
1

Neural Decoding with Kernel-based Metric Learn-
ing

Austin J. Brockmeier1, John S. Choi2, Evan G. Kriminger1,

Joseph T. Francis2, and Jose C. Principe1

1Department of Electrical and Computer Engineering, University of Florida, Gainesville,

FL 32611, U.S.A.

2Department of Physiology and Pharmacology, State University of New York Down-

state Medical Center, Brooklyn, NY 11203, U.S.A.

Keywords: Decoding, dependence, kernels, metric learning, spike trains

Abstract

When studying the nervous system, the choice of metric for the neural responses is a

pivotal assumption. For instance, a well-suited distance metric enables us to gauge the

similarity of neural responses to various stimuli and assess the variability of responses

to a repeated stimulus—exploratory steps in understanding how the stimuli are encoded

neurally. Here we introduce an approach where the metric is tuned for a particular neu-

ral decoding task. In particular, neural spike train metrics have been used to quantify the

information content carried by the timing of action potentials. While a number of met-

rics for individual neurons exist, a method to optimally combine single-neuron metrics

into multi-neuron, or population-based, metrics is lacking. We pose the problem of opti-

mizing multi-neuron metrics and other metrics using centered alignment, a kernel-based

dependence measure. The approach is demonstrated on invasively recorded neural data

consisting of both spike trains and local field potentials. The experimental paradigm

consists of decoding the location of tactile stimulation on the forepaws of anesthetized

rats. We show that the optimized metrics highlight the distinguishing dimensions of the

neural response, significantly increase the decoding accuracy, and improve non-linear

dimensionality reduction methods for exploratory neural analysis.

1 Introduction

Systematic analysis of neural activity is used to investigate the brain’s representation

of different conditions such as stimuli, actions, intentions, cognitive states, or affective

states. The fundamental questions of the analysis are “How much information does the

neural response carry about the condition?” and “How is this information represented

in the neural response?” Information theory can be used to assess the first question, but

in practice its application is non-trivial without answering the second question first, due

to the challenge in estimating information-theoretic quantities for neural data.

As neural signals vary across time and space, many electrodes and high-sampling

2

rates are necessary to accurately record the spatiotemporal activity. The neural re-

sponses may be recorded in different forms either invasively or non-invasively. Modern

electrode arrays allow invasive recordings to capture both the timing of action poten-

tials (spike trains) across many neurons, and local field potentials (LFPs) across many

electrodes.

Estimating decoding models, let alone an information-theoretic quantity such as

mutual information, is difficult on this diverse, high-dimensional data. Consequently, it

is necessary to explicitly optimize an alternative, possibly low-dimensional, represen-

tation of the neural signals where it is easier to gauge their information content relevant

to the experimental condition. At this point it is necessary to make the distinction be-

tween the objective here—learning the representation of the neural response that is

most relevant for the different conditions—and the neural coding problem—learning

the representation of the stimulus space that is most relevant for the neural response.

An optimized representation of the neural response is useful for visualizing the

single-trial variability (Churchland et al., 2010) and the similarity between neural re-

sponses to similar conditions (Brockmeier et al., 2013). The neural response represen-

tation may be optimized in either a supervised or unsupervised manner.

A number of unsupervised methods have been used for the exploratory analysis of

neural data (Stopfer et al., 2003; Broome et al., 2006; Brockmeier et al., 2010, 2011;

Park et al., 2012). Principal component analysis (PCA) and clustering are among the

simplest, but the results from PCA may be unsatisfactory on neural data (Cowley et al.,

2012). Other non-linear approaches include distance embeddings (Sammon, 1969),

kernel-based extension to PCA (Schölkopf et al., 1998), and manifold learning algo-

3

rithms that try to preserve the similarity structure between samples in a low-dimensional

representation. Methods tend to concentrate on preserving either local (Roweis and

Saul, 2000) or structural-based (Tenenbaum et al., 2000) similarities; novel samples

can be mapped to the representation space via explicit mappings (Bunte et al., 2012).

State-space models provide an unsupervised approach to explore the temporal evo-

lution and variability of neural responses during single trials, and those with low-

dimensional or discrete state variables (hidden Markov models) are useful to visual-

ize the dynamics of the neural response (Radons et al., 1994; Seidemann et al., 1996;

Kemere et al., 2008; Yu et al., 2009a,b). Petreska et al. (2011) have shown how a

combination of both temporal dynamics and a discrete state can efficiently capture the

dynamics in a neural response. Henceforth, we only consider static representations of

responses to a discrete number of conditions, or classes, collected over multiple trials.

In the supervised case, Fisher discriminant analysis (FDA) and extensions (Fuku-

naga, 1990; Baudat and Anouar, 2000; Sugiyama, 2007) use sample covariances from

each class to form discriminative projections. The optimal projection is a solution to a

generalized eigenvalue problem that maximizes the spread between samples in different

classes while minimizing the spread of samples within the same class.

The dimensionality of the neural response can be reduced by feature selection (Kira

and Rendell, 1992). The simplest approach is to find how informative each feature is

for a given task and then select a set of informative, but not redundant features (Guyon

and Elisseeff, 2003; Peng et al., 2005; Yamada et al., 2013), or a set of features may be

obtained by backward or forward-selection algorithms (Song et al., 2007, 2012).

In a broad sense, linear projections and dimensionality reduction are just special

4

cases of metric-learning algorithms, which change the metric in the original space

to achieve some specific objective, usually exploiting supervisory information (Lowe,

1995; Xing et al., 2003; Fukumizu et al., 2004). Often, metric learning is used as an in-

telligent preprocessing for classification methods that depend on a measure of similarity

or dissimilarity to determine if two samples are of the same class. For instance, kernel

machines or nearest-neighbor-based approaches compare novel samples relative to al-

ready observed samples but rely on a predefined similarity measure. These classifiers

are highly dependent on the preprocessing and offer little insight into the importance

of individual feature dimensions. Metric learning can improve the classification per-

formance by adjusting the importance of individual features for the task (Lowe, 1995;

Takeuchi and Sugiyama, 2011), and these weights can be used to highlight the features

or dimensions relevant for the objective. Furthermore, metric learning approaches can

also improve kernel regression (Fukumizu et al., 2004; Navot et al., 2006; Weinberger

and Tesauro, 2007).

We investigate classes of metrics that are parametrized along spatiotemporal dimen-

sions of neural responses. For instance, it is natural to consider which channels or time

points in the neural response are most useful for distinguishing among conditions. Un-

like previous metric-learning approaches that have concentrated on learning projections

and weightings for scalar-valued variables, here we also explore using metric learning

where the weights correspond to different neurons in multiunit spike train metrics or

vectors of spatial amplitudes from multichannel LFPs.

With vector-valued data each individual metric is defined over a vector space. Us-

ing a weighted combination of these metrics we can form strictly spatial or temporal

5

weightings for multivariate time series. In addition, we propose to optimize multi-

neuron spike train metrics (Aronov, 2003; Houghton and Sen, 2008) formed as combi-

nations of spike train metrics defined for individual neurons (Victor and Purpura, 1996;

Van Rossum, 2001; Paiva et al., 2009). To our knowledge, ours is the first attempt to

explicitly optimize the parameters of multi-neuron spike train metrics, instead of using

pre-defined weightings.

Given the form of the projections or weightings, one must consider their optimiza-

tion. A number of metric-learning cost functions have been posed in the literature,

but we propose using a kernel-based measure of dependence known as centered align-

ment (Cortes et al., 2012). Centered alignment was shown to be a useful measure for

kernel-learning (Cortes et al., 2012), and a similar but unnormalized kernel dependence

measure, Hilbert Schmidt information criterion (HSIC), has been used for feature selec-

tion (Song et al., 2012). Another kernel-based dependence measure formulated based

on conditional entropy (Sanchez Giraldo and Principe, 2013) has also been shown to

be useful for learning a Mahalanobis distance (Sanchez Giraldo and Principe, 2013;

Brockmeier et al., 2013). The objective and optimization techniques used here are most

similar to those proposed by Fukumizu et al. (2004), but by replacing the kernel-based

canonical correlation measure (Bach and Jordan, 2003) with centered kernel alignment

we avoid both matrix inversion and regularization.

Using the kernel-based objective, we highlight the connection between optimizing

weighted tensor product kernels and metric learning. Optimizing a metric in a kernel-

based framework has the added benefit that it naturally optimizes the kernel itself for

use in support vector machines. This eliminates the need for the user to choose a kernel

6

size through cross-validation or trial-and-error. Kernels also provide a straightforward

way to form metrics corresponding to nonlinear projections. This is done by retrieving

a metric from a unweighted sum of optimized kernels—an approach distinct from op-

timizing a convex sum of kernels (Lanckriet et al., 2004). Ultimately, this leads us to

propose optimized multi-neuron spike train kernels formed as the product and the sum

of product of single-unit spike train kernels (Paiva et al., 2009; Park et al., 2012, 2013).

The rest of the paper is organized as follows: we first introduce the mathematical

representation of the neural response and different metrics that use linear projections

or weightings; from the metrics we form kernel-based similarity measures; from the

kernels we introduce the dependence measure (Cortes et al., 2012); and from these we

form metric-learning optimization problems. We verify the classification performance

of the proposed approach on benchmark datasets, and show results on experimental

datasets consisting of both local field potentials (LFPs) and spike trains. We conclude

with a discussion of the results, the connection of metric-learning to neural encoding,

and future applications.

2 Metrics and Similarity Functions

2.1 Neural Data Representation and Metrics

For the trial-wise classification of different conditions, a sample from each trial is the

concatenation of the neural response across all selected time samples, electrode chan-

nels, or neural spiking units. Let x = [x(1) . . . x(P)] denote the P -dimensional neural

response to a given trial, where parenthetical subscripts denote the response dimen-

7

sion: x(i) may be a scalar, vector, or set (in the case of spike trains). Let xj denote the

neural response for the jth trial, j ∈ {1, . . . , n}, and let lj ∈ {1, . . . ,m} denote the

discrete class label corresponding to a certain class condition for the jth trial. The set

{zj = (xj, lj)}nj=1 represents a joint sample of the neural responses and labels.

Consider the distances between pairs of neural responses along each dimension:

the distance between samples x, x′ on the ith dimension is denoted di(x(i), x
′
(i)). For

instance, this may be the Euclidean metric for scalars or vectors or a metric on spike

trains (Van Rossum, 2001; Paiva et al., 2009; Dubbs et al., 2010).

A metric for the joint neural response is formed by combining these individual dis-

tances using a feature weighting (Lowe, 1995; Takeuchi and Sugiyama, 2011), where

the weights control the importance of the distance along each dimension. Let w denote

a nonnegative P -dimensional weighting vector, such that ∀i, wi ≥ 0. The metric using

this weighting is formed as

dγw(x, x′) =
P∑
i=1

wid
γ
i (x(i), x

′
(i)), (1)

where the exponent γ ≥ 1 controls how relatively large distances on individual dimen-

sions contribute to the total distance. This is a weighted Euclidean metric if γ = 2 and

the metric for each dimension is the Euclidean or L2 metric.

If wi = 0 then the metric is actually a pseudo-metric since it does not satisfy the

property that d(x, x′) = 0 if and only if x = x′. However, this invariance to certain

dimensions is a goal of metric learning, and we will no longer make the distinction

between pseudo-metrics and metrics. For vector-valued data the weighting is a special

case of a linear transformation that is equivalent to globally scaling the input dimen-

sions: wid
γ
i (x(i), x

′
(i)) = dγi (w

1/γ
i x(i), w

1/γ
i x′(i)).

8

If each neural response is a vector of scalars, we can define a more general Euclidean

metric parametrized by a matrix A ∈ RP×Q using a linear projection of the samples

y = ATx, y(j) =
∑

iAi,jx(i), j = 1, . . . , Q. The Euclidean distance in the Q-

dimensional feature space

d2(y, y′) =
∑Q

j=1‖y(j) − y′(j)‖2
2

is equivalent to a Mahalanobis distance in the original space, with the inverse co-

variance matrix replaced by the symmetric positive definite matrix AAT:

d2
A(x, x′) = d2

(
ATx,ATx′

)
=
∥∥ATx− ATx′

∥∥2

2
= (x− x′)TAAT(x− x′). (2)

As A has P · Q coefficients there are more degrees of freedom to distort the space

according to this metric. This matrix is strictly positive definite if P = Q and AAT is

full rank; otherwise, the metric is actually a pseudo-metric.

The special case of a weighted metric (1) appears if A is diagonal and square, with

P diagonal entries Ai,i =
√
wi. More generally, a Mahalanobis distance can be seen as

a weighting over a squared distance matrix between all dimensions. Using properties

of the trace

d2
A(x, x′) = tr

[
AAT(x− x′)(x− x′)T

]
= tr

[
AATD

]
=
∑
i,j

[AAT]i,jDi,j (3)

whereDi,j = ‖x(i)−x(j)‖2
2 = 〈x(i), x(j)〉−〈x(i), x

′
(j)〉−〈x′(i), x(j)〉+〈x′(i), x′(j)〉. Unless

A is diagonal this metric exploits the inner-product between different dimensions. Writ-

ten in this form, it is clear how a Mahalanobis-type metric can be formed whenever all

the dimensions of the neural response correspond, or can be mapped, to the same Hilbert

space. Specifically, let φ : X → H define a mapping from any element x(i) ∈ X to an

element in the Hilbert space φ(x(i)) ∈ H. The Mahalanobis-type metric in this space is

9

defined by (3) where Di,j = 〈φ(x(i)), φ(x(j))〉− 〈φ(x(i)), φ(x′(j))〉− 〈φ(x′(i)), φ(x(j))〉+

〈φ(x′(i)), φ(x′(j))〉. As long as the inner-product can be defined between the dimen-

sions, for instance by using the spike-train kernels discussed in Section 2.3, one can

form metrics that use the distance between different spiking units. This would replicate

the interaction between spikes on different units intrinsic to some multi-unit metrics

(Aronov, 2003). However, evaluating the inner-product between each pair of dimen-

sions for every pair of samples is computationally demanding, and is not investigated

here.

2.2 Kernels for neural responses

Kernel functions are bivariate measures of similarity based on the inner-product be-

tween samples embedded in a Hilbert space. Let the domain of the neural response be

denoted X and consider a kernel κ : X × X → R. If κ is positive definite then there

is an implicit mapping φ : X → H that maps any element x ∈ X to an element in the

Hilbert space φ(x) ∈ H such that κ(x, x′) = 〈φ(x), φ(x′)〉.

As we want to explore the similarity across the individual dimensions of the data,

we compose a joint similarity measure from the marginal similarity on each dimension.

Let Xi denote the neural response domain of the ith dimension and consider a positive-

definite kernel κi : Xi × Xi → R and corresponding mapping φi : Xi → Hi for this

dimension. The similarity between a pair of samples x and x′ on the ith dimension is

κi(x(i), x
′
(i)) = 〈φi(x(i)), φi(x

′
(i))〉.

The joint similarity over both dimensions i and j is computed by taking the product

between the kernel evaluations κ[ij](x(i,j), x
′
(i,j)) = κi(x(i), x

′
(i)) ·κj(x(j), x

′
(j)). The new

10

kernel κ[ij] is called a tensor-product kernel since it corresponds to using a mapping

function that is the tensor-product between the individual mapping functions φ[ij] =

φi ⊗ φj where φ[ij](x(i,j)) ∈ H[ij]. The product of positive-definite kernels is positive

definite, and taking the product over all dimensions returns a positive-definite kernel

over the joint space: κ(x, x′) =
∏

i κi(x(i), x
′
(i)).

Due to the product, if for one dimension κi(x(i), x
′
(i)) ≈ 0 then κ(x, x′) ≈ 0. If some

of the dimensions are noisy with respect to the task, then they will have a deleterious

effect on the joint similarity measure. In order to separately weight the contribution of

each dimension in the product, consider taking the kernel for the ith dimension to the

θi ≥ 0 power [κi(x(i), x
′
(i))]

θi . As θi → 0 the influence of ith dimension decreases, and

θi = 0 =⇒ (κi(x(i), x
′
(i)))

θi = 1, thereby removing its effect altogether. Taking the

product over all dimensions results in a weighted product kernel over the joint space:

κθ(x, x
′) =

∏
i

[
κi(x(i), x

′
(i))
]θi , (4)

where θ = [θi . . . θP] denotes the nonnegative parameter vector. However, not all

positive-definite kernels can be taken to an arbitrary power and still be positive defi-

nite. Only the class of positive-definite kernels that are infinitely divisible (Horn, 1967)

can be taken to arbitrary powers such that the resulting kernel κθ is positive definite.

There are many infinitely divisible kernels, but our interest in metric learning leads

us to the special case of kernels that are functions of distances κ(x, x′) = f(d(x, x′)) =

f(u). Here we rely on the work of Schoenberg (1938) who explored the connection

between distance metrics and positive-definite kernel functions: a kernel that is a func-

tion of distance metric is only positive definite if the metric space can be isometrically

embedded in Hilbert space. From Schoenberg (1938) Theorem 4, the most general func-

11

tion f(u) which is bound away from zero and whose positive powers [f(u)]λ, λ > 0 are

positive definite is of the form f(u) = exp(c + ψ(u)) where ψ(u) is positive definite

and c is a constant. For kernels of this form, positive powers simply scale the constant

and function [f(u)]λ = [exp{c+ ψ(u)}]λ = exp{c′ + λψ(u)}, λ > 0.

Thus, a class of kernels whose positive powers are all positive definite are of the

form κ(x, x′) = f(d(x, x′)) = exp(c + h(x, x′)) where h(x, x′) is positive definite.

Given a metric d(x, x′), κ(x, x′) = exp(0 + h(x, x′)) = exp{−g(d(x, x′)} is positive

definite for only certain choices of g(·). In particular if dp(x, x′) corresponds to a p-

norm or an Lp metric then κ(x, x′) = exp(−dpp(x, x′)) is positive definite for 0 < p ≤ 2

(Schoenberg, 1938). Furthermore, the kernel κ(x, x′) = exp(−dγp(x, x′)) is positive

definite for 0 < p ≤ 2 and 0 < γ ≤ p (Schoenberg, 1938). For p < 1, dp is not

actually a metric since it violates the triangle inequality; nonetheless, dγp is embeddable

in a vector space for 0 < γ ≤ p.

Clearly, the Gaussian kernel κ(x, x′) = exp(−θd2(x, x′)) is positive definite if and

only if d(x, x′) is a Euclidean or L2 metric; whereas, the Laplacian kernel κ(x, x′) =

exp(−θd(x, x′)) is positive definite for an Lp metric with 1 ≤ p ≤ 2. For kernels of

this form, κθii (x(i), x
′
(i)) = exp(−θidγ(x(i), x

′
(i))), and substituting this equation into the

weighted product kernel (4) yields

κθ(x, x
′) =

P∏
i=1

exp
(
−θidγ(x(i), x

′
(i))
)

= exp

(
−

P∑
i=1

θid
γ(x(i), x

′
(i))

)
, (5)

where θi can now be regarded as a parameter of kernel κi. Letting θ = w we have

κθ(x, x
′) = exp (−dγw(x, x′)); this shows the equivalence between the weighted met-

ric (1) and parametrized product kernel (4).

Similarly, using the Mahalanobis metric (2) on scalar-valued data, a multivariate

12

Gaussian kernel can be defined as the product of Q Gaussian kernels:

κA(x, x′) = exp
(
−d2

A(x, x′)
)

=

Q∏
j=1

exp
(
−d2

(
y(j), y

′
(j)

))
, (6)

where y(j) =
∑

iAi,jx(i).

For scalar-valued data the weighted and Mahalanobis metrics correspond to linear

projections. A nonlinear metric can be formed from the direct sum of kernels—as

the sum of positive-definite functions is itself a positive-definite function. Let Θ =

[θ1, θ2, . . . , θQ] denote a matrix of different weighting vectors corresponding to a set of

product kernels {κθj}Qj=1. Define κΘ as an unweighted sum of Q product kernels:

κΘ(x, x′) =

Q∑
j=1

κθj(x, x
′) =

Q∑
j=1

P∏
i=1

exp
(
−θji dγ(x(i), x

′
(i))
)
. (7)

Let φΘ denote the implicit mapping defined by the sum kernel. This mapping defines a

metric between x and x′ that corresponds to the L2 distance in the Hilbert space

dΘ(x, x′) = ‖φΘ(x)− φΘ(x′)‖2 =
√
κΘ(x, x)− 2κΘ(x, x′) + κΘ(x′, x′). (8)

In terms of a group of samples, the γ power of the distance matrix for the ith dimen-

sion is denoted D◦γi where [D◦γi]j,k = dγ(xj(i), xk(i)) j, k ∈ {1, . . . , n}. The notation

D◦2 denotes that each element is squared D◦2 = D ◦D where ◦ denotes the entry-wise

(Hadamard) product, as opposed to the matrix product D2 = DD.

The kernel matrix for the ith dimension is Ki = exp(−θiD◦γi). The kernel matrix

for the product and sum kernels are computed asKθ = K1 ◦K2 ◦· · ·◦KP = e−
∑
i θiD

◦γ
i

and KΘ = Kθ1 + Kθ2 + · · ·KθQ . The labels of the trials can also be represented by

a kernel matrix L, where each entry Lj,k = δ(lj, lk) use the 0-1 kernel, δ(l, l′) = 1 if

l = l′ and δ(l, l′) = 0 if l 6= l′.

13

2.3 Neural Metrics

Out of the many possible neural response metrics, we consider the following metrics:

1) Temporal metrics for multivariate time-series: Each individual distance is the

Euclidean distance between the vectors of instantaneous amplitudes across the

channels. Each weight corresponds to a particular time lag. The weight adjusts

the importance of the distance between the spatial patterns of the two samples at

that particular time.

2) Spatiotemporal projections: A linear projection matrix is used to form a Maha-

lanobis distance.

3) Spike train metrics: Each individual distance is between spike trains on the same

unit at different temporal precisions. The weight adjusts the importance of each

unit at a particular temporal precision value. There are a number of spike train

metrics, but we consider two different metrics:

A) Spike train alignment metric. The metric is the L1 or L2 version of the

Victor-Purpura (VP) spike train distance (Dubbs et al., 2010; Victor and

Purpura, 1996).

B) Kernel-based spike metric. The metric is defined by the mapping φ induced

by a spike train kernel (Park et al., 2012, 2013). We use the memoryless

cross-intensity (mCI) spike train kernel (Paiva et al., 2009). Let x = T and

x = T ′ be two sets of spike times, the kernel is defined as

κ(x, x′) = 〈φ(x), φ(x′)〉 =
∑
t∈T

∑
t′∈T ′

exp(−q|t− t′|).

14

Then ‖φ(x) − φ(x′)‖2 =
√
κ(x, x)− 2κ(x, x′) + κ(x′, x′) is an L2 met-

ric (Paiva et al., 2009).

Alternatively, multichannel spike trains can be transformed to vectors in Euclidean

space. First the spike timings for each unit, are quantized into fixed-width, contigu-

ous, and non-overlapping bins. Then the binned spike count vectors for each neuron are

concatenated and a spatiotemporal projection can be applied.

Based on these metrics we use kernel functions as measures of similarity. On each

individual dimensions we use either the Gaussian kernel for the Euclidean and L2 dis-

tances or the Laplacian for L1 metrics such as the original Victor-Purpura metric. The

kernels for individual dimensions are combined using the tensor product kernel (5). The

sum of product kernels (7) consists of an unweighted sum of the weighted product ker-

nels with different weightings. For the Mahalanobis metric (2) a multivariate Gaussian

kernel is used (6).

3 Kernel-based Metric Learing

We introduce a kernel-based measure to quantify the joint information between neural

responses and labels corresponding to stimuli or condition. The measures can be used

as an objective function to optimize the metric used to evaluate the similarity among

neural responses.

15

3.1 Kernel-based Measures of Dependence

Kernel target alignment measures the similarity between two kernel functions using

their normalized inner-product (Cristianini et al., 2002). For jointly sampled data, the

inner-product of kernel functions defines a measure of dependence between random

variables (Gretton et al., 2005). Unlike Pearson’s correlation-coefficient which uses the

values of the random variables, kernel-based dependence assesses the degree to which

the similarity of example pairs, as defined by each kernel function, matches or aligns. In

terms of distance-based kernel functions, the dependence could be posed as, “Do nearby

examples, as defined by the first random variable, correspond to nearby examples in the

second random variable?”

Consider the statistical alignment of two kernel functions. Let z ∈ Z denote a

random variable and z′ be an independent and identically distributed random variable.

Let κ1 and κ2 be two kernel functions with implicit mappings φi : Z → Hi. A natu-

ral measure of similarity between these kernel functions is the expected value of their

normalized inner product across pairs of realizations

A(κ1, κ2) =
Ez,z′ [κ1(z, z′)κ2(z, z′)]√

Ez,z′ [κ2
1(z, z′)]Ez,z′ [κ2

2(z, z′)]
. (9)

Now, consider when z = (x, y) represents a joint sample of x ∈ X and y ∈ Y

and κ1, κ2 only depend on x and y, respectively: κ1(z, z′) = κx(x, x
′) and κ2(z, z′) =

κy(y, y
′). The marginal behavior of the kernels can be expressed in terms of their map-

ping functions:

φ1(z) = (φx ⊗ 1y)(x, y), where φx : X → Hx, and ∀y 1y(y) = 1 (10)

φ2(z) = (1x ⊗ φy)(x, y), where φy : Y → Hy, and ∀x 1x(x) = 1. (11)

16

Then A(κ1, κ2) =
Ex,yEx′,y′ [κx(x, x

′)κy(y, y
′)]√

ExEx′ [κ2
x(x, x

′)]EyEy′ [κ2
y(y, y

′)]
. (12)

is a measure of statistical dependence between x and y, since it is higher when similar

pairs of one variable correspond to similar pairs in the other variable. However, the

measure performs poorly in practice without centering the kernels first (Cortes et al.,

2012).

Centering plays the same role as removing the mean when computing the correlation

coefficient between scalar-valued random variables. The centered kernel alignment is

defined by Cortes et al. (2012) as

ρ(κ1, κ2) = A(κ̃1, κ̃2) (13)

κ̃i(z, z
′) = 〈φ̃i(z), φ̃i(z

′)〉 = 〈φi(z)− Ez[φi(z)], φi(z
′)− Ez′ [φi(z

′)]〉 (14)

= κi(z, z
′)− Ez′ [κi(z, z

′)]− Ez[κi(z, z
′)] + Ez,z′ [κi(z, z

′)].

Centering the mapping functions is key to a useful measure of dependence. The role

of centering can be seen by expanding the numerator of the kernel target alignment in

tensor product form:

Ez,z′ [κ1(z, z′)κ2(z, z′)] = Ez,z′〈(φ1 ⊗ φ2)(z, z), (φ1 ⊗ φ2)(z′, z′)〉

= 〈Ez[(φ1 ◦ φ2)(z)],Ez′ [(φ1 ◦ φ2)(z′)]〉

= ‖Ez[(φ1 ◦ φ2)(z)]‖2
2 (15)

Writing the original kernel in terms of the centered kernel (14) yields

Ez(φ1 ◦ φ2)(z) = Ez(φ̃1 + Ez′ [φ1(z′)]) ◦ (φ̃2 + Ez′ [φ2(z′)])(z)

= Ez(φ̃1 ◦ φ̃2)(z) + µ1 ◦ µ2 + µ2 ◦ φ̃1(z) + µ1 ◦ φ̃2(z)

= Ez(φ̃1 ◦ φ̃2)(z) + µ1 ◦ µ2

17

where µi = Ez(φi(z)) and Ez(φ̃i(z)) = 0. In terms of the marginal kernels

µ1◦µ2 = Ex,y[(φx⊗1y)(x, y)]◦Ex,y[(1x⊗φy)(x, y)] = (Exφx(x))⊗(Eyφy(y)) = µx⊗µy,

which is only a measure of the marginals—not of their joint distribution—thus its biases

the norm in (15) regardless of the dependence between x and y.

Again if z = (x, y) and κ1(z, z′) = κx(x, x
′) and κ2(z, z′) = κy(y, y

′), then

ρ(κ1, κ2) = ρκx,κy(x, y) is a measure of statistical dependence between x and y:

ρκx,κy(x, y) =
Ex,yEx′,y′ [κ̃x(x, x

′)κ̃y(y, y
′)]√

ExEx′ [κ̃2
x(x, x

′)]EyEy′ [κ̃2
y(y, y

′)]
. (16)

For positive-definite-symmetric kernels, ρκx,κy ∈ [0, 1] (Cortes et al., 2012). Centered

alignment is essentially a normalized version of the Hilbert-Schmidt Information Crite-

rion (Gretton et al., 2005).

An empirical estimate of the centered alignment can be computed directly from the

kernel matrices K and L where [K]i,j = κx(xi, xj) and [L]i,j = κy(yi, yj):

ρ̂(K,L) =
〈K̃, L̃〉√
〈K̃, K̃〉〈L̃, L̃〉

=
〈K̃, L̃〉
‖K̃‖2‖L̃‖2

(17)

where K̃ and L̃ are the centered kernel matrices. The centered kernel is computed as

[K̃]i,j = [K]i,j −
1

n

n∑
i=1

[K]i,j −
1

n

n∑
j=1

[K]i,j +
1

n2

n∑
i=1

n∑
j=1

[K]i,j. (18)

Using matrix multiplication, K̃ = HKH , whereH = I− 1
n
11T is the empirical center-

ing matrix, I is the n× n identity matrix, and 1 is a vector of ones. The computational

complexity of centered alignment between two n× n kernel matrices is O(n2).

18

3.2 Metric Learning Optimization

Our objective for metric learning is to maximize the dependence between the neural

data representation and the class label. Centered alignment is used to evaluate the de-

pendence in terms of the kernel representations. The 0-1 kernel on the labels is fixed,

and the parameters of a metric-based kernel defined in Section 2.2 are optimized in

order to maximize the centered alignment.

For convenience, we use the logarithm of the centered alignment as the objective.

With or without the logarithm the kernel-based objective is a nonlinear functions of the

parameters, and we propose to use approximate inverse Hessian and stochastic gradient

methods for optimization. We detail the gradients below.

First, we consider optimizing the sum and product kernels. As the product kernel

(5) is the trivial case of the sum kernel (7), we consider only the optimization of the

sum kernel parameters Θ = [θji]
P,Q
i=1,j=1 in the following problem:

maximize
Θ≥0

log(ρκΘ,δ(x, l)). (19)

When the empirical estimate of centered alignment is substituted the explicit objective

function is

f(Θ) = log(ρ̂(KΘ, L)) = log(tr(KΘHLH))− log(
√

tr(KΘHKΘH)) + k (20)

where KΘ is the kernel matrix of the responses, L is the 0-1 kernel matrix of the labels,

H is the centering matrix, and k is a constant that does not depend on Θ. The gradient

of the objective function with respect to the kernel matrix is

G = ∇KΘ
f(Θ) =

HLH

tr(KΘHLH)
− HKΘH

tr(KΘHKΘH)
. (21)

19

The gradient kernel with respect to the kernel parameter θji is ∂KΘ

∂θji
= −Kθj ◦D◦γi . Then

the gradient of the objective is

∂f(Θ)

∂θji
= tr ((−Kθj ◦D◦γi)G) . (22)

The non-negativity constraint on Θ can be removed by performing the optimization in

terms of u where θji = 10u
j
i . The gradients can be made in terms of unconstrained

optimization variables ui by ∂f(Θ)

∂uji
= θi log(10)∂f(Θ)

∂θji
. This yields an unconstrained

optimization.

For the case of scalar-valued data we explore learning a Mahalanobis metric (6)

using the logarithm of the empirical centered alignment as the objective:

maximize
A

f(A) = log(ρ̂(KA, L)) (23)

The gradient of the objective function with respect to A is

∇Af(A) = −4XT
(
(G ◦KA)− diag(1T(G ◦KA))

)
XA (24)

where X is a n× P matrix of the data, G is the gradient of the objective function with

respect to the kernel matrix (21), and 1 is a vector of ones.

For the approximate inverse Hessian optimization we use minFunc (Schmidt, 2012),

using the default limited memory BFGS update. For the sum and product kernels, prior

to optimization the individual matrices D◦γi are all normalized such that the average

across all elements is 1. For the product kernel all the weights are initialized to be 10−3

and for the sum of product kernels they are uniformly distributed in 10−3 ± 10−4. For

the Mahalanobis distance, the optimization of A yields varying results depending on

the initial value of A, but using the projection from Fisher discriminant analysis for

initialization performs well in practice.

20

As an alternative optimization that can handle large sample sizes, we use a stochastic

gradient over small batches. Specifically, we use a paradigm commonly used in feature

selection: at each iteration, one example is sampled and then a pre-specified number

of examples of the same class and from differing classes are sampled to form the batch

(Kira and Rendell, 1992). For each batch, the weights are updated based on the gradi-

ent of the objective. Very small batches—even just four examples—are sufficient for

learning the parameters of the product kernel, but to learn a Mahalanobis distance we

found larges batches, in the hundreds, are necessary.

4 Benchmark Comparison

Using publicly available datasets, we compare centered alignment metric learning to op-

timize a weighted metric to a feature weighting method (Takeuchi and Sugiyama, 2011).

The feature weighting is explicitly optimized to improve the k-nearest neighbor clas-

sification; this serves as a benchmark for centered alignment metric learning, which is

not tuned to any particular classifier. The method was shown to consistently outperform

other feature weighting methods. For a valid comparison the specifics of the benchmark

comparison by Takeuchi and Sugiyama (2011) are replicated; we use the same UCI

machine learning datasets (Bache and Lichman, 2013; Cortez et al., 2009; Little et al.,

2007) and classification scenario (1/3 for training, 1/3 to choose k, number of near-

est neighbors, through cross-validation, and 1/3 for testing). However, we increase the

Monte Carlo divisions to 200 for statistical comparison. As a sanity check, Euclidean

distance after normalizing the variance of the features is also used. We tested both the

21

L-BFGS optimization and the mini-batch with 4 sample batches, 10,000 batches, and

a step size of 0.01. We did not rerun the sequential quadratic program-based feature

weighting (Takeuchi and Sugiyama, 2011), but instead list the value they report for the

mean error rate across 10 Monte Carlos divisions.

The results are displayed in Table 1. On these small scale problems—maximum

dimensions is 57—none of the compared methods consistently outperforms the best.

Considering the best of the two proposed optimization methods, centered alignment

metric learning performs best on half of the datasets.

5 Data collection

All animal procedures were approved by the SUNY Downstate Medical Center IACUC

and conformed to National Institutes of Health guidelines. Cortical local field poten-

tials and action potentials were recorded during natural tactile stimulation of forepaw

digits and palm of 4 female Long-Evans rats under anesthesia.1 After induction using

isoflurane, urethane was used to maintain anesthetic depth. A 32-channel microelec-

trode array (Blackrock Microsystems) was inserted into the hand region of the primary

somatosensory cortex (S1). The array was arranged in a 6×6 grid (excluding the four

corners) with 400 µm spacing between neighboring electrodes. Another array was in-

serted into the VPL region of the thalamus, but the signals are not used here.

Using a motorized probe, the right forepaw was touched 225 times at up to 9 sites—

4 digits and 5 sites on the palm. For each touch site, the probe was positioned 4 mm

above the surface of the skin and momentarily pressed down for 150 ms, as seen in

1A subset of this data has been analyzed previously using other methods (Brockmeier et al., 2013).

22

Figure 1; this was repeated 25 times at random intervals. The 4 datasets had 3, 8, 9, and

9 touch sites resulting in 75, 200, 225, and 225 samples, respectively.

The LFPs were band-pass filtered with cutoffs (5 Hz, 300 Hz) and sampled at a rate

of 1220.7 Hz. Then the LFPs were digitally filtered using a 3rd-order Butterworth high-

pass filter with cutoff of 4 Hz and notch filters at 60 Hz and harmonics. For analysis,

the neural response in a 270ms window following each touch onset was used, which

corresponds to 330 discrete time samples. For 32 channels this results in 330 · 32 =

10, 560 dimensions.

Across the 4 datasets, automatic spike-sorting selected 95, 64, 64, and 38 multi-

neuron units from the 32 channels. Of these, only 68, 62, 36, and 24 units were used,

whose average firing rate was below 30 Hz in the 270 ms window following touch onset.

Figure 1: Experimental setup showing motorized lever touching digit 1 on the forepaw.

6 Results

We explored centered alignment metric learning (CAML) for both spike trains and local

field potentials (LFPs) using the cases listed in Section 2.3. For LFPs and binned spike

trains we compared with multi-class Fisher discriminant analysis (FDA) (Fukunaga,

1990) and large-margin nearest neighbor (LMNN) (Weinberger et al., 2006; Weinberger

23

and Saul, 2009). For the linear projections, PCA was used to reduce the dimensionality

to 1/2 of the number of samples in the dataset. The FDA solution is the set of eigenvec-

tors corresponding to a generalized eigenvalue problem. The dimensions can be chosen

as the maximum number of non-zero eigenvalues, which is one less than the number

of classes (Fukunaga, 1990). The FDA solution was used as the initial projection for

LMNN and CAML Mahalanobis metric. An efficient MATLAB implementation of

LMNN is publicly available, and besides the initialization (which greatly increased the

performance) default parameters were used.

To compare classification performance, 20 Monte Carlo divisions of the datasets

into training and testing sets were made. For training, 2/3 of the samples in each class

were used, the remainder of the samples were used in testing. On each Monte Carlo

run, the metrics were optimized on the training set. Testing set samples were labeled

by either a one-nearest-neighbor (1-NN) or a support vector machine (SVM) classifier.

SVM training and testing was performed using the libsvm (ver. 3.17) (Chang and

Lin, 2011) implementation with the user-provided kernel matrix. The regularization

parameter was chosen through 5-fold cross-validation. For CAML the kernel is directly

optimized as part of the metric learning, but for FDA, LMNN, and the unweighted

metrics a Gaussian kernel was used with the kernel size chosen from a discrete set

using 5-fold cross-validation.

The set of the highest performing methods for each dataset was found by selecting

the best performing method and finding those that were not significantly different using

a two-sample Welch test with significance of 0.05.

24

6.1 Decoding Touch Location from Spike Trains

Multiunit spike-train metrics using the single-unit Victor-Purpura (VP) and kernel-

based (mCI) metrics were optimized for touch location classification. For each unit the

distance is computed with different values for the temporal precision value q (higher

values of q require more precise alignment): for the Victor-Purpura distance the set

(0.01, 0.1, 1.0) s−1 was used, and for the spike train kernel-based metrics (mCI) the

set (10−9, 0.01, 0.1, 1, 10, 100) s−1 was used. For the Victor-Purpura distance, the

L2 version (Dubbs et al., 2010) was used.2 The classification rates for the weighted

spike-train metrics are in Table 2. With the CAML-optimized product kernel the av-

erage classification rate increased by at least 8 percentage points for both metrics and

both classifiers. For the sum kernel with Q = 5 the accuracy was further increased.

For binned spike trains a Mahalanobis metric was optimized using FDA, CAML,

and LMNN. The results across a range of different bin sizes are shown in Figure 2.

On three datasets the best binned metrics performed worse than the optimized spike-

train metrics. For each dataset and method the performance using the bin size with

the highest average accuracy is shown in Table 3. On three of the datasets the Maha-

lanobis metric optimized with CAML tied or outperformed the FDA solution, and on

all datasets using LMNN decreased performance.

We used classical multidimensional scaling (MDS) (Torgerson, 1952) and t-distributed

stochastic neighborhood embedding (t-SNE) (van der Maaten and Hinton, 2008) to find

a two-dimensional embedding of the distance matrices before and after training the met-

2Experiments with the original L1 version (Victor and Purpura, 1996) with a Laplacian kernel were

also performed, but there was no significant difference.

25

cl
a
ss

if
ic

a
ti

o
n

 r
a
te

1 5 10 20 50 100 200
0.5

0.6

0.7

0.8

0.9

1

bin size (ms)

dataset 1 (3 classes)

1 5 10 20 50 100 200
0.4

0.5

0.6

0.7

0.8

0.9

bin size (ms)

dataset 2 (8 classes)

1 5 10 20 50 100 200

0.3

0.4

0.5

bin size (ms)

dataset 3 (9 classes)

1 5 10 20 50 100 200

0.2

0.25

0.3

0.35

0.4

bin size (ms)

dataset 4 (9 classes)

VP
mCI
CA−VP
CA−mCI
FDA
CA
LMNN

Figure 2: SVM-based classification rate using multi-unit spike train metrics and binned

spike count metrics with varying binsizes: unweighted Victor-Purpura (VP) and kernel-

based (mCI) metrics, centered alignment metric learning optimized spike train metrics

(CA-VP, CA-mCI), and Mahalanobis metrics on binned spike trains optimized with

Fisher discriminant analysis (FDA), centered alignment (CA), and large margin nearest

neighbor (LMNN).

ric. The embedding is formed without knowledge of the class labels. From Figure 3

it is clear that metric learning with the product kernel increases distances among the

different classes while decreasing the distances among samples within the same class.

In Figure 4(A), we show how the optimized spike-train metric can be used to identify

both the temporal precision and spiking units most useful for the decoding task.

6.2 Decoding Touch Location from LFPs

The classification rates for learning spatiotemporal metrics on LFP are tabulated in Ta-

ble 4. Using CAML to optimize just a single temporal weighting improves the accuracy

by 21 and 14.7 percentage points for 1-NN and SVM, respectively. Using a sum ker-

nel composed of Q = 5 product kernels further increased the performance by 2.2 and

4 percentage points. The optimized weights for a single product kernel are shown in

26

d1
d2
d3
d4
p1
p2
p3
mp

d2
d1

d3

d4

mp

p2

p3 p1

(A) MDS embedding
before learning

mp
p1
d1

d1
d2
d3
d4
p1
p2
p3
mp
lp

(B) MDS embedding
after learning

(C) t-SNE
before learning

(D) t-SNE
after learning

d2
d1

d3

d4

mp

p2

p3

lp

p1

d2
d1

d3

d4

mp

p2

p3

lp

p1

Figure 3: Comparison of metric-based dimensionality reduction before and after using

centered alignment metric learning (CAML) to optimize a weighted combination of

Victor-Purpura spike train distances. In (A) and (B) a two-dimensional embedding is

formed using multidimensional scaling (MDS) before and after learning. In (C) and (D)

t-distributed stochastic neighborhood embedding (t-SNE) is used to form a nonlinear

embedding where the algorithm’s perplexity parameter was fixed at 10.

Figure 4(B). Overall, using FDA to optimize a linear projection was able to achieve the

highest classification rates with average improvement over Euclidean distance by 33.5

and 23.4 percentage points for 1-NN and SVM.

Finally, a multiscale metric was learned as the weighted combination of the opti-

mized spike distance and optimized LFP distance. On these datasets the combination

of spiking and LFPs did not increase the classification rate versus using only LFPs, and

27

0 10 25 50 100 150 200 250

4

3

2

1

da
ta
se
t

time (ms)

anteriorla
te
ra
l

0.01 s−1q= 0.1 s−1q= 1 s−1q=(A) (B)

Figure 4: (A) Learned weights for the optimized Victor-Purpura spike-train metric

(CAML-VP) shown across the array as a Hinton diagram—the size of each square is

relative to the maximum weight of all units on the channel. Each subplot shows the

weights for a different choice of the temporal precision value q; the weights for all tem-

poral precision values are learned at the same time for dataset 2. (B) Learned weighting

for each time lag across all datasets for the local field potential metric trained using

centered alignment metric learning with the product kernel (θ-CAML).

the weight assigned to the spiking metric was insignificant compared to the weight as-

signed to the LFP metric. The average classification accuracy across the datasets was

slightly lower than using just the LFP metric.

7 Discussion

7.1 Metric Learning for Neural Decoding

From the results it is clear that metric learning achieves three goals: increases the de-

coding accuracy, identifies important dimensions of the neural response, and improves

the ability of manifold learning techniques to visualize the data in a low-dimensional

space.

28

For spike trains, the average performance of the optimized multi-unit spike train

metrics exceeded those based on binning. To our knowledge this is the first work on

optimizing a multi-neuron metric that is non-parametric and does not require binning.

In the framework of the kernel-based dependence measure, this optimization explicitly

optimizes the contribution of each dimension using tensor product kernels for multi-

neuron spike trains.

On all datasets the performance from using the unweighted multi-neuron spike train

metrics was lower than using the optimized Mahalanobis metrics on the binned repre-

sentation. In essence, a simple linear projection of binned spike trains performs better

than binless metrics that are not optimized. The precision offered by binless methods

is only realized after optimization. This highlights the importance of metric learning

versus naively combining the single-unit metrics.

FDA achieved the best performance for this static decoding task using the time-

locked evoked LFPs. FDA is well-suited for this setting since the class conditional LFP

responses are approximately normally distributed—an underlying assumption for FDA.

In addition, the FDA solution is also the fastest solution; consequently, FDA should

always be the baseline for discrete decoding of sensory evoked LFPs. Alternatively,

for binned spikes using CAML to further optimize the FDA projection marginally in-

creased the classification performance. Overall, FDA and CAML outperformed LMNN

in optimizing a Mahalanobis metric.

One drawback of the Mahalanobis metric is the ability to analyze the projection

matrices themselves, i.e, it is difficult to match and compare linear projections learned

across multiple subjects or tasks, especially for high-rank projections. In this case using

29

a weighted metric, which has lower accuracy but far fewer parameters, is more easily

interpretable. From Figure 4B it is clear that the weighted metrics can be used to iden-

tify dimensions, in this case time lags, that are useful for discrimination. In addition, it

appears that the optimization leads to a very sparse set of weights.

In terms of neural decoding, we compared the classification rate, as a proxy for the

information content, of the neural responses. We have also highlighted how changing

the underlying metric of the neural response space can improve the visualization results

from unsupervised manifold learning algorithms. Indeed from Figure 3 a user can im-

mediately judge which classes are more similar or indistinguishable. The non-linear

embeddings preserve some features of the stimulus space’s topology, e.g., the separa-

tion between digit responses and palm responses in dataset 3 and the preservation of the

relative arrangement of the three touch sites in dataset 2.

7.2 Metric Learning for Neural Encoding

We have concentrated on the problem of neural decoding, but the proposed algorithms

are also applicable to the neural encoding problem, wherein, the role of the stimulus and

neural response are reversed. More specifically, for neural encoding, the metric on the

neural response is fixed, the neural activity, e.g., the spiking of a single neuron, is treated

as the target or label variable and a metric on the stimulus is adjusted. For instance, if

the neuron is assumed to be a simple cell with a linear receptive field, then learning the

receptive field is equivalent to learning a Mahalanobis distance on the stimulus space.

The ideas that have been developed for metric-learning/supervised dimensionality

reduction in the machine learning community are fundamentally similar to the algo-

30

rithms for inferring the linear receptive fields of neurons in the computational neuro-

science community, but the nomenclature and domain has differentiated them. Re-

cently, researchers have begun to bridge this gap using kernel-based measures of de-

pendence (Sinz et al., 2013). To further highlight this connection, we replicated the

experiments by Sharpee et al. (2004), but instead of using the maximally informative

directions algorithm we used centered alignment metric learning, with the mini-batch

optimization. To save space the experimental detail and results are posted online.3

Interestingly, most neural encoding models have concentrated on linear projections

corresponding to Mahalanobis-based distances, whereas recent work has shown that

the stimulus metric corresponding to a neural population can be highly non-Euclidean

Tkačik et al. (2013). Thus, future work can investigate how non-Euclidean metrics

can be learned. Additionally, the joint optimization of the metrics on both the neural

response and the stimulus is worth investigating in future work.

7.3 Kernel-based Metric Learning

In the kernel-learning framework, we have proposed to use a weighted product ker-

nel, where adjusting the weights changes the underlying kernel and associated Hilbert

space. This leads to non-convex optimization, which we solve using first-order meth-

ods. In addition, the sum of weighted product kernels uses a different set of weights for

each product kernel and achieves increased performance. This formulation is distinct

from the multiple kernel learning Lanckriet et al. (2004); Cortes et al. (2012); Yamada

et al. (2013), where there is an explicit weight associated with each kernel in the sum

3http://cnel.ufl.edu/˜ajbrockmeier/metric/

31

and each summand kernel is chosen a priori (i.e., in the case of Gaussian kernel, the

kernel size is not optimized and must be preselected). The main benefit of the mul-

tiple kernel learning is that a convex optimization problem can be posed to optimize

the weights. Alternatively, the weighted product kernels and sum of weighted product

kernels constitutes a much richer family of kernel functions than the weighted sum of

kernels. We only need to select the number of summand kernels; fully exploring how

to chose this number is left for future work.

Linear projections and weighted metrics are two special cases of metric learning

that have received the most study. Indeed, the weighted combination of metrics was

used in some of the earliest work on metric learning (Lowe, 1995). We have gone

beyond this by using a sum of weighted product kernels, which computes distances

in the Hilbert space that correspond to nonlinear transformations of the data samples.

The sum of weighed product kernels still has interpretable parameters, quite unlike

kernelized projections (Baudat and Anouar, 2000), where the transformations are only

defined in terms of the samples instead of the original dimensions.

Conclusion

We have covered a class of kernels applicable to metric learning and have proposed to

use a kernel-based dependence measure to train linear projections, weighted combina-

tions of metrics in product kernels, and nonlinear combinations of metrics using the

sum of weighted product kernels. These metrics were optimized on a neural dataset

consisting of both spike trains and local field potentials, for which metric learning im-

32

proves both nearest neighbor and SVM classification accuracy over unweighted alter-

natives. Within the proposed framework, the optimized multiunit spike train metrics,

which avoid binning, outperform both unweighted multiunit metrics and metrics opti-

mized for the binned spike trains. In addition, metric learning improves the quality of

the visualizations obtained via nonlinear dimensionality reduction; this is useful for an-

alyzing the relationship between high-dimensional neural data and target variables. The

optimized weights themselves indicate the relative relevancy of different dimensions of

the neural response. This can be used to explore how the weights of specific chan-

nels or neurons change for different tasks. Overall, optimizing metrics is a worthwhile

approach for investigating neural representations.

Acknowledgments

This work was supported in part by DARPA Contract N66001-10-C-2008. We want to

thank Memming Park, Luis Giraldo Sanchez, and Sohan Seth for their helpful discus-

sions and insight on topics that lead to this work. We would like to thank the reviewers

for suggestions that have improved this work.

References

Aronov, D. (2003). Fast algorithm for the metric-space analysis of simultaneous re-

sponses of multiple single neurons. Journal of Neuroscience Methods, 124(2):175–

179.

33

Bach, F. R. and Jordan, M. I. (2003). Kernel independent component analysis. The

Journal of Machine Learning Research, 3:1–48.

Bache, K. and Lichman, M. (2013). UCI machine learning repository.

Baudat, G. and Anouar, F. (2000). Generalized discriminant analysis using a kernel

approach. Neural Computation, 12(10):2385–2404.

Brockmeier, A. J., Kriminger, E., Sanchez, J. C., and Principe, J. C. (2011). Latent

state visualization of neural firing rates. In Neural Engineering (NER), 2011 5th

International IEEE/EMBS Conference on, pages 144–147.

Brockmeier, A. J., Park, I., Mahmoudi, B., Sanchez, J. C., and Principe, J. C. (2010).

Spatio-temporal clustering of firing rates for neural state estimation. In Engineering

in Medicine and Biology Society (EMBC), 2010 Annual International Conference of

the IEEE, pages 6023–6026.

Brockmeier, A. J., Sanchez Giraldo, L. G., Emigh, M. S., Bae, J., Choi, J. S., Francis,

J. T., and Principe, J. C. (2013). Information-theoretic metric learning: 2–D linear

projections of neural data for visualization. In Engineering in Medicine and Biology

Society (EMBC), 2013 Annual International Conference of the IEEE.

Broome, B. M., Jayaraman, V., and Laurent, G. (2006). Encoding and decoding of

overlapping odor sequences. Neuron, 51(4):467–482.

Bunte, K., Biehl, M., and Hammer, B. (2012). A general framework for dimensionality-

reducing data visualization mapping. Neural Computation, 24(3):771–804.

34

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vector machines.

ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27. Software

available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

Churchland, M. M., Yu, B. M., Cunningham, J. P., Sugrue, L. P., Cohen, M. R., Cor-

rado, G. S., Newsome, W. T., Clark, A. M., Hosseini, P., Scott, B. B., Bradley, D. C.,

Smith, M. A., Kohn, A., Movshon, J. A., Armstrong, K. M., Moore, T., Chang, S. W.,

Snyder, L. H., Lisberger, S. G., Priebe, N. J., Finn, I. M., Ferster, D., Ryu, S. I., San-

thanam, G., Sahani, M., and Shenoy, K. V. (2010). Stimulus onset quenches neural

variability: a widespread cortical phenomenon. Nature Neuroscience, 13(3):369–

378.

Cortes, C., Mohri, M., and Rostamizadeh, A. (2012). Algorithms for learning kernels

based on centered alignment. The Journal of Machine Learning Research, 13:795–

828.

Cortez, P., Cerdeira, A., Almeida, F., Matos, T., and Reis, J. (2009). Modeling wine

preferences by data mining from physicochemical properties. Decision Support Sys-

tems, 47(4):547–553.

Cowley, B., Kaufman, M., Churchland, M., Ryu, S., Shenoy, K., and Yu, B.

(2012). Datahigh: Graphical user interface for visualizing and interacting with

high-dimensional neural activity. In Engineering in Medicine and Biology Society

(EMBC), 2012 Annual International Conference of the IEEE, pages 4607–4610.

Cristianini, N., Shawe-Taylor, J., Elisseeff, A., and Kandola, J. (2002). On kernel-target

35

alignment. In Dietterich, T., Becker, S., and Ghahramani, Z., editors, Advances in

Neural Information Processing Systems 14, Cambridge, MA. MIT Press.

Dubbs, A. J., Seiler, B. A., and Magnasco, M. O. (2010). A fast Lp spike alignment

metric. Neural Computation, 22(11):2785–2808.

Fukumizu, K., Bach, F. R., and Jordan, M. I. (2004). Dimensionality reduction for

supervised learning with reproducing kernel hilbert spaces. The Journal of Machine

Learning Research, 5:73–99.

Fukunaga, K. (1990). Introduction to statistical pattern recognition. Academic Press.

Gretton, A., Bousquet, O., Smola, A., and Schölkopf, B. (2005). Measuring statistical

dependence with hilbert-schmidt norms. In Algorithmic learning theory, pages 63–

77. Springer.

Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection.

The Journal of Machine Learning Research, 3:1157–1182.

Horn, R. A. (1967). On infinitely divisible matrices, kernels, and functions. Zeitschrift

für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 8(3):219–230.

Houghton, C. and Sen, K. (2008). A new multineuron spike train metric. Neural

Computation, 20(6):1495–1511.

Kemere, C., Santhanam, G., Yu, B., Afshar, A., Ryu, S., Meng, T., and Shenoy, K.

(2008). Detecting neural-state transitions using hidden Markov models for motor

cortical prostheses. Journal of Neurophysiology, 100(4):2441.

36

Kira, K. and Rendell, L. A. (1992). The feature selection problem: Traditional methods

and a new algorithm. In AAAI, pages 129–134.

Lanckriet, G. R., Cristianini, N., Bartlett, P., Ghaoui, L. E., and Jordan, M. I. (2004).

Learning the kernel matrix with semidefinite programming. The Journal of Machine

Learning Research, 5:27–72.

Little, M. A., McSharry, P. E., Roberts, S. J., Costello, D. A., Moroz, I. M., et al. (2007).

Exploiting nonlinear recurrence and fractal scaling properties for voice disorder de-

tection. BioMedical Engineering OnLine, 6(1):23.

Lowe, D. G. (1995). Similarity metric learning for a variable-kernel classifier. Neural

Computation, 7(1):72–85.

Navot, A., Shpigelman, L., Tishby, N., and Vaadia, E. (2006). Nearest neighbor based

feature selection for regression and its application to neural activity. In Weiss, Y.,

Schölkopf, B., and Platt, J., editors, Advances in Neural Information Processing Sys-

tems 18, pages 995–1002. MIT Press, Cambridge, MA.

Paiva, A. R., Park, I., and Prı́ncipe, J. C. (2009). A reproducing kernel Hilbert space

framework for spike train signal processing. Neural Computation, 21(2):424–449.

Park, I. M., Seth, S., Paiva, A., Li, L., and Principe, J. (2013). Kernel methods on

spike train space for neuroscience: A tutorial. Signal Processing Magazine, IEEE,

30(4):149–160.

Park, I. M., Seth, S., Rao, M., and Prı́ncipe, J. C. (2012). Strictly positive-definite spike

train kernels for point-process divergences. Neural Computation, 24(8):2223–2250.

37

Peng, H., Long, F., and Ding, C. (2005). Feature selection based on mutual information

criteria of max-dependency, max-relevance, and min-redundancy. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 27(8):1226–1238.

Petreska, B., Yu, B. M., Cunningham, J. P., Santhanam, G., Ryu, S. I., Shenoy, K. V.,

and Sahani, M. (2011). Dynamical segmentation of single trials from population

neural data. In Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., and Weinberger,

K., editors, Advances in Neural Information Processing Systems 24, pages 756–764.

Radons, G., Becker, J., Dülfer, B., and Krüger, J. (1994). Analysis, classification,

and coding of multielectrode spike trains with hidden Markov models. Biological

Cybernetics, 71:359–373.

Roweis, S. and Saul, L. (2000). Nonlinear dimensionality reduction by locally linear

embedding. Science, 290(5500):2323.

Sammon, Jr., J. W. (1969). A nonlinear mapping for data structure analysis. Computers,

IEEE Transactions on, C-18(5):401–409.

Sanchez Giraldo, L. G. and Principe, J. C. (2013). Information theoretic learning with

infinitely divisible kernels. In International Conference on Learning Representations.

Schmidt, M. (2012). minFunc. Software available at http://www.di.ens.fr/

˜mschmidt/Software/minFunc.html.

Schoenberg, I. J. (1938). Metric spaces and positive definite functions. Transactions of

the American Mathematical Society, 44(3):522–536.

38

Schölkopf, B., Smola, A., and Müller, K.-R. (1998). Nonlinear component analysis as

a kernel eigenvalue problem. Neural Computation, 10(5):1299–1319.

Seidemann, E., Meilijson, I., Abeles, M., Bergman, H., and Vaadia, E. (1996). Simul-

taneously recorded single units in the frontal cortex go through sequences of discrete

and stable states in monkeys performing a delayed localization task. Journal of Neu-

roscience, 16(2):752.

Sharpee, T., Rust, N. C., and Bialek, W. (2004). Analyzing neural responses to natural

signals: maximally informative dimensions. Neural computation, 16(2):223–250.

Sinz, F., Stockl, A., Grewe, J., and Benda, J. (2013). Least informative dimensions. In

Advances in Neural Information Processing Systems 26, pages 413–421.

Song, L., Bedo, J., Borgwardt, K. M., Gretton, A., and Smola, A. (2007). Gene selection

via the BAHSIC family of algorithms. Bioinformatics, 23(13):i490–i498.

Song, L., Smola, A., Gretton, A., Bedo, J., and Borgwardt, K. (2012). Feature selection

via dependence maximization. The Journal of Machine Learning Research, 13:1393–

1434.

Stopfer, M., Jayaraman, V., and Laurent, G. (2003). Intensity versus identity coding in

an olfactory system. Neuron, 39(6):991–1004.

Sugiyama, M. (2007). Dimensionality reduction of multimodal labeled data by local

fisher discriminant analysis. The Journal of Machine Learning Research, 8:1027–

1061.

39

Takeuchi, I. and Sugiyama, M. (2011). Target neighbor consistent feature weighting for

nearest neighbor classification. In Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira,

F., and Weinberger, K., editors, Advances in Neural Information Processing Systems

24, pages 576–584.

Tenenbaum, J. B., De Silva, V., and Langford, J. (2000). A global geometric framework

for nonlinear dimensionality reduction. Science, 290(5500):2319–2323.

Tkačik, G., Granot-Atedgi, E., Segev, R., and Schneidman, E. (2013). Retinal metric: a

stimulus distance measure derived from population neural responses. Physical review

letters, 110(5):058104.

Torgerson, W. S. (1952). Multidimensional scaling: I. theory and method. Psychome-

trika, 17(4):401–419.

van der Maaten, L. and Hinton, G. (2008). Visualizing Data using t-SNE. The Journal

of Machine Learning Research, 9:2579–2605.

Van Rossum, M. C. W. (2001). A novel spike distance. Neural Computation, 13:751–

763.

Victor, J. D. and Purpura, K. P. (1996). Nature and precision of temporal coding in

visual cortex: a metric-space analysis. Journal of Neurophysiology, 76(2):1310–

1326.

Weinberger, K., Blitzer, J., and Saul, L. (2006). Distance metric learning for large

margin nearest neighbor classification. In Weiss, Y., Schölkopf, B., and Platt, J.,

40

editors, Advances in Neural Information Processing Systems 18, pages 1473–1480.

MIT Press, Cambridge, MA.

Weinberger, K. Q. and Saul, L. K. (2009). Distance metric learning for large margin

nearest neighbor classification. The Journal of Machine Learning Research, 10:207–

244.

Weinberger, K. Q. and Tesauro, G. (2007). Metric learning for kernel regression. In

International Conference on Artificial Intelligence and Statistics, pages 612–619.

Xing, E. P., Ng, A. Y., Jordan, M. I., and Russell, S. (2003). Distance metric learning

with application to clustering with side-information. In S. Becker, S. T. and Ober-

mayer, K., editors, Advances in Neural Information Processing Systems 15, pages

505–512. MIT Press, Cambridge, MA.

Yamada, M., Jitkrittum, W., Sigal, L., Xing, E. P., and Sugiyama, M. (2013). High-

dimensional feature selection by feature-wise kernelized lasso. Neural Computation,

26(1):185–207.

Yu, B. M., Cunningham, J. P., Santhanam, G., Ryu, S. I., Shenoy, K. V., and Sahani, M.

(2009a). Gaussian-process factor analysis for low-dimensional single-trial analysis of

neural population activity. In Koller, D., Schuurmans, D., Bengio, Y., and Bottou, L.,

editors, Advances in Neural Information Processing Systems 21, pages 1881–1888.

Yu, B. M., Cunningham, J. P., Santhanam, G., Ryu, S. I., Shenoy, K. V., and Sahani,

M. (2009b). Gaussian-Process Factor Analysis for Low-Dimensional Single-Trial

41

Analysis of Neural Population Activity. Journal of Neurophysiology, 102(1):614–

635.

42

Table 1: k-nearest neighbor classification error (% incorrect) across 10 UCI datasets

using different feature weightings. Columns denoted |C|, P , and n indicate the num-

ber of classes, features, and samples, respectively. The sequential quadratic program-

based feature weighting (FW) (Takeuchi and Sugiyama, 2011) is compared to an un-

weighted normalized Euclidean distance (Euclid.) and centered alignment metric learn-

ing (CAML) to optimize a product kernel. The mini-batch approximation is indicated

as (∼CAML). (Bold indicates best performing methods, which were not significantly

different p > 0.05 for either a one-sample t-test versus FW, or a two-sample t-test.)

Dataset |C| P n FW Euclid. CAML ∼CAML

Pen-Based Recog. 10 16 10992 1.1 1.0±0.2 N/A 1.2±0.2

Breast Wisc. (Diag.) 2 30 569 4.0 4.8±1.7 4.4±1.5 4.3±1.4

Page Blocks 5 10 5473 4.6 4.1±0.5 4.6±0.5 4.3±0.5

Image Segmentation 7 18 2310 5.2 6.2±1.0 3.3±0.8 4.6±0.8

Ionosphere 2 33 351 12.2 16.3±3.9 10.7±4.9 13.7±3.5

Parkinsons 2 22 195 10.2 12.1±4.3 13.6±4.7 11.5±3.9

Spambase 2 57 4601 10.4 11.0±0.9 14.6±4.7 10.4±0.8

Waveform (ver. 1) 3 21 5000 18.4 19.0±0.9 17.9±0.9 18.5±0.8

Connectionist (Sonar) 2 60 208 22.1 20.8±5.4 27.5±4.9 22.4±5.4

Wine Quality 7 11 6497 46.3 46.3±1.0 48.9±1.2 46.0±1.0

43

Table 2: Spike train touch site classification accuracy (% correct) across 4 datasets

using Victor-Purpura (VP) or kernel-based (mCI) metrics in unweighted combinations

versus using centered alignment metric learning (CAML) to optimize a product kernel

(θ) or sum of weighted product kernels (Θ) with Q = 5. Nearest-neighbor (1-NN) and

support vector machine (SVM) were used as classifiers. (Bold indicates methods with

highest accuracy with or without binning see Table 3.)

VP mCI CAML VP CAML mCI

unweighted unweighted θ θ Θ θ θ Θ

1-NN SVM 1-NN SVM 1-NN SVM SVM 1-NN SVM SVM

53±9 69±9 60±9 59±8 86±6 87±5 85±9 85±4 90±6 92±5

35±4 80±5 70±5 78±5 77±5 87±5 91±4 78±4 87±5 89±3

28±5 50±4 43±4 50±6 44±6 53±4 59±5 48±5 58±6 61±4

22±4 28±6 25±4 27±5 22±5 38±5 38±5 22±4 29±9 34±4

34.6 56.9 49.2 53.7 57.2 66.1 68.3 58.5 66.0 69.0

44

Table 3: Binned spike train touch site classification accuracy (% correct) across 4

datasets using Euclidean and Mahalanobis-based metrics (parametrized by matrix A)

optimized using Fisher discriminant analysis (FDA), centered alignment (CA), and

large margin nearest neighbor (LMNN). For each dataset and method the binsize with

the maximum performance was selected. (Bold indicates highest performing methods

for each dataset with or without binning see Table 2.)

Euclidean A-FDA A-CA A-LMNN

1-NN SVM 1-NN SVM 1-NN SVM 1-NN SVM

58±10 73±9 91±8 92±14 92±9 92±10 91±12 89±14

66±6 76±7 80±8 80±9 82±6 82±7 77±8 78±10

42±5 46±8 47±6 51±6 51±6 51±7 46±7 48±10

24±5 28±6 30±6 34±7 29±6 29±6 29±6 31±6

47.4 55.6 61.9 64.2 63.5 63.5 60.7 61.4

45

Table 4: LFP classification accuracy (% correct) across 4 datasets using centered

alignment metric learning (CAML) to optimize a single temporal weight vector θ or

a sum kernel with multiple temporal weightings Θ, versus Mahalanobis-based met-

rics (parametrized by a matrix A) optimized using Fisher discriminant analysis (FDA),

centered alignment (CA), and large margin nearest neighbor (LMNN). (Bold indicates

highest performing methods for each dataset.)

Euclidean θ-CAML Θ-CAML A-CA A-FDA A-LMNN

1-NN

85±4.6 92±3.6 94±4.0 98±2.4 98±1.9 97±1.7

60±4.5 78±4.4 82±4.4 95±2.6 97±1.7 94±4.4

45±3.5 74±5.0 78±4.4 91±5.0 91±3.5 88±4.4

49±4.1 78±4.3 78±5.2 85±3.4 86±4.0 80±5.9

59.6 80.6 82.8 92.4 93.1 89.7

SVM

89±4.4 94±3.7 97±2.2 98±2.0 98±2.0 97±2.4

75±5.0 84±3.0 89±2.4 95±2.6 97±1.9 94±5.0

61±5.4 79±4.9 83±4.0 91±4.7 92±3.5 87±2.9

54±5.1 81±4.2 85±3.8 86±3.8 86±4.5 80±5.9

69.8 84.5 88.5 92.4 93.2 89.3

46

