Identifying the Instances Associated with Distribution Shifts using the Max-Sliced Bures Divergence

What is the goal?

To find examples of discrepancies between two data sets using Interpretable statistical divergences

Divergence as a Learning Problem

Maximal Discrepancy Divergences as a Learning Problem

Existing Maximal Discrepancy Divergences

- Maximum mean discrepancy (MMD) $\mathsf{MMD}^{\mathcal{H}}(\mu,\nu) = \sup_{\omega \in \mathcal{F}} \mathbb{E}_{X \sim \mu, Y \sim \nu} [\langle \phi(X) - \phi(Y), \omega \rangle] = \sup_{\omega \in \mathcal{F}} \mathbb{E}[\omega(X) - \omega(Y)] = \|m_{\mu} - m_{\nu}\|_{\mathcal{H}}$
- Max-Sliced Wasserstein-2 (squared)
- Saddlepoint optimization problem $D^2_{\mathrm{MSW}_2}(\mu,\nu) = \sup_{\mathbf{w}\in\mathcal{S}} \inf_{\gamma\in\Gamma(\mu,\nu)} \mathbb{E}_{(X,Y)\sim\gamma}[\langle X-Y,\mathbf{w}\rangle^2],$
- Sample based $O(N\log(N))$

New Maximal Discrepancy Divergences

$\sup_{\omega \in \Omega} \sqrt{\mathbb{E}[\omega^2(X)]} - \sqrt{\mathbb{E}[\omega^2(Y)]}$ Max-Sliced Bures (MSB) distance

- (One-sided) Max-Sliced Bures
- (One-sided) Max-Sliced Kernel Bures $\Omega = \{\omega(\cdot) = \langle \phi(\cdot), \omega \rangle, \quad \omega \in \mathcal{H} : \|\omega\|_{\mathcal{H}} \le 1\}$.
- $\Omega = \{ \omega(\cdot) = \langle \cdot, \mathbf{w} \rangle : \mathbf{w} \in \mathbb{R}^d, \quad \|\mathbf{w}\|_2 \le 1 \}$
- Wasserstein-2 distance between Gaussians is the Fréchet distance:
- $\sqrt{(Squared Difference of Means + Squared Bures between Cov.)}$

Prove: Sliced Bures ≤ Sliced Fréchet ≤ Sliced Wasserstein-2

- Only detects differences in 1st or 2nd moments • Interpret the Fréchet Inception Distance
- Kernel approach
- MMD is the difference of means in RKHS

Austin J. Brockmeier, University of Delaware Claudio César Claros-Olivares, University of Delaware Matthew S. Emigh, Naval Surface Warfare Center -Panama City Division

EIAWARE

Luis Gonzalo Sanchez Giraldo, University of Kentucky

-3 -2 -1 0 1 2 3

 $\omega_{\mu < \nu}(\cdot) = \langle \cdot, \mathbf{w}_{\mu < \nu} \rangle^2$

Max-Sliced Bures Divergence

$$\mathbb{E}[\langle X, \mathbf{w} \rangle^{2}] = \mathbf{w}^{\top} \mathbb{E}[XX^{\top}] \mathbf{w} = \mathbf{w}^{\top} \boldsymbol{\rho}_{X} \mathbf{w}
D_{\text{MSB}}(\mu, \nu) = \sup_{\mathbf{w} \in \mathcal{S}} \left| \sqrt{\mathbf{w}^{\top} \boldsymbol{\rho}_{X} \mathbf{w}} - \sqrt{\mathbf{w}^{\top} \boldsymbol{\rho}_{Y} \mathbf{w}} \right|
= \max \left\{ \sqrt{\mathbb{E}[\omega_{\mu > \nu}(X)]} - \sqrt{\mathbb{E}[\omega_{\mu > \nu}(Y)]}, \sqrt{\mathbb{E}[\omega_{\mu < \nu}(Y)]} - \sqrt{\mathbb{E}[\omega_{\mu < \nu}(X)]} \right\},$$

Optimal witness functions: $\omega_{\mu>
u}(\cdot)\,=\,\langle\cdot,\mathbf{w}_{\mu>
u}
angle^2$

Alg.1: Find the max-slice for Bures is 1D bounded line search and primary eigenvector

Algorithm 1: One-sided max-sliced Bures divergence Input: $\mathbf{o}_{\mathbf{Y}} = \frac{1}{2} \sum_{n=1}^{m} \mathbf{Y}_{\mathbf{Y}} \mathbf{Y}^{\top} \mathbf{o}_{\mathbf{Y}} = \frac{1}{2} \sum_{n=1}^{n} \mathbf{Y}_{\mathbf{Y}} \mathbf{Y}^{\top} \in \mathbb{R}^{d \times d} \in \mathbb{Q}$

input: $p_X = \frac{1}{m} \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i$, $p_Y = \frac{1}{n} \sum_{i=1}^{n} \mathbf{y}_i \mathbf{y}_i \in \mathbb{R}$, $\epsilon > 0$
Define the function $\mathbf{v}_{(\cdot)} : \mathbb{R} \to \mathbb{R}^d$ as $\mathbf{v}_{(\gamma)} : \gamma \mapsto \arg \max_{\mathbf{w}: \ \mathbf{w}\ _2 \leq 1} \mathbf{w}^\top (\gamma \boldsymbol{\rho}_X - \boldsymbol{\rho}_Y) \mathbf{w}$
Solve the 1D bound problem: $\gamma^* = \arg \max_{0 < \gamma \le 1} \sqrt{\mathbf{v}_{(\gamma)}^\top \boldsymbol{\rho}_X \mathbf{v}_{(\gamma)}} - \sqrt{\mathbf{v}_{(\gamma)}^\top \boldsymbol{\rho}_Y \mathbf{v}_{(\gamma)}}$
Output: $\mathbf{w}_{\mu > \nu} = \mathbf{v}_{(\gamma^{\star})}$

Alternative: Gradient approach using smoothed square roots

Detecting discrepancies in domain transfer

Kernelized Max-sliced Bures (MSB) is more localized than **Maximal Mean Discrepancy (MMD)**

For higher moments, rely on pre-trained learning representation (Inception codes):

Exploit characteristic kernels, estimate witness function in RKHS • Scale with random Fourier features (Rahimi and Recht, 2007)

Interpreting GANs: examining the top-5 examples from each sample from each witness function

Precision of the witness function in detecting dropped modes

1.0
0.8
0.0
0.4
0.2

Precision of the witness function in detecting underrepresented classes

Max-sliced Fréchet via Max-sliced Bures is more accurate than saddlepoint optimization approach for max-sliced Wasserstein-2

Conclusions:

• Identify localized discrepancies through interpretable divergences • Highlight opportunities for better dataset calibration • Max-slicing the Bures distance is scalable and interpretable • Dropped modes can be detected by looking at instances where the witness function has the largest magnitude • Class imbalances can be recognized efficiently