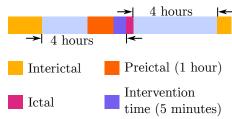


Searching for Waveforms on Spatially-Filtered Epileptic ECoG

Carlos H. Mendoza-Cardenas, Austin J. Brockmeier

Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware

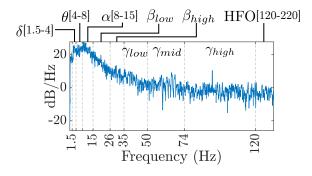

Problem definition

- The shape of neural oscillations (Cole, 2017)
 - discriminate bewteen disease states
 - contain physiological information
 - distinguish oscillatory processs located in close brain regions and in the same spectral band
- The data-driven search of waveforms in EEG data for seizure prediction is almost absent in the literature.

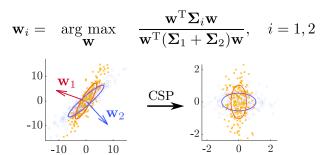
The data

Name	\boldsymbol{C}	Preictal	Interictal
HUP070	63	2h 6m	40h 32m
HUP078	101	1h 30m	45h 23m

• Each ECoG signal is split into preictal and interictal segments, as follows:



Glossary


ECoG: Electrocorticography EEG: Electroencephalography CSP: Common spatial patterns AUC: Area under the ROC curve HFO: High Frequency Oscillations

Methods

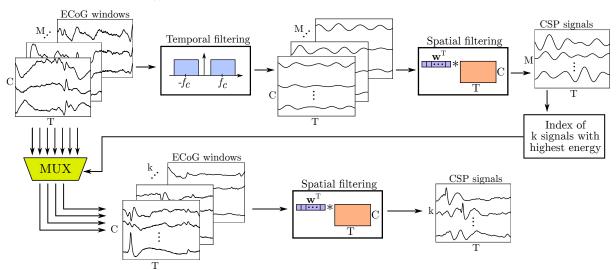
• Analyze in nine spectral bands:

• Compute spatial filters using temporally-filtered data and the CSP method:

• Waveform search strategy:

no

ECoG signal

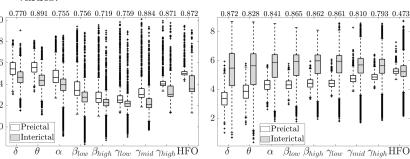

Railed oscillation

Preprocessing

Broad peak @60Hz

no

yes



Contribution

A waveform search strategy to find spatially-filtered waveforms on ECoG data that can be used to discriminate between the preictal and interictal state of an epileptic recording.

Results

- The discriminatory performance of CSP filters was
 - quantified using the AUC of a binary classifier
 - high for both filters in HUP078
 - low for \mathbf{w}_2 in HUP070 due to large-energy artifacts
- Log-energy (μV^2) of CSP signals in HUP078 filtered with \mathbf{w}_1 (left) and \mathbf{w}_2 (right). Numbers in the top axis are AUC values:

• Top 10 CSP signals in HUP078 with highest energy from each condition, after applying the \mathbf{w}_1 optimized for the γ_{mid} band:

Want to learn more?

Check out our postprint!

...and our code!

