
• Network traffic of containers is shaped and throttled to assigned limit

• Linux TC Token Bucket Filtering (TBF) qdisc is configured on the veth

interface of each container to shape and throttle the network traffic

• TBF is a classless qdisc so containers can be assigned different limits

• Limit and burst size are configured according to required throughput

• Containers with restricted bandwidth – 4.5 MB/s, 3 MB/s and 1.5 MB/s 

are started to simultaneously upload identical files of size 200 MB

Network Quality of Service in Docker Containers

Ayush Dusia, Yang Yang, and Michela Taufer
University of Delaware

• A packet classifier and scheduler is added on top of the docker0 

Ethernet bridge by configuring the Linux Traffic Control (TC) PRIO qdisc

• Network packets are classified and scheduled by the configured qdisc

• Three classes (priorities) are configured – High, Medium and Low 

• Packets are filtered and classified using the IP address of containers

• Dequeuing of packets from the three classes ensures scheduling and 

hence a priority scheme for the network traffic

• Containers with high, default (medium) and low priorities are started 

to simultaneously download identical files of size 450 MB

• Network throughput is monitored for each container

• QoS in Docker improves the user experience and reduces the operation cost by allowing for efficient use of the existing resources

• Our extension allows Docker to appropriately throttle network traffic of containers to achieve the desired bandwidth sharing across all containers

• User-sensitive or critical applications, such as real-time multimedia can be hosted in higher priority containers to obtain preferential services

• We test our implementation with Docker v1.5 installed on Ubuntu 14.04 LTS

• The source code of our implementation is available on GitHub at - https://github.com/adusia/docker

• Acknowledgment: The authors acknowledge Dr. Seetharami R. Seelam for his advice and for giving us access to the IBM cloud, SuperVessel

Objective: Improve the network QoS to ensure high performance of applications hosted in Docker containers

Our solution: Extend Docker to include network priority and bandwidth throttling schemes that ensure QoS

Priority scheme

Impacts and conclusions

Network bandwidth throttling

Li
m

it
at

io
n

s

C1

Containers

C1’s bandwidthC2’s bandwidth

C4’s bandwidth
C3’s bandwidth

C3

C2

C4

Outbound queue

Containers’ queue

• Limited options are available in Docker to configure the network usage of containers, and the default “Best effort” is used

• Time-sensitive or bandwidth-intensive application results in poor or unacceptable performance with the default configuration

• No preferential treatment provided to the network traffic of high priority and critical applications hosted in containers

• Required level of service to containers cannot be ensured without expanding or over provisioning the available network bandwidth

• A priority scheme is implemented in Docker by adding a packet classifier and scheduler, which enables preferential delivery service and priority 

to network traffic of user-sensitive applications, such as multimedia, or high bandwidth applications

• Network traffic of containers is shaped and throttled to minimize bandwidth congestion, optimize performance and improve latency

Higher share of the available total network throughput is 

observed for the higher priority container

The network throughput of containers are throttled at 

different limits that are assigned at startup

0

2000

4000

6000

8000

10000

12000

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255

K

B

/

S

Time in seconds

Network throughput of containers
High priority

Medium priority

Low priority

Low priority

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

K

B

/

S

Time in seconds

Throttled network throughput of containers

Container1

Container2

Container3

https://github.com/adusia/docker

