Kernel Landmarks: An Empirical Statistical Approach to Detect Covariate Shift

Yuksel Karahan, University of Delaware Bilal Riaz, University of Delaware Austin J. Brockmeier, University of Delaware $\%$

Identify the Class Imbalance with Witness Function
Precision of the witness function in detecting underrepresented classes

Averaged-precision@10 on MNIST dataset where the minority class is "6". The precision@10 was calculated by averaging 500 Monte Carlo samples iterations. Landmark-based kernel Bures (LBures), landmark kerne-Wasserstein ((L-W2) and MMD divergences. (Left) The sample size is 700
for each set. (Right) The prevalence of the underrepresented digitit 0.025 .

The implementation of our pproach and demos can be found

CIFAR-10 (Inception Codes w/ linear kernel)

Covariate Shift Detection
We perform a statistical power test to detect the difference between a sample with a uniform distribution of classes and a sample with the underrepresented class.
Statistical power test as a function of the class prevalence and sample size on MNIST dataset for digit "0"

L-Bures: Landmark max-sliced kernel Bure
L-W2: Landmark max-sliced kernel Wasserstein
Power test across kernel bandwidths (MNIST digit "4")

The statistical power as a function of the kernel bandwidth. We obtained a priori global "median" bandwidth. Then we applied the power test on range of kernels sizes in which the priori bandwidth is centered. Sample
size is 500 and the underrepresented class's prevalence is 0.025 . size is 500 and the underrepresented class's prevalence is 0.025 .
nstances in each sample are randomly permuted between the two samples for 150 times with 250 Monte Carlo samples iterations.

Landmark max-sliced kernel Wasserstein (L-W2)

$$
W_{2}^{\mathcal{H}_{L^{*}}}(\mu, \nu)=\sup _{z \in \mathcal{X}} \inf _{\gamma \in \Gamma(\mu, \nu)} \sqrt{\mathbb{E}_{(X, Y) \sim \gamma}|\kappa(X, z)-\kappa(Y, z)|^{2}}
$$

$$
\omega(\cdot)=\kappa\left(\cdot, z_{i^{\star}}\right) \quad \text { Withess finction }
$$

Landmark max-sliced kernel Bures (L-Bures)
At most $l=2 N$ evaluations each requires $\mathcal{O}(N)$

$$
D_{B}^{\mathcal{H}_{L^{*}}}(\hat{\mu}, \hat{\nu})=\max _{i \in\{1, \ldots, l\}}\left\{\left|\frac{1}{\sqrt{m}}\left\|\mathbf{k}_{X z_{i}}\right\|_{2}-\frac{1}{\sqrt{n}}\left\|\mathbf{k}_{Y z_{i}}\right\|_{2}\right|\right\}
$$

Scalability tests: L-W2, MMD, discrete W2

Kernel Landmarks

Saddlepoint optimization problem: evaluation requires $\mathcal{O}(N \log N)$
We propose an alternative solution to kernel max-slicing
Each data point (landmark) defines a witness function
The landmark which identifies the largest discrepancy between
the distribution is chosen
Our approach detects class-based covariate shift
It identifies instances from minority class based on witness functions
The landmark-based kernel max-slicing is much simpler to compute than the kernel max-slicing

What is the goal?

Divergence measures for interpreting and minimizing discrepancies etween data distributions

Examine the top-10 examples (in terms of witness function) from each sample

Covariate shift: When the testing cases are not class-balanced By localizing discrepancies
Identify: Classes for witness's top- K training set examples
Test
IIIIIIIIIII
Minority class
Two-sample Tests Using Kernel Divergences Maximum mean discrepancy (MMD)

$$
\operatorname{MMD}^{\mathcal{H}}(\mu, \nu)=\sup _{\omega \in \mathcal{F}} \mathbb{E}_{X \sim \mu, Y \sim \nu}[\langle\phi(X)-\phi(Y), \omega\rangle]=\sup _{\omega \in \mathcal{F}} \mathbb{E}[\omega(X)-\omega(Y)]=\left\|m_{\mu}-m_{\nu}\right\|_{\mathcal{H}}
$$

The max-sliced kernel Wasserstein-2 (W2)
$\left.W_{2}^{\mathcal{H} *}(\mu, \nu)=\sup _{\omega \in \mathcal{F}} W_{2}\left(\omega_{\sharp} \mu, \omega_{\sharp} \nu\right)=\sup _{\omega \in \mathcal{F} \gamma \in \Gamma(\mu, \nu)} \inf _{(X, Y) \sim \gamma}\left[|\omega(X)-\omega(Y)|^{2}\right]\right)^{\frac{1}{2}}$
Empirical measures formed from two samples: $\hat{\mu}=\sum_{i}^{m} \mu_{i} \delta_{x_{i}}$ and $\hat{v}=\sum_{i}^{n} v_{i} \delta_{y_{i}}$
$W_{2}^{\mathcal{H}_{z}}(\hat{\mu}, \hat{\nu})^{2}=\max _{\boldsymbol{\alpha} \in \mathcal{A}} \min _{\mathbf{P} \in \mathcal{P}_{\hat{A}, \hat{\nu}}}\left\{\sum_{i, j} P_{i j}\left|\omega\left(x_{i}\right)-\omega\left(y_{j}\right)\right|^{2}=\left\langle\mathbf{P},\left(\mathbf{K}_{X Z} \boldsymbol{\alpha} \mathbf{1}_{n}^{\top}-\mathbf{1}_{m}\left(\mathbf{K}_{Y Z} \boldsymbol{\alpha}\right)^{\top}\right)^{\circ 2}\right\rangle\right\}$ $=\max _{\boldsymbol{\alpha} \in \mathcal{A}}\left\langle\boldsymbol{\mu},\left(\mathbf{K}_{X Z} \boldsymbol{\alpha}\right)^{02}\right\rangle+\left\langle\boldsymbol{\nu},\left(\mathbf{K}_{Y Z} \boldsymbol{\alpha}\right)^{02}\right\rangle-2 \max _{\mathbf{P} \in \mathcal{P}_{\hat{\mu}, \boldsymbol{\nu}}}\left\langle\mathbf{P} \mathbf{K}_{Y Z} \boldsymbol{\alpha}, \mathbf{K}_{X Z} \boldsymbol{\alpha}\right\rangle$ where $\quad \mathbf{K}=\left[\begin{array}{ll}\mathbf{K}_{X X} & \mathbf{K}_{X Y} \\ \mathbf{K}_{Y X} & \mathbf{K}_{Y Y}\end{array}\right]=\left[\begin{array}{l}\mathbf{K}_{X Z} \\ \mathbf{K}_{Y Z}\end{array}\right] \in \mathbb{R}^{(m+n) \times(m+n)}$ is the kernel matrix.

