortium
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PCS: Profile Connection Space

UCS: Universal Character Set

URL: Uniform Resource Locator

UTF-8: UCS Transformation Format 8

UUID: Universal Unique Identifier

XML: Extensible Markup Language

J.3 Normative References

The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation |International Standard.At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation |International Standard are encouraged to investigate the possibility of applying the most recent edition
of the Recommendations and Standards listed below.Members of IEC and ISO maintain registers of currently valid
International Standards.The Telecommunication Standardization Bureau of the ITU maintains a list of currently valid
ITU-T Recommendations.

— International Color Consortium, ICC profile format specification. ICC.1:1998–09
<http://www.color.org/ICC-1_1998-09.PDF>

— International Electrotechnical Commission. Colour management in multimedia systems: Part 2: Colour
Management, Part 2–1: Default RGB colour space—sRGB. IEC 61966–2–1 199x. 9 October 1998
<http://w3.hike.te.chiba-u.ac.jp/IEC/100/ PT61966/parts/> or <http://www.sRGB.com/>.

— W3C, Extensible Markup Language (XML 1.0), Rec-xml-19980210,
<http://www.w3.org/TR/REC-xml>

— IETF RFC 2279 UTF–8, A transformation format of ISO 10646. January 1998.

— ISO/IEC 11578:1996 Information technology—Open Systems Interconnection—Remote Procedure
Call, <http://www.iso.ch/cate/d2229.html>

J.4 Introduction

The JPEG 2000 file format (JP2 format) provides a foundation for storing application specific data (metadata) in
association with a JPEG 2000 codestream, such as that information which is required to display the image. As many
applications require a similar set of information to be associated with the compressed image data, it is useful to define the
format of that set of data along with the definition of the compression technology and codestream syntax.

Conceptually, the JP2 format encapsulates the JPEG 2000 codestream along with other core pieces of information about
that codestream. The building-block of the JP2 format is called a box. All data is encapsulated in boxes. This
Recommendation | International Standard defines several types of boxes; the definition of each specific box type defines
the kinds of data that may be found within a box of that type. Some boxes will be defined to contain other boxes.

J.4.1 File identification

JP2 files can be identified using several mechanisms. When stored in traditional computer file systems, JP2 files should
be given the file extension “.jp2” (readers shall also recognize files with the extension “.JP2”). If being transmitted as a
whole (a complete, valid file is being transmitted), the internet media type “image/jpeg2000” shall be associated with the
transmitted data. On Macintosh file systems, JP2 files should be given the type code ‘jp2 ’.
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J.4.2 File organization

A JP2 file represents a collection of boxes. Some of those boxes are independent, and some of those boxes contain other
boxes. The binary structure of a file is a contiguous sequence of boxes. The start of the first box shall be the first byte of
the file, and the last byte of the last box shall be the last byte of the file.

The binary structure of a box is defined in Annex J.6.

Logically, the structure of a JP2 file is as shown in Figure J-1.

As shown in Figure J-1, a JP2 file contains a JP2 Signature box, JP2 header box (Super Box), and a Contiguous
codestream box. A JP2 file may also contain other boxes as determined by the file writer. That JP2 header box (Super
Box) contains other boxes, such as the Image Header box and one or more Color specification boxs.

J.4.3 Greyscale/Color/multi-component specification

The JP2 file format provides two methods to specify the colorspace of the image. The Enumerated method specifies the
colorspace of an image by specifying a numeric value that represents a well-defined colorspace definition. In this
Recommendation | International Standard, images in the sRGB colorspace and greyscale images can be defined using the
enumerated method.

Figure J-1 — Conceptual structure of a JP2 file

JP2 file

JP2 header box (Super Box) (J.7.2)

Contiguous codestream box (J.7.3)

Image Header box (J.7.2.1)

Color specification box 0 (J.7.2.2)

BitsPerComponent box (J.7.2.3)

IPR box (J.8)

JP2 Signature box (J.7.1)

Component definition box (J.7.2.4)

XML boxes (J.9.1)

Color specification box n (J.7.2.2)

…

UUID Info boxes (Super Box) (J.9.3)

UUID List box (J.9.3.1)

Data Entry URL box (J.9.3.2)

UUID boxes (J.9.2)

Resolution box (Super Box) (J.7.2.5)

Capture resolution box (J.7.2.5.1)

Default display resolution box (J.7.2.5.2)

Boxes with dashed borders are optional in
conforming JP2 files. However, an optional
box may define mandatory boxes within that
optional box. In that case, if the optional box
exists, those mandatory boxes within the
optional box shall exist. If the optional box
does not exist, then the mandatory boxes
within those boxes shall also not exist.

This illustration specifies only the
containment relationship between the boxes
in the file. A particular order of those boxes in
the file is not generally implied. However, the
Signature box shall be the first box in a JP2
file and the JP2 header box shall fall before
the Contiguous codestream box.
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The JP2 file format also provides for the specification of the colorspace of an image by embedding an ICC profile in the
file. That profile shall be of either the Monochrome or Three-Channel Matrix-Based class of input profiles as defined by
the ICC Profile Format Specification. This allows for the specification of a wide range of greyscale and RGB class
colorspaces, as well as a few other spaces that can be represented by those two profiles classes.

J.4.4 Inclusion of opacity and transparency components

The JP2 file format provides a means to indicate the presence of auxiliary components, such as opacity and transparency,
to define the type of those components, and to specify the ordering of all components. When a reader opens the JP2 file, it
will determine the ordering and type of each component. The application must then match the component definition and
ordering from the JP2 file with the component ordering as defined by the colorspace specification. Once the file
components have been mapped to the color components, the decompressed image can be processed through any needed
colorspace transformations.

In many applications, components other than the color components are required. For example, many images used on web
pages contain opacity information; the browser uses this information to blend the image into the background. It is thus
desirable to include both the color and auxiliary components with a single codestream.

J.4.5 Metadata

One important aspect of the JP2 format is the ability to add metadata to a JP2 file. Because all data is encapsulated in
boxes, and all boxes have types, the format provides a simple mechanism for a reader to extract important and understood
information, while ignoring any box that contains information that is not understood by that particular reader. In this way,
new boxes can be created, either through this or other Recommendations | International Standards, JURA registration, or
private implementation. Also, any new box added to a JP2 file shall not change the visual appearance of the image.

J.4.6 Compliance

All conforming readers shall correctly interpret all valid JP2 files.

J.5 Greyscale/Color/multi-component specification architecture

One of the most important aspects of a file format is that it specifies the colorspace of the contained image data. In order
to properly display or interpret the image data, it is essential that the colorspace of that data is properly characterized. The
JP2 format provides a multi-level mechanism for characterizing the colorspace of an image. The format also provides a
mechanism to specify that an image is not photographic (such as multi-spectral data).

J.5.1 Enumerated method

The simplest method for characterizing the colorspace of an image is to specify an integer code representing the
colorspace in which the image is encoded. This method handles the specification of sRGB and greyscale images.
Extensions to this method can be used to specify other colorspaces, including the definition of multi-component images.

For example, the image file may indicate that a particular image is encoded in the sRGB colorspace. To properly interpret
and display the image, an application must natively understand the definition of the sRGB colorspace. Because an
application must natively understand each specified colorspace, the complexity of this method is dependent on the exact
colorspaces specified. Also, complexity of this mechanism is proportional to the number of colorspaces that are specified
and required for conformance. While this method provides a high level of interoperability for images encoded using
colorspaces for which correct interpretation is required for conformance, this method is very inflexible. This
Recommendation | International Standard defines a specific set of colorspaces for which interpretation is required for
conformance. Other colorspaces may be defined by this or other Recommendations | International Standards or by JURA
registration.
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J.5.2 Simple ICC profile method

An application may also specify the colorspace of an image using an selected set of simple ICC profiles. This method
handles the specification of a the most commonly used RGB and greyscale class colorspaces through a low-complexity
method.

An ICC profile is a standard representation of the transformation required to convert one colorspace into another
colorspace. With respect to image file format, the ICC profile specification defines a type of profile that specifies how
samples in a particular colorspace are converted into a standard space (the Profile Connection Space (PCS)). Depending
on the original colorspace of the samples, this transformation may be either very simple or very complex.

The ICC Profile Format Specification does define a specific class of ICC profiles that are very simple. The ICC Profile
Format Specification defines Monochrome Input and Three-Color Matrix-Based Input Profiles for which the
transformation from the source colorspace to the PCS is limited to the application of a non-linearity curve and a 3x3
matrix. It is practical to expect all applications, including simple devices, to be able to process the image through the
specified transformation. Thus all conforming applications are required to correctly interpret the colorspace of any image
that specifies the colorspace using this subset of possible ICC profile types.

For this Recommendation | International Standard, the class of allowed profiles shall use the XYZ relative version of the
PCS.

J.5.3 Using multiple methods

In addition to specifying these methods, this Recommendation | International Standard recognizes that applications can
achieve increased interoperability or optimization by using multiple methods to specify the colorspace of an image. For
example, one application may create an image that is targeted at a specific output device; the decompressed pixel values
are appropriate for the direct control of the color producing apparatus in the device. In this case, the writer might use both
an extended version of the enumerated colorspace method and the simple ICC profile method to specify the colorspace of
the image. In this example, the device recognizes the specific colorspace (because it understands the extension to the JP2
format) and can then avoid additional processing of the image data. Applications that do not understand that enumerated
colorspace can use the simple ICC profile as a means to transform the image into a colorspace appropriate for that
application. By using both methods, the file can be optimized for a specific device, yet can be properly interpreted by all
conforming readers.

Multiple color specification boxes are stored in the file in the order by which the file writer believes that they should be
considered for use (in order of highest to lowest precedence).

A conforming JP2 file shall include at least one non-extended color specification method.

J.5.4 Interactions with the decorrelating multiple component transform

The specification of color within the JP2 file format is independent of the use of a multiple component transformation
within the codestream (the CSSiz parameter of the SIZ marker segment as specified in Annex A.5.1 and Annex G). The
colorspace transformations specified through the sequence of color transformation boxes shall be applied to the image
samples after the reverse multiple component transformation has been applied to the decompressed samples. While the
application of these decorrelating component transformations is separate, the application of an encoder-based multiple
component transformation will often improve the compression of color image data.
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J.6 Box definition

Physically, each object in the file is encapsulated within a binary structure called a box. That binary structure is as
follows:

LBox: Box Length. This field specifies the length of the box, stored as a 4-byte unsigned integer. This value
includes all of the fields of the box, including the length and type. If the value of this field is 1, then the
XLBox field shall exist and the value of that field shall be the actual length of the box. If the value of
this field is 0, then the length of the box was not know when the LBox field was written. In this case,
this box contains all data up to the end of this box’s SuperBox. The values 2–7 are reserved for other
use.

TBox: Box Type. This field specifies the type of data found in the DBox field. The value of this field is
encoded as a four-character ASCII string with no terminating null. For example, the type ‘jp2h’
specifies a box that contains the header object for a JP2 file. This value can also be considered to be a
32-bit unsigned integer. For all box types defined within this Recommendation | International Standard,
box types will be specified both as 4-character strings and as 32-bit integers in hexadecimal.

XLBox:Box Extended Length. This field specifies the actual length of the box if the value of the LBox field is
1. This field is stored as an 8-byte unsigned integer. The value includes all of the fields of the box,
including the LBox, TBox and XLBox fields.

DBox:Box Data. This field contains the data for the portion of the object contained within this box. The format
of that data is dependent on the box type and will be defined individually for each type.

For example, consider the following illustration of a sequence of boxes, including one box that contains other boxes:

Table J-1 — Binary structure of a box

Field name Size (bits) Value

LBox 32 0, 1, 8—(232–1)

TBox 32

XLBox LBox=1, 64
LBox≠1, 0

16—(264–1)

DBox Varies

LBox TBox XLBox DBox

Figure J-2 — Organization of a Box

Figure J-3 — Illustration of box lengths

Box 0 Box 1 Box 4
Box 2 Box 3

LBox0

LBox1

LBox2 LBox3 LBox4
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As shown in Figure J-3, the length of each box includes any boxes contained within that box. For example, the length of
Box 1 includes the length of Boxes 2 and 3, in addition to the LBox and TBox fields for Box 1 itself. In this case, if the
type of Box 1 was not understood by a reader, it would not recognize the existence of boxes 2 and 3 because they would
be completely skipped by jumping the length of box 2 from the beginning of box 2.

The following table lists all boxes defined by this Recommendation | International Standard:

Table J-2 — Boxes defined within this Recommendation | International Standard

Box name Type SuperBox Mandatory? Notes

JP2 Signature box ‘jP2\032’
(X‘6A50321A’)

No Mandatory This box uniquely identifies the 
file as a JP2 file.

JP2 Header box ‘jp2h’
 (X‘6A703268’)

Yes Mandatory This box contains header informa-
tion about the file.

Image Header box ‘ihdr’
(X‘69686472’)

No Mandatory This box contains header informa-
tion about the image itself.

BitsPerComponent box ‘bpcc’
(X‘62706363’)

No Optional This box specifies the bit depth of 
the components in the file in cases 
where the bit depth is not constant 
across all components.

Component Definition 
box

‘cdef’
(X‘63646566’)

No Optional This box specifies the type and 
ordering of the components within 
the codestream.

Color specification ‘colr’
(X‘636F6C72’)

No Required This box specifies the colorspace 
of the image.

Resolution box ‘res  ’
(X‘72657320’)

Yes Optional This box specifies the resolution of 
the image.

Capture resolution 
box

‘resc’
(X‘72657363’)

No Optional This box specifies the resolution at 
which the image was captured.

Default Display res-
olution box

‘resd’
(X‘72657364’)

No Optional This box specifies the default reso-
lution at which the image should 
be displayed.

Contiguous codestream box ‘jp2c’
(X‘6A703263’)

No Required This box contains the codestream 
as defined by Annex A of this Rec-
ommendation | International Stan-
dard

Intellectual Property box ‘jp2i’
(X‘6A703269’)

No Optional This box contains intellectual 
property information about the 
image.

XML box ‘xml ’
(X‘786D6C20’)

No Optional This box provides a tool by which 
vendors can add XML formatted 
information to a JP2 file.

UUID box ‘uuid’
(X ‘75756964’)

No Optional This box provides a tool by which 
vendors can add additional data to 
a file without risking conflict with 
other vendors.
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J.7 Defined boxes

The following boxes shall properly be interpreted by all conforming readers.

J.7.1 JP2 Signature box

The JP2 signature box identifies this file as a JP2 file, as well as provides a small amount of information which can help
determine the probable validity of the rest of the file. The JP2 signature box shall be the first box in the file, and all files
shall contain one and only one JP2 signature box.

The type of the JP2 signature box shall be ‘jP2\032’ (X‘6A50321A’). The length of this box shall be 12 bytes. The
contents of this box shall be the 4-byte character string ‘<CR><LF><X’87’><LF>’ (X‘0D0A870A’). For file verification
purposes, this box can be considered a fixed-length 12-byte string which shall have the value:
X‘0000 000C 6A50 321A 0D0A 870A’.

The combination of the particular type and contents for this box enable an application to detect a common set of file
transmission errors. The CR-LF sequence in the contents catches bad file transfers that alter newline sequences. The
control-Z character in the type stops file display under MS-DOS. The final linefeed checks for the inverse of the CR-LF
translation problem. The third character of the box contents has its high-bit set to catch bad file transfers that clear bit 7.

J.7.2 JP2 header box (Super Box)

The JP2 header box contains generic information about the file, such as number of samples, colorspace, and resolution.
This box is a SuperBox.

Within a JP2 file (considered as a Super Box), there shall be one and only one JP2 header box. The JP2 header box may
be located anywhere within the file after the JP2 signature box but before the contiguous codestream box. It also must be
at the same level as the JP2 signature box (it shall not be inside any other Super Box within the file).

The type of the JP2 header box shall be ‘jp2h’ (X‘6A703268’).

This box contains several boxes, some of which will be defined within this Recommendation | International Standard, and
some of which will be defined in other standards. Those boxes contained within the JP2 header box that are defined
within this Recommendation | International Standard are as follows:

IHdr: This field specifies information about the image, such as its height, width and resolution. This structure
is an Image Header box as specified in Annex J.7.2.1. This box shall be the first box in the JP2 header
box.

UUID Info box ‘uinf’
(X‘75696E66’)

Yes Optional This box provides a tool by which 
a vendor may provide access to 
additional information associated 
with a UUID

UUID list box ‘ulst’
(X‘75637374’)

No Optional This box specifies a list of 
UUID’s.

URI box ‘url ’
(X‘75726C20’)

No Optional This box specifies a URI.

Table J-2 — Boxes defined within this Recommendation | International Standard

Box name Type SuperBox Mandatory? Notes

IHdr Colr0 Colri

Figure J-4 — Organization of the contents of a JP2 header box

… … Colrn… …BPCC
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BPCC:This box specifies the bit depth of each component in the codestream after decompression. The value
of this structure is a BPCC box as specified in Annex J.7.2.3. This box may be found anywhere in the
JP2 header box provided that it comes after the Image Header box.

Colri: These fields specify the colorspace of the decompressed image. The value of each of these structures is
a Color specification box as specified in Annex J.7.2.2. There shall be at least one Color specification
box within the JP2 header box. The use of multiple color specification boxes provides the ability for a
decoder to be given multiple optimization or compatibility options for color processing. The sequence
of the color specification boxes within the header box represents the precedence associated with each
colorspace specification, with higher precedence representations coming before lower precedence
ones. These boxes may be found anywhere in the JP2 header box provided that they come after the
Image Header box, and are in order based on precedence.

J.7.2.1 Image Header box

This box contains generic information about the image, such as the image size and number of components. The JP2
header box shall contain one instance of this box at the beginning of its DBox field. Instances of this box in other places
in the file shall be ignored. The length of the Image Header box shall be 14 bytes.

The type of the Image Header box shall be ‘ihdr’ (X‘69686472’) and contents of the box shall have the following format:

VERS:Version. This parameter defines the version number of this JP2 specification for which the file
complies. The parameter is defined as a 2-byte unsigned integer with the most significant byte
containing the major version number (currently defined as 1) and the least significant byte containing a
minor revision number (currently defined as 0).

The value of this field is X‘0100.’

A major version number increment (if there ever is one) represents an incompatible change in JP2 files.
Decoders should give up if the encounter an unrecognized major version number. Minor version
number increments represent backward compatible changes. Decoders should continue to process JP2
files even if the minor version number is unrecognized.

NC: Number of components. This parameter specifies the number of components in the image and is stored
as a 2-byte unsigned integer.

HEIGHT:Image height. The value of this parameter indicates the number of lines in the tallest component of
the image and is stored as a 4-byte unsigned integer.

WIDTH:Image width. The value of this parameter indicates the number of samples per line in the widest
component of the image and is stored as a 4-byte unsigned integer.

BPC: Bits per component. This parameter specifies the bit depth of the components in the image and is stored
as a 1-byte ones-complement integer.

If the bit depth is the same for all components, then this field specifies the actual bit depth. If the
components vary in bit depth, then the value of this field shall be zero and the JP2 header box shall also
contain a BitsPerComponent box defining the bit depth of each component (as defined in Annex
J.7.2.3).

The low 7-bits of the value indicate the bit depth of the components. The high-bit indicates whether the
components are signed or unsigned. If the high-bit is 1, then the components contain signed values. If
the high-bit is 0, then the components contain unsigned values.

VERS C

Figure J-5 — Organization of the contents of an Image Header box

BPCHEIGHT WIDTHNC
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C: Compression type. This parameter specifies the compression algorithm used to compress the image
data. The value of this field shall be 7. It is encoded as a 1-byte unsigned integer. If the value of this
field is not 7, then this file is not a conforming JP2 file.

J.7.2.2 Color specification box

Each Color specification box defines one method by which an application can interpret the colorspace of the
decompressed image data. A JP2 file may contain multiple Color specification boxes, specifying different methods for
achieving “equivalent” results. Note that this color specification is to be applied to the image data after it has been
decompressed and after any reverse decorrelating component transform has been applied to the data. The type of a Color
Specification box shall be ‘colr’ (X‘636F6C72’). The contents of a Color specification box is as follows:

METH:Specification method. This field specifies the method used by this Color specification box to define the
colorspace of the decompressed image. This field is encoded as a 1-byte unsigned integer. Legal values
of this field are as follows:

Table J-3 — Format of the contents of the Image Header box

Field name Size (bits) Value

VERS 16 X‘0100’

NC 16 1—(216–1)

HEIGHT 32 1—(232–1)

WIDTH 32 1—(232–1)

BPC 8 -127—127

C 8 7

Table J-4 — Legal METH values

Value Meaning

1 Enumerated colorspace. This colorspace specification box contains the enu-
merated value of the colorspace of this image. The enumerated value is found 
in the EnumCS field in this box. If the value of the METH field is 1, then the 
EnumCS shall exist in this box immediately following the APPROX field, and 
the EnumCS field shall be the last field in this box

2 Simple ICC profile.This color specification box contains a simple ICC profile 
in the PROFILE field. This profile specifies the transformation needed to con-
vert the decompressed image data into the PCS. If the value of METH is 2, 
then the ICC profile shall conform to the definition of either a Monochrome 
Input Profile or a Three-Component Matrix-Based Input Profile as defined in 
the ICC profile specification, version 2.2.0. In addition, the value of the Pro-
file Connection Space field in the profile header in the embedded profile shall 
be ‘XYZ ’ (X‘58595A20’) indicating that the output colorspace of the simple 
profile is XYZ data.
If the value of METH is 2, then the PROFILE field shall immediately follow 
the APPROX field and the PROFILE field shall be the last field in the box.

Figure J-6 — Organization of the contents of a Color specification box

APPROXUnkMETH PROFILEEnumCS
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Unk: Colorspace Unknown. This field specifies if the actual colorspace of the image data is known. This
field is encoded as a 1-byte unsigned integer. Legal values for this field are 1, if the colorspace of the
image is known and correctly specified by this color specification box, or 0, if the colorspace of the
image is not known. A value of 0 will be used in cases such as the transcoding of legacy images where
the actual colorspace of the image data is not known. In those cases, while the colorspace interpretation
methods specified in the file may not accurately reproduce the image with respect to some original, the
image should be treated as if the methods do accurately reproduce the image. Values other than 0 and 1
are reserved for other use.

APPROX:Colorspace approximation. This field specifies the extent to which this color specification method
approximates the “correct” definition of the colorspace. This field is encoded as a 1-byte unsigned
integer with values from 0–5. A value of zero indicates that the degree that this definition approximates
the “correct definition is not known. Values between 1 and 5 indicate a respective degree of
approximation, where a value of 1 indicates that this definition is a poor approximation of the correct
definition, and a value of 5 indicates that this definition is exactly the correct definition.

EnumCS:Enumerated colorspace. This field specifies the colorspace of the image using integer codes. To
correctly interpret the color of an image using an enumerated colorspace, the application must know
the definition of that colorspace internally. This field contains a 4-byte unsigned integer value
indicating the colorspace of the image. If the value of the METH field is 2, then the EnumCS field shall
not exist. The following colorspace codes are defined by this Recommendation | International
Standard:

PROFILE:ICC profile. This field contains a valid ICC profile, as specified by the ICC Profile Format
Specification, which specifies the transformation of the decompressed image data into the PCS. This
field shall not exist if the value of the METH field is 1. If the value of the METH field is 2, then the ICC
profile shall conform to the Monochrome Input Profile class or the Three-Component Matrix-Based
Input Profile class as defined in the ICC profile specification.

other values Reserved for other ISO use. If the value of METH is not 1 or 2, there may be 
fields in this box following the APPROX field. Those fields shall be ignored.

Table J-5 — Legal EnumCS values

Value Meaning

16 sRGB as defined by IEC 61966–2–1

17 greyscale: A single-channel greyscale space. Images encoded in this space 
consist of Y values as defined by IEC 61966–2–1 (sRGB) Equation 5.

other values Reserved for other ISO uses

Table J-6 — Format of the contents of the Colr box

Field name Size (bits) Value

METH 8 1—2

Unk 8 0—1

APPROX 8 0—5

Table J-4 — Legal METH values

Value Meaning
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J.7.2.3 BitsPerComponent box

The BitsPerComponent box specifies the bit depth of each component. If the bit depth is constant across all components
in the codestream, then this box shall not be found. Otherwise, this box specifies the bit depth of each component. The
order of bit depth values in this box is the actual order those components are enumerated within the codestream. The
exact location of this box within the JP2 header box may vary provided that it follows the Image Header box.

The type of the BitsPerComponent Box shall be ‘bpcc’ (X‘62706363’). The contents of this box shall be as follows:

BPCi: Bits per component. This parameter specifies the bit depth of component i, encoded as a 1-byte ones-
complement integer. The ordering of the components within the BitsPerComponent Box shall be the
same as the ordering of the components within the codestream. The number of BPCi fields shall be the
same as the value of the NC field from the Image Header box.

The low 7-bits of the value indicate the bit depth of this component. The high-bit indicates whether the
component is signed or unsigned. If the high-bit is 1, then the component contains signed values. If the
high-bit is 0, then the component contains unsigned values.

J.7.2.4 Component definition box

The component definition box specifies the meaning of the data in each component in the codestream. The exact location
of this box within the JP2 header box may vary provided that it follows the Image Header box.

This box contains an array of component descriptions. For each description, three values are specified: the number of the
component described by that association, the type of that component, and the association of that component with
particular colors. This box may specify multiple descriptions for a single component; however, the type value in each
description for the same component shall be the same in all descriptions.

If the codestream contains only color components and those components are ordered in the same order as the associated
colors (for example, an RGB images with three components in the order R, G, then B), then this box shall not exist.
However, if there are any auxiliary components or the components are not in the same order as the color numbers, then
the Component definition box shall be found within the JP2 header box with a complete list of component definitions.

If a multiple component transform is specified within the codestream, the component ordering box shall specify the
existence of red, green and blue colors as components 0, 1 and 2 in the codestream, respectively.

EnumCS 0 if METH=1
8 if METH=2

no value
1—255

PROFILE Varies Varies

Table J-7 — Format of the contents of the BitsPerComponent box

Field name Size (bits) Value

BPCi 8 -127— -1, 1—127

Table J-6 — Format of the contents of the Colr box

Field name Size (bits) Value

BPC0 BPCi

Figure J-7 — Organization of the contents of a BitsPerComponent box

… … BPCNC-1
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The type of the Component definition box shall be ‘cdef’ (X‘63646566’). The contents of this box shall be as follows:

N: Number of component descriptions. This field specifies the number of component descriptions in this
box. This field is encoded as a two-byte unsigned integer.

Cni: Component number. This field specifies the number of the component for this description. The value of
this field represents the number of the component as defined within the codestream. This field is
encoded as a two-byte unsigned integer.

Typi: Component type. This field specifies the type of the component for this description. The value of this
field represents the type of data contained within the component. This field is encoded as a two-byte
unsigned integer. Legal values of this field are as follows:

Asoci: Component association. This field specifies the number of the color for which this component is
directly associated (or a special value to indicate the whole image or the lack of an association). For
example, if this component is an opacity blending component for the red component in an RGB
colorspace, this field would specify the number of the color red. Table J-9 specifies legal association
values. Table J-10 specifies legal color numbers. This field is encoded as a two-byte unsigned integer.

Table J-8 — Typi field values

Value Meaning

0 This component is the color component for the associated color

1 Opacity. A sample value of 0 indicates that the sample is 100% transparent, 
and the maximum value of the component (related to the bit depth of the com-
ponent) indicates a 100% opaque sample.

2 Premultiplied opacity. An opacity component as specified above, except that 
the value of the opacity component has been multiplied into the color compo-
nents for which this component is associated. Premultiplication is defined as 
follows:

J.1

where S is the original sample, Sp is the premultiplied sample (the
sample stored in the image, α is the value of the opacity component,
and αmax is the maximum value of the opacity component as defined
by the bit depth of the opacity component.

3—(216–2) Reserved for ISO use

216–1 The type of this component is not specified

Table J-9 — Asoci field values

Value Meaning

0 This component is associated as the image as a whole (for example, a compo-
nent independent opacity blending channel

Typ0 Asoc0

Figure J-8 — Organization of the contents of a Component definition box

Cn0 … TypN–1 AsocN–1CnN–1N

SP S
α

αmax
------------×=
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In this box, component numbers refer to the number of that particular component within the codestream. Color numbers
specify how that component shall be interpreted based on the specification of the colorspace of the image.

For example, the green color in an RGB image is specified by a {Cn, Typ, Asoc} value of {i, 0, 2}, where i is the number
of that component in the codestream (either directly or as generated by applying the reverse multiple component
transform). Applications that are only concerned with extracting the color components can treat the Typ/Asoc field pair as
a four-byte value where the combined value maps directly to the color numbers (as the Typ field for a color component
shall be 0).

1—(216–2) This component is associated with the a particular color as indicated by this 
value. This value is used to associate a particular component with a particular 
aspect of the specification of the colorspace of this image. For example, indi-
cating that a component is associated with the red component of an RGB 
image allows the reader to associate that decoded component with the Red 
input to an ICC profile contained within a color specification box. Color indi-
cators are specified in Table J-10

216–1 This component is not associated with any particular color

Table J-10 — Colors indicated by the Asoci field

Class of 
colorspace

Color indicated by the following value of the Asoci field

1 2 3 4

RGB R G B

Greyscale Y

The following colorspace classes are listed for future reference, as well as to aid in 
understanding of the use of the Asoci field

XYZ X Y Z

Lab L a b

Luv L u v

YCbCr Y Cb Cr

Yxy Y x y

HSV H S V

HLS H L S

CMYK C M Y K

CMY C M Y

Jab J a b

n color color-
spaces

1 2 3 4

Table J-9 — Asoci field values

Value Meaning
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In another example, the codestream may contain a component i that specifies opacity blending data for the red and green
components, and a component j that specifies opacity blending data for the blue component. In that file, the following
{Cn, Typ, Asoc} tuples would be found in the Component definition box: {i, 1, 1}, {i, 1, 2} and {j, 1, 3}.

There shall not be more than component in a JP2 file with a Typi value of 0 with the same value of the Asoci field. For
example a JP2 file in an RGB colorspace shall only contain one green component.

J.7.2.5 Resolution box (Super Box)

This box specifies the capture and default display resolution of this image. If this box exists, it shall contain either a
capture display resolution box, or a default display resolution box, or both.

The type of a Resolution box shall be ‘res ’ (X‘72657320’). The contents of the resolution box are as follows:

RESC:Capture resolution box. This box specifies the resolution at which this image was captured. The format
of the RESC box is specified in Annex J.7.2.5.1.

RESD:Default display resolution box. This box specifies the default resolution at which this image should be
displayed. The format of a RESD box is specified in Annex J.7.2.5.2

J.7.2.5.1 Capture resolution box

This box specifies the resolution at which this image was captured. This specifies the resolution at which the source was
digitized to create the image samples specified by the codestream. For example, this may specify the resolution of the
flatbed scanner that captured a page from a book. The capture resolution could also specify the resolution of an aerial
digital camera or satellite camera.

The vertical and horizontal capture resolutions are calculated using the following two equations, respectively:

J.2

J.3

The values VRc and HRc are always in samples/meter. If an application requires the resolution in another unit, then that
application must apply the appropriate conversion.

Table J-11 — Component definition & ordering data structure values

Parameter Size (bits) Value

N 16 0—(216–1)

Cni 16 0—(216–1)

Typi 16 0—(216–1)

Asoci 16 0—(216–1)

RESC

Figure J-9 — Organization of the contents of Resolution box

RESD

VRc
VRcN
VRcD
--------------- 10

VRcE×=

HRc
HRcN
HRcD
---------------- 10

HRcE×=
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The type of a Capture resolution box shall be ‘resc’ (X‘72657363’). The contents of the Capture resolution box are as
follows:

VRcN:Vertical Capture resolution numerator. This parameter specifies the VRcN value in Equation J.1, which
is used to calculate the vertical capture resolution. This parameter is encoded as an 16-bit unsigned
integer.

VRcD:Vertical Capture resolution denominator. This parameter specifies the VRcD value in Equation J.1,
which is used to calculate the vertical capture resolution. This parameter is encoded as an 16-bit
unsigned integer.

HRcN:Horizontal Capture resolution numerator. This parameter specifies the HRcN value in Equation J.2,
which is used to calculate the horizontal capture resolution. This parameter is encoded as an 16-bit
unsigned integer.

HRcD:Horizontal Capture resolution denominator. This parameter specifies the HRcD value in Equation J.2,
which is used to calculate the horizontal capture resolution. This parameter is encoded as an 16-bit
unsigned integer.

VRcE:Vertical Capture resolution exponent. This parameter specifies the VRcE value in Equation J.1, which is
used to calculate the vertical capture resolution. This parameter is encoded as an 8-bit signed integer.

HRcE:Horizontal Capture resolution exponent. This parameter specifies the HRcE value in Equation J.2,
which is used to calculate the horizontal capture resolution. This parameter is encoded as an 8-bit
signed integer.

J.7.2.5.2 Default display resolution box

This box specifies the default resolution at which this image should be displayed. This specifies a default resolution at
which the image should be displayed. For example, this may be used to determine the size of the image on a page when
the image is placed in a page-layout program. Note, however, that this value is only a default. Each application must
determine an appropriate display size for that application.

The vertical and horizontal display resolutions are calculated using the following two equations, respectively:

J.4

J.5

Table J-12 — Format of the contents of the Capture resolution box

Field name Size (bits) Value

VRcN 16 1—(216–1)

VRcD 16 1—(216–1)

HRcN 16 1—(216–1)

HRcD 16 1—(216–1)

VRcE 8 -128—127

HRcE 8 -128—127

Figure J-10 — Organization of the contents of Resolution box

HRcN HRcDVRcN VRcD VRcE HRcE

VRd
VRdN
VRdD
--------------- 10

VRdE×=

HRd
HRdN
HRdD
---------------- 10

HRdE×=
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The values VRd and HRd are always in samples/meter. If an application requires the resolution in another unit, then that
application must apply the appropriate conversion.

The type of a Default display resolution box shall be ‘resd’ (X‘72657364’). The contents of the Default display
resolution box are as follows:

VRdN:Vertical Display resolution numerator. This parameter specifies the VRdN value in Equation J.3, which
is used to calculate the vertical display resolution. This parameter is encoded as an 16-bit unsigned
integer.

VRdD:Vertical Display resolution denominator. This parameter specifies the VRdD value in Equation J.3,
which is used to calculate the vertical display resolution. This parameter is encoded as an 16-bit
unsigned integer.

HRdN:Horizontal Display resolution numerator. This parameter specifies the HRdN value in Equation J.4,
which is used to calculate the horizontal display resolution. This parameter is encoded as an 16-bit
unsigned integer.

HRdD:Horizontal Display resolution denominator. This parameter specifies the HRdD value in Equation J.4,
which is used to calculate the horizontal display resolution. This parameter is encoded as an 16-bit
unsigned integer.

VRdE:Vertical Display resolution exponent. This parameter specifies the VRdE value in Equation J.3, which
is used to calculate the vertical display resolution. This parameter is encoded as an 8-bit signed integer.

HRdE:Horizontal Display resolution exponent. This parameter specifies the HRdE value in Equation J.4,
which is used to calculate the horizontal display resolution. This parameter is encoded as an 8-bit
signed integer.

J.7.3 Contiguous codestream box

The Contiguous codestream box contains a valid and complete JPEG 2000 codestream, as defined in Annex A of this
Recommendation | International Standard. Exactly one contiguous codestream box shall be found in the file.

The type of the contiguous codestream box shall be ‘jp2c’ (X‘6A703263’). The contents of the box shall be as follows:

Table J-13 — Format of the contents of the Default display resolution box

Field name Size (bits) Value

VRdN 16 1—(216–1)

VRdD 16 1—(216–1)

HRdN 16 1—(216–1)

HRdD 16 1—(216–1)

VRdE 8 -128—127

HRdE 8 -128—127

Figure J-11 — Organization of the contents of Resolution box

VRdE HRdEHRdN HRdDVRdN VRdD

Code

Figure J-12 — Organization of the contents of the Contiguous codestream box
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Code: This field contains a valid and complete JPEG 2000 codestream as specified by Annex A of this
Recommendation | International Standard.

J.8 Adding intellectual property rights information in JP2

This Recommendation | International Standard specifies a box type for a box which is devoted to carrying intellectual
property rights information within a JP2 file. Inclusion of this information in a JP2 file is optional for conforming files.
The definition of the format of the contents of this box is reserved for ISO. However, the type of this box is defined here
as a means to allow applications to recognize the existence of IPR information.

The type of the Intellectual Property Box shall be ‘jp2i’ (X‘6A703269’).

J.9 Adding vendor specific information to the JP2 file format

The following boxes provide a set of tools by which applications can add vendor specific information the JP2 file format.
All of the following boxes are optional in conforming files and may be ignored by conforming readers.

J.9.1 XML boxes

An XML box contains vendor specific data other than that data defined within this Recommendation | International
Standard. There may be multiple XML boxes within the file, and those boxes may be found anywhere in the file except
before the JP2 signature box. 

The type of an XML box is ‘xml ’ (X’786D6C20’). The contents of the box shall be as follows:

XML: This field shall be valid XML as defined by REC-xml-19980210.

The existence of any XML boxes is optional for conforming files. Also, any XML box shall not contain any information
necessary for decoding the image to the extent that is defined within this part of this Recommendation | International
Standard, and the correct interpretation of the data in any XML box shall not change the visual appearance of the image.
All readers may ignore any XML box in the file.

J.9.2 UUID boxes

A UUID box contains vendor specific data other than that data defined within this Recommendation | International
Standard. There may be multiple UUID boxes within the file, and those boxes may be found anywhere in the file except
before the JP2 signature box.

The type of a UUID box shall be ‘uuid’ (X‘75756964’). The contents of the box shall be as follows:

Table J-14 — Format of the contents of the Contiguous codestream box

Field name Size (bits) Value

Code Varies Varies

XML

Figure J-13 — Organization of the contents of the Contiguous codestream box

UUID

Figure J-14 — Organization of the contents of the Contiguous codestream box

DATA
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UUID:This field contains a 16-byte UUID as specified by ISO/IEC 11578:1996. The value of this UUID
specifies the format of the vendor specific data stored in the DATA field and the interpretation of that
data.

DATA:This field contains the vendor specific data. The format of this data is defined outside of the scope of
this standard, but is indicated by the value of the UUID field.

The existence of any UUID boxes is optional for conforming files. Also, any UUID box shall not contain any information
necessary for decoding the image to the extent that is defined within this part of this Recommendation | International
Standard, and the interpretation of the data in any UUID box shall not change the visual appearance of the image. All
readers may ignore any UUID box.

J.9.3 UUID Info boxes (Super Box)

While it is useful to allow vendors to extend JP2 files by adding binary data using UUID boxes, it is also useful to
provide information in a standard form which can be used by non-extended applications to get more information about
the extensions in the file. This information is contained in UUID Info boxes. A JP2 file may contain zero or more UUID
Info boxes. These boxes may be found anywhere in the top level of the file (the SuperBox of a UUID Info box shall be
the JP2 file itself) except before the signature box.

Note that these boxes, if present, may not provide a complete index for the UUID’s in the file, may reference UUID’s not
used in the file, and possibly may provide multiple references for the same UUID.

The type of a UUID Info box shall be ‘uinf’ (X‘75696E66’). The contents of a UUID Info box are as follows:

UList:UUID List box. This box contains a list of UUID’s for which this UUID Info box specifies a link to
more information. The format of the UUID List box is specified in Annex J.9.3.1.

DE: Data Entry URL box. This box contains either URL. An application can acquire more information
about the UUID’s contained in the UUID list box. The format of a Data Entry URL box is specified in
Annex J.9.3.2

J.9.3.1 UUID List box

This box contains a list of UUID’s. The type of a UUID List box shall be ‘ulst’ (X‘75637374’). The contents of a UUID
list box shall be as follows:

NU: Number of UUID’s. This field specifies the number of UUID’s found in this UUID List box. This field
is encoded as a 16-bit unsigned integer.

Table J-15 — Format of the contents of a UUID box

Field name Size (bits) Value

UUID 128 Varies

DATA Varies Varies

UList

Figure J-15 — Organization of the contents of a UUID Info box

DE

NU

Figure J-16 — Organization of the contents of a UUID Info box

UUID0 … UUIDNU–1
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UUIDi:UUID. This field specifies one UUID, as specified in ISO/IEC 11578:1996, which shall be associated
with the URI contained in the URI box within the same UUID Info box. The number of UUIDi fields
shall be the same as the value of the NU field. The value of this field shall be a 16-byte UUID.

J.9.3.2 Data Entry URL box

This box contains a URL which can use used by an application to acquire more information about the associated vendor
specific extensions. The format of the data acquired through the use of this URL is not defined in this Recommendation |
International Standard. The URL type should be of a service which delivers a file (e.g. URL’s of type file, http, ftp, etc.),
which ideally also permits random access. Relative URL’s are permissible and are relative to the file containing this data
reference.

The type of a Data Entry URL box shall be ‘url ’ (X’75726C20’). The contents of a Data Entry URL box shall be as
follows:

VERS:Version number. This field specifies the version number of the format of this box. The value of this field
shall be 0.

FLAG:Flags. This field is reserved for other use to flag particular attributes of this box. The value of this field
shall be 0.

URL: URL. This field specifies the URL of the additional information associated with the UUID’s contained
in the UUID List box within the same UUID Info SuperBox. The URL is encoded as a null terminated
string of UTF-8 characters

J.10 Dealing with unknown boxes

A valid codestream may contain boxes not known to applications based solely on this Recommendation | International
Standard. If an application finds a box that it does not understand, it shall skip and ignore that box.

Table J-16 — UUID List box contents data structure values

Parameter Size (bits) Value

NU 16 0—(216–1)

UUIDi 128 0—(2128–1)

Table J-17 — URI box contents data structure values

Parameter Size (bits) Value

VERS 8 0

FLAG 24 0

URL varies varies

URL

Figure J-17 — Organization of the contents of a URI box
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Annex K

Descriptions of encoding and implementation

This Annex is an informative description for encoding and implementation.

K.1 Adaptive Entropy Software-Conventions Decoder

This annex provides some alternative flowcharts for a version of the adaptive entropy decoder. This alternative version
may be more efficient when implemented in software, as it has fewer operations along the fast path. This annex is strictly
informative.

The alternative version is obtained by making the following substitutions. 

Replace the flowchart in Figure B-20 with the flowchart in Figure K-1.

Replace the flowchart in Figure B-15 with the flowchart in Figure K-2.

Replace the flowchart in Figure B-19 with the flowchart in Figure K-3. 

Figure K-1 — Initialisation of the software-conventions decoder
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Figure K-2 — Decoding an MPS or an LPS in the software-conventions decoder
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Figure K-3 — Inserting a new byte into the C register in the software-conventions decoder
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Annex L

Examples and guidelines

This Annex includes a number of examples intended to indicate how the encoding process works, and how the resulting
data stream should be output. This Annex is entirely informational.

L.1 Visual Frequency Weighting 

The human visual system plays an important role in the perceived image quality of compressed images. It is therefore
desirable to allow system designers and users to take advantage of the current knowledge of visual perception, e.g., to
utilize models of the visual system’s varying sensitivity to spatial frequencies, as measured in the contrast sensitivity
function (CSF). Since the CSF weight is determined by the visual frequency of the transform coefficient, there will be
one CSF weight per sub-band in the wavelet transform. The design of the CSF weights is an encoder issue and depends
on the specific viewing condition under which the decoded image is to be viewed. Please refer to [31][32][33][34] for
more details of the design of the CSF weights. 

In many cases, only one set of CSF weights is chosen and applied according to the viewing condition.   This application
of visual frequency weighting is referred to as the fixed visual weighting. In the case of embedded coders, as the coding
bit stream may be truncated later, the viewing conditions at different stages of embedding may be very different. At low
bit rates, the quality of the compressed image is poor and the detailed features of the image are not available. The image
is usually viewed at a relatively large distance and the observers are more interested in the global features. As more and
more bits are received, the image quality improves, and the detail of the image reveals. The image is usually examined at
a closer distance, or is even magnified for close examination, which equivalently decreases the viewing distance. Thus,
different sets of CSF weights are called for at different stages of the embedding. This adjustable application of visual
frequency weighting is referred to as the visual progressive coding. Apparently, the fixed visual weighting can be viewed
as a special case of the visual progressive coding.

L.1.1 Fixed Visual Weighting

In fixed visual weighting, a set of CSF weights, {wi}, is chosen according to the final viewing condition, where wi is the
weight for the ith sub-band. The set of CSF weights can be incorporated in one of the following two ways.

L.1.1.1 Modify Quantization Step Size

At the encoder, the quantization step size qi of the transform coefficients of the ith sub-band is adjusted inverse
proportional to the CSF weight wi. The smaller the CSF weight, the larger the quantization step size. The CSF-
normalized quantization indices are then treated uniformly in the R-D optimization process, which is not modified to take
into account any changes in the quantization step size. The CSF weights need not to be transmitted to the decoder. The
information is included in the quantization step sizes that are explicitly transmitted for each sub-band. This approach
needs to explicitly specify the quantizer so that it may not be very suitable for embedded coding, especially for
embedded coding from lossy all the way to lossless.

L.1.1.2 Modify the embedded coding order 

The quantization step sizes are not modified but the distortion weights fed into the R-D optimization are altered instead.
This effectively controls the relative significance of including different numbers of bit-planes from the embedded bit
stream of each code-block. The frequency-weighting table needs not to be transmitted explicitly. This approach is
recommended since it produces similar results as in Annex L.1.1.1 and is compatible with lossless compression. This
approach affects only the compressor and it is compatible with all quantization strategies, including implicit
quantization.
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L.1.2 Visual progressive coding (VIP)

If the visual frequency weights are to be changed during the embedded coding process, it is very clumsy to change the
coefficient values or quantization step sizes. Furthermore, the performance of the subsequent entropy coder may degrade
due to the changing statistics of the binary representation. An elegant way to implement the visual progressive coding
(VIP) is to change, on the fly, the order in which code-block sub-bit-planes should appear in the overall embedded bit
stream based on the visual weights, instead of changing the coefficient values or quantization step sizes. In other words,
the coding order rather than the coding content is affected by the visual weights. 

A series of visual weighting sets for different bit rate ranges are denoted as follows:

Weighting set 0: r(0), with W(0) = {w0(0), w1(0),. . . , wn(0)}; L.1

Weighting set 1: r(1), with W(1) = {w0(1), w1(1), . . . , wn(1)};

...

Weighting set m: r(m), with w(m) = {w0(m), w1(m), . . . , wn(m)},

where r(j) represents a bit-rate at which the weighting factors are changed, r(0) < r(1) < ... < r(m), and wi(j) is the weight
applied to sub-band i during bit rate range from r(j) to r(j+1). Each set of visual weights will take effect within a certain
bit rate range. If m=0, i.e., there is only one set of visual weights, it degenerates to the fixed visual weighting case. The
sets of visual weights, W(0) to W(m), will be used to determine the embedding order in their corresponding bit rate
ranges. For high bit rate embedding, especially the embedded coding from lossy all the way to lossless, the final visual
weights W(m) need to be all ones (as no weighting for lossless coding). The visual progressive coding can adjust the
visual weights to achieve good visual quality for all bit rates. 

The VIP weighting affects only the encoder and no signaling is required at the decoder.

The encoder is expected to compute the order in which code-block sub-bit-planes should appear in the layered hierarchy
of the overall bit stream, based upon rate-distortion criteria. A simple implementation of progressive visual weighting
changes the distortion metric progressively based on the visual weights during bit stream formation. Since bit stream
formation is driven by post-compression R-D optimization, the progressively changing visual weights effectively control
the embedding order of code-block sub-bit-planes on the fly. 

L.1.3 Recommended frequency weighting tables

The following table specifies three sets of CSF weighting designed based on the CSF value at the mid-frequency of each
sub-band. The viewing distance is supposed to be 1000, 2000, and 4000 pixels (e.g., corresponding to 10" for 100 dpi,
200 dpi, and 400 dpi print or display), respectively. Note that the tables are intended for a 5 level wavelet decomposition. 

The table does not include the weight for the lowest frequency sub-band, nLL, which is always 1. Levels 1, 2, …, 5
denote the sub-band levels in low to high frequency order. (LH, HL, HH) denotes the three frequency orientations within
each sub-band.

Table L-1 — Recommended frequency weighting

level 1000
(LH HL HH)

Viewing distance (pixels)
2000

(LH HL HH)
4000

(LH HL HH)

1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1.000000 1.000000 0.731668

3 1 1 1 1.000000 1.000000 0.727203 0.564344 0.564344 0.285968
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4 1 1 0.727172 0.560841 0.560841 0.284193 0.179609 0.179609 0.043903

5 0.560805 0.560805 0.284173 0.178494 0.178494 0.043631 0.014774 0.014774 0.000573

Table L-1 — Recommended frequency weighting

level 1000
(LH HL HH)

Viewing distance (pixels)
2000

(LH HL HH)
4000

(LH HL HH)
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Annex M

Patents

The following patents are claimed to be of relevance for the implementation of this Recommendation | International
Standard.

Editor’s note: this section is incomplete.
[1] C.K. Chui, R. Yi, “System and method for nested split coding of sparse data sets,” U.S. Patent No. 5,748,116, date, and U.S.

Patent No. 5,886,651, date.

[2] C.K. Chui, R. Yi, “System and method for tree ordered coding of sparse data sets,” U.S. Patent No. 5,893,100, date.

[3] C.K. Chui, L. Zhong, and R. Yi, “System and method for scalable coding of sparse data sets,” U.S. Patent. Allowed, date. 

[4] C.K. Chui, “System and method for performing wavelet-like and inverse wavelets-like transforms of digital data using only
add and bit split arithmetic operations,” U.S. Patent No. 5,909,518, date. 

[5] C. Christopoulos, J. Askelöf and M. Larsson, “A method and a system for coding Regions of Interest,” Swedish Patent
Application 9803454-9, 1998.

[6] D. Nister, C. Christopoulos, “Long filter Lossless region of interest coding,” Swedish Patent Application 9800088-8, 1998.

[7] D. Nister, C. Christopoulos, “Lossless region of interest coding,” Swedish Patent Application 9703690-9, 1997.

[8] M. Larsson, C. Christopoulos, M. Jändel, “Method and apparatus in transmission of images,” Swedish Patent Application
9802193-4.
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