
Kernel Landmarks: An Empirical Statistical 
Approach to Detect Covariate Shift

• We propose an alternative solution to kernel max-slicing
• Each data point (landmark) defines a witness function
• The landmark which identifies the largest discrepancy between
the distribution is chosen

• Our approach detects class-based covariate shift
• It identifies instances from minority class based on witness
functions

• The landmark-based kernel max-slicing is much simpler to
compute than the kernel max-slicing

Covariate shift: When the testing cases are not class-balanced
By localizing discrepancies

• Detect: Divergence between train and test
• Identify: Classes for witness’s top-K training set examples

Covariate Shift Detection
We perform a statistical power test to detect the difference between a sample with 
a uniform distribution of classes and a sample with the underrepresented class.

Two-sample Tests Using Kernel Divergences

Identify the Class Imbalance with Witness Function
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Precision of the witness function in detecting underrepresented classes

What is the goal?

% K – kernel matrix where K(i,j) = kappa(Z{i}, Z{j})
% S – binary indicator for points in Z being from X

[val, i_star] = max(mean( (sort(K(:,S==1), 2) – sort(K(:,S==0), 2) ).^2, 2) );
div = sqrt(val);
witness_func = @(x) kappa(x, Z{i_star})

Permutations based on i-th landmark
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Divergence measures for interpreting and minimizing discrepancies 
between data distributions. 
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Including 𝒪(𝑁!) for the kernel matrix 

Saddlepoint optimization problem: evaluation requires 𝒪(𝑁log𝑁)

𝑙 = 2𝑁 evaluations each requires 𝒪(𝑁log𝑁)

Examine the top-10 
examples (in terms of 
witness function) 
from each sample

optimal transport after slicing, the computation of the max-sliced Wasserstein distance still requires
optimizing the parameters defining the optimal slice.

Here, we propose a restricted form of kernel max-slicing called kernel landmarks. We restrict the
witness function to be an implicit mapping of a single data point in the Hilbert space, ! = �(z), z 2
X , assuming normalized kernel (z, z) = 1, z 2 X =) k�(z)kH = 1, and compute the
Wasserstein-2 distance
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E(X,Y )⇠� |(X, z)� (Y, z)|2. (7)

This is a probability metric as stated and proved in the appendix (Theorem 1).

2.2 Two-sample Tests Using Kernel Divergences

We now consider two finite, weighted samples {(µi, xi)}mi=1 and {(⌫i, yi)}ni=1 of size m and n withP
i µi = 1 and

P
i ⌫i = 1. The masses are represented by the vectors µ and ⌫. These samples can

be represented by the empirical measures µ̂ =
P

i µi�xi and ⌫̂ =
P

i ⌫i�yi .

In the sample case, the witness function ! is parametrized as !(·) =
Pl

i=1 ↵i(·, zi) in terms of

the dual variables ↵ 2 Rl and {zi}li=1 = Z where zi =
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xi, 1  i  m

yi�m, m+ 1  i  l
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
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2 Rl⇥l where KXZ 2

Rm⇥l,KY Z 2 Rn⇥l, and Ki,j = (zi, zi)� 2(zi, zj) + (zj , zj) for i 2 {1, . . . ,m+ n}.

The witness function evaluations for each sample are given by the vectors [!(x1), . . . ,!(xm)]> =
KXZ↵ and [!(y1), . . . ,!(yn)]> = KY Z↵. For a positive definite kernel matrix K, to ensure ! has
bounded norm, the coefficient vector should be restricted to be ↵ 2 A = {↵ 2 Rl : ↵TK↵  1}.
Additional constraints are needed if the kernel matrix is positive semidefinite.

The max-sliced kernel Wasserstein-2 distance (squared) can be computed in terms of witness function
evaluations as
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where Pµ̂,⌫̂ = {P 2 [0, 1]m⇥n : P1n = µ and P>1m = ⌫} is the transport polytope, where
1>

n = [1, . . . , 1] is a vector of n ones, and M�2 is the elementwise squaring of the entries of
M. The optimal transport plan can be obtained analytically after sorting the values in the vectors
!Y = KY Z↵ 2 Rm and !X = KY Z↵ 2 Rn. Assuming Q and R are the permutations such
that !(xQ(1))  · · ·  !(xQ(m)) and !(yR(1))  · · ·  !(yR(n)). The optimal transport plan
P? is defined as [P?]i,j = [P̃]Q(i),R(j) where P̃ is optimal transport plan after sorting, which is
the finite differences across rows and columns of G: [P̃]i,j = Gi+1,j+1 � Gi+1,j � Gi,j+1 with
Gi,j = min(

Pi�1
k=1 µQ(k),

Pj�1
k=1 ⌫R(k), where the matrix G 2 [0, 1]m+1⇥n+1 is the zero-padded

joint cumulative distribution of the optimal transport plan after sorting. Overall, it is a saddlepoint
optimization problem, with evaluation cost O(n log(n)) for n > m.

For the kernel landmark Wasserstein distance, the continuous multivariate optimization of the optimal
slice is replace by a discrete optimization over the set of possible landmarks is {zi}li=1 = Z . This
is equivalent to restricting ↵ to be one-hot vector, e.g., ↵ = [0, . . . , 0, 1, 0, . . . , 0]>. Assuming
the i-th data point is the landmark, !(·) = (·, zi), KXZ↵ = [(x1, zi), . . . ,(xm, zi)]> = kXzi ,
and KY Z↵ = [(y1, zi), . . . ,(yn, zi)]> = kY zi , which are the i-th columns of KXZ and KY Z ,
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where                                                 ∈ ℝ ("#$)×("#$) is the kernel matrix.

• 𝑝 is the class prevalence

2 Methodology

We consider a feature domain X ✓ Rd. Let P (X ) be the set of Borel probability measures on the
metric space (X , d) where d(x, y) is the distance metric for x, y 2 X . Let µ, ⌫ 2 P (X ) be the
probability measures and X,Y 2 X be the random variables such that X ⇠ µ and Y ⇠ ⌫. For any
p � 1, using the Euclidean distance, d(x, y) = kx� yk, the Wasserstein-p distance is given as

Wp(µ, ⌫) =
h

inf
�2�(µ,⌫)

Z

X⇥X

kx� ykp d�(x, y)
i 1

p
. (1)

[10] shows that Eq. (1) gives a metric on P (X ) [11, 1]. The max-sliced Wasserstein-p distance is
given by the following saddlepoint problem

W
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E(X,Y )⇠� |hX � Y,wi|p

� 1
p

, (2)

where k(ww>)(X � Y )k = khX � Y,wiwk = |hX � Y,wi| kwk.

2.1 Divergences in the Reproducing Kernel Hilbert Space (RKHS)

Consider a symmetric (real-valued) positive definite kernel function  : X ⇥ X ! R.  defines
H, a reproducing kernel Hilbert space, if the following conditions are met: 8x 2 X , (·, x) 2 H
and 8x 2 X , f 2 H, f(x) = hf,(·, x)iH [12]. Let � : X ! H be the implicit feature map
(mapping elements x 2 X to elements in RKHS �(x) = (·, x)) such that h�(x),�(y)iH = (x, y).

Assuming a bounded kernel EX⇠⇠[(X,X)]  1, 8⇠ 2 P (X ), for bounded family of functions
in the RKHS F = {! : h!,!iH  1} on X where ! : X ! R, the maximum mean discrepancy
(MMD) is given by

MMDH(µ, ⌫) = sup
!2F

EX⇠µ,Y⇠⌫ [h�(X)� �(Y ),!i] = sup
!2F

E[!(X)� !(Y )] = kmµ �m⌫kH,

(3)
where mµ = EX⇠µ[�(X)] 2 H and m⌫ = EY⇠µ[�(Y )] 2 H.

Using the kernel-induced distance d(x, y) = k�(x)� �(y)kH, Eq. (1) can be extended to the kernel
Wasserstein distance [7] as
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where k�(X) � �(Y )kp
H

= ((X,X) � 2(X,Y ) + (Y, Y ))p/2. For p =
2, this simplifies such that the joint expectation moves inside and W
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p
E[(X,X)] + E[(Y, Y )]� E(X,Y )⇠�2(X,Y ). If one were to pursue the one-

dimensional case as the easiest way to compute Wasserstein distance, the implicit feature map
�(·) seems to be an obstacle to slicing compare to Eq. (2). However, by the reproducing property
of the RKHS, the sliced distance defined by ! 2 H, k!kH = 1, is k(! ⌦ !)(�(X)� �(Y ))kH =
|h�(X)� �(Y ),!i|k!kH = |!(X)� !(Y )|, where !(X) and !(Y ) are real-valued random vari-
ables with pushforward measures !]µ and !]⌫, respectively. The max-sliced kernel Wasserstein-2
distance can be expressed in terms of witness functions as
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From the second line it is clear that the optimal � can be solved analytically by coupling the largest
values of !(X) with the largest values of !(Y ), this can be done using their inverse cumulative
distribution functions, which exist under mild conditions [13]. Even with analytic solutions for the

2

The optimal transport plan can be found by finding by sorting the values in the vectors KY Z↵ 2 Rm

and KY Z↵ 2 Rn.

The squared max-sliced kernel Wasserstein distance can be computed in terms of witness function
evaluations as
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where M�2 is the elementwise squaring of the entries of M.

When the µ and ⌫ are two Gaussians, the Wasserstein distance can be computed analytically
[1] in terms of the first and the second moments. The kernel Gaussian W2 distance [7] is de-
fined as WH

G (µ, ⌫) =
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2 [15], ⌃µ = ⇢µ�mµ⌦mµ and ⌃⌫ = ⇢⌫�m⌫⌦m⌫ are the covariance matrices of

X and Y in the RKHS, and ⇢µ = EX⇠µ[�(X)⌦�(X)] 2 H and ⇢⌫ = EY ⇠ ⌫[�(Y )⌦�(Y )] 2 H
are the uncentered second moments. The Bures distance between the uncentered second moments in
the Hilbert space [9] is also a divergence measure D

H

B (µ, ⌫) = dB(⇢µ, ⇢⌫).

As a comparison, we consider a landmark-based version of the kernel-based max-sliced Bures distance.
The kernel-based max-sliced Bures distance is expressed in terms of the squared witness functions
as D
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A.2 Additional Experiments

We also applied the proposed method and MMD on CIFAR10 dataset (please see Fig.4) where
each instance is represented by the internal representation of the inception network [16]: a 2048-
dimensional vector. We used witness function evaluations to identify instances associated with the
underrepresented class. We report the computation complexity of our method compared to MMD
and the discrete Wasserstein-2 distance. As it can be seen in Fig.5, the proposed method, as an
approximation for Wasserstein distance is much easier to compute. Its computation cost is quite
similar to MMD’s.

Figure 3: The figure illustrates the power test on MNIST dataset. We compare the Landmark-based
kernel Bures, Wasserstein and MMD divergences. The power curves for three different critical values,
↵, as a function of sample sizes. For this example, the prevalence of the underrepresented digit is
0.029 and the digit is "0".
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We compare computation time of our method, MMD, and
Wasserstein. Computation time is averaged over 10
digits. The complexity of discrete Wasserstein distance is
𝒪(𝑁!) whereas our proposed method is only
𝒪(𝑁"log(N).

Averaged-precision@10 on MNIST dataset where the minority class is “6”. The precision@10 was
calculated by averaging 500 Monte Carlo samples iterations. Landmark-based kernel Bures (L-
Bures), landmark kernel-Wasserstein (L-W2) and MMD divergences. (Left) The sample size is 700
for each set. (Right) The prevalence of the underrepresented digit is 0.025.

Power test across kernel bandwidths (MNIST digit “4”)

The statistical power as a function of the kernel bandwidth. We obtained
a priori global “median” bandwidth. Then we applied the power test on
range of kernels sizes in which the priori bandwidth is centered. Sample
size is 500 and the underrepresented class’s prevalence is 0.025.
Instances in each sample are randomly permuted between the two
samples for 150 times with 250 Monte Carlo samples iterations.

• Landmark max-sliced kernel Bures (L-Bures)

Maximum mean discrepancy (MMD)

• Landmark max-sliced kernel Wasserstein (L-W2)

Statistical power test as a function of the class prevalence and sample
size on MNIST dataset for digit “0”

At most 𝑙 = 2𝑁 evaluations each requires 𝒪 𝑁

Scalability tests: L-W2, MMD, discrete W2

The max-sliced kernel Wasserstein-2 (W2)
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respectively. Using these, we introduce the landmark-based max-sliced kernel Wasserstein-2 distance
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hPkY zi ,kXZii. (9)

Let Pi be the optimal transport matrix for landmark i 2 {1, . . . , l}. It can be written as row
and column permutations of the optimal transport matrix for sorted data: Pi = Q>

i P?Ri, Qi 2
⇧m,Ri 2 ⇧n, where the entries of QikXzi = [(xQi(1), zi), . . . ,(xQi(m), zi)]

> and RikY zi =
[(yRi(1), zi), . . . ,(yRi(n), zi)] are in ascending order, (xQi(1), zi)  · · ·  (xQi(m), zi) and
(yRi(1), zi)  · · ·  (yRi(n), zi). The sorted witness function evaluations for each landmark
can be expressed together as K̃XZ = [Q1kXz1 , . . . ,QlkXzl ] = [k̃Xz1 , . . . , k̃Xzl ] and K̃Y Z =
[R1kY z1 , . . . ,RlkY zl ] = [k̃Y z1 , . . . , k̃Y zl ].
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Assuming i.i.d. samples and equal sample sizes m = n and µ1 = · · · = µm = ⌫1 = · · · = ⌫m = 1
m ,

the optimal transport matrix is a scaled product of permutation matrices Pi = 1
mQ>

i Ri, since
P? = 1

mI. In this case, the kernel landmark Wasserstein-2 distance is simply

max
i2{1,...,l}

1p
m
kk̃Xzi � k̃Y zik2 =

s
1

m
max

i2{1,...,l}
[1>

m(K̃XZ � K̃Y Z)�2]i, (11)

where the second expression computes the Euclidean norm of each column of the differences.

3 Covariate Shift Detection

In this section, we perform simulation experiments to compare landmark-based max-sliced kernel
Wasserstein divergence and MMD for detecting imbalanced classes, as a specific form of covariate
shift detection. Specifically, we perform a statistical power test to detect the difference between a
sample with a uniform distribution of classes and a sample with the underrepresented class. We also
examine the ability of the witness function to identify instances associated with the underrepresented
class.

Specifically, we consider the MNIST dataset split into train and test sets across different levels of
imbalance and sample size. MNIST has ten class labels L 2 {0, 1, · · · , 9}. First, we test the methods
when µ̂ is a sample of the training set with a balanced proportion of each class, but ⌫̂ has less instances
from one class.

Let PL be the prevalence of L-th class/digit, which is underrepresented in ⌫̂. PL = 1
10 (1� p) where

p 2 [0, 1] is the Bernoulli probability that the underrepresented digit is kept when it is drawn. The
prevalence of the any other digit is expected to be PL02{0,1,··· ,9} 6=L = 1

10 (1� p) + 1
9p. For example,

when p takes values of 0, 0.5, or 0.8, the probabilities of underrepresented digit are 1
10 ,

1
20 , and 1

50 ,
respectively.

We use the kernel-based divergences to test the hypothesis that the two samples come from the same

distribution. Specifically, we use the Gaussian kernel (x, y) = e
�

|x�y|
2

2�2 where � is median of the
pairwise distances. As a significant threshold for the divergence we use the 1 � ↵ quantile of the
surrogate distribution of divergence values when instances in each sample are randomly permuted
between the two samples (250 times). To estimate the statistical power for a given occurrence level,
we use 500 Monte Carlo samples iterations. Fig. 1 and Fig. 4 show the statistical power for digit “0”
L = 0, across different values of PL and sample size.

We also test the ability of the witness function to detect the specific distances associated with the
covariate shift—in this case, the minority class, using the instance and known labels in the training
set. We report the evaluation results using precision at 10 (the fraction of the 10 training instances

4

L-Bures: Landmark max-sliced kernel Bures
L-W2: Landmark max-sliced kernel Wasserstein
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The implementation of our 
approach and demos can be found 
by scanning QR-code
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• Probability measures are 𝜇, 𝜈 ∈ 𝑃 𝒳

Empirical measures formed from two samples: �̂� = ∑!" 𝜇! δ#% and �̂� = ∑!$ 𝜈! δ%%

I.i.d. samples 𝑁 = 𝑚 = 𝑛, �̂� = ∑!&'( '
(
δ#% and �̂� = ∑!&'( '

(
δ%%

Witness function

L-W2-max

MMD

L-W2-max

MMD

“5” is underrepresented digit
Top-10 training set examples ranked by witness function

L-W2: Precision@10  = 1.0

MMD: Precision@10  = 0.6

Minority class:

Majority classes:

Top-10 training set examples ranked by witness function“Airplane” is underrepresented class

L-W2: Precision@10  = 0.6

MMD: Precision@10  = 0.3

CIFAR-10 (Inception Codes w/ linear kernel)

MNIST (raw pixels with Gaussian kernel 
median distance for kernel size)


