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Abstract

Background: Machine learning can assist with multiple tasks during systematic reviews to facilitate the rapid
retrieval of relevant references during screening and to identify and extract information relevant to the study
characteristics, which include the PICO elements of patient/population, intervention, comparator, and outcomes. The
latter requires techniques for identifying and categorising fragments of text, known as named entity recognition.

Methods: A publicly available corpus of PICO annotations on biomedical abstracts is used to train a named entity
recognition model, which is implemented as a recurrent neural network. This model is then applied to a separate
collection of abstracts for references from systematic reviews within biomedical and health domains. The occurrences
of words tagged in the context of specific PICO contexts are used as additional features for a relevancy classification
model. Simulations of the machine learning-assisted screening are used to evaluate the work saved by the relevancy
model with and without the PICO features. Chi-squared and statistical significance of positive predicted values are
used to identify words that are more indicative of relevancy within PICO contexts.

Results: Inclusion of PICO features improves the performance metric on 15 of the 20 collections, with substantial
gains on certain systematic reviews. Examples of words whose PICO context are more precise can explain this increase.

Conclusions: Words within PICO tagged segments in abstracts are predictive features for determining inclusion.
Combining PICO annotation model into the relevancy classification pipeline is a promising approach. The annotations
may be useful on their own to aid users in pinpointing necessary information for data extraction, or to facilitate
semantic search.

Keywords: Active learning, Evidence-based medicine, Logistic regression, Machine learning, Text mining, Systematic
review

Background
Evidence-based research seeks to answer a well-posed, fal-
sifiable question using existing results and a systematic
and transparent methodology. The evidence—for exam-
ple, results of clinical trials—should be collected and
evaluated without bias using consistent criteria for inclu-
sion [1]. For certain cases [2], a research question can be
decomposed into its PICO elements: patient/population,
the intervention, comparator, and outcomes [3, 4]. Along
with other aspects, such as study design, PICO elements
are useful for formulating search queries for literature
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database searches [5] and mentions of PICO elements are
key to screening the search results for relevance.
A standard approach for systematic reviews (and other

review types such as rapid reviews [6] and scoping reviews
[7]) is to perform screening initially using only the title
and abstracts of a reference collection before obtaining
and analysing a subset of full-text articles [1]. While faster
and more cost effective than full-text screening, manu-
ally screening all reference abstracts is a protracted pro-
cess for large collections [8], especially those with low
specificity [9].
Technology-assisted reviewing seeks to foreshorten this

process by only screening the subset of the collection
most likely to be relevant [10–13]. This subset is automat-
ically selected using information from a manual screen-
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ing decisions either on another, ideally smaller, subset of
the collection [14] or through multiple rounds of itera-
tive feedback between a machine learning (ML) model
and the human reviewer [15]. In effect, the machine
‘reads’ the title and abstract and scores the relevancy
of the reference based on a model trained on rele-
vant and irrelevant examples from the human reviewer.
While previous studies [7, 16, 17] have shown the poten-
tial for time-savings, the underlying models treat each
word equally and do not explicitly distinguish PICO ele-
ments within an abstract. As PICO elements are cru-
cial for a human reviewer to making inclusion deci-
sions or design screening filters [18], we hypothesise
that a ML model with information on each reference’s
PICO would outperform a similar model lacking this
information.
Towards this aim, we propose a PICO recognition

model that is able to automatically identify text describ-
ing PICO elements within titles and abstracts. The text
fragments (contiguous sequences of words) are automat-
ically identified using a named entity recognition model
[19] trained on a manually annotated corpus of clinical
randomised trial abstracts [20]. Underlying the success of
the network is a vector representation of words that is
pre-trained on a corpus of PubMed abstracts and articles
[21]. The recognition model is based on a neural network
architecture [22] that is enhanced to allow the extraction
of nested spans, allowing text for one element to be con-
tained within another element. For example, consider the
sentence, Steroids

︸ ︷︷ ︸

intervention

in paediatric
︸ ︷︷ ︸

population

kidney transplant
︸ ︷︷ ︸

intervention

recipients

︸ ︷︷ ︸

population
resulted in reduced acute rejection

︸ ︷︷ ︸

outcome

. The model’s predictions are

illustrated in Fig. 1. The words in each of the PICO spans
are correspondingly marked and treated as additional
binary features (in a bag-of-words representation) for a
ML model based on a previously validated model [17].
Figure 2 summarizes the whole process as a flowchart.
The performance of the abstract-level screening is eval-

uated on a standard data set collection of drug effec-
tiveness systematic reviews [14, 24] (DERP I) by the
Pacific Northwest Evidence-based Practice Center [25].
The results indicate consistent improvement using PICO
information. Furthermore, we perform statistical analy-
sis to identify words that when marked as belonging to
a particular PICO element are significant predictors of
relevancy and are more precise (higher positive predic-
tive value) than the same words not constrained to the
context of PICO mentions. This illustrates how auto-
matically extracting information, obtained by a model
trained on expert PICO annotations, can enrich the
information available to the machine assisted reference
screening.

Related work
Previous work has shown that there are multiple avenues
for automation within systematic reviews [26–28]. Exam-
ples include retrieval of high-quality articles [29–32],
risk-of-bias assessment [33–36], and identification of ran-
domised control trials [37, 38]. Matching the focus of the
work, we review previous work on data extraction [39] to
automatically isolate PICO and other study characteris-
tics, can be methods for aiding abstract-level screening.
The two are clearly related, since inclusion and exclusion
criteria can be decomposed into requirements for PICO
and study characteristics to facilitate search [40].
Extracting PICO elements (or information in broader

schema [41]) at the phrase level [42–44] is a difficult prob-
lem due to the disagreement between human experts on
the exact words constituting a PICO mention [45, 46].
Thus, many approaches [39] firstly determine the sen-
tences relevant to the different PICO elements, using
either rules (formulated as regular expressions) or ML
models [42, 46–52]. Finer-grained data extraction can
then be applied to the identified sentences to extract
the words or phrases for demographic information (age,
sex, ethnicity, etc.) [42, 48, 52–54], specific interven-
tion arms [55], or the number of trial participants [56].
Instead of classifying each sentence independently, the
structured form of abstracts can be exploited by identify-
ing PICO sentences simultaneously with rhetorical types
(aim, method, results, and conclusions) in the abstract
[57–60]. More broadly, PICO and other information can
be extracted directly from full text articles [61–65].
Rather than extract specific text, Singh et al. predict

which medical concepts in the unified medical language
system (UMLS) [66] are described in the full-text for each
PICO element [67]. They use a neural network model that
exploits embeddings of UMLS concepts in addition to
word embeddings. The predicted concepts could be used
as alternative features rather than just the extracted text.
This would supplement manually added metadata such
as Medical Subject Headings (MeSH) curated by the U.S.
National Library of Medicine [68], which are not always
available or have the necessary categorisations.
Our proposed approach differs from existing by both

operating at the subsentence level (words and phrases)
and using a neural network model for processing text [69]
without hand-engineered features. In particular, the pro-
posed approach uses an existing model architecture [19]
originally designed for named entity recognition [70] to
identifymentions of biomedical concepts such as diseases,
drugs, anatomical parts [71, 72]. The model builds from
previous neural architectures [22, 73, 74]. The model is
jointly trained to predict population, intervention, and
outcomes in each sentence in the abstract, and can han-
dle nested mentions where one element’s mention (like
an intervention) can be contained within another like a
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Fig. 1 PICO recognition example. Visualisation of the trained model’s predictions of PICO elements within a reference (title and abstract) from the
Proton Pump Inhibitors review. The interventions tags correspond to drug names, participant spans cover characteristics of the population, but
erroneously include details of the intervention. The latter demonstrates the model’s ability to nest shorter spans within longer pans. The outcomes
cover spans for qualitative and quantitative measures. Screenshot from the brat system [23]

Fig. 2 PICO recognition and abstract screening process. In the first phase, the PICO recognition model is trained to predict the PICO mention spans
on a human annotated corpus of abstracts. In the second phase, a collection of abstracts is processed by the PICO recognition model and the
results along with the original abstract are used to create a vector representation of each abstract. In the final phase, a user labels abstracts as being
included (relevant) or excluded, these decisions are used to train a machine learning (ML) model that uses the vector representation. The ML model
is applied to the remaining unlabelled abstracts, which are then sorted by their predicted relevancy, the user sees the top ranked abstracts, labels
them, and this process repeats
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population. This capability is novel to this work, and in
theory, can provide higher recall thanmethods that do not
allow nested PICO elements.
Automatically identified PICO information can improve

other automation tasks such as clinical question answer-
ing [51] and predicting clinical trial eligibility [75, 76].
Likewise, inclusion and exclusion criteria can be decom-
posed into requirements for PICO and study characteris-
tics to facilitate search [40]. Recently, Tsafnat et al. have
shown the screening ability of automatic PICO extraction
[18] for systematic reviews. They use manually designed
filters (using dictionaries and rules) [77, 78] for key inclu-
sion criterion, mentions of specific outcomes, population
characteristics, and interventions (exposures) to filter col-
lections with impressive gains. Our goal is to replace the
manually designed filters with ML modelling that lever-
ages the automatically extracted PICO text to determine
an efficient filter. A variety of ML models (different classi-
fiers, algorithms, and feature sets) have been proposed for
screening references for systematic reviews [14, 15, 79–
95]. Yet, to our knowledge none of relevancy classifiers
have used as input the output of PICO recognition.

Methods
The machine learning methodology consists of two main
blocks: PICO recognition and relevancy classification.
The two steps share some common text pre-processing.
To pre-process the text in titles and abstracts, sentence
boundaries are determined using the GENIA sentence
splitter1 [96], which was trained on the GENIA corpus
[97, 98]2. Within each sentence, GENIA tagger3 is used
to determine the boundaries between words and other
tokens and also the lemmata (base form) of each word
[99]. Capitalisation is ignored and lowercase is used for
words and lemmata. Additionally, for the PICO recogni-
tion each digit is mapped to a zero [69].

PICO recognition model
The PICO annotations have the hierarchical categorisa-
tion given in Table 1 where the top-level categories consist
of population, intervention/comparator, and outcomes—
the comparators are merged into interventions [20]. The
annotation is performed in two passes: firstly, top-level
spans are identified, and secondly, spans within these
are further annotated with the fine-grained types. In this
manner, spans corresponding to the fine-grained types are
nested within typically longer spans with top-level PICO
types.
Following this annotation, the recognition model is

trained to firstly extract fine-grained entities, which are

1http://www.nactem.ac.uk/y-matsu/geniass/
2The boundaries are based on punctuation and are unable to correctly split
abstracts with lists of unterminated sentences.
3http://www.nactem.ac.uk/GENIA/tagger/

Table 1 The top-level and fine-grained PICO elements in the
training set for the PICO recognition model

Top-level Patient-population-
problem

Intervention/
Comparator

Outcome

Fine-
grained

Age Control Adverse
effect

Condition Educational Mental

Sample size Pharmacological Mortality

Sex Physical Pain

Psychological Physical

Surgical Other

Other

under the top-level PICO. Then it extracts the spans cor-
responding to the top-level PICO elements. To achieve
this, the training data consists of an ordered list of IOB
tagging [100] sequences for each sentence that mark the
beginning (B) and inside (I) of each span, as well as
tokens outside (O) of these spans. The lists begin with
fine-grained shorter spans and move to top-level longer
spans.
As described in detail [22], the network architecture

for the recognition model consists of three main layers:
an embedding layer, a sequence processing layer, and a
output layer. Firstly, the embedding layer takes as input
the sequence of tokens and the character sequence within
each token and outputs a vector representation. Each
token is represented using the concatenation of word
embeddings [101] and representations based on process-
ing character embeddings [102] with a bidirectional long
short-term memory network (biLSTM) [103] that employ
a forward and reverse LSTM [104] and concatenate the
output. Words that are not found in the pre-trained word
embeddings aremapped to a common vector, which is fur-
ther trained by randomly dropping words (50% chance)
that occur only once in the training corpus. The sec-
ond layer processes the sequence of representations using
another biLSTM. The third layer is an affine projection
of this representation to produce the unitary potential for
each of the possible tags in a conditional random field
(CRF)model [105], which alsomodels the transition prob-
abilities between tags. Due to the IOB tagging scheme,
there are 2 × (3 + 17) + 1 = 41 tags corresponding
to beginning or inside of one of the 20 possible PICO
categories (3 top-level and the 17 fine-grained) and the
outside tag. The Viterbi algorithm [106] is used to effi-
ciently infer the most likely sequence of tags marking
the spans.
To make predictions of nested spans, the second layer

and third layers are iteratively applied to the output of the
second layer from the previous iteration until there are
no more predicted spans. Specific dimensions of network

http://www.nactem.ac.uk/y-matsu/geniass/
http://www.nactem.ac.uk/GENIA/tagger/
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architecture are detailed in Table 2. Other choices were
not explored.
The network parameters are adjusted to maximise

the log likelihood of training sentences for the CRF
[69]. Stochastic first-order optimisation is performed
using batches of sentences, gradient clipping, and Adam
[107]. Dropout [108], weight decay (L2-regularisation),
and early stopping are employed to prevent overfitting.
Hyper-parameters are selected using Bayesian optimisa-
tion [109], using the design described in [19], on a devel-
opment portion of the training set with the F1-score of the
span-level predictions as the metric.

Relevancy classification model
The relevancy classifier is trained on screening decisions
(represented as binary variables indicating inclusion or
exclusion). The predictions of the classifier on the unseen
references are used to prioritize them, presenting those
that are most likely to be relevant. The text processing and
feature set follows the description of RobotAnalyst [17], a
web-based system that uses ML to prioritise relevant ref-
erences. The feature set consists of a bag-of-words (BOW)
representation of the title, another BOW for the title and
abstract combined, and the topic distribution of the title
and abstract text.
Topic distributions for title and abstract text are inferred

from an LDA topic model [110] with k = 300 topics using
MALLET [111]. The text is filtered to words consisting of
alphabetic characters with initial or internal punctuation
that are not on the stop word list. Topic model hyperpa-
rameters are initialized as α = 1/k and β = 1/100 with
optimisation every 50 iterations. The topic proportions
for each reference are normalised using the L2 norm.
For the baseline model, the two contexts are title or

combined title and abstract. The BOWs are formed from
lemmata (base forms) of the occurring words. Included
lemmata consist of more than one character, have at least

Table 2 Details of the 3-layer network architecture for the PICO
recognition model

Layer Size Source

1a Word embedding 200 [21], not updated

1b Character
embedding

28 trained from random
initialisation

1c Character-based
word
representation

2×28 biLSTM applied to 1b

1d Combined
embedding

256 concatenation of 1a and
1c

2 Recurrent layer 2×128 biLSTM over 1d

3 Linear layer 41 affine projection of 2

CRF output 1 most likely sequence of
tags

one letter or number, and are not found in a list of stop
words4. The BOW is a sparse binary vector representing
whether or not a word occurred in the given context. Each
BOW is normalised to have a Euclidean (L2) norm of 1 for
each reference, except when the bag is empty.
An additional feature set from the PICO recognition

consists of a BOW for each of the three course-grained
element types patient, intervention, and outcome (com-
parator is considered an intervention) recognised within
the title or abstract. Although finer-grained spans are
also annotated and recognised by the model, they were
mapped back to the basic PICO types after recognition.
In summary, the proposed model uses 5 BOWs. Note that
these representations are not disjoint, as a word occurring
within a PICO span would both be counted in the general
BOW and in the corresponding PICO category BOW.
The classifier is a linear model implemented in

LIBLINEAR [112]. While RobotAnalyst uses a support
vector classifier, we adopt a logistic regression model with
L2-regularisation.5 The amount of regularisation is con-
trolled by the constraint violation cost parameterC, which
is fixed at C = 1.

Identifying words with PICO-specific relevancy
We perform two statistical tests to identify words that are
both predictive of relevancy for a particular PICO con-
text, and aremore predictive than occurrences of the word
when it is not restricted to be within the context of a
PICOmention. Firstly, for each context category, we com-
pute each word’s correlation with relevancy labels using
Pearson’s χ2 test statistic for independence. Secondly, for
each context-word pair, we compute the positive predic-
tive value (the ratio of the number of included documents
containing the word to the total number of documents
containing the word) and use Leisenring et al.’s generalised
score statistic for equality of positive predictive value [113,
114] to see if the PICO-specific occurrence is significantly
more predictive than the word’s unrestricted occurrence.
The set of PICO-predictive words are those with a sig-
nificant χ2 statistic and a positive predictive value both
higher and significantly different than the unrestricted
context, using a significance level of 0.01 for both tests.

Datasets and simulation
A corpus of annotated references [20, 115] is used for
training and evaluation the PICO recognition model. The
corpus consists of 4,993 references, a subset of 4,512
are used for training and development (4,061/451). The
remainder contains 191 for testing the coarse-grained
spans. The remainder also contains 96 that were not used
for training since they lacked at least one of the PICO

4http://members.unine.ch/jacques.savoy/clef/
5Preliminary experiments showed logistic regression consistently improved
the relevancy prioritisation.

http://members.unine.ch/ jacques.savoy/clef/
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elements, and 194 references which are part of a set of
200 assigned for testing fine-grained labelling. After sen-
tence splitting, there are 43,295 and 4,819 sentences in the
training and development sets, respectively.
The DERP collections [24, 116] are used to test whether

including the PICO features will improve the prioriti-
sation of relevant references using simulated screening.
Table 3 describes the collections for the different reviews.
The simulation is modelled after the RobotAnalyst

framework [17], where the classification model is updated
at multiple stages during the screening process. Specifi-
cally, we run 100 Monte Carlo simulations. In each sim-
ulation, we begin with a random batch of 25 references.
If this batch contains any relevant references, this forms
the initial training set, otherwise batches of 25 are sam-
pled randomly and appended to the training set until at
least one relevant reference is found. Given the training
set, a classifier is trained and applied to the remaining ref-
erences. The references are prioritised by the classifier’s
score, which is proportional to the posterior probability of
being relevant (using a logistic regression model). The 25
highest ranked references are then included in the train-
ing set, a classifier is retrained, and so on. This continues
until all references are screened. This iterative process is
readily comparable to relevance feedback methods [117].
To compare against other baselines from the literature

we also use a stratified 2-fold setting, where half of the
inclusions and half of the exclusions are used for training.
Internal results are reported for the average of 100 Monte

Table 3 DERP systematic review descriptive statistics

Review Inc. Exc. Tot. Prev.

ACE Inhibitors 2544 41 2503 1.61%

ADHD 851 20 831 2.35%

Antihistamines 310 16 294 5.16%

Atypical Antipsychotics 1120 146 974 13.04%

Beta Blockers 2072 42 2030 2.03%

Calcium Channel Blockers 1218 100 1118 8.21%

Estrogens 368 80 288 21.74%

NSAIDS 393 41 352 10.43%

Opioids 1915 15 1900 0.78%

Oral Hypoglycemics 503 136 367 27.04%

Proton Pump Inhibitors 1333 51 1282 3.83%

Skeletal Muscle Relaxants 1643 9 1634 0.55%

Statins 3465 85 3380 2.45%

Triptans 671 24 647 3.58%

Urinary Incontinence 327 40 287 12.23%

Abbreviated columns correspond to the number of inclusions (relevant references),
exclusions, total number of references, and the prevalence (percentage of
inclusions compared to total)

Carlo trials of stratified training with 50% of each class for
training and 50% for testing.
To test the wider applicability of the methodology we

applied it to five additional collections introduced by
Howard et al. [95]. Four of the collections were produced
by the National Institute of Environmental Health Sci-
ences’s National Toxicology Program’s Office of Health
Assessment and Translation (OHAT), and the fifth was
produced by the Edinburgh CAMARADES group [118].
Table 4 describes the collections for the different reviews.

Evaluation
Firstly, the PICO recognition model is evaluated by its
ability to identify top-level (patient, intervention, and out-
come) mentions as annotated by experts. Performance is
calculated in terms of the model’s recall and precision
at the level of individual tokens. Each token is treated
as an individual test case. True positives for each cate-
gory are tokens in the category’s span that matches the
one assigned by the model, and false positives are tokens
assigned to the category by the model but not in the origi-
nal span. This solves the problem of comparing two spans
that have matching category, but partially overlapping
spans.
The performance is also calculated at the document

level in terms of the set of included words. This is a looser
evaluation that tests whether the annotated PICO words
would be captured when each document is represented
as filtered BOW with lemmata, which using the same
processing (removing single letter tokens, stop words,
etc.) as the BOW for the relevancy classification model.
In other words, the document-level matching tests how
well individual documents could be retrieved by searching
for words within specific PICO contexts. The evaluation
uses a held out test set from the same collection as the
recognition model training data [20].

Table 4 OHAT and COMARADES systematic review descriptive
statistics

Review Inc. Exc. Tot. Prev.

PFOA/PFOS and
Immunotoxicity

6331 95 6236 1.50%

Bisphenol A (BPA)
and Obesity

7700 111 7589 1.44%

Transgenerational
Inheritance of
Health Effects

48638 765 47873 1.57%

Fluoride and
Neurotoxicity in
Animal Models

4479 51 4428 1.14%

Neuropathic Pain 29207 5011 24196 17.16%

Abbreviated columns correspond to the number of inclusions (relevant references),
exclusions, total number of references, and the prevalence (percentage of
inclusions compared to total)
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Secondly, we test the hypothesis that adding auto-
matically recognised PICO elements to the feature set
improves the prioritisation of relevant references. In this
setting, the main objective is to prioritise references such
that relevant references are presented as early as possi-
ble. To compare against baselines from the literature we
use both a two-fold relevancy prioritisation [84, 95, 119],
and a relevancy feedback setting [120, 121]. In both cases,
references with the highest probability of being relevant
are screened first [88, 89, 91, 94, 122], like in relevance
feedback [117].
As an internal baseline for BOW we consider an aver-

age of context-dependent word vectors. Word vectors are
trained using algorithms, such as word2vec [123] and
GloVe [124], on large corpora such that the vector-space
similarity among words reflects the words’ distributional
similarity: words with similar vectors appear in similar
contexts. In comparison, with BOWeach word is assigned
a vector orthogonal to the rest, such that all words are
equally dissimilar. Word vectors perform well on a variety
of language tasks, and even better performance is possi-
ble when the vector representation of a word depends on
its surrounding context [125]. In this case, the context-
dependent word vector is computed by the hidden layers
of a neural network trained on language modeling tasks.
As suggested by a reviewer, we use the context-dependent
word vectors from the BERT languagemodel [126], specif-
ically the BioBert model trained on PubMed abstracts to
better reflect the language of biomedical research papers
[127] . For each PICO mention, we compute the average
of the output vectors of the last layer hidden of the model
for all tokens covered by the span, and then average these
for a given PICO category. The BERT representation of
abstracts is obtained in the same way, except we average
across the vectors for all of the abstract’s tokens.
Following previous work, we quantify the performance

in terms of work saved over sampling at 95% recall
(WSS@95%) [14]. This is computed as the proportion of
the collection that remains after screening 95% of the rel-
evant reference and subtracting 5% to account for the
proportion expected when screening in random order.
The recall after screening i references is

recall(i) = TP(i)
TP(i) + FN(i)

, (1)

where TP(i) is the number of relevant references found
and FN(i) is the number of relevant references that have
not been screened. Likewise, FP(i) denotes the number of
irrelevant references found, and TP(i) + FP(i) = i. Let
iR95 denote the number of references screened when 95%
recall is firstly achieved. Precisely,

iR95 = min
i∈{1,...,N}

recall(i)≥0.95

i. (2)

Under random ordering the expected value for iR95 is
95%N , where N denotes the total number of references.
Work saved is N−iR95

N , and

WSS@95% = N − iR95
N

− 5%

= 95% − iR95
N

, (3)

where N denotes the total number of references. The
metric is intended to express how much manual screen-
ing effort would be saved by a reviewer that would stop
the process after finding 95% of the relevant documents.
While this metric is useful to compare algorithms, in
practice a reviewer will not be able to recognise when
95% recall has been obtained and thus the work saving
is a theoretical one, unless a perfect stopping criterion is
available.

Results
The test set of 191 abstracts [20, 115] is used to evaluate
the model’s PICO annotation. The token-wise perfor-
mance for the three categories is reported in Table 5.
The model achieves an F-1 score (geometric mean of
precision and recall) of 0.70 for both participants and out-
comes, and 0.56 for interventions. The latter is caused by
a much lower recall of 0.47. The performance metrics are
higher for document-level matching, which uses the same
processing (lemmatisation, removing single letter tokens,
stop words, etc.) as the BOW for the relevancy classifi-
cation model. For outcomes, a promising recall of 0.81 is
achieved.
The results of relevancy feedback experiment are in

Table 6 with the column labelled LR corresponding to
the baseline set of features from RobotAnalyst with logis-
tic regression, and PICO indicating the model with the
additional PICO bag-of-words features. On average, the
inclusion of PICO features increases the work saved met-
ric by 3.3%, with substantial gains for the Opioids and
Triptans collections.
We compare these results against two baselines that

use relevancy feedback rather ML. The first baseline is a
relevance feedback system exploiting the lexical network
induced by shared word occurrence [120]. This is a strong
baseline as it uses a deterministic seed for retrieval based
on custom set of terms in the research questions and

Table 5 PICO recognition performance in terms of a token-wise
evaluation and a document-level filtered bag-of-words (BOW)

Token-wise Document-level BOW

Precision Recall F-1 Precision Recall F-1

Participants 0.81 0.62 0.70 0.86 0.71 0.78

Interventions 0.69 0.47 0.56 0.83 0.52 0.64

Outcomes 0.66 0.75 0.70 0.73 0.81 0.77
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Table 6 Relevancy feedback performance in terms ofWSS@95%
on DERP systematic review collections

[120] [121] LR PICO �

ACE Inhibitors 74.3 *82.7 74.7 74.4 -0.3

ADHD 67.9 *82.1 67.5 68.9 1.4

Antihistamines *24.5 17.7 -1.7 -1.9 -0.1

Atypical Antipsychotics 18.0 *33.6 18.0 20.5 2.5

Beta Blockers 65.0 *68.5 54.7 55.7 1.1

Calcium Channel Blockers 17.3 12.8 *47.6 47.1 -0.5

Estrogens 22.6 28.5 36.6 *39.1 2.4

NSAIDS *77.4 64.1 60.9 63.1 2.2

Opioids 9.0 17.4 19.5 *34.1 14.6

Oral Hypoglycemic 13.5 *15.9 6.9 9.2 2.3

Proton Pump Inhibitors 19.7 21.0 *21.2 18.3 -2.9

Skeletal Muscle Relaxants *58.6 29.9 25.9 32.4 6.5

Statins 27.8 *43.7 42.9 43.3 0.3

Triptans 39.6 *54.1 34.3 52.4 18.1

Urinary Incontinence 20.8 41.6 44.8 *46.4 1.6

Average 37.1 40.9 36.9 40.2 3.3

� indicates the change between adding the PICO features to the baseline logistic
regression classifier (LR)
*indicate best performance per review

the search strategy (in particular the inclusion criterion)
and proceeds with relevance feedback adding one refer-
ence at a time. Ji et al. follow the same experiment and
for a fair comparison we report their results for the case
when parameters are fixed (DT = 1) across collections
using SNOMED-CT and MeSH features for a semantic
network [121]. The overall performance with the PICO
features is comparable to the semantic network based rel-
evance feedback [121]. This is encouraging since the latter
uses a human selected seed query, versus the random
initialisation for the proposed method.
Other baselines from the literature only report results in

the stratified 2-fold setting. The first baseline [84] uses a
naive Bayes classifier, and the reported values are the aver-
age across five 2-fold cross-validations, in each of the 10
runs theWSS value for a threshold with at least 95% recall
is reported. This includes a weight engineering factor for
different groups of features that is maximised on the train-
ing set. The second baseline is an SVM-based model [79,
119] with the feature set that performed the best consist-
ing of abstract and title text, MeSH terms, and Meta-map
phrases. The final baseline [95] uses cross-validation on
the training sets to select the following hyperparameters:
the number of topics, the regularisation parameter, and
the inclusion or exclusion of additional bigram, trigram, or
MeSH term features. The reported values are an average
across 25 Monte Carlo trials.

The results are reported in Table 7. The inclusion of
PICO features improves the work saved performancemet-
ric versus the default logistic regression model, with an
average improvement of 1.6%. The results are competi-
tive against the earlier baselines, but the cross-validation
selection of hyperparameters [95] yields the best average
performance. Searching for these hyperparameters using
cross-validations is computational demanding, especially
in the relevance feedback setting, where there is not a large
initial training set, but rather a different training set at
each stage.
Results on the additional OHAT and CAMARADES

collections are shown in Table 8. The inclusion of PICO
features improves performance on three of the five collec-
tions, with an average improvement of 0.3%.
Considering all 20 collections, the addition of PICO

features yields a significant improvement in two-fold
WSS@95% performance over the baseline logistic regres-
sion classifier as assessed by a one-sided sign-test (p-value
of 0.0207) at a significance level of 0.1.
In Fig. 3, we report the two-fold performance on the

DERP collections comparing BOW to BERT with and
without the additional PICO features. On this internal
comparison, we log and report the number of times a
representation performs best across the Monte Carlo tri-
als. BERT performs better on the most difficult collec-
tions, but on average, BOW outperforms BERT. Interest-
ingly, the collections that have the highest gain between

Table 7 Two-fold relevancy prediction in terms ofWSS@95% on
DERP systematic review collections

[84] [119] [95] LR PICO �

ACE Inhibitors 52.3 73.3 *80.1 78.5 77.6 -0.9

ADHD 62.2 52.6 *79.3 75.5 74.5 -0.9

Antihistamines 14.9 *23.6 13.7 4.9 5.0 0.1

Atypical Antipsychotics 20.6 17.0 *25.1 19.9 20.9 1.0

Beta Blockers 36.7 46.5 42.8 *55.5 54.1 -1.4

Calcium Channel Blockers 23.4 43.0 *44.8 38.8 39.3 0.6

Estrogens 37.5 41.4 *47.1 41.0 43.7 2.7

NSAIDS 52.8 67.2 *73.0 65.3 66.5 1.2

Opioids 55.4 36.4 *82.6 53.3 57.0 3.7

Oral Hypoglycemic 8.5 *13.6 11.7 7.1 8.9 1.8

Proton Pump Inhibitors 22.9 32.8 *37.8 32.6 31.0 -1.6

Skeletal Muscle Relaxants 26.5 37.4 *55.6 40.1 45.3 5.3

Statins 31.5 *49.1 43.6 42.2 44.3 2.1

Triptans 27.4 34.6 41.2 40.6 *51.2 10.5

Urinary Incontinence 29.6 43.2 *53.0 52.4 52.4 0.0

Average 33.5 40.8 48.8 43.2 44.8 1.6

� indicates the change between adding the PICO features to the baseline logistic
regression classifier (LR)
*indicate best performance per review
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Table 8 Two-fold relevancy prediction in terms ofWSS@95% on
OHAT and CAMARADES systematic review collections

[95] LR PICO �

PFOA/PFOS and Immunotoxicity 80.5 84.0 *84.6 0.7

Bisphenol A (BPA) and Obesity 75.2 77.9 *78.6 0.8

Transgenerational Inheritance of Health Effects 71.4 *74.3 *74.3 0.0

Fluoride and Neurotoxicity in Animal Models 87.0 89.3 *89.4 0.1

Neuropathic Pain *69.1 64.3 64.1 -0.1

Average 76.6 77.9 78.2 0.3

� indicates the change between adding the PICO features to the baseline logistic
regression classifier (LR)
*indicate best performance per review

PICO(BOW) and BOW—Statins, Estrogens, Triptans,
and Skeletal Muscle Relaxants—also have a large gap
between BOW and BERT. This highlights the utility of
the precision that BOW and PICO tagging provide. To
assess whether the performance differences were statis-
tically significance, we consider the performance rank
of each representation per collection. The average ranks
(where the best performing is assigned rank 1) are 2.1

for PICO(BOW), 2.4 for PICO(BERT), 2.7 for BOW, and
2.9 for BERT. The differences in average rank are not
significant using a Friedman test at a significance level
of 0.1.
To better illustrate the methodology, a subset of PICO

features selected by the hypothesis tests for strong rel-
evancy are shown in Tables 9 and 10. The two exam-
ples over the cases where the inclusion of PICO fea-
tures lowered the performance on the Proton Pump
Inhibitor review, and raised the performance on the Trip-
tans review. In both cases, the strongly relevant features
are clearly indicative of key inclusion aspects. For exam-
ple, given an occurrence of the word ‘complete’ there is
less than a 50% chance of the reference being relevant;
however, within the spans marked as outcome the chance
is over 70%. The lower performance in the case of the Pro-
ton Pump Inhibitor review corresponds to a lower positive
predictive value on these features.

Discussion
The results indicate that the additional PICO tagging is
useful for improving machine learning performance in
both the two-fold and relevancy feedback scenarios with

Fig. 3 Comparison of BOW and BERT word vectors as the machine learning representation. The two-fold relevancy prediction performance is
reported in terms of WSS@95% across the DERP collections, sorted by BOW performance. In each group, the different colored bars correspond to
BOW, BOW including PICO features, BERT, and BERT including PICO features. Bar heights are the average across 100 Monte Carlo trials. In the
WSS@95% plot, the upper error bars indicate the standard deviation across the 100 Monte Carlo trials
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Table 9 PICO features with strong relevancy within the Proton
Pump Inhibitors systematic review

PICO PPV TP/FP

Tag Lemma PICO BOW PICO BOW

O relief 0.21 0.17 21/78 22/111

O healing 0.13 0.11 33/215 33/264

O heartburn 0.15 0.11 16/94 16/125

O pain 0.15 0.12 14/79 14/98

P oesophagitis 0.14 0.11 13/77 13/107

O rate 0.07 0.07 35/439 35/501

P grade 0.15 0.08 8/44 8/90

O safety 0.10 0.08 11/94 11/122

P reflux 0.07 0.05 23/311 23/441

Positive predictive value (PPV) is the proportion of true positives (TP) to the total
number of TP and false positives (FP). Each TP corresponds to an inclusion
containing the feature; each FP corresponds to an exclusion containing the feature

a bag-of-words representation. This could only be the
case if the additional features carry information about
the relevancy decisions and are not redundant with the
existing feature sets. These questions are answered by
statistical analysis, which shows that when restricted to

Table 10 PICO features with strong relevancy within the Triptans
systematic review

PICO PPV TP/FP

Tag Lemma PICO BOW PICO BOW

O relief 0.68 0.61 96/46 106/67

O headache 0.53 0.43 130/113 161/212

P migraine 0.50 0.41 138/138 198/281

P treat 0.78 0.59 49/14 124/85

O pain 0.59 0.52 90/63 96/89

O severe 0.80 0.60 40/10 89/60

O moderate 0.79 0.63 34/9 94/55

O response 0.59 0.49 51/35 71/75

I sumatriptan 0.43 0.41 141/187 145/211

O mild 0.73 0.53 29/11 71/62

O migraine 0.51 0.41 74/70 198/281

O functional 0.81 0.56 21/5 25/20

O effective 0.82 0.47 18/4 106/120

O patient 0.67 0.43 26/13 194/253

O complete 0.71 0.47 15/6 36/40

O reduction 0.64 0.42 16/9 30/42

O reduce 0.87 0.38 7/1 39/63

O migraine-specific 0.80 0.50 8/2 10/10

Positive predictive value (PPV) is the proportion of true positives (TP) to the total
number of TP and false positives (FP). Each TP corresponds to an inclusion
containing the feature; each FP corresponds to an exclusion containing the feature

a specific PICO context certain words are more reliable
predictors. As inclusion criteria are often stated in terms
of PICO (and other study characteristics) this is not a
surprising result, but nonetheless, requires a well-trained
PICO recognition model to transfer the knowledge from
the training set of annotations. In a way, the proposed
methodology connects with previous work on generalis-
able classifiers that can learn from the screening decisions
of other systematic reviews [128].
Furthermore, PICO tagging is an interpretable process

meant to emulate human annotation and can readily be
used by reviewers themselves. For instance, highlighting
the mentions of outcomes may accelerate data extraction,
since identifying outcome measures and data are a crit-
ical step in many systematic reviews. In the context of
the ML model, the influence of a specific PICO feature
in prioritising an abstract can be assessed by the cor-
responding coefficients of the logistic regression model.
This can be used to check which of the PICO cate-
gories has contributed the most to the score assigned
to a certain abstract—for example, the presence of an
outcome-specific word with a relatively large coefficient.
If this raises doubts, the text spans assigned to this
type can be verified. The ability to interact with the
model in such ways would increase its interpretability,
which could aid a user in understanding and trusting
the current model’s predictions [129]. While this can
be done for all of the words, the semantics, sparsity
and higher precision of PICO features make them more
meaningful.
There are a number of avenues for future work. The first

is to consider PICO tagging in new systematic reviews.
The simulation results remains a surrogate for actual
live screening evaluation as was performed by Przybyła
et al. [17]. In practice, users may benefit from more pre-
cise queries where search terms are restricted to appear
in PICO recognised spans, or integrated into additional
facets for semantic search [130]. That is, the semantic
classes of interventions and outcomes may be useful for
users to search large collections and databases. For exam-
ple, if instead of searching for a phrase or word describing
an outcome measure in the whole text of the references,
a reviewer would be able to search just within the frag-
ments categorised as outcomes, the results would better
align with the reviewer’s intention. The word ‘reduce’
in Table 10 is a strong example, where only 8 results
with 7 being relevant are returned for ouctome-specific
usage compared to 102 results with only 39 relevant in
general. This demonstrates that a query-driven approach
with PICO tagging has the potential to greatly reduce
screening efforts needed to obtain an initial seed of rele-
vant documents. User selected queries could be combined
with RobotAnalyst’s ability to prioritise the results based
on relevance predictions. Essentially, this would combine
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the approach proposed here with the ability for human
design [18] of screening rules using PICO classes. Finally,
in this work the fine-grained PICO recognition was not
evaluated, but this may be useful to highlight population
information (sample size, age, sex, condition).
During peer review, it was noted that the DERP col-

lections also contain the reasons for most exclusions.
Reasons for exclusions are often recorded in systematic
reviews, and may be coded using PICO categories. Thus,
a system with PICO-specific feature sets has the poten-
tial of incorporating the additional information into a ML
model. This is an interesting area for future work.
Finally, we note that the proposed methodology is

not able to beat relevancy screening baselines previously
reported in the literature. This can largely be attributed
to differences in evaluation. For the relevancy feedback
experiments, the baseline methods [120, 121] start from
deterministic queries that use expert knowledge of the
inclusion criteria, versus the random initialisation for
the propose method. In the case of two-fold predictions,
the best performing method [95] uses cross validation
to select the best from among different hyperparameters
combinations, including distinct feature set choices. This
would require additional computation in the online set-
ting and it is not clear if this approach would perform well
in the limited data setting (without access to half of the
inclusions).

Conclusion
Screening abstracts for systematic reviews requires users
to read and evaluate abstracts to determine if the study
characteristics match the inclusion criterion. A significant
portion of these are described by PICO elements. In this
study, words within PICO tagged segments automatically
identified in abstracts are shown to be predictive fea-
tures for determining inclusion. Combining PICO anno-
tation model into the relevancy classification pipeline is
a promising approach to expedite the screening process.
Furthermore, annotations may be useful on their own to
aid users in pinpointing necessary information for data
extraction, or to facilitate semantic search.
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