
Network Quality of Service in Docker Containers

Ayush Dusia
Department of Computer and

Information Sciences
University of Delaware

Newark, DE 19716
Email: adusia@udel.edu

Yang Yang
Department of Computer and

Information Sciences
University of Delaware

Newark, DE 19716
Email: yyangwin@udel.edu

Michela Taufer
Department of Computer and

Information Sciences
University of Delaware

Newark, DE 19716
Email: taufer@udel.edu

Abstract—This poster presents an extension to the currently
limited Docker’s networks. Specifically, to guarantee quality of
service (QoS) on the network, our extension allows users to assign
priorities to Docker’s containers and configures the network
to service these containers based on their assigned priority.
Providing QoS not only improves the user experience but also
reduces the operation cost by allowing for the efficient use of
resources. Our implementation ensures that time-sensitive and
critical applications, hosted in high-priority containers, get a
greater share of network bandwidth, without starving other
containers.

I. INTRODUCTION

In order to ensure high-quality performance for critical
applications executed in Docker’s containers, a required level
of service should be ensured without expanding or overpro-
visioning the network. Unfortunately, Docker’s networks are
currently configured to provide the “best effort” to all the traf-
fic; and parameters such as bandwidth, reliability, and packets
per second for a specific application cannot be guaranteed.
Consequently a single bandwidth-intensive application results
in poor or unacceptable performance for any other application
sharing the Docker network. This problem can be solved by
introducing quality of service (QoS) mechanisms that provide
preferential treatment to traffic and applications. Since the
Docker networking is in its infancy (i.e., it offers limited
options to configure network usage), it does not provide QoS
yet. In this poster, we address this problem by proposing a QoS
mechanism that enables preferential delivery service for critical
applications in Docker, while ensuring sufficient bandwidth,
controlling latency and delay, and reducing data loss.

A virtual Ethernet bridge, docker0, is created when Docker
boots up. By default, all the containers are configured to
be in the same subnet and to use docker0 so that they can
communicate with one another. For each container, a pair of
virtual Ethernet interfaces is created, and an IP address is
assigned to the container. Currently, no options are available
to configure network shares, bandwidth, and priority, as in the
case of other resources such as CPU and memory. Thus each
container gets an equal share of the bandwidth. Assuming that
each container is dedicated to host only a single application, a
container for a real-time application requires higher priority
over regular applications hosted on other containers. Thus,
Docker needs QoS mechanisms that provide differential ser-
vices to containers with respect to network bandwidth and that
are based on some priority criteria, as our proposed mechanism
does.

Figure 1 shows the architecture of our implementation in
Docker. The implementation consists of a packet classifier and
priority scheduler. The packets in the flows are classified and
added to one of the three available priority queues. The sched-
uler dequeues the packets and sends each packet to a container
according to the queue’s priority. Our implementation provides
the functionality to assign priorities to containers. The priority
values are high, medium, and low, where medium is the default
value that is assigned to a container. The packet classifier
and scheduler are built on top of the docker0 bridge, which
prioritizes the network access of containers. A higher share
of the total available network bandwidth is provided to the
containers with higher priority.

We tested our scheduler with Docker version 1.5, which is
installed on Ubuntu 14.04 LTS. The results of our experiments
show that our scheduler implementation efficiently provides
QoS to containers based on their priorities.

Medium priority

Low priority

Scheduler
Medium priority

containers

High priority

Classifier

High priority
containers

Low priority
containers

Flows Queues

Fig. 1. Architecture of our priority queue scheduler.

II. METHODOLOGY

We use the Linux traffic control (TC) utility [1] to configure
the kernel to shape, schedule, and classify network traffic in
and out of an interface. The TC utility configures a queuing
discipline, referred to as qdisc, for the ingress and egress
directions. When the applications send out packets, the packets
are enqueued to the configured egress qdisc. Similarly, the
packets that are received by the system are enqueued to the
configured ingress qdisc. Thus, the packets from the qdisc
either are sent to the network adapter driver to send them out
of the system or are sent to the applications running on the
system that request the packets. The default qdisc configured
on all interfaces is “Packet limited First In, First Out queue”
(pfifo), which is the simplest queue with no processing and
therefore has no overhead. The qdisc is either classful or
classless. The classful qdiscs are useful to provide differential
service to different flows of traffic by adding classes and filters



to qdiscs. Each class can also be configured to have a qdisc
with subclasses. The classless qdiscs have no subclasses; they
do basic management of traffic by reordering, delaying, or
dropping packets.

We implemented the PRIO scheduler qdisc on the docker0
virtual Ethernet bridge of Docker. The PRIO qdisc is a classful
queuing discipline that contains an arbitrary number of classes
with priorities. We configured the qdisc to include three classes
and then added the Stochastic Fairness Queueing (SFQ) qdisc
to each class. An SFQ does not shape traffic but only schedules
the transmission of packets, based on “flows.” The goal of SFQ
is to ensure fairness: each flow is able to send data in turn,
thus preventing any single flow from drowning out the rest. The
classes are dequeued in numerical ascending order of priority.
The PRIO qdisc acts as a scheduler and does not delay packets;
it is also useful for lowering latency when traffic does not need
to be slowed. Each class acts as a priority queue, where class
1 has the highest priority and class 3 has the lowest priority.
We use a filter based on the IP address to determine the class
to which a packet will be queued. A priority is assigned to
the containers when they are created. Since each container has
an unique IP address, a filter rule for that IP address is added
to the PRIO qdisc. All packets are checked for destination
IP address and then enqueued to a class based on the IP
filter rule of the PRIO qdisc. For example, all the packets
that have destination IP address of the containers with high
priority are enqueued to class 1. Similarly, the packets with
destination IP address of the containers with default and low
priorities are added to class 2 and 3, respectively. The packets
are enqueued to a class as they arrive, but they get dequeued
in the ascending order of the class. The PRIO qdisc scheduler
checks for packets in the queue of class 1; if no packets are
available to dequeue, the queue of class 2 is checked, and
then similarly the queue of class 3 is checked. The dequeuing
of packets from the queue of different classes enforces the
scheduling policy and priorities to containers.

Containers Container’s queue

Outbound queue

C1’s bandwidthC3’s bandwidth

C7’s bandwidth

C10’s bandwidth

C1

C7

C3

C10

Fig. 2. Outbound network traffic configuration for containers.

We also added a functionality to throttle the rate at which
the packets are sent out by a container. Figure 2 shows that
an outbound bandwidth is configured for each container. The
bandwidth is assigned to the container’s veth interface in the
container’s namespace. This rate is set by the user when the
container is created. The rate is enforced by using the token
bucket filter (TBF) classless queuing discipline to shape the
network traffic by configuring rate, burst size, and limit size
parameters of the qdisc. Rate is a user-defined throttle speed.
Configuring a TBF qdisc for a particular rate usually has an
overhead of 40% to 50% of the configured rate. We reduce
this overhead to 10% by configuring the qdisc parameters for
optimal performance—specifically, by setting the burst size to

Fig. 3. Throughputs of low-, medium-, and high-priority containers.

the 10% of the user-defined throttle speed.

III. TEST SETUP AND RESULTS

We set up an FTP server to host files of size 450 MB, and
we created containers that execute a script to download these
files. Specifically, for this experiment we created a container
with high priority, a container with default (i.e., medium)
priority, and two containers with low priority. The script to
download the files using FTP was started simultaneously in
all four containers. We then monitored the network throughput
of each container using a utility called Nethogs. We also
compared network throughput using Wireshark.

Figure 3 shows the results of the experiment. We observe
that the container with high priority has the highest share of
the total throughput until the file download completes. Then
the container with the default (i.e., medium) priority gets the
highest share of the total throughput. After the file download
completes in the medium priority container, the containers
with low priority gets all the bandwidth. The results also
show that the low-priority containers get an equal share of
the total throughput. These results prove that our scheduler
implements QoS based on the priority of the containers and
that the containers with equal priority get an equal share of
the available bandwidth.

IV. CONCLUSION

Our extension to the Docker networking presented here
guarantees QoS to containers, so that their network bandwidth
matches assigned priority. Providing QoS to containers has
two advantages: (1) containers hosting user-sensitive applica-
tions, such as real-time multimedia, or some high-bandwidth
applications can now be assigned higher priority; and (2)
operating costs can be reduced by using existing network
resources more efficiently and thus delaying or reducing the
need for expansion or upgrades. Moreover, when containers
host applications using UDP, which is not sensitive to network
congestion, our QoS implementation allows such containers
to be throttled appropriately to achieve the desired levels of
bandwidth sharing across all containers. The complete source
code of our implementation is available on GitHub at [2].

REFERENCES

[1] Linux Advanced Traffic Control. http://lartc.org/howto/.
[2] Codebase. https://github.com/adusia/docker.


