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Learning Recurrent Waveforms within EEGs
Austin J. Brockmeier, Member, IEEE, and Jose C. Principe, Fellow, IEEE

Abstract—Goal: We demonstrate an algorithm to automatically
learn the time-limited waveforms associated with phasic events
that repeatedly appear throughout an electroencephalogram.
Methods: To learn the phasic event waveforms we propose a
multi-scale modeling process that is based on existing shift-
invariant dictionary learning algorithms. For each channel,
waveforms at different temporal scales are learned based on the
assumption that only a few waveforms occur in any window of
the time-series, but the same waveforms reoccur throughout the
signal. Once the waveforms are learned the timing and amplitude
of the phasic event occurrences are estimated using matching
pursuit. To summarize the waveforms learned across multiple
channels and subjects, we analyze their frequency content, their
similarity to Gabor-Morlet wavelets, and perform shift-invariant
k-means to cluster the waveforms. A prototype waveform from
each cluster is then tested for differential spatial patterns between
different motor imagery conditions. Results: On multiple human
EEG datasets, the learned waveforms capture key characteristics
of signals they were trained to represent, with a consistency in
waveform morphology and frequency content across multiple
training sections and initializations. On multichannel datasets,
the spatial amplitude patterns of the waveforms are also con-
sistent and can be used to distinguish different modalities of
motor imagery. Conclusion: We explored a methodology that can
be used for modeling the recurrent waveforms in EEG traces.
Significance: The methodology automatically identifies the most
frequent phasic event waveforms in EEG, which could then be
used as features for automatic evaluation and comparison of EEG
during sleep, pathology, or mentally engaging tasks.

Index Terms—Biomedical signal processing, clustering, dictio-
nary learning, EEG, sparse coding.

I. INTRODUCTION

AMPLIFIED voltage recordings across the human scalp
reveal a diversity of spatiotemporal oscillations and pat-

terns [1], [2], [3], [4], [5] commonly referred to as brain
waves. The electroencephalogram (EEG) records a mixture
of the electrical activity of the brain along with potentials
arising from eye and face muscles and movements. The
interesting portion of the signal is the superposition of the
potentials generated from the electrochemical activity in the
neocortex [5], [6]. Research has demonstrated that signal
characteristics, such as certain frequencies, spatial locations,
and phasic event waveforms are indicative of an individual’s
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cognitive state, the presence or presentation of stimuli, or
neural pathology. Many distinct signatures appear as brief,
time-limited, oscillations [7] or phasic events [8] such as
alpha waves [1], [9], and sleep spindles. Some signatures are
ubiquitous and evident to experts from the raw EEG traces,
while other patterns such as evoked potentials [1], [2], [10] are
time-locked to stimulus presentation. A commonality among
these signatures is their non-stationarity: even narrow-band
rhythms are time-varying in frequency and amplitude [11],
and many waveforms are phasic events that occur transiently.

Due to their non-stationary nature and the superposition of
transient and brief oscillatory events, EEGs require careful
consideration for analytic examination. Signal processing tools
are only appropriate when the underlying assumptions that
they are based on are met [12], [13]. Time-frequency anal-
ysis, such as multitaper analysis [14] or wavelet decomposi-
tions [15], has been the standard tool for exploratory analysis
of neural potential signals and is well suited for locally
stationary brain rhythms [16], but these representations are
not able to separate signals emanating from different sources.

Neural activity from distinct spatial sources occurs simul-
taneously in the brain. Each source may have distinct time-
frequency patterns or waveforms, but in the EEG recordings
these patterns are all mixed. By simile, brainwaves are like
an audio recording from a busy social event—say a cocktail
party—where conversations are occurring simultaneously. Can
the individual sources be identified from these seemingly
chaotic signals? The cocktail party analogy strikes a chord
with the blind source separation community, which has pro-
posed the use of spatial independent component analysis (ICA)
and associated techniques to disentangle distinct sources in
multichannel EEG [17], [18], [19], [20], [21]. The utility of
these techniques is based on the topological organization of
the cortex. As the neural circuitry for distinct modalities are
spatially isolated they can be associated with unique source
signals that are then ‘mixed’ together in the scalp recordings.
The blind source separation problem is then to ‘demix’ the
signals using spatial filters that isolate the signal components
from each of the underlying sources.

In the case of a single recording channel, spatial filtering is
impossible, but it is possible to decompose the signal into com-
ponents with distinct time-frequency characteristics. Ideally,
each component would be strictly composed of waveforms
with similar morphology: a component dedicated to ripples,
another to alpha waves, a third to EEG spikes, and so on.1

Linear filtering is inadequate for morphological separation as
it can only segregate signals by frequency. Nonlinear filtering
by matching pursuit [24] has been shown to successively

1Morphological component analysis has been applied to denoising and
separation tasks for images [22], [23], which in essence are single-channel
two-dimensional signals.
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separate components with different underlying morphology in
EEG [25], [26], [27], [28], [29], [30], and has been adapted
to multichannel recordings [27], [31].

Matching pursuit is based on the assumptions that any
portion of the time-series signal can be approximated using rel-
atively few elements from a ‘dictionary’ of component wave-
forms. For instance, this dictionary may be a set of Gabor-
Morlet wavelets (sinusoids with Gaussian envelopes) [32] and
Dirac delta functions appearing at different translations. Each
instance of waveform, its amplitude, and timing are referred to
as an atom, and together they form an atomic decomposition
of the signal [33]. Using the correct basis allows a meaningful
representation of the signal using relatively few atoms.

Instead of leaving the dictionary as a design choice, which
must be predefined, the waveforms can be learned directly
from the data based on the higher-order statistics of the
signal [34], using techniques known as dictionary learning
or sparse coding [35], [36], [37], [38], [39]. An alternative
to dictionary learning is to apply ICA directly to time-
embedded vectors from a single channel [40], [41], [42]: a
technique that has been shown to be successful in learning the
constituent waveforms on EEG and other biomedical signals.
In either sparse coding or single-channel ICA, waveforms
can be learned from patches (windows) of signals, but these
dictionaries will contain copies of similar waveforms at many
different shifts. Shift-invariant dictionary learning, also known
as convolutional sparse coding, proposes to learn only a few
explicit waveforms and represent the rest of the dictionary by
translating these waveforms [43], [44], [45], [46], [47], [48],
[49], [50], [51]. These approaches avoid estimating redundant
copies of the same waveform at different shifts. However,
some of these approaches neglect the phase information and
only learn the magnitude spectrum of the waveforms. For EEG
it is important to maintain the phase information to investigate
phasic events such as evoked potentials. Although there is
yet no natural way to incorporate shift-invariance into single
channel ICA, it will preserves waveform shape, with a sign
ambiguity, and the redundancy issues of single-channel ICA
can be alleviated by using a post-hoc waveform selection. A
greedy approach for waveform subset selection was previously
proposed [52] and evaluated on synthetic data.

Shift-invariant dictionary learning has been fruitfully ap-
plied to EEG for the detection of evoked potentials [53]. We
emphasize that the estimated dictionary (set of waveforms) are
data-dependent descriptors of the signal and that learning a
small dictionary guarantees that any approximation reuses the
same set of waveforms. This can be contrasted with a decom-
position using a predefined dictionary, which is not constrained
on the number of unique waveforms to use. A comparison of
a predefined to a learned dictionary on a segment of EEG
is shown in Fig. 1. Learning a small dictionary also allows
different signals (or the conditions that generated them) to
be compared by contrasting the sets of learned waveforms.
For instance, the waveform shape could be compared across
different conditions such as ages or neuropathy.

In the rest of this study, we focus on adapting existing
shift-invariant dictionary learning algorithms to the problem
of estimating multiscale dictionaries of EEG waveforms.
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Fig. 1. Comparison of two different sparse decompositions of a novel EEG
segment using the same number of atoms. (A) Predefined Gabor-Morlet
wavelet dictionary, which explains 82% of the variance of the test portion of
the signal. (B) Dictionary learned on a disjoint section of the same recording
using single-channel ICA and waveform subset selection, which explains 72%
of the variance, but reuses the same 16 waveforms repeatedly throughout the
decomposition, whereas the predefined dictionary uses different subsets.

Specifically, we combine shift-invariant dictionary learning
algorithms with a multistage modeling approach. The mul-
tistage modeling approach avoids the difficulties involved
in estimating many waveforms of different lengths at once.
The results in the main body use the matching-pursuit with
SVD update [54], [47], [55], but the supplementary material
(available at http://ieeeexplore.ieee.org) contains results using
single-channel ICA with a post-hoc waveform selection algo-
rithm [52] and a comparison of these two algorithms on syn-
thetic data. Another synthetic example is used to illustrate the
difference between decompositions using learned dictionaries
versus using a pre-defined Gabor-Morlet dictionary.

Multiple publicly available human EEG datasets are used
to demonstrate and empirically verify the consistency of the
estimation. We try to highlight how the learned waveforms can
be used to characterize and distinguish EEGs under different
conditions or from different subjects. We consider only single
channel models, and run the waveform estimation on all
the channels independently and in parallel. Then in post-
hoc analysis we determine if the waveforms are consistently
estimated across multiple subjects and spatial locations, and
organize them into clusters using shift-invariant k-means [56].
Additionally, we examine the spatial amplitude patterns associ-
ated with the cluster prototypes using a model-based approach
for investigating global spatial patterns across the scalp [57].
The spatial patterns are then used to classify segments of
EEG during motor imagery on a single-trial basis [58]. The
MATLAB code for the described methodology is available
online at http://cnel.ufl.edu/∼ajbrockmeier/eeg/.



TBME-01096-2015 3

II. MODEL AND ESTIMATION METHOD

In this section we introduce the sparsely excited multiple-
input single-output (MISO) system, discuss generative models,
introduce the least-squares framework with non-negativity
constraints on the sparse sources, mention the single-channel
ICA with waveform subset selection, and finally discuss a
multistage subset deflation approach to learn waveforms across
multiple scales.

A. Multiple-Input Single-Output Model

We assume the signal of interest is formed by a linear MISO
system where each sparse source excites a distinct waveform
to form a component [59]. The signal is a uniform mixture of
these components.

Let x(t) be a combination of P component signals
{yp(t)}p, p ∈ {1, . . . , P} observed in the presence of noise
e(t). Overall, this is a multiple-input single-output (MISO)
linear system with sparse inputs. Each component, yp(t), has
a unique waveform ap(t) and sparse source sp(t) consisting
of a weighted train of delta functions:

x(t) = e(t) + x̂(t) = e(t) +
P
∑

p=1

yp(t) (1)

yp(t) =

∫ ∞

−∞
sp(t− u)ap(u)du (2)

sp(t) =
∑

i

αp,iδ(t− τp,i) p = 1, . . . , P. (3)

The summation of the components is a noise-free signal x̂(t).
The atomic representation of x̂(t) consists of a set of source

indices, amplitudes, and timings {(pi,αi, τi)}i. Using this set
the model signal can be rewritten as:

x̂(t) =
∑

i

∫ ∞

−∞
αiδ(t− τi − u)api

(u)du. (4)

Similarly, each component signals can be described by the
impulse response of the filter ap(t) and the set of excitation
times and amplitudes {(αj , τj)}j∈Ip

where Ip = {i : pi = p}.

B. Model Estimation

Stochastically, the sparse source signals activation times
can be described by a point process; a realization of a point
process is a train of Dirac delta functions. In the model above,
a marked point process is required that also describes the
amplitude of the impulses [60]. A marked point process is
fully described by a joint distribution over both the timing
and amplitude of the impulses. With a distribution over the
noise, a complete generative model can be posed, but solving
it is intractable [60] and approximations are necessary.

For simplicity, we do not utilize a full generative model.
Instead, we assume a maximum likelihood approach where the
atomic representation {(pi,αi, τi)}Li=1 and the sparse inputs
{sp(t)}, p ∈ {1, . . . , P} are fixed and let the user select L and
P and the duration of each waveforms model parameters. We
assume uncorrelated white noise and optimize the parameters
to minimize the mean squared error.

In the case of correlated noise, the noise covariance can be
additionally estimated and used to whiten the signal [60]. This
is important if the waveforms of interest are sufficiently dif-
ferent from the colored noises—such as action potentials [61],
[62] or evoked potentials [63]. However, in the case of action
potentials (spike trains) and evoked potentials the estimation
can start with an initial template for each waveform. We
assume no prior information on the shape or frequency, and
assume the model will account for all signal correlation.

C. Source Estimation

Even though each component is a linear convolution of
the source and waveform, linear filtering is inadequate to
separate the original components from the combination if
the waveforms’ frequency responses overlap. There are two
regimes in which it is possible to resolve the inputs to a
MISO system from a single output: spectrally disjoint wave-
forms (corresponding to sparsity in the frequency domain)
or sufficiently sparse input (corresponding to temporally dis-
joint input). In the former case, linear band-pass filtering
is sufficient. In the latter case, recovering the sparse source
as a train of Dirac deltas requires an overcomplete basis
of the signal: shifted versions of the underlying waveforms
appearing at each time-shift. With an overcomplete basis,
linear analysis is not meaningful [64], and sparsity constraints
on the sources are necessary to recover them. The resulting
problems can be relaxed to convex optimization problems or
solved using iterative algorithms [65]. Matching-pursuit (MP)
[24] provides a greedy approximation to solve the sparsity
constrained problem.

Components
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Fig. 2. A depiction of the assumed model and the signal flow. The observed
signal is assumed to be linearly synthesized by convolving the sparse source
with time-limited waveforms; the resulting components are added together.
Nonlinear analysis separates the signal back into its constituent components

D. Least Squares Estimation

Assuming a signal plus white noise model and that the
number of waveforms P and source excitations L are known,
the blind system identification problem can be posed as a
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least-squares optimization over A = {ap(t)}Pp=1 and S =
{(pi,αi, τi)}Li=1:

min
A,S

J(A,S) =

∥

∥

∥

∥

∥

x(t)−
L
∑

i=1

αi

∫ ∞

−∞
δ(t− τi)api

(u)du

∥

∥

∥

∥

∥

2

2

.

(5)
Jointly solving for both A and S is difficult because the
source estimates are intrinsically linked to the waveforms. It
is necessary to perform an alternating optimization.

Assuming A is fixed, a greedy optimization of S can be
made using matching pursuit. At each iteration of matching
pursuit, the atom (consisting of the timing, amplitude, and
waveform index) that explains the most energy remaining in
the residual of the signal is selected. The residual signal is
updated by removing this single-atom reconstruction. This
updated residual is used as the input to the next iteration.

Given the atomic decomposition S = {(pi,αi, τi)}Li=1, ei-
ther the sources or the individual components can be computed
via (3) or (2), respectively. Then the sources are fixed, and the
set of waveforms A is updated via least squares.

The alternating optimization between time-series matching
pursuit and least squares updates has been proposed as a
general tool for shift-invariant dictionary learning [54], [47],
[55]. It is the time-series extension of the popular dictionary
learning algorithm K-SVD [66]. For conciseness, we refer to
it as MP-SVD.

1) MP-SVD: For practical digital implementation, we con-
sider the case when the time series (1) is discretely sam-
pled, and the convolution operators are replaced by finite
summations. In this framework we only allow integer shifts,
but this approximation can be avoided using continuous basis
pursuit [50]. Let a denote an M -length waveform and Tτ (a)
denote the translation of the waveform to begin at time τ .
Correspondingly, let Wτ (x) denote the windowing function
that extracts an M -length window from signal x starting at
time τ . (Here we have used a Tukey window [67], which
is also known as a tapered cosine window, with parameter
of 0.1.) Using these notations the objective function can be
written in terms of vectors as

min
{ap}P

p=1
,{(pi,αi,τi)}L

i=1

∥

∥

∥

∥

∥

x−
L
∑

i=1

αiTτi(api
)

∥

∥

∥

∥

∥

2

2

. (6)

To update the waveforms, we first assume we have an
estimate of the components using the current waveforms. Let
x
(p) denote the signal consisting only of the estimate of the

pth component and the error signal

x
(p) = e+ yp = x−

∑

q∈{1,...,P}\p

yq (7)

where yp =
∑

j∈Ip
αjTτj (ap) and Ip = {i : pi = p}. Only

the patches when the waveform is active are needed to update
the waveform. These patches are collected into a matrix:

Xp =
[

Wτj (x
(p))

]

j∈Ip

. (8)

Treating the amplitudes as a nuisance parameter (the previous
estimates are ignored) and assuming that none of the patches

overlap the following optimization problems for the optimal
waveform are equivalent

argmin
∥a∥=1

min
v

∥

∥

∥

∥

∥

∥

x
(p) −

∑

i:pi=p

viTτi(a)

∥

∥

∥

∥

∥

∥

2

2

(9)

argmin
∥a∥=1

min
v

∥

∥Xp − av
T
∥

∥

2

F
= max

∥a∥=1
a
TXpX

T

p a. (10)

The updated waveform is selected as the eigenvector of the
matrix XpXT

p corresponding to the largest eigenvalue. This
eigenvector is also the primary singular vector of the columns
of the Xp corresponding to the best rank-1 approximation [68].
Assuming these were the correct timings, this update mini-
mizes the reconstruction cost for these patches.

2) Non-negative amplitude constraint: In the case of non-
oscillatory waveforms in EEG, it is worthwhile to preserve the
polarity of the waveforms. This can be done by allowing only
non-negative amplitudes during the matching pursuit and the
waveform update:

argmin
∥a∥=1

min
v≥0

∥

∥Xp − av
T
∥

∥

2

F
. (11)

Unlike the unconstrained case, there is no analytic solution to
this problem [69]. However, let XP = σ1av

T be the rank-1
SVD, if v is strictly positive then it is the solution to (11). If
not, then a local minima can be found by alternating between

v← max(0, (1− λ)v +XT

p a) (12)

a←
Xpv

√

vTXT
p Xpv

(13)

where max enforces the elements to be non-negative and λ
is the step size of a proximal gradient update [70]. The non-
negative amplitude constraint with step size of λ = 1 is used
in the rest of this study.

3) Waveform Initialization: The non-linear least-squares
cost function (5) may have many local optima. From different
initializations, it is unlikely to estimate the same waveforms. It
is possible to initialize the waveforms from a predefined set of
wavelets, and then ‘optimize’ them further. However, to avoid
biasing the waveforms to any particular shape, we initialize
the waveforms as random vectors with entries independently
drawn from the normal distribution. Ideally, the optimized
waveforms across multiple initializations should be similar.

E. Single-Channel ICA with Greedy Subset Selection

Single-channel ICA is an alternative approach to least
squares estimation that avoids the explicit estimation of the
sources during learning. Instead, the sparse sources’ statistical
properties are used in the filter estimation [71]. Single-channel
ICA uses windows of the time series as the input vectors to
independent component analysis (ICA) [34]. Previous studies
[41], [42] have demonstrated that the fixed point algorithm
FastICA [72] can efficiently estimate the waveforms in a
multiple-input-single-output model. Essentially, FastICA esti-
mates the waveforms using a non-linear feedforward network
without explicit estimation of the sources [52]. The main
drawback of single-channel ICA is that many of the waveforms
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are redundant—they are the same waveform appearing at
different shifts—and others are artifacts caused by the multi-
unit ICA estimation constraints.

To solve these problems, we use a greedy subset selection
algorithm to choose a non-redundant subset of the estimated
waveforms with the goal of minimizing the reconstruction
error [52]. The first step in the greedy algorithm is to ap-
proximate the training signal using matching pursuit with
each waveform individually. Herein, we enforce non-negativity
constraints during matching pursuit, and since ICA is invariant
to polarity, we use both the waveform and its negation as
candidate waveforms. The resulting approximations are treated
as the basis vectors for approximating the same signal using
orthogonal matching pursuit (OMP) [73]. At each iteration,
OMP includes the basis vector which minimizes the recon-
struction error. The algorithm is terminated when the number
of included basis vectors equals the number of desired wave-
forms. The waveforms corresponding to the included basis
vectors form the selected subset. This post-hoc subset selection
algorithm can be applied to find a signal-specific subset of
a larger shift-invariant dictionary. In particular, we use it to
transform a dictionary of Gabor-Morlet wavelets into a much
smaller, data-dependent model (examples are included in the
supplementary material). When a training portion of the signal
is used to select the subset, this approach can be seen as an
compromise between using pre-defined dictionaries and fully
adaptive dictionaries.

F. Multistage Waveform Estimation

In EEGs, waveforms may have widely different time-scales.
This motivates learning a multiscale waveform dictionary,
which can be difficult to achieve in a single optimization. To
address this, we propose a multistage approach to simplify
the estimation of multiple waveforms at different scales. It
consists of a subset deflation approach that greedily estimates
a set of waveforms at each stage. After convergence, multiple
passes of matching pursuit are run to remove the contribution
of the waveforms before the resulting residual is passed as
the input signal to the next stage. We use a coarse-to-fine
approach where longer waveforms are estimated before shorter
waveforms. While this approach is ad hoc, it is well suited for
EEG where low-frequency/long duration signals explain more
of the variance in the signal.

Before estimation, the user must select the parameters of
the sparsely excited multiple-input-single-input model. Most
importantly the user must select the number of waveforms
and their length. These choices will depend on the time-scales
of interest and the application. The other important choice is
the assumed rate of the sources, which determines the number
of atoms, that is, the number of waveform occurrences used
in approximation/decomposition. Only the total number of
occurrences for each scale needs to be set as the particular
number of occurrences of each waveform is based on how
often it is used in the matching pursuit-based decomposition.
Since the modeling is based on sparse sources, the total
number of occurrences should be kept relatively low.

Multiple models with different waveform lengths, numbers
of waveforms, and approximations with different number of

atoms can be trained and compared using model selection
criterion. To compare models, we assume the background
activity is white noise with constant variance. We show an
example of using the Bayesian information criterion (BIC) to
select the number of waveforms in the supplementary material.

III. WAVEFORM META-ANALYSIS

When different shift-invariant dictionaries are learned across
multiple sections, channels, and subjects there is a need to
summarize the characteristics of the large number of resulting
waveforms. To do this, we fit the waveforms using parametric
models and perform shift-invariant vector quantization on
the waveforms to group them into clusters. For multichannel
datasets, we use a prototypical waveform to represent each
cluster and analyze the waveform’s ability to differentiate
between known conditions using its spatial amplitude patterns.

A. Gabor Fit of Waveforms

We see how well each waveform is modeled by real-valued
Gabor-Morlet wavelets of varying frequency, bandwidth, and
phase: gf,φ,σ(t) = exp(−t2/(2σ2)) cos(2πft + φ), where
f,φ are the frequency and phase, and σ is the standard
deviation of the temporal envelope. In lieu of an uniform
sampling over the space of these parameters [31] we use a
logarithmic scaling over frequency and temporal envelope, and
three phases [0,π/4,π/2]. Any time shift is accounted for
by performing the matching using maximum absolute cross-
correlation

c(g, h) = max
t

|
∫∞
−∞ g(τ)h(τ − t)dτ |

∥g∥∥h∥
. (14)

The discrete time version of the above can be computed
efficiently by using the discrete Fourier transform.

To characterize the frequency content of waveforms that
match Gabor-Morlet wavelets, we compute the peak frequency
and 3dB bandwidth from the power spectral density (PSD) of
each waveform. To get a robust estimate of the PSD, we use
multitaper analysis [14], [16]. Specifically, the waveforms are
zero-padded to a specified length, which controls the frequency
resolution, and projected onto a small number of discrete
prolate spherical sequences. The magnitude of the Fourier
transform is computed for each projection and a uniform
average is taken to provide the multitaper estimate. Using the
resulting peak frequency avoids the bias caused by the grid of
center frequencies used in constructing the set of wavelets.

B. Average Cross-correlation between Waveform Sets

For a measure of similarity between two sets of waveforms
we propose to use the average cross-correlation. Specifically,
if G is a set of |G| waveforms (|G| indicating the number of
elements in G) and H is a set of |H| waveforms, we compute
the average cross-correlation c̄(G,H) as

max

⎧

⎨

⎩

1

|G|

∑

g∈G

max
h∈H

c(g, h),
1

|H|

∑

h∈H

max
g∈G

c(g, h)

⎫

⎬

⎭

(15)

where c(g, h) is the maximum correlation for waveforms g(t)
and h(t), which is normalized so that the zero-lag auto-
correlation is 1.
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C. Shift-invariant Vector Quantization

Clustering is useful to organize a set of waveforms into
groups without a predefined criterion such as frequency or
bandwidth. Standard clustering algorithms developed for data
represented as vectors are inappropriate for shift-invariant
waveforms since they are ignorant of the shifts necessary to
align the waveforms. One option is to represent each waveform
by its power spectral density. An obvious drawback of using
the power spectral density to represent the waveform is that
it discards the phase spectrum of the waveform. Alternatively,
one can use clustering algorithms that directly use the max-
imum cross-correlation between normalized waveforms, such
as the one-dimensional case of circular invariant k-means [56].
In this algorithm, each cluster mean is associated with a new
shift-invariant waveform, formed as the average of all the
aligned waveforms in the cluster.

As with standard k-means [74] the user must select the
number of centers. As shift-invariant k-means optimizes the
minimal mean-squared error of each waveform to its cluster
center, it is straightforward to use this error to guide model
selection. Various criteria can be used for this, in particular
Calinski-Harabasz’s criterion [75], which uses the inter/intra-
cluster variance ratio (pseudo F-score) and was previously
used for circular-invariant k-means [56]. However, the set of
waveforms may not consist of separate clusters, but instead,
the set may exhibit smooth variations across the continuous
space of waveforms.2 Nonetheless, shift-invariant k-means can
be used as vector quantization rather than cluster identification,
where increasing the number of clusters gives a finer-grained
view of the space. For illustrative purposes, we use a manage-
able set of 9 clusters.

D. Spatial Amplitude Patterns

In multichannel records, we identify the spatial amplitude
patterns associated with the occurrence of each waveform [58].
We use the timing of a waveform’s occurrences based solely on
the activation times on the channel it originated from. Given
the set of timings, we assume the spatiotemporal pattern is
time-locked, and we record the vector of cross-correlation with
the waveform on the other channels at each time point. These
timings can be taken from the atomic decomposition of the
single channel obtained from matching pursuit. Alternatively,
they may be obtained by greedily choosing the most significant
(in terms of amplitude) instances of cross-correlation while
avoiding times that are within a fixed window of previous
estimates. This is a faster approximation since each waveform
amplitude patterns are estimated independently.

Let xm, m ∈ {1, . . . ,M} denote a channel of a M -
channel EEG recording, and let x⋆ denote the channel from
which waveform a (with duration N ) was estimated. This is
the ‘anchor’ channel and each temporal alignment is based

2To better visualize the full space, one option is to implement a shift-
invariant versions of Kohonen’s self-organizing map.

solely on it. Let Tk denote the set of k timings. The spatial
amplitude vectors are found via

τk = argmaxτ :|τ−t|>N,∀t∈Tk
⟨x⋆, Tτa⟩ (16)

vkm = ⟨xm, Tτ⋆a⟩ m = 1, . . . ,M (17)

Let V = [v1,v2, . . . ,vk] be a matrix where each column is
the spatial amplitude vectors of a different occurrence of the
waveform. The primary spatial pattern of the waveform cor-
responds to eigenvector of V V T with the largest eigenvalue.

The rationale for using a channel-anchored approach is
two-fold: firstly, the timings are maximized for the channel
from which the waveform is estimated—if a waveform is
completely localized, then using the rest of the channels
would bias the timing estimation; and secondly, the non-
negativity of the amplitude can be preserved on the original
channel while allowing the polarity to flip on other channels.
The latter point is especially important depending on the
type of channel referencing used. For instance if channels
correspond to electrode differences then many waveforms may
have different polarities. The channel-anchored approach is an
alternative to using multichannel matching pursuits [27] that
find the timing using an equal contribution of all the channels.

IV. CASE STUDY 1: SPECIFICITY AND CONSISTENCY

The first group of datasets we use is publicly available from
the Department of Epileptology at the University Hospital of
Bonn. The details of the recording are available in the original
publication [76]. This set contains 5 EEG datasets with vary-
ing characteristics including ‘intracortical EEG’, recorded by
depth electrodes targeting the hippocampal formations. Each
of the datasets contain one-hundred 23.6s segments recorded
at 173.61Hz. Segments are not necessarily from the same
channel nor the same subject; they were cut out of continuous
multichannel recordings to avoid artifacts.

The datasets denoted A and B are from 5 healthy volunteers
recorded using the standard 10-20 EEG montage. In dataset
A the subjects were awake and relaxed with eyes open, and
in dataset B the subjects have their eyes closed. Datasets C,
D, and E are presurgical recordings used for diagnosis from
5 subjects who had resections of one of the hippocampal
formations for the control of seizures. Dataset D was recorded
from the epileptogenic zone, and dataset C was recorded
from the contralateral hippocampus. Both of these datasets
are seizure free, whereas dataset E contains segments from all
implanted electrodes during sessions exhibiting ictal spikes.

The multistage modeling consisted of 4 stages with 4 wave-
forms each. In each stage, the waveform had discrete lengths
of 200, 100, 80, and 40, corresponding to approximately
1.15s, 576ms, 460ms, and 230ms respectively. The multistage
estimation process used 4 passes of non-overlapping matching
pursuit to remove the model approximation before the next
stage of waveform estimation. For multitaper analysis, we
used 4 tapers and a sequence length of 2000, resulting in a
frequency resolution of less than 0.1Hz.

The waveforms estimated using the first 25 sections of each
dataset are shown in Fig. 3. The specificity of the waveform
shape and frequency content in the different datasets is evident:



TBME-01096-2015 7

1.2Hz
1.2Hz

Dataset A

10Hz
1.2Hz
10Hz
12Hz

Dataset B

1.4Hz
1.2Hz
1.9Hz
2.9Hz

Dataset C

2.9Hz

1.6Hz

Dataset D

4.0Hz
4.7Hz
5.4Hz
16Hz

Dataset E

1000 ms
Scale 1

5.4Hz
6.3Hz
8.6Hz
14Hz

2.5Hz
4.0Hz
4.7Hz
6.3Hz

4.0Hz
6.3Hz
6.3Hz
10Hz

5.4Hz
7.4Hz
8.6Hz
14Hz

8.6Hz
1.6Hz
14Hz
19Hz

200 ms
Scale 2

22Hz
22Hz
22Hz
22Hz

19Hz
19Hz
22Hz
22Hz

2.2Hz
19Hz
16Hz
22Hz

1.9Hz
2.5Hz
3.4Hz
25Hz

10Hz
2.5Hz
7.4Hz
6.3Hz

200 ms
Scale 3

4.0Hz
4.7Hz
30Hz
30Hz

4.7Hz
12Hz
12Hz
30Hz

6.3Hz
7.4Hz
25Hz
25Hz

22Hz
12Hz
16Hz
19Hz

12Hz
16Hz
22Hz
25Hz

200 ms
Scale 4

Fig. 3. Case Study 1: Waveforms estimated across the 5 single-channel,
ongoing EEG datasets at 4 different scales. Waveforms are scaled to maximum
absolute amplitude, those with thicker and lighter coloring matched Gabor-
Morlet wavelets with cross-correlation above 0.8, those with peak frequency
noted matched with cross-correlation above 0.5.

on dataset B, where the subjects’ eyes were closed, all four
waveforms at the longest scale correspond to alpha waves;
sharp positive waves were estimated from dataset D; and
on dataset E oscillatory waveforms in the theta and beta
range were estimated. Similar results were obtained when
single-channel ICA was used to estimate the waveforms and
are included in supplementary material along with example
segments of each dataset and signal approximations based on
both models. The supplementary material also contains results
obtained using subset selection on a dictionary of Gabor-
Morlet wavelets.

The specificity of the waveforms to the datasets by their
frequency content was assessed for waveforms that matched
Gabor-Morlet wavelets. The best matches between the es-
timated waverforms and Gabor-Morlet wavelets were com-
puted across 4 disjoint sets of 25 contiguous sections and
4 Monte Carlo runs. A scatter plot of the waveforms peak
frequency and Q-values are shown for each dataset in Fig. 4.
The distribution of parameters appears consistent with the
similarity of datasets’ recording location/conditions: dataset
A has many high-Q waveforms above 20Hz, in dataset B
these are absent and replaced by waveforms near 10Hz (alpha
waves), datasets C and D have similar distributions, and
dataset E has many low-Q waveforms with frequency above
20Hz corresponding. To further analyze the specificity of
the waveforms for the different conditions, we computed the
average cross-correlation—maximized across shifts—between
sets of waveforms across the sections and Monte Carlo runs.
The averages across all four scales are shown in Table I.

To further assess the consistency of the waveform esti-
mation, especially the variation across multiple Monte Carlo
initializations, we experimented with the number of sections
used in training the shift-invariant waveforms. For each dataset

TABLE I
CROSS-CORRELATION BETWEEN WAVEFORMS OF DIFFERENT SUBJECTS

Subset that match Gabor-Morlet wavelets
A B C D E

A 1.00 0.72 0.66 0.73 0.72
B 0.72 1.00 0.43 0.51 0.44
C 0.66 0.43 1.00 0.64 0.48
D 0.73 0.51 0.64 1.00 0.59
E 0.72 0.44 0.48 0.59 1.00

All waveforms
A B C D E

A 1.00 0.66 0.67 0.68 0.53
B 0.66 1.00 0.60 0.60 0.53
C 0.67 0.60 1.00 0.75 0.57
D 0.68 0.60 0.75 1.00 0.60
E 0.53 0.53 0.57 0.60 1.00

we compared the average cross-correlation between wave-
forms estimated across Monte Carlo initialization to that of
waveforms estimated on different sections; the results are
shown in Fig. 5. For all datasets and number of sections,
the cross-correlation between different initializations is higher
than between different subjects as determined by a one-tailed
sign test (p-value of 0.031, effect size of 0.83).

We also calculated the average cross-correlation between
the waveforms estimated on different datasets. In this case
the assessment was done only on the first scale. A one-
tailed Wilcoxon rank sum test was used to determine that
the correlation among different initialization is higher than
between different sections (p-value of 0.00033 and effect size
of 0.88 ) and between different subjects (p-value of 0.00397
and effect size of 0.84) for all number of sections used for
training. Average, standard deviation error bars, and the cross-
correlation values are plotted against the number of training
sections in Fig. 6.

This analysis was done using the particular model described
above. The model complexity can be justified by using BIC.
Specifically, we fix the number of stages and waveform
lengths, and find the number of waveforms to minimize BIC;
3 or 4 waveforms per scale was optimal on all subjects. The
plot of BIC versus number of waveforms, and the waveforms
themselves, are included in supplementary material. We found
the estimated waveform shapes to be consistent when the
number of waveforms or atoms was varied, both for the MP-
SVD and single-channel ICA dictionary learning algorithms
and when the greedy subset selection algorithm is applied
to a Gabor-Morlet wavelet dictionary. The waveforms and a
comparison of the approximations using different number of
atoms are also included in the supplementary material.

V. CASE STUDY 2: MULITCHANNEL, MULTIPLE SUBJECTS

For the second group of datasets, we used the BCI competi-
tion III dataset IV(a) [77], provided by Fraunhofer FIRST, In-
telligent Data Analysis Group (Klaus-Robert Müller, Benjamin
Blankertz), and Campus Benjamin Franklin of the Charité–
University Medicine Berlin, Department of Neurology, Neu-
rophysics Group (Gabriel Curio). Healthy human subjects
performed visually cued segments of left hand, right hand,
and right foot motor imagery while seated. Each cue lasted
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Fig. 4. Case Study 1: Distribution of peak frequency and Q-value (peak frequency divided by bandwidth) for the subset of waveforms that matched Gabor-
Morlet wavelets (cross-correlation ≥ 0.8). Points correspond to waveforms estimated at 4 scales from 4 disjoint sets of 25 contiguous sections across 4 Monte
Carlo runs (maximum number of points in a plot is 256). Bottom row shows a histogram of peak frequencies for waveforms.
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in the first scale estimated on different Monte Carlo initialization, disjoint
sets of sections, and between the 5 datasets. Stars and asterisks indicate that
the correlation between different initialization runs is significantly higher than
correlation between different sections and between different subjects.

3.5s and periods of rest in between had pseudorandom lengths
between 1.75s and 2.25s. For each subject, one continuous
record was provided per subject along with the timings and
labels of right hand and foot cues, with 140 trials of each. The
provided recordings were downsampled to 100Hz.

We filtered each channel using a high-pass (0.5Hz) and low-
pass (35Hz) first-order Butterworth filter. Noisy channels were
removed from analysis on two subjects: channel 2 on ‘aa’
and 118 on ‘ay’. Each record was broken up into four equal
length sections. The first section was used in the estimation
of waveforms, the remaining sections were kept for testing
the decomposition and statistical analysis of the spatial extent

between the different classes of motor imagery. The multistage
modeling parameters were set similarly to the single-channel
case: 4 stages with 4 waveforms each with waveform lengths
of 200, 100, 80, and 40, which correspond to 2s, 1s, 0.8s, and
0.4s, respectively.

The results that follow are based on using the MP-SVD
dictionary learning algorithm. A complementary version of
each result using single-channel ICA is included in the supple-
mentary material. In both cases, after estimation of the wave-
forms at a particular scale, 4 passes of matching pursuit were
ran and the model approximation removed. An example of
the decomposition using different numbers of approximation
passes is also shown in the supplementary material.

We assessed the oscillatory characteristics of the estimated
waveforms by matching them to Gabor-Morlet wavelets and
calculating their PSD using multitaper analysis with 4 tapers
and a sequence length of 2000. The peak frequency and
3dB bandwidth were recorded from those that matched a
wavelet with a cross-correlation above 0.8. A Q-value for
each matching waveform was computed as the peak frequency
divided by the bandwidth. Fig. 7 shows a scatter plot of the
waveforms’ peak frequency and Q-values across all channels
and subjects. The Q-values are especially high near 10Hz
corresponding to alpha waves.
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Fig. 7. Case study 2: Scatter plot of peak frequency and Q-value, defined as
the peak frequency divided by bandwidth, of waveforms that matched Gabor-
Morlet wavelets.
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We used cluster analysis to collectively characterize the
waveforms estimated across the multiple channels and sub-
jects. For each scale, we ran shift-invariant k-means (with
k = 9 clusters) on the set of waveforms estimated across
different channels and subjects. The cluster centroids are
shown in Fig. 8. All of the waveforms in each cluster were also
compared to Gabor-Morlet wavelets. Most clusters had very
few waveforms matching, but notable exceptions are clusters
1.5, 1.6, and 1.7 (that is the 5th, 6th, and 7th largest clusters
in the 1st scale) that seem to correspond to alpha waves. In
comparison, many more of the waveforms estimated by single-
channel ICA matched Gabor-Morlet wavelets (results shown
in the supplementary material).
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Fig. 8. Case study 2: Cluster centroid waveforms and scatter plot of peak
frequency and Q-value for waveforms that matched Gabor-Morlet wavelets.
A unique cluster index, the number of waveforms the cluster contains, and
the percentage of waveforms that match Gabor-Morlet wavelets is listed to
the right of each cluster centroid waveform.

For each cluster of waveforms, we compute the average
power spectral density, and choose a prototypical waveform to
represent the cluster. The first step in choosing the prototype
was to remove waveforms estimated on channels that were
flagged as noisy in any of the other subjects; this ensured
that the same channel for all subjects could be used for
the channel-anchored approach described in Section III-D.
The maximum cross-correlation (14) between all pairs of
remaining waveforms in the cluster was computed. Cross-
correlations less than 0.5 were set to 0, and the waveform
that had the largest average cross-correlations to the other
waveforms was selected as the cluster prototype.

Descriptors of the clusters in terms of the distribution of
channels the waveforms originated from, the average spectral
density, and subject distribution are shown in Fig. 9 for
waveforms with a duration of 1s. The cluster descriptors for
the other scales are shown in the supplementary material.
The prototype waveforms for the clusters exhibit a variety

of morphologies. Waveforms for clusters 2.1-2.5 correspond
to bandpass filters. Cluster 2.1 is the largest cluster at this
scale, with a frequency range of 4-8Hz (theta) and distribution
across the scalp. Cluster 2.3 has a peak frequency of 11Hz and
waveforms from most subjects were estimated from electrodes
over the sensorimotor cortex. Cluster 2.5 has a peak frequency
of 9.65Hz and originated predominantly from the frontal
cortex. Cluster 2.8 has a peak frequency in 12.35Hz and
originates near the motor cortex for most subjects.
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Fig. 9. Case study 2: Cluster descriptors for waveforms with a 1 second
duration. Each subplot shows the cluster centroid, prototypical waveform,
electrode distribution shown on an unfolded scalp map where the color
intensity indicates the number of subjects with waveforms originating from
that electrode, and the power spectral density over all waveforms in the cluster.

Finally, we assessed the discrimination between the spatial
amplitude patterns of the estimated waveforms during dif-
ferent motor imagery modalities. Fisher’s linear discriminant
analysis (LDA) was applied to the training data for each
waveform and subject. This was done by collecting the spatial
amplitude vectors per class, computing the class conditional
means, removing the common mean, and computing a com-
mon covariance. We found the covariance matrices to be ill-
conditioned (LDA requires a matrix inversion), so we added a
scaled identity matrix for regularization and robustness [78],
choosing a relatively high regularization of 0.75 relative to
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the dimension-normalized trace of the covariance matrix. The
linear discriminant weights were computed from amplitudes
in the same section as the waveform estimation (35 trials per
class). The spatial patterns in the remaining sections (total of
105 trials per class) were used for testing. The feature value
is the inner product between the linear discriminant and the
amplitude patterns for each occurrence during the two types of
motor imagery (the mean was removed and amplitude patterns
occurring in the same trial were averaged). Classification was
done based on the sign of the output. A two-tailed Wilcoxon
rank sum test was used to determine if the medians of the
resulting values differed between the classes for each cluster
and subject. The statistical significance cut-off was set at 0.05
and a Bonferroni correction was applied to the resulting p-
values to accommodate for multiple testing of the 36 clusters:
the original p-value needed to be less than 0.00139 to be
deemed significant.

The single-trial classification accuracy for significant
subject-waveform pairs are shown along with the discriminant
vector (spatial weights) in Fig. 10. Subject ‘al’ had the most
discriminating patterns and is often reported to have the
highest single-trial classification rate in other cross-validation
experiments. The highest classification rate occurred for wave-
forms with peak frequency of 11Hz to 13Hz (prototypes for
clusters 2.4, 2.5, and 2.8), within the range of mu rhythms
associated with motor imagery. The differential spatial ampli-
tude patterns for the prototype of cluster 2.3 (peak frequency
of 11Hz, also within the mu range) was deemed significant on
4 of the 5 waveforms. This analysis highlights the possibility
of using shift-invariant dictionary learning as an automatic
feature engineering tool for classifying segments of EEGs.

VI. RELATION TO OTHER WORK

Learning the recurrent waveforms in EEG is a macroscopic
version of the modeling used for spike sorting; however, we
are not aided by any prior knowledge on the shape of the wave-
forms, which makes the problem even more difficult than spike
sorting. Recent improvements in spike sorting methodologies
are based on allowing overlaps [61] and continuous shifts of
waveforms via approximations of translation operators [60].
It is possible to improve the matching pursuit approximations
used herein by allowing continuous shifts.

The data-dependent decomposition, which shift-invariant
dictionary learning provides, resembles the empirical mode
decomposition (EMD). EMD is a model-free time-series anal-
ysis technique [79] that has been applied to EEG [80]. The
iterative process of EMD is also similar to the multiscale
approach we have used. The benefits of our approach versus
EMD are the estimate of the sources, in terms of the atomic
decomposition, and the learned waveforms, which can be used
on novel segments of the signal.

Learning waveforms and then analyzing their spatial extent
is complementary to spatial ICA, which finds spatially distinct
sources and then analyzes their time-frequency content or uses
a bank of band-passes filters to first separate the signals before
computing spatial ICA [19]. Working in the time domain
enable time-series decompositions to separate morphologically

Cluster 1.5 7.9Hz
aa al aw

Fig. 10. Case study 2: Prototype waveforms, power spectral density, and
spatial weight pattern corresponding to linear discriminate analysis between
the spatial amplitudes during two classes of motor imagery. In the color
version available online, purple and orange correspond to different signs of
the weights. The amplitude patterns where based on the originating electrode
of the prototype waveform, which is circled on the originating subject. For a
significant waveform/subject pair, the percent accuracy over the testing set is
listed. The training/testing split was 70/210.

distinct waveforms that may overlap in frequency before
assessing their spatial patterns.

VII. CONCLUSION

With time-frequency analysis it is difficult to separate com-
ponents in EEG corresponding to waveforms with unique mor-
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phology. Previous studies have shown atomic decompositions
obtained by matching pursuit using dictionaries of waveforms
to be useful for this purpose [25], [27], [28], [29], [30].
However, these methods do not learn any model of the signal,
and atomic decompositions on disjoint sections are allowed to
use completely different waveforms.

We model each component of an EEG channel as a con-
volution of a waveform with a sparse source, where the
sparsity is based on the assumption that in any given window
only a few of the sources are active. To learn this model
we apply algorithms that learn data-dependent shift-invariant
dictionaries [54], [47], [55], [53]. The modeling constrains the
same waveforms to reoccur throughout the recording, with the
shape of each waveform adapted to the characteristics of the
signal. Since only a small number of waveforms are learned for
each channel, the waveforms serve as data-dependent features
and are useful for comparing channels, subjects, or conditions.

The results demonstrate that the estimation is consistently
able to learn waveforms that are specific to the morphology
of the signal. Waveforms estimated during different conditions
were distinguished both by their shape and frequency content.
For the multichannel datasets, the waveforms estimated over
different portions of the scalp differed in morphology and
their frequency content showed recognizable localizations. We
highlighted how the spatial extent of the waveforms could be
used to distinguish between different types of motor imagery.

Automatically learning recurrent waveforms directly from
single-channel signals is a general, unsupervised modeling
approach. Coupled with appropriate meta-analysis such as
clustering and spatial analysis, this method allows a researcher
to gain a better understanding of the phasic events and oscilla-
tions inherent in EEG signals. For instance, this methodology
can be applied to analyze EEG segments with a large presence
of phasic events such as EEGs during sleep or deep brain
recordings from the hippocampus.
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S1. MODEL SELECTION

Multiple models with different waveform lengths, numbers
of waveforms, and approximations with different numbers of
atoms can be trained and compared using model selection
criteria. To compare models, we assume the background
activity is white noise with constant variance. For instance,
we show how the Bayesian information criterion (BIC) can be
used for selecting the number of waveforms. Specifically, in
the case of Gaussian white noise, the model with the minimal
Bayesian information criterion is chosen:

BIC = logRSS −
C

N
logN (1)

where C is degrees of freedom, N is the length of the signal,
and RSS is the sum of the squared values of the residual,
that is the portion of the signal that is not explained by
the model. For the multiple-input-single-output model with L
atoms C = L +

∑P
p=1

(Mp − 1), where Mp is the length of
the pth waveform out of P . BIC evaluated across different
numbers of waveforms for each of the subjects is shown in
Fig. S1.

However, we note that BIC is not consistent for choosing
the number of atoms across different signal lengths. That is,
if the signal is twice as long we should expect that twice the
number atoms should be allowed. However, because of the
logN term, the amount of variance each atom should explain
increases as the signal length increases. As an alternative one
could use the Akaike information criterion (AIC)

AIC = logRSS −
2C

N
, (2)

which allows an increase in the number of atoms proportional
to the relative increase in signal length. In practice we note
that the AIC is very lenient allowing many more atoms than
appear necessary. As a harsher penalty we propose a simple
and intuitive penalty that can be used to choose the number of
atoms and thus as a stopping criterion for a matching pursuit
decomposition. Specifically, assuming a white noise error
model, an atom must explain more variance than expected
from a Kronecker delta atom, which could perfectly fit the
largest time-point in the noise. Based on this intuition, we
keep an atom if explains more than three times the square root
of the remaining signal power. This stopping criterion, which
refer to as 3-std, naturally adapts to the amount of noise in the
signal and to how well the atoms fit the signal. If the candidate
atoms have a poor fit it will stop early. We use this stopping
criterion on the synthetic experiments detailed in Section S4.
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Fig. S1. Case Study 1: Bayesian information criterion (BIC) evaluated across the number of waveforms per scale for each of the 5 single-channel, ongoing
EEG datasets, when the number of atoms, scales, and waveform length is fixed.
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S2. PARAMETER EXPLORATION ON CASE STUDY 1

In this section we include some additional results that
compare the MP-SVD dictionary learning, single-channel ICA
(SC-ICA) with subset selection, and Gabor-Morlet dictionary
subset selection across different number of waveforms. The
case study used datasets publicly available from the Depart-
ment of Epileptology at the University Hospital of Bonn. The
details of the recording are available can be found in Andrzejak
et al., Physical Review E, 2001.

Fig. S2 shows a side-by-side comparison of the 4 waveforms
learned/selected at each scale across the 5 single-channel EEG
datasets. Fig. S3, Fig. S4, and Fig. S5 show the waveforms
learned when different numbers of waveforms per scale were
allowed.

Fig. S6 show approximations of testing segments of each
dataset using the 4 waveforms shown in Fig. S2 with enough
atoms per scale such that each scale can cover 10% of the
signal with non-overlapping waveforms. Fig. S7 shows the
results with enough atoms to provide 100% coverage per scale.
The approximation error (in terms of proportion of variance
explained) for the MP-SVD and single-channel ICA across
different numbers of waveforms and atoms is reported in
Table S1. As the number of atoms increases the proportion of
variance explained by MP-SVD reaches 95% using only two
waveforms per scale. Even with eight waveforms SC-ICA is
not able reach 90% and has much higher variance. Table S2
also reports the results using MP-SVD along with using the
subset of Gabor waveforms. Using 5 Gabor waveforms per
scale is able to achieve 95% variance explained. The Gabor
subset performs worse than the waveforms learned by MP-
SVD but much better than those learned by SC-ICA and
selected using the same subset selection algorithm. This means
that the set of waveforms found by SC-ICA is suboptimal
in terms of mean-squared error; however, we note that they
still appear to be tuned to the different characteristics of the
datasets as can be seen in Fig. S4.
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Fig. S2. Case Study 1: Waveforms estimated across the 5 single-channel, ongoing EEG datasets at 4 different scales. (Top left) Waveforms learned by
MP-SVD. (Top right) Waveforms learned by single-channel ICA with subset selection. (Bottom) Waveforms selected from a Gabor-Morlet wavelet dictionary
using subset selection. Waveforms are scaled to maximum absolute amplitude, those with lighter coloring matched Gabor wavelets with cross-correlation ≥
0.8.
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Fig. S3. Case Study 1: Waveform sets estimated using the alternating matching pursuit with SVD update (MP-SVD) on the 5 single-channel, ongoing EEG
datasets. Each column corresponds to models with different number of waveforms. The two number listed to the right of each waveform indicate the number
of times the waveform was used in the approximation of the training signal, and the peak frequency of the waveform. Many waveforms appear consistently
as the number of total waveforms is increased.
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133:        2.6
 38:         14
 34:         14
 18:         16

158:         14
 93:         18
 54:        8.7
 45:         13
 38:         13
 30:         11

 98:         15
 74:        5.6
 74:         20
 72:         13
 54:        6.1
 46:         10

202:         12
 51:         14
 48:         12
 46:         13
 45:         14
 26:         17

111:        0.0
 82:        1.3
 72:        1.3
 65:        3.5
 52:        0.9
 37:        1.3

248:         17
 99:         14
 22:         16
 21:         16
 21:         17
  7:         16

167:         16
 76:        8.2
 72:         16
 41:         18
 31:         10
 16:         20
 16:         10

140:        0.0
 73:         10
 61:         11
 59:        0.0
 41:        5.6
 32:         10
 12:         16

129:         14
111:         13
 74:         15
 73:         20
 22:         13
  6:         16
  3:         15

117:        3.0
 87:        1.3
 80:        0.0
 78:        0.9
 26:        0.9
 16:        1.3
 14:        0.9

148:         16
 74:         14
 74:         16
 47:         16
 27:         16
 23:         16
 23:         17

188:         16
102:         13
 44:         10
 23:         11
 20:        9.1
 17:         20
 13:         11
 10:         21

105:        0.0
 92:         13
 60:         10
 60:         11
 39:         15
 29:         12
 26:         12
  7:         16

127:         21
 97:         20
 73:         13
 57:         13
 46:         13
 10:         16
  6:         17
  2:         15

161:        1.3
 63:        3.9
 52:        1.3
 50:        1.3
 46:        1.3
 21:        1.3
 15:        1.3
 11:        1.3

135:        4.3
 65:         13
 59:         16
 54:        2.6
 49:        2.6
 28:         16
 16:         17
 10:         16

Fig. S4. Case Study 1: Waveform sets estimated using the single-channel ICA with subset selection on the 5 single-channel, ongoing EEG datasets. Each
column corresponds to models with different number of waveforms. The two number listed to the right of each waveform indicate the number of times the
waveform was used in the approximation of the training signal, and the peak frequency of the waveform. Many waveforms appear consistently as the number
of total waveforms is increased.
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215:         13
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139:        9.1
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 60:        1.7
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 94:        3.0
 93:        4.3
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156:        0.9
107:        4.3
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200:         13
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 33:        1.7

132:        1.7
101:        4.3
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 58:        3.0
 45:        2.2

148:        0.9
100:        4.3
 71:        0.9
 56:        2.2
 45:        1.3

184:         13
 96:        4.3
 69:        6.1
 38:        1.7
 34:        3.0

103:        0.9
103:         13
101:        9.1
 53:        1.3
 33:        3.5
 27:        2.2

136:         13
132:        9.1
 69:        0.9
 34:        1.7
 26:        1.7
 25:        0.9

 93:        4.3
 92:        0.9
 91:        1.3
 52:        3.0
 52:        1.3
 42:        2.2

149:        0.9
 76:        4.3
 66:        0.9
 48:        1.3
 42:        2.2
 39:        2.6

146:         13
 86:        6.1
 66:         20
 56:        4.8
 35:        2.6
 32:        1.7

100:        0.9
 88:        9.1
 87:         13
 46:        1.3
 42:        4.3
 31:        1.7
 27:        3.5

123:         13
119:        9.1
 65:        0.9
 38:        6.5
 26:        1.7
 25:        0.9
 25:        1.7

 88:        0.9
 84:        6.5
 65:        0.9
 64:        4.3
 52:        3.0
 38:        1.7
 31:        1.7

149:        0.9
 73:        4.3
 72:        0.9
 37:        2.2
 37:        2.6
 29:        1.7
 24:        1.7

142:         13
 97:        6.5
 63:         20
 35:        4.8
 34:        2.6
 30:        1.7
 20:        6.1

 94:        0.9
 86:         13
 74:        9.1
 44:        6.5
 39:        1.7
 36:        4.3
 24:        3.5
 24:        1.7

116:        9.1
113:         13
 56:        0.9
 37:        1.3
 34:        6.5
 24:        3.5
 21:        1.7
 20:        0.9

 88:        0.9
 83:        6.5
 66:        0.9
 62:        4.3
 40:        1.7
 30:        3.0
 28:        1.7
 24:        3.5

131:        0.9
 64:        0.9
 58:        6.5
 55:        4.3
 35:        2.2
 33:        2.6
 27:        1.3
 18:        1.7

143:         13
 71:        4.3
 61:         20
 58:        6.1
 25:        1.7
 23:        2.6
 22:        1.3
 19:        4.8

Fig. S5. Case Study 1: Gabor-Morlet wavelet sets selected using greedy dictionary subset selection on the 5 single-channel, ongoing EEG datasets. Each
column corresponds to models with different number of waveforms. The two number listed to the right of each waveform indicate the number of times the
waveform was used in the approximation of the training signal, and the peak frequency of the waveform. Many waveforms appear consistently as the number
of total waveforms is increased.
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Fig. S6. Case Study 1: Example approximations and residual (error) for a segment of each of the 5 single-channel, ongoing EEG datasets using waveforms
learned via the alternating matching pursuit with SVD update (MP-SVD), single-channel ICA with subset selection (SC-ICA), and subset selected Gabor-
Morlet wavelets (Gabor waves). The number of atoms is set such that the approximation waveforms cover 10% of the original signal per scale. At this level
of sparsity the approximations are truly sparse, but many waveforms remain in the error.
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Fig. S7. Case Study 1: Example approximations and approximation errors for a segment of each of the 5 single-channel, ongoing EEG datasets using
waveforms learned via the alternating matching pursuit with SVD update (MP-SVD), single-channel ICA with subset selection (SC-ICA), and subset selected
Gabor-Morlet wavelets (Gabor waves). The number of atoms is set such that the approximation waveforms cover 100% of the original signal per scale. At
this level of sparsity the approximations explain most of the signal. The approximation error using MP-SVD waveforms is minimal, the Gabor waveform
approximation exhibits some low-frequency trends, but the error from single-channel ICA has much higher variance.
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TABLE S1
CASE STUDY 1: COMPARISON OF THE NORMALIZED APPROXIMATION ERROR FOR THE TESTING PORTION OF THE 5 SINGLE-CHANNEL, ONGOING EEG
DATASETS USING WAVEFORMS LEARNED VIA THE ALTERNATING MATCHING PURSUIT WITH SVD UPDATE (MP-SVD) VERSUS SINGLE-CHANNEL ICA

WITH SUBSET SELECTION (SC-ICA). THE COLUMNS CORRESPOND TO THE FREQUENCY OF THE ATOMS ACROSS ALL SCALES, AND THE ROWS

CORRESPOND TO THE NUMBER OF WAVEFORMS IN EACH SCALE OF THE MODEL. ENTRIES INDICATE THE AVERAGE AND STANDARD DEVIATION ACROSS

THE 5 DATASETS.

2.69Hz 6.80Hz 13.63Hz 21.03Hz 27.37Hz 41.44Hz 53.29Hz 111.14Hz
Proportion of variance explained with MP-SVD waveforms
1 0.43±0.18 0.58±0.13 0.69±0.11 0.73±0.10 0.76±0.09 0.81±0.07 0.85±0.05 0.84±0.06
2 0.48±0.16 0.64±0.13 0.77±0.09 0.83±0.07 0.85±0.07 0.89±0.06 0.92±0.04 0.95±0.02
3 0.50±0.16 0.67±0.13 0.79±0.08 0.85±0.06 0.88±0.05 0.91±0.04 0.94±0.02 0.96±0.01
4 0.50±0.13 0.69±0.12 0.81±0.07 0.87±0.05 0.90±0.04 0.93±0.02 0.95±0.02 0.97±0.01
5 0.51±0.17 0.70±0.11 0.82±0.07 0.88±0.04 0.91±0.03 0.94±0.02 0.95±0.02 0.97±0.01
6 0.50±0.17 0.69±0.10 0.81±0.03 0.89±0.04 0.91±0.03 0.94±0.02 0.96±0.02 0.98±0.01
7 0.49±0.17 0.70±0.11 0.83±0.06 0.89±0.04 0.92±0.03 0.95±0.02 0.96±0.01 0.98±0.01
8 0.50±0.16 0.71±0.11 0.83±0.05 0.89±0.04 0.92±0.03 0.95±0.02 0.96±0.01 0.98±0.01
Proportion of variance explained with SC-ICA waveforms
1 0.20±0.20 0.25±0.21 0.34±0.22 0.39±0.26 0.39±0.24 0.41±0.14 0.39±0.11 0.54±0.18
2 0.23±0.22 0.29±0.20 0.34±0.19 0.48±0.17 0.46±0.21 0.51±0.21 0.62±0.16 0.64±0.14
3 0.23±0.21 0.32±0.23 0.39±0.23 0.46±0.22 0.53±0.21 0.58±0.21 0.65±0.14 0.78±0.13
4 0.25±0.22 0.28±0.12 0.43±0.22 0.50±0.19 0.53±0.14 0.63±0.17 0.70±0.15 0.83±0.08
5 0.25±0.21 0.33±0.19 0.44±0.21 0.49±0.20 0.58±0.17 0.64±0.17 0.73±0.12 0.85±0.08
6 0.26±0.21 0.37±0.21 0.46±0.19 0.46±0.20 0.58±0.19 0.67±0.17 0.74±0.13 0.86±0.10
7 0.26±0.21 0.35±0.21 0.51±0.18 0.59±0.18 0.62±0.18 0.70±0.16 0.75±0.13 0.84±0.13
8 0.28±0.22 0.37±0.23 0.47±0.19 0.59±0.18 0.61±0.17 0.69±0.17 0.74±0.17 0.88±0.08
Difference of squared error: SC-ICA minus MP-SVD
1 0.23±0.06 0.33±0.10 0.34±0.12 0.33±0.18 0.37±0.16 0.40±0.07 0.46±0.13 0.30±0.17
2 0.25±0.08 0.35±0.09 0.43±0.11 0.34±0.12 0.40±0.16 0.38±0.17 0.30±0.13 0.30±0.13
3 0.26±0.09 0.34±0.13 0.40±0.16 0.39±0.17 0.35±0.17 0.34±0.17 0.29±0.12 0.19±0.13
4 0.25±0.11 0.40±0.07 0.37±0.16 0.37±0.15 0.37±0.12 0.30±0.15 0.25±0.14 0.14±0.08
5 0.25±0.08 0.37±0.11 0.37±0.16 0.38±0.16 0.33±0.14 0.29±0.15 0.22±0.10 0.12±0.08
6 0.24±0.09 0.32±0.12 0.35±0.18 0.43±0.17 0.33±0.16 0.27±0.15 0.22±0.12 0.12±0.10
7 0.23±0.10 0.35±0.13 0.33±0.13 0.30±0.15 0.30±0.16 0.25±0.15 0.21±0.12 0.13±0.13
8 0.22±0.11 0.33±0.14 0.37±0.14 0.30±0.15 0.31±0.15 0.26±0.15 0.22±0.17 0.10±0.07
Squared error ratio (log 2): a value of 1 indicates indicates SC-ICA has twice the squared error of MP-SVD
1 0.51±0.17 0.84±0.13 1.09±0.17 1.12±0.33 1.32±0.17 1.70±0.33 2.03±0.68 1.54±0.68
2 0.59±0.14 1.02±0.18 1.56±0.25 1.62±0.29 1.94±0.39 2.18±0.31 2.21±0.28 2.76±0.41
3 0.63±0.20 1.06±0.27 1.55±0.21 1.90±0.39 2.00±0.30 2.24±0.25 2.54±0.42 2.50±0.64
4 0.57±0.16 1.30±0.56 1.56±0.29 1.96±0.36 2.30±0.33 2.39±0.37 2.37±0.59 2.47±0.45
5 0.64±0.19 1.20±0.31 1.62±0.30 1.98±0.24 2.22±0.30 2.44±0.43 2.49±0.36 2.31±0.68
6 0.61±0.22 1.04±0.15 1.41±0.54 2.28±0.39 2.19±0.30 2.45±0.51 2.53±0.51 2.26±1.03
7 0.56±0.21 1.16±0.22 1.60±0.29 1.84±0.37 2.15±0.44 2.41±0.48 2.45±0.62 2.43±1.13
8 0.53±0.24 1.10±0.25 1.65±0.22 1.91±0.36 2.31±0.37 2.44±0.54 2.43±0.92 2.34±0.80
Win count (n=5) for MP-SVD: p-value for 5 is 0.0312: 5 wins is significant at a level of 0.05.
1 5 5 5 5 5 5 5 5
2 5 5 5 5 5 5 5 5
3 5 5 5 5 5 5 5 5
4 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5
6 5 5 5 5 5 5 5 5
7 5 5 5 5 5 5 5 5
8 5 5 5 5 5 5 5 5
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TABLE S2
CASE STUDY 1: COMPARISON OF THE NORMALIZED APPROXIMATION ERROR FOR THE TESTING PORTION OF THE 5 SINGLE-CHANNEL, ONGOING EEG

DATASETS USING WAVEFORMS LEARNED VIA THE ALTERNATING MATCHING PURSUIT WITH SVD UPDATE (MP-SVD) VERSUS A SUBSET (WITH THE

SAME SIZE) SELECTED FROM A GABOR-MORLET WAVELET DICTIONARY (GABOR). THE COLUMNS CORRESPOND TO THE FREQUENCY OF THE ATOMS

ACROSS ALL SCALES, AND THE ROWS CORRESPOND TO THE NUMBER OF WAVEFORMS IN EACH SCALE OF THE MODEL. ENTRIES INDICATE THE AVERAGE

AND STANDARD DEVIATION ACROSS THE 5 DATASETS.

2.71Hz 6.80Hz 13.59Hz 20.74Hz 27.50Hz 40.74Hz 54.39Hz 107.69Hz
Proportion of variance explained with MP-SVD waveforms
1 0.42±0.16 0.57±0.13 0.68±0.10 0.72±0.09 0.75±0.09 0.80±0.07 0.83±0.05 0.81±0.07
2 0.48±0.17 0.64±0.13 0.76±0.08 0.82±0.07 0.85±0.07 0.89±0.06 0.91±0.04 0.94±0.02
3 0.48±0.15 0.65±0.13 0.79±0.08 0.85±0.06 0.88±0.05 0.91±0.04 0.93±0.04 0.96±0.01
4 0.46±0.15 0.68±0.12 0.80±0.07 0.86±0.04 0.90±0.04 0.93±0.02 0.94±0.02 0.97±0.01
5 0.47±0.14 0.69±0.10 0.81±0.07 0.87±0.04 0.91±0.03 0.94±0.02 0.95±0.02 0.97±0.01
6 0.48±0.14 0.69±0.11 0.80±0.03 0.88±0.04 0.91±0.03 0.94±0.02 0.96±0.02 0.98±0.01
7 0.48±0.16 0.69±0.11 0.82±0.05 0.89±0.04 0.92±0.03 0.95±0.02 0.96±0.01 0.98±0.01
8 0.47±0.14 0.69±0.10 0.82±0.03 0.89±0.04 0.92±0.02 0.95±0.02 0.96±0.01 0.98±0.01
Proportion of variance explained with selected Gabor waveforms
1 0.31±0.11 0.43±0.11 0.55±0.05 0.59±0.06 0.62±0.06 0.67±0.05 0.70±0.05 0.73±0.05
2 0.35±0.11 0.51±0.10 0.62±0.08 0.67±0.06 0.72±0.06 0.77±0.04 0.81±0.03 0.87±0.02
3 0.36±0.10 0.54±0.11 0.64±0.07 0.73±0.06 0.76±0.06 0.82±0.04 0.86±0.02 0.92±0.02
4 0.38±0.10 0.55±0.10 0.68±0.10 0.75±0.07 0.79±0.05 0.85±0.04 0.89±0.03 0.93±0.02
5 0.38±0.10 0.56±0.10 0.68±0.09 0.76±0.08 0.80±0.06 0.88±0.04 0.91±0.02 0.95±0.01
6 0.39±0.10 0.57±0.10 0.71±0.08 0.79±0.07 0.83±0.06 0.88±0.05 0.91±0.03 0.96±0.01
7 0.39±0.09 0.57±0.10 0.71±0.08 0.79±0.07 0.84±0.06 0.89±0.05 0.92±0.03 0.96±0.02
8 0.40±0.09 0.58±0.09 0.72±0.08 0.79±0.06 0.84±0.05 0.90±0.04 0.92±0.03 0.96±0.01
Difference of squared error: Gabor minus MP-SVD
1 0.11±0.06 0.14±0.03 0.13±0.07 0.13±0.07 0.13±0.07 0.13±0.05 0.13±0.04 0.08±0.04
2 0.13±0.07 0.13±0.05 0.14±0.03 0.15±0.06 0.13±0.09 0.12±0.06 0.10±0.06 0.07±0.01
3 0.11±0.07 0.11±0.04 0.14±0.04 0.12±0.04 0.12±0.05 0.09±0.05 0.07±0.03 0.04±0.01
4 0.09±0.06 0.13±0.04 0.12±0.04 0.12±0.04 0.11±0.03 0.08±0.02 0.06±0.02 0.04±0.01
5 0.08±0.07 0.13±0.04 0.12±0.05 0.11±0.05 0.10±0.03 0.06±0.02 0.05±0.01 0.02±0.01
6 0.09±0.07 0.12±0.04 0.10±0.06 0.09±0.04 0.08±0.03 0.06±0.03 0.04±0.02 0.02±0.01
7 0.09±0.08 0.12±0.04 0.11±0.04 0.10±0.04 0.08±0.03 0.06±0.03 0.04±0.02 0.02±0.01
8 0.07±0.07 0.11±0.03 0.10±0.06 0.10±0.03 0.08±0.03 0.05±0.02 0.04±0.02 0.01±0.01
Error ratio (log 2): a value of 1 indicates Gabor has twice the squared error of MP-SVD
1 0.28±0.26 0.44±0.21 0.56±0.45 0.63±0.46 0.71±0.54 0.80±0.54 0.86±0.35 0.61±0.47
2 0.38±0.37 0.51±0.36 0.73±0.33 0.95±0.54 1.02±0.77 1.22±0.78 1.29±0.86 1.21±0.40
3 0.33±0.30 0.47±0.35 0.84±0.43 0.98±0.55 1.13±0.57 1.12±0.74 1.15±0.65 1.08±0.30
4 0.27±0.27 0.55±0.37 0.69±0.17 0.94±0.34 1.13±0.45 1.19±0.36 1.03±0.31 1.17±0.28
5 0.25±0.26 0.57±0.28 0.77±0.31 0.89±0.24 1.10±0.25 1.04±0.15 1.07±0.35 0.91±0.10
6 0.28±0.28 0.53±0.35 0.54±0.29 0.88±0.30 0.96±0.17 1.06±0.19 1.00±0.12 0.78±0.15
7 0.29±0.34 0.53±0.33 0.71±0.20 0.97±0.28 0.98±0.24 1.05±0.19 0.95±0.20 0.72±0.27
8 0.22±0.26 0.47±0.23 0.61±0.25 0.92±0.23 0.94±0.16 0.96±0.21 0.92±0.26 0.73±0.19
Win count (n=5) for MP-SVD: p-value for 5 is 0.0312, 4 wins is insignificant at a level of 0.05.
1 5 5 5 5 5 5 5 5
2 5 5 5 5 4 5 5 5
3 5 5 5 5 5 4 5 5
4 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5
6 5 5 5 5 5 5 5 5
7 5 5 5 5 5 5 5 5
8 5 5 5 5 5 5 5 5
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S3. COMPARISON OF RESULTS FOR CASE STUDY 2

In this section, we include additional results for waveforms
estimated using MP-SVD along with a set of results for wave-
forms estimated using single-channel ICA. The case study
uses the motor imagery dataset: BCI competition III dataset
IV(a), Blankertz et al., IEEE Trans. Neural Syst. Rehabil.

Eng., 2006, provided by Fraunhofer FIRST, Intelligent Data
Analysis Group (Klaus-Robert Müller, Benjamin Blankertz),
and Campus Benjamin Franklin of the Charité–University
Medicine Berlin, Department of Neurology, Neurophysics
Group (Gabriel Curio).

Fig. S8 shows a comparison of the center frequency and Q-
value of waveforms estimated by MP-SVD and single-channel
ICA. Fig. S9 and Fig. S10 show cluster descriptors (prototype,
scatter plot of center frequency and Q-value) for the clusters
found by applying shift-invariant k-means to the waveforms
learned across all subjects and channels. Fig. S11 and Fig. S12
show the topographic distribution of originating channels of
the waveforms assigned to each cluster and the spectrum.
Fig. S13 and Fig. S14 show the spatial weight pattern corre-
sponding to a significant linear discriminate analysis between
the spatial amplitudes during two classes of motor imagery.

Finally, Fig. S15 and Fig. S16 show the components of
the decompositions, and the total approximation, using the
waveforms on a specific channel and subject using different
numbers of waveforms.
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Fig. S8. Case study 2: Scatter plot of peak frequency and Q-value (peak
frequency divided by bandwidth) of waveforms that matched Gabor-Morlet
wavelets. (Top) Waveforms estimated using matching pursuit with SVD
update. (Bottom) Waveforms estimated using single-channel ICA.
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Fig. S9. Case study 2 (MP-SVD): Cluster centroids and scatter plot of peak frequency and Q-value for those that matched Gabor-Morlet wavelets. The legend
on the left side of each plot lists unique cluster index, the number of waveforms, and the percentage that match Gabor-Morlet wavelets. Most of the matching
waveforms correspond to alpha waves estimated in the first scale.
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Fig. S10. Case study 2 (SC-ICA): Cluster centroids and scatter plot of peak frequency and Q-value for those that matched Gabor-Morlet wavelets. The legend
on the left side of each plot lists unique cluster index, the number of waveforms, and the percentage that match Gabor-Morlet wavelets. Contrary to MP-SVD,
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Fig. S11. Case study 2 (MP-SVD): Cluster descriptors for the waveforms estimated using matching pursuit with SVD-update across all scales. Each subplot
shows (from top to bottom) the cluster mean, prototypical waveform, electrode distribution shown on an unfolded scalp map where the color intensity indicates
the number of subjects with waveforms originating from that electrode, and the power spectral density over all waveforms in the cluster.
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Fig. S12. Case study 2 (SC-ICA): Cluster descriptors for the waveforms estimated using single-channel ICA across all scales. Each subplot shows (from top
to bottom) the cluster mean, prototypical waveform, electrode distribution shown on an unfolded scalp map where the color intensity indicates the number of
subjects with waveforms originating from that electrode, and the power spectral density over all waveforms in the cluster.
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Fig. S13. Case study 2 (MP-SVD): Prototype waveforms and spatial weight
pattern corresponding to a significant linear discriminate analysis between
the spatial amplitudes during two classes of motor imagery. Waveforms
estimated using matching pursuit with SVD update. The originating subject
and electrode is circled. The color intensity is in arbitrary units. For a
significant waveform/subject pair, the percent accuracy over the testing set
is listed. The training/testing split was 70/210.
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Fig. S14. Case study 2 (SC-ICA): Prototype waveforms and spatial weight
pattern corresponding to a significant linear discriminate analysis between the
spatial amplitudes during two classes of motor imagery. Waveforms estimated
using single-channel ICA. The originating subject and electrode is circled. The
color intensity is in arbitrary units. For a significant waveform/subject pair,
the percent accuracy over the testing set is listed. The training/testing split
was 70/210.
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Fig. S15. Case study 2 (MP-SVD): Example decomposition using waveforms
estimated with matching pursuit with SVD update and different number of
atoms. Proportion of variance explained (PVE) is reported for each compo-
nent corresponding to a single waveform and for the total approximation.
Waveforms and decomposition come from subject ‘al’ channel O1 in the last
quarter of record.

2628 2630 2632 2634 2636 2638

Original

Total , PVE=0.724

1, PVE=0.066
2, PVE=0.1

3, PVE=0.08
4, PVE=0.039
5, PVE=0.16

6, PVE=0.017
7, PVE=0.059
8, PVE=0.15

9, PVE=0.0026
10, PVE=0.0028
11, PVE=0.003

12, PVE=0.0013
13, PVE=0.024
14, PVE=0.02

15, PVE=0.0018
16, PVE=0.0016

Error

time (s)

2628 2630 2632 2634 2636 2638

Original

Total , PVE=0.85

1, PVE=0.078
2, PVE=0.11

3, PVE=0.085
4, PVE=0.048
5, PVE=0.19

6, PVE=0.033
7, PVE=0.07
8, PVE=0.16

9, PVE=0.0036
10, PVE=0.0039
11, PVE=0.0044
12, PVE=0.0016
13, PVE=0.029
14, PVE=0.026
15, PVE=0.004

16, PVE=0.0036
Error

time (s)

2628 2630 2632 2634 2636 2638

Original

Total , PVE=0.936

1, PVE=0.1
2, PVE=0.11

3, PVE=0.085
4, PVE=0.059

5, PVE=0.2
6, PVE=0.056
7, PVE=0.079
8, PVE=0.16

9, PVE=0.0045
10, PVE=0.0056
11, PVE=0.0065
12, PVE=0.0024

13, PVE=0.03
14, PVE=0.026
15, PVE=0.007

16, PVE=0.0069
Error

time (s)

Fig. S16. Case study 2 (SC-ICA): Example decomposition using waveforms
estimated with single-channel ICA and different number of atoms (number of
atoms per plot matches corresponding plot in Fig. S15). Proportion of variance
explained (PVE) is reported for each component corresponding to a single
waveform and for the total approximation. Waveforms and decomposition
come from subject ‘al’ channel O1 in the last quarter of record.
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S4. SYNTHETIC EXPERIMENTS

Two sets of synthetic data experiments were conducted to
illustrate the methodology. The first set is used to compare
shift-invariant learning with single-channel ICA with and
without using a 4-stage modeling procedure. We compared
the waveform estimation quality when the true waveforms are
a non-redundant (cross-correlation between any waveforms is
less than 0.8) set of 16 Gabor-Morlet wavelets or a set of
16 of the Daubechies 4 (db4) wavelet packets. The length
of the waveforms was 100 time points. The majority of
this simulation matches a previous synthetic simulation we
performed Brockmeier and Principe, IEEE Int. Conf. Acoust.

Speech Signal Process., 2015.

For each run, an output signal with 10,000 samples was
created by feeding sparse source signals through the MISO
system. The source signals are independent, marked point
processes with a homogeneous Poisson point process for the
timing and a Gaussian distribution with mean and standard-
deviation of (1, 1

3
) for amplitudes. In the experiments, the rate

of the Poisson process controls the sparsity of the sources.
The overall rate was varied between 5% and 100%; these
rates correspond to average rates of 0.3% and 6.25% for
the individual waveforms. White noise with two different
standard-deviations ( 1

2
, 1) was used to test the estimation in

both a low noise and a moderate noise situation.

The algorithms were run with the correct number of wave-
forms, but they were not given any information on the sparsity.
Matching pursuit assumes a fixed cardinality of the sources.
For the single-channel ICA, FastICA with 40-unit symmetric
estimation and the tanh(·) activation function was used. In
practice, most of the waveforms in the 40-unit estimation are
meaningless so the orthogonal matching pursuit-based subset
selection is used to select the predefined number of waveforms.

For each run, the waveform estimation performance is
quantified as the cross-correlation between the true waveform
and the best matching estimated waveform. This quantity is
averaged across the 16 waveforms and the results are collected
across 5 Monte Carlo generations of source and noise activity.
The mean and standard deviation across the Monte Carlo runs
are displayed as error bars in Fig. S17 and Fig. S18.

For each run, the waveform estimation performance is also
quantified in terms of recall, that is, the fraction of true
waveforms that have cross correlation ≥0.8 to an estimated
waveform. This quantity is averaged across the 16 waveforms
and the results are collected across 5 Monte Carlo generations
of source and noise activity. The mean and standard deviation
across the Monte Carlo runs are displayed as error bars in
Fig. S19 and Fig. S20.

The second set of experiments is used to illustrate the
decomposition ability of the methodology, specifically, its
ability to estimate the true components of a known signal. The
underlying waveforms are two distinct Gabor-Morlet wavelets
and two triangular waves, one is negative and one is positive;
all of the waveforms are 100 time-points long. The sources
are constant amplitude trains of delta functions. The Bernoulli
probability that any source is active at a given time point
ranges from 0.5% to 4%. For example, the expected number
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Fig. S17. Synthetic experiment with Gabor-Morlet wavelets: Average cross-
correlation of the estimated waveforms to their best matched true waveforms
when the estimation is done using matching pursuit with SVD update (MP-
SVD) versus single-channel ICA using the FastICA algorithm, and with the
case that all 16 waveforms are estimated at once versus a 4-stage estimation.

of waveforms active at any point is 1 for a 1% source. The
overall signal has zero mean, and is meant to be an extremely
rough representative of EEG waveforms, namely time-limited
rhythms and evoked potentials. The signal is observed in the
presence of Gaussian white noise, for which we vary the
standard deviation.

After learning, we compare the ability of different modeling
and decomposition techniques to extract the noise-free signal
and its components. For the learned models we use the 3-
std stopping heuristic described in Section S1. The Gabor
dictionary is restricted to use the same number of atoms
as the Gabor subset dictionary used. In addition, we report
the proportion of variance explained of the estimated com-
ponents using the true components; a low value indicates a
true component is split between the estimated components,
as would happen when many Gabor wavelets are used to
approximate a non-Gabor waveform. The results are reported
in Table S3. In terms of approximation of the signal the
full Gabor dictionary is consistently the best. In terms of
estimating the true components, MP-SVD’s median perfor-
mance is the best for the lowest rate case, and the subset
selection algorithm performs the best on average. Besides the
lowest rate case, the maximum performance of SC-ICA is
the highest, indicating that if multiple replications were used
SC-ICA may be a more competitive. Interestingly, MP-SVD
has the highest rate of proportion of variance explained for
the estimated components, which indicates that each of the
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Fig. S18. Synthetic experiment with Daubechies-4 (db4) wavelet packets:
Average cross-correlation of the estimated waveforms to their best matched
true waveforms when the estimation is done using matching pursuit with SVD
update (MP-SVD) versus single-channel ICA using the FastICA algorithm,
and with the case that all 16 waveforms are estimated at once versus a 4-stage
estimation.

estimated components is often one of the true components or
a mixture of them. Overall, the results indicate that sparsity has
a large effect on MP-SVD and SC-ICA. The subset selection
algorithm is able to perform very well in terms of estimating
the true components. Its performance is similar or better than
the dictionary learning algorithms for higher rate sources
and is much better than the full dictionary on this simple
signal. These results show how the proposed methodology can
find the underlying components of a signal. Examples of the
decompositions for the various methods are shown in Fig. S21.
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Fig. S19. Synthetic experiment with Gabor-Morlet wavelets: Average recall
(proportion of true waveforms that have cross correlation ≥0.8 to an estimated
waveform).
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Fig. S20. Synthetic experiment with Daubechies-4 (db4) wavelet packets:
Average recall (proportion of true waveforms that have cross correlation ≥0.8
to an estimated waveform).
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TABLE S3
SYNTHETIC SIGNAL DECOMPOSITION PERFORMANCE IN TERMS OF PERCENTAGE (%) OF THE VARIANCE EXPLAINED: NOISE-FREE SIGNAL BY THE

APPROXIMATION, TRUE COMPONENTS BY THE ESTIMATED COMPONENTS, AND THE ESTIMATED COMPONENTS BY THE TRUE COMPONENTS. THE

MAXIMUM, MEDIAN, AND STANDARD DEVIATION ACROSS 20 MONTE CARLO RUNS IS REPORTED FOR DIFFERENT SOURCE RATES AND NOISE LEVELS.

Signal True comp. Estimated comp. Signal True comp. Estimated comp.
max med. std max med. std max med. std max med. std max med. std max med. std
Source rate of 0.5%, noise std of 0.1 Source rate of 1%, noise std of 0.1

MP-SVD 99 93 6 96 69 14 96 69 15 92 91 2 68 63 12 68 59 10
SC-ICA 96 83 18 87 46 18 85 49 22 95 76 12 71 28 19 76 30 23

Gabor subset 94 90 2 84 65 6 81 64 6 90 87 2 66 63 1 65 56 5
Gabor 98 98 1 55 52 3 5 3 1 98 93 2 54 49 2 4 1 1

Source rate of 2%, noise std of 0.1 Source rate of 4%, noise std of 0.1
MP-SVD 89 85 19 55 36 16 59 25 15 85 82 19 35 25 7 48 7 14
SC-ICA 95 78 9 71 19 18 71 3 20 91 82 6 27 20 6 20 3 6

Gabor subset 88 85 2 63 61 2 53 45 4 86 83 1 59 58 1 42 35 3
Gabor 96 92 1 49 45 3 1 1 0 95 91 1 40 35 2 1 0 0

Source rate of 0.5%, noise std of 0.2 Source rate of 1%, noise std of 0.2
MP-SVD 96 91 3 94 69 10 94 67 10 90 88 19 67 61 18 67 56 14
SC-ICA 91 70 26 68 52 17 63 46 17 93 72 19 80 49 14 78 38 21

Gabor subset 91 89 2 82 66 6 79 64 6 88 86 2 65 63 1 63 57 5
Gabor 95 94 1 59 48 4 5 3 1 95 90 2 51 47 2 5 1 1

Source rate of 2%, noise std of 0.2 Source rate of 4%, noise std of 0.2
MP-SVD 86 83 2 54 27 10 60 20 16 84 82 11 37 27 7 45 1 14
SC-ICA 92 68 16 78 33 16 79 17 20 86 75 7 31 17 7 19 0 4

Gabor subset 86 84 1 62 60 1 53 44 4 84 82 2 60 56 1 40 33 2
Gabor 95 90 2 44 40 2 1 1 0 94 90 1 39 33 2 1 0 0
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Fig. S21. Example decompositions of a synthetic signal using different shift-invariant dictionaries. Panels from top to bottom correspond to using waveforms
learned by MP-SVD, learned by single-channel ICA with subset selection, selected from a Gabor-Morlet dictionaries, and from a full Gabor dictionary. (Left)
Signals with an overall source rate with Bernoulli probability of 0.5% (Right) Source rate of 1%. The additive white Gaussian noise has standard deviation
of 0.2, compared to the unit-amplitude of the waveforms. Number of atoms selected by the 3-std stopping heuristic.


