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Abstract—Fault localization, a core element in network fault
management, is the process of inferring the exact failure in a net-
work from the set of observed symptoms. Since faults in network
systems can be unavoidable, their quick and accurate detection
and diagnosis is important for the stability, consistency, and
performance of a communication system. In this paper, we discuss
the challenges of fault localization in complex communication
systems and present an overview of recent techniques proposed
in the literature along with their advantages and limitations. We
start by briefly surveying passive monitoring techniques which
were previously reviewed in a survey by Steinder [1]. We then
describe more recent fault localization research in five categories:
active monitoring techniques, techniques for overlay and virtual
networks, decentralized probabilistic management techniques,
temporal correlation techniques, and learning techniques.
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I. INTRODUCTION

OMMUNICATION networks have dramatically increased

in size and complexity over the years. The increase
in complexity presents serious challenges to the operations
of network management systems. One of the central issues
faced by a network management system is fault management.
Failures can be unavoidable in large communication networks,
so the detection and identification of failures in a timely
manner is important for the reliable operation of the networks.
Fault management systems attempt to detect, identify, localize,
and initiate recovery mechanisms for correcting any condition
that degrades the performance of networks.

Faults are network events that are the root cause of problems
that can occur in the network. A failure refers to an inability
of a device or service to function correctly. A failure of one
component in a network may cause other components to fail.
Faults and failures may occur in components that are hardware
devices (e.g., routers, links), or software (e.g., malfunction in
a routing table, failed web service). Symptoms are external
manifestations of the failures in a network. Symptoms can be
observed in various ways, such as alarms in managed networks,
by human observations, or by using monitoring mechanisms
like probing. Networking devices often provide notifications
in the form of alarms when they sense any malfunction in the
network. These notifications may be generated by management
agents via management protocol messages, such as SNMP trap
and CMIP EVENT-REPORT. An alarm only indicates that a
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managed network component has observed a deviation from a
normal operation or an ideal behavior of the component, e.g.,
packets loss, failed connection, or link failure. Thus alarms are
considered to be symptoms of possible faults in the network.
The challenge associated with the use of these alarms for
diagnosing a network for faults is that the actual faults could
be anywhere in the network.

Let us explain a fault scenario with the help of an example
shown in Figure 1. The client is trying to use ssh to connect
to a remote server, Server 2, over the Internet. The end router
has multiple entries for Server 2 in its Forwarding Table
with different forwarding ports. Always the first entry in the
Forwarding Table is selected and the ssh request for destination
Server 2 is erroneously forwarded to Server 1 where it is
dropped. The client does not receive a response to the ssh
request which eventually times out. The failed connection
is reported as an alarm to the network administrator. This
example shows how a fault can cause a service disruption at
a distant location.
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Fig. 1. Example to illustrate faults, failures and symptoms.

The fault management process usually includes two activi-
ties: fault diagnosis and fault recovery. Fault diagnosis consists
of three steps: fault detection, fault localization, and testing.
Fault detection is the process of observing network symptoms
to determine that one or more failures may have occurred.
Fault localization uses the set of observed symptoms to infer
the location of the exact failures in a network. Testing is
the process of verifying the inferred failures by checking the
identified components. Fault recovery is the process of fixing
the fault after it has been identified. Among the three phases
of fault diagnosis, fault localization is the most challenging
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task because of its complexity. The complexity increases with
the increase in size, unreliability, and non-determinism of a
network. In addition, fault localization techniques may face
the challenge of partial and incorrect input from the fault
detection phase. A variety of fault localization techniques have
been proposed in the literature. Many of these techniques were
described in a comprehensive survey by Steinder [1]. In the
decade since Steinder’s survey, many new fault localization
techniques have emerged, and this field has advanced in many
new directions.

In this paper we address some of these recent advances and
present an overview by discussing the advantages and limita-
tions of each approach. The paper is structured as follows.
Section Il summarizes the work presented in the previous
survey [1]. In Section III, we discuss the active monitoring
techniques which mostly use a probing approach to detect and
localize faults in a network. In Section IV, techniques that
can be applied to an overlay network or a virtual network are
described. Section V describes the distributed and decentral-
ized probabilistic network management techniques, which are
based on collaboration and information sharing among nodes.
In Section VI, techniques which consider the temporal aspect
of a network model are discussed. Fault localization techniques
based on learning algorithms are described in Section VII.
Section VIII presents some of the open research problems and
possible future work in the area. Finally, Section IX includes
conclusions of this paper.

II. PASSIVE MONITORING TECHNIQUES

Passive monitoring techniques monitor a network by deploy-
ing monitoring agents on the networking devices. Any failure
condition in the network could generate multiple alarms by
monitoring agents. The alarms are then used as symptoms by
the Network Management System (NMS) to analyze the exact
failure condition in the network. These techniques are passive
because the Network Management System waits passively for
alarms to be sent by the agents. Figure 2 shows an example
of an NMS which is using passive monitoring. Many fault
localization techniques based on a variety of paradigms have
been proposed in the past. These paradigms derive from
different areas such as artificial intelligence, graph theory,
neural networks, information theory, and automata theory. The
classification of these fault localization techniques has been
provided by Steinder [1] and is shown in Figure 3.

Fault
Localizatio

Fig. 2. Passive monitoring.

Passive monitoring techniques are broadly classified into
three categories: 1) Artificial intelligence (AI) techniques, 2)
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Fig. 3. Classification of fault localization techniques [1].

Model traversing techniques, and 3) Graph-theoretic tech-
niques. Some of the AI techniques are rule-based, model-
based, and case-based. These techniques use an expert system
with a knowledge base to do the analysis by imitating human
knowledge resulting from experience and deep understanding
of network behavior. The approaches that rely solely on expert
knowledge expressed as a set of predefined directive, i.e. rules,
to diagnose faults are called rule-based approaches [2], [3].
The rules are typically formulated as a set of if-then state-
ments. The research on rule-based fault localization focuses
on efficiently structuring the knowledge base and designing
the rule-definition language. Use of rule-based approaches do
not require profound understanding of the underlying system
architecture and operational principles. Rule-based approaches
possess disadvantages such as inability to learn from expe-
rience, inability to deal with unseen problems, and difficulty
in updating the knowledge base [4]. The disadvantages limit
the usability of rule-based approaches for isolating faults in
complex systems.
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Fig. 4. (a) A simple network topology and (b) its corresponding dependency
graph.

Model-based approaches use an expert knowledge that de-
scribes the behavior of a system as a mathematical model. The
observed symptoms are compared to the behavior predicted by
the model. Faults are detected when the observed symptoms
fail to conform to the predicted behavior. Deep knowledge of
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the network connectivity and operations is required by model-
based approaches, and they also have the potential to solve
novel problems. The knowledge base used in the model-based
approaches is organized in an expandable, upgradeable and
modular fashion. However, the models may be difficult to ob-
tain and keep up-to-date [5]. Case-based approaches diagnose a
system based on an expert knowledge gained from experience
and past situations. The knowledge is acquired from relevant
past cases and the solutions provided to the previous problems
[4]. Neural network approaches use an expert knowledge that
tries to mimic operation of a human brain. The knowledge
is in the form of interconnected nodes called neurons. The
neural network is capable of learning, and is resilient to noise
and inconsistencies in the input data. However, the training
periods required are long and any behavior outside the training
data is difficult to predict [6]-[8]. Decision tree approaches
use an expert knowledge that guides the symptoms of failure
towards locating the root cause of the problem [9]. The expert
knowledge is a simple and expressive representation of the
behavior of a system. However, the applicability of decision
tree based fault localization approaches is limited to specific
applications, and the accuracy of these approaches can be
degraded in the presence of noise.

The second category, model traversing techniques, uses a
formal representation of the network and relationships among
the network entities to create an object-oriented representation
of the network [10]-[12]. The model is used to correlate events
for locating the faulty network elements. Model traversing
techniques seem reasonable when relationships between net-
work components are graph-like and easy to obtain [13]. Event
correlation in model-traversing techniques is usually event-
driven, and for every observed event the model is searched
recursively. The advantage is robustness against frequent net-
work configuration changes. Also, the modular relationship en-
courages to design the distributed fault localization algorithms.
However, these techniques are inflexible to model propagating
fault patterns. In particular, to model situations in which failure
of a device depends on a logical combination of other device
failures [14].

The third category, graph-theoretic techniques, exploits a
graphical model called a Fault Propagation Model (FPM).

(a) A simple network topology and (b) its corresponding Bayesian network.

An FPM describes the relationship between all possible faults
and symptoms which can occur in a network. Graph-theoretic
techniques require a-priori knowledge of how a failure con-
dition or alarm in a network component is related to failure
conditions or alarms in other components. To create such a
model, an accurate knowledge of dependencies among network
components is required. The efficiency and accuracy of the
fault localization algorithm depends on the accuracy of a-priori
knowledge. Some possible graph-theoretic representations of
an FPM are dependency graphs and Bayesian networks.

A dependency graph is a directed graph in which nodes
represent the events, and edges represent the relationships
between events (e.g. an edge from node A to node B if event
‘A’ causes event ‘B’). Every directed edge is labeled with a
conditional probability that the node at the end of an edge
fails, provided that the node at the beginning of an edge fails.
Figure 4 shows an example of a simple network topology and
its dependency graph. Nodes in the dependency graph of this
figure represent either the failures of a network node (e.g., A),
or the failures of a network link (e.g., A-B). Some of the work
on fault diagnosis that uses dependency graphs is described in
[15]-[17].

A Bayesian network, also called a belief network, is a
directed acyclic graph (DAG), in which each node represents
a random variable over a multivalued domain. The directed
edges represent causal relationships among the variables and
the strengths of these influences are specified by conditional
probabilities. Figure 5 shows an example of a Bayesian net-
work for a simple network topology with four switches. End-
to-end paths in the network follow the links in the spanning
tree shown by solid lines. The Bayesian network depicts the
dependency between nodes that represent end-to-end paths
(e.g., path 4-2) and nodes that represent the links traversed
by these paths (e.g., link 4-1 and link 1-2). This example
only considers a simple failure scenario in which each link is
either working properly or has failed. However, it is possible
to design Bayesian networks to capture more general failure
scenarios. For instance, each path or link in the network may
experience multiple types of problems such as delay, excessive
packet loss, or complete loss of connectivity. This situation
can be represented in the fault propagation model by having
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TABLE 1. COMPARISON OF APPROACHES IN ARTIFICIAL INTELLIGENCE AND MODEL TRAVERSING CATEGORIES
Passive Monitoring Rule-based Model-based Case-based Neural networks Decision trees Model traversing
Expert System Yes Yes Yes Yes Yes No
Require profound understanding No Yes Yes, require No Yes, require Yes, require
of the underlying system application specific application specific application specific
behavior model model model
Ability to diagnose unforeseen No Yes No No No No
problems
Applicability to deal with system No No No No No No
with complex dependencies
Ability to learn from experience No Yes, but difficult to Yes, can learn Yes, but require Yes, but require No
keep up-to-date correlation patterns training data training data
Deal with inaccurate or No No No Yes No No
incomplete expert knowledge
Reusability No Yes Yes Yes Yes No
Time-window or Event-driven Time-window Time-window Time-window Time-window Time-window Event-driven
based based based based based based
Resilient to network changes No Yes Yes No No Yes

multiple path or link nodes for each path or link, where each
node corresponds to a different failure type.

Dependency graphs are not required to be acyclic which
makes them easier to learn from a complete set of data as
compared to Bayesian networks [18]. Standard classification
or regression algorithms can be used for dependency graphs,
to learn the conditional probability distribution for each node,
and to select parents for a node. Furthermore, there are many
classification and regression learning algorithms that scale up
for large data sets. These algorithms can be used to produce
scalable algorithms for learning dependency graphs. However,
these algorithms cannot be easily modified to respect the
graphical constraints imposed by Bayesian networks. Bayesian
networks also have some advantages over dependency net-
works. Many well-established approximate inference tech-
niques such as loopy propagation [19] and variational methods
[20] can be used for complex Bayesian network structures.
The factored form of their joint distribution also leads to
efficient inference algorithms, whereas in dependency graphs,
the probabilistic inference can be slow and complicated [21].

Most of the FPM based fault localization techniques stand
on the use of: 1) Divide and conquer algorithms, 2) Context-
free grammar, 3) Codebook techniques, 4) Bayesian networks,
and 5) Bipartite causality graphs. The divide and conquer ap-
proach [15] uses a dependency graph as an FPM assuming that
only one failure type is allowed per network component. The
approach is window-based and is tailored towards identifying
dependent faults. The algorithm first identifies the symptom
domain, which is the set of all faults that may have caused
the observed symptoms within a time frame. The set is then
repeatedly partitioned into subsets such that nodes belonging to
the edge with the highest probability stay in the same subset.
The recursion continues until a set becomes singleton. This
algorithm does not handle lost or spurious symptoms.

In the context-free grammar approach, the feature of build-
ing expressions using sub-expressions is used to represent an
FPM. This approach allows a network with complex depen-
dencies between network components to be easily modeled.
Information cost is assigned to each fault in the network. Two
fault localization algorithms are described in [22] that use

context-free grammar to represent fault propagation patterns.
The first algorithm selects a minimum set of faults that best
explains all the observed symptoms. The algorithm starts by
selecting a fault that has largest number of symptoms. The
symptoms explained by the selected fault are removed from the
symptom set and the algorithm continues until all symptoms
are explained. The second algorithm takes into account lost
and spurious symptoms, and tries to find a subset of faults
that best explains all symptoms with the minimal information
cost. A tree structure is used where each node stores a set of
identified faults, a set of observed symptoms which remains to
be explained, and a cost associated with that node. A minimum
cost node of the tree is selected as the best solution.

In the codebook approach, the fault propagation model is
represented by a matrix of problem (event) codes. Problems
are distinguished from one another based on their code [23],
[24]. In a deterministic model, a code is a sequence of
{0,1} values. The value of 1 at the i'" position of a code
generated for problem P; indicates a cause-effect implication
between problem P; and symptom .S;. In a probabilistic model,
codes contain values € [0, 1] that represent likelihood of
the cause-effect implication between a given problem and a
given symptom. In this interpretation, the event correlation
is equivalent to decoding a received output symbol to one
of the valid input symbols. Spurious and lost symptoms are
considered as channel errors. The number of errors that may
be detected or corrected depends on the codebook and the
decoding scheme.

When a Bayesian network (BN) is used as a fault propaga-
tion model, a random variable represents the state of a network
component or the occurrence of a network event. Bayesian
networks are used to make four basic queries given evidence
set e: 1) belief assessment, 2) most probable explanation, 3)
maximum a posteriori hypothesis, and 4) maximum expected
utility [25]. The first two queries are of particular interest in
fault localization. The belief assessment task is to compute
bel(V; = v;) = P(V; = wv;|e) for one or more variables
V;. The most probable explanation (MPE) task is to find a
complete assignment of values to random variables in V' that
best explains the observed evidence e. The fault localization
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COMPARISON OF GRAPH-THEORETIC TECHNIQUES

Graph theoretic techniques

Divide and conquer

Context-free
grammar

Code-based

Bayesian network

Causal graphs

Require profound understanding of
the underlying system behavior

A priori information of
symptoms and failure

A priori information of
symptoms and failure

A priori information of
symptoms and failure

A priori information of
symptoms and failure

A priori information of
symptoms and failure

Graphical model used

Dependency graph

Tree structure

Correlation matrix

Bayesian network

Bipartite causal graph

Time-window or Event-driven based

Time-window based

Time-window based

Event-driven

Event-driven

Event-driven

Applicability to deal with system Yes Yes No Yes Yes
with complex dependencies
Ability to deal with spurious and No Yes No, considered errors Yes Yes
lost symptoms
Multiple faults detection No No No Yes Yes
Resilient to network changes No No No No No
Algorithmic approach Divide and conquer Tree traversal Hamming distance Incremental Incremental

problem is often formulated as the problem of calculating the
most probable explanation (MPE) of the observed evidence
(symptoms) in a BN. However, this problem is NP-hard in
general. A belief updating algorithm for calculating MPE is
available for polytrees which is polynomial with respect to
the number of random variables. However, in unconstrained
polytrees, the MPE algorithm still has exponential bound.
The polynomial algorithm for calculating MPE [26] utilizes
a message passing scheme in which BN nodes exchange
messages that encode certain conditional probabilities. An
approximation of the polynomial algorithm is used for per-
forming fault localization using BN [27]. In this approach, a
simplified model of Bayesian networks called noisy-OR gates
[26] is considered to represent the conditional probabilities.
The simplified model contains binary-valued random variables.
The model assumes that all the faults are independent; this as-
sumption of independence is ubiquitous in all the probabilistic
fault localization approaches in the literature [15] [23]. This
simplification helps to avoid exponential time and memory
otherwise needed to store and process conditional probabil-
ity matrices associated with random variables in the belief
network. The approximation algorithm proceeds in an event
driven manner, where an ordered iteration of message passing
is done in the graph after each symptom is observed. When
all symptoms are analyzed in this manner, the algorithm yields
the probability of each fault given the observed symptoms.

To represent causality an FPM can also be modeled as
a bipartite graph. Although relationships between faults and
symptoms in real-life networks are usually more complex
than a bipartite graph representation, many fault localization
techniques use bipartite FPM [15], [24], [28]. The use of
a bipartite model is justified for the following reasons: 1)
Performing fault localization with complex representations is
difficult, NP-hard in general, 2) Detailed models are often
reduced to bipartite ones through a sequence of graph reduction
operations, 3) Building complex models requires a profound
knowledge of the underlying network, while symptom-fault
maps may be obtained through external observations. In
many real-life problems, only bipartite symptom-fault model
solutions are feasible. One such approach tailored towards
a bipartite FPM is Incremental Hypothesis Updating (IHU)
[29], which works with a set of hypotheses, each of which
is a complete explanation of the observed symptoms. The

hypotheses are ranked using a belief metric, b, which expresses
the confidence associated with a given hypothesis relative to
other hypotheses. The algorithm proceeds in an event-driven
and incremental fashion. So, instead of waiting for a specific
period of time before presenting a solution, the approach makes
the hypotheses available on a continuous basis, and constantly
upgrades them with information learned from new symptoms.

In order to reduce the computation intractability associated
with the use of Bayesian networks for large number of nodes,
a hybrid approach is proposed by Bennacer et al. in [30] that
combines the use of Bayesian networks (BN) and case-based
reasoning (CBR). The basic idea of this approach is to use
CBR for simplifying and optimizing the fault diagnosis process
by reducing the inherent complexity associated with the BN-
based fault diagnosis, and also retain the advantages associated
with the use of BN. During the diagnosis, a subset of the BN
structure is identified by CBR, and in this subset only those
nodes for which a variation is observed are considered for rea-
soning. The use of CBR also helps to utilize previously learned
situations to solve current and future problems. The knowledge
base of CBR is continuously updated with the solutions and
that helps to improve the efficiency of diagnosis with time.
This combined approach accelerates the fault diagnosis process
and also reduces the computational complexity associated with
the reasoning.

Tables I and II provide a comparison of the various passive
monitoring techniques and list the important features of each
technique. Table I compares approaches in the Artificial In-
telligence and Model Traversing categories, whereas Table II
compares the Graph-theoretic techniques.

III. ACTIVE MONITORING TECHNIQUES

A probing station is a node in the network that transmits one
or more packets called probes for the purpose of monitoring
the state of the network. Examples of probes may be ping
or traceroute; probes may also be more complex and may be
handled by any protocol layer. The use of probes to determine
the network behavior or measure the quality of network
performance is called probing. Active monitoring techniques
use probing for a variety of network management applications.
The use of probes helps the NMS to respond more quickly and
accurately to the large number of network events, as opposed to
the traditional passive event correlation approach. The probes
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are typically transmitted to obtain end-to-end statistics such as
latency, loss, and throughput. These statistics are then used to
infer the health of network components. Network parameters
and conditions can also be inferred from probe results. Active
monitoring techniques have the potential to provide effective
solutions for network monitoring applications due to their
fundamental end-to-end nature and flexibility in responding to
events. However, drawbacks of active monitoring techniques
are the invasive character of probes and potentially large
overhead.

Diagnosing a network using probes requires probing stations
to be placed at one or more locations in the network. Then
probes are selected to target different network nodes and
links. The configuration of both the probing stations and
probes impose a cost to network management; probing stations
because the probing code must be installed, operated, and
maintained, and probes because their use entails additional
network traffic overhead and also due to the collection, storage
and analysis of probe results. A trade-off exists between these
costs, as higher number of probing stations allows selection
of fewer probes. Various techniques have been proposed to
select probing stations and probes where the goal is to obtain
an optimal number of both probing stations and probes while
minimizing the probing costs, and yet provide a wide coverage
to locate problems anywhere in the network.

Probing

Probing
Station

Station

() Probing Station

@ Node

<«— Probes

Fig. 6. Preplanned probing strategy example.

The process of selecting probes can be classified into two
categories: 1) Preplanned, and 2) Adaptive'. Preplanned prob-
ing involves offline selection of a set of probes based on the
network topology. These probes are periodically transmitted
through the probing stations and the probe results are analyzed
by a passive data mining phase to infer the network state.
Figure 6 shows an example of a preplanned probing strategy. In
this strategy, the probes are selected so that the probing results
can uniquely identify all possible faults, and hence localize
any single fault. In adaptive probing, the probing strategy is
adapted according to the observed network state. So, instead of
sending probes for locating all potential faults in the network, a
minimal number of probes are sent initially for fault detection
and then the probe set is adapted according to the observed

'Some authors use the term Active probing to refer to techniques that other
authors call Adaptive probing. We prefer the term Adaptive probing here
as it avoids confusing these techniques with the more general term Active
monitoring.
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network state to provide fault localization. Adaptive probing
is explained in detail later in this section.
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Fig. 7. System architecture for fault diagnosis using active monitoring.

A. Architecture

Many system architectures that facilitate probing have been
proposed in [31]-[33]. One of the architectures is shown in
Figure 7 [32]. All the necessary tasks required to diagnose a
network are addressed in the architecture and are described
below.

e Probing Station Selection: The task of selecting locations
in a network where probing stations should be placed.
A minimum requirement of placement is the ability
to probe the entire network from the selected probing
stations.

e Probe Selection: The task of selecting the optimal set
of probes after the probing stations have been selected.
This task can be divided into two sub-tasks:

o Fault Detection: The process of selecting the
probes only to detect presence of failures in a
network. These probes are few in number and they
might not be able to exactly localize faults.

o Fault Localization: Once a failure is detected,
additional probes are selected that can provide
maximum information about the suspected area of
the network. The probing results are analyzed to
localize the exact cause of failure.

e Topology Discovery: Exact network topology is required
to select probing stations and probes. The network
topology can be learned through commands such as ping
and traceroute or by using any network discovery agents.

e Dependency Model: The dependency relationships be-
tween probes and nodes is modeled using the network
topology. The model maintains the relationship between
nodes and probes and is used in the process of probe
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selection. The model is also required to analyze probe
results.

e Inferred Network State: The fault detection process
stores the intermediate diagnosis results as an inferred
network state. The fault localization process refines the
results by sending and analyzing additional probes.
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Fig. 8. (a) A network with N3 and Ng as probing station and (b) its
dependency matrix.

B. Preplanned Probing

The first application of probing techniques for network fault
diagnosis was proposed by Brodie ef al. [31] who explained
the problem of selecting probes for preplanned probing by
using a dependency matrix. A dependency matrix D, is an
r-by-n matrix, where r is the number of probes and n is the
number of nodes in a network. The matrix element D(¢,5) = 1
if probe P; passes through node N;, otherwise D(i,j) = 0.
Assumption of static or shortest path routing is made because
a deterministic dependency matrix is used. A simple network
and its dependency matrix are shown in Figure 8, with N3 and
Ng as probing stations, and each link of weight 1. Each row is
a probe e.g., the probe Fs_4 passes through Ng — N5 — Ny.
The column Ny represents no failure anywhere in the network
and does not actually exist as a node. Each row in the matrix
is a candidate probe to compute a minimal set of probes, such
that any single node failure among the 6 nodes can be uniquely
diagnosed.

Three algorithms are proposed for finding a minimal set
of probes: an exponential time exhaustive search algorithm,
and two approximation algorithms. The algorithms exploit
the interactions among the paths traversed by the probes to
compute a smallest set of probes which can diagnose all
faults in the network. This fault detection approach is flexible
because of the control that can be exercised in the process of
probe selection. However, there are certain limitations with the
use of this approach. The algorithms assume only single node
failure. Also the effects of lost probes, spurious symptoms of
node failures, and dynamic probe paths are not considered. But
the results of this approach were promising which encouraged
further research to look for more flexible solutions.

C. Adaptive Probing

The earlier work of fault diagnosis using active monitoring
is based on a preplanned probing strategy. A major drawback
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with this strategy is the large amount of management traffic
sent out over the network, a majority of which is wasteful
as not all failures occur simultaneously. Some of the other
drawbacks are: the delay involved in sending a large probe
set, the difficulty involved in predicting an optimal probe set,
and collecting the probe results. These drawbacks may lead
to inaccurate results and increased localization time. The use
of adaptive probing strategies, although defined in the earlier
work [31], was explored and described in detail by Natu et
al. [34]-[38]. In this approach, instead of sending probes to
localize all the potential failures, a small set of probes is first
sent to monitor the health of all the network components.
These probes can detect the presence of failures, but are not
comprehensive enough to identify the exact location of the
failures. Based on the probe results, suspected areas of failure
are identified, and additional probes are then used to localize
the exact cause of the failure.

Probing
Station P4

Probing
Station Py

Probing
Station P,

Fig. 9. Adaptive probing strategy for active monitoring.

An example of adaptive probing strategy is shown in Figure
9. In this example, on observing a failed probe from the
probing station P, to the node N4, additional probes are sent
over the path for further diagnosis. A key goal of adaptive
probing is to obtain accurate reliable estimates by using only
a small number of probes. Various adaptive probing algorithms
have been proposed by Natu considering a deterministic model
of a network as well as for a non-deterministic model.

Another adaptive method based on the ideas presented in
[34] is proposed by Lu et al. in [39], where they try to
reduce the network traffic overhead induced by active probing
schemes. The whole fault detection process is divided into a
series of stages, wherein at each stage, a small set of probes
is selected to check a few network nodes until all the nodes
in the network have been covered. There are three main steps
which are repeated in a loop: 1) a set of nodes is selected as the
target set of nodes; 2) a set of probes, which has the maximum
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detection ability, is selected to detect the target nodes; and 3)
next set of undetected target nodes are selected until all the
target nodes have been probed.

Many other problems associated with network fault diag-
nosis, such as probing station placement and probing station
failures are addressed by Natu and solutions are proposed in
[37]. An incorrect placement of probing stations can make
some nodes unreachable and thus non-diagnosable in certain
failure scenarios. Furthermore, placement of probing stations
to monitor the non-probing stations fails to consider the
probing station failures. A heuristic based approach to these
problems has been proposed which incrementally selects nodes
that provide suitable locations to instantiate probing stations.
The algorithm considers the possibility of node failures as well
as probing station failures. The problem of selecting minimum
number of stations for fault localization is proved to be NP-
Complete. Approximation algorithms are proposed based on
the constraint of detecting k non-probing station failures and
[ probing station failures. Many other heuristic based adaptive
algorithms for fault detection and fault localization are also
proposed based on greedy approaches such as:

e Max Search: A probe that covers maximum number of
suspected nodes is selected and added to the probe set.

e Min Search: A probe for each suspected node, which
goes through a minimum number of other suspected
nodes, is selected and added to the probe set.

e Binary Search: The probes are sent in binary search
fashion till one failure on that path is located.

D. Probabilistic Approximations

Rish et al. [33], [40], [41] describe a cost efficient and adap-
tive diagnostic probing technique which uses an information-
theoretic approach to select probes. The technique uses a fast
online approach to infer the current network state via adaptive
selection of only a small set of most-informative probes. The
use of probabilistic inference yields an adaptive diagnostic
solution of selecting probes that provide maximum information
gain about the network state. The approach consists of three
steps: 1) Initial probe set selection for fault detection: a small
subset of probes that “cover” all nodes is preselected and run
on a scheduled basis. So, when a fault occurs in a network,
it can be immediately detected, 2) Adaptive probing for fault
diagnosis: the most-informative next probe T}, is selected that
maximizes the information gain I(X, Tk |11, ...Tx—1) given the
previous probe observations (77, ..., Tx—1), and 3) Analysis of
probe results (Inference): the probe results are integrated and
analyzed to infer the current state of the network. The state is
represented by a belief metric of Bayesian networks. Simple
approximation algorithms for inference are also described
which can be used when the exact probabilistic inference
in BN is intractable. The incremental adaptive probing ap-
proach is well-suited for real-time monitoring and diagnosis,
since probes are selected and sent as required in response
to problems that actually occur. The results demonstrate an
improvement of over 60% in reducing the number of probes
required for diagnosis. The time required for localizing the
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faults also shows improvement when compared with non-
adaptive probing techniques.

Significant improvement was demonstrated by Zheng et al.
[42], in usage of probabilistic models for selecting probes
using entropy approximation. The approximate approach pro-
poses the use of loopy belief propagation infrastructure to
compute approximations of marginal and conditional entropy.
The entropy is used as the cost function to select a set of probes
that provide maximum information, or minimum conditional
entropy, about the network state.

The optimal probe set selection techniques that depend upon
a probabilistic model have a high computational complexity
even with approximation methods. Therefore, most of the
recent work concentrates on reducing the time complexity
associated with probabilistic inference. Various techniques
have been proposed to reduce the computing time of a probe
set, which exploit the conditional independence property of
variables in Bayesian networks [43]-[45]. The information
gain of a candidate probe T} is non-increasing given the
previous set of selected probes D; during an iterative selection
of probes. For instance, the information gain I(7}|D;) in the
it iteration will decrease or remain the same as compared to
the information gain I(7};|D;_1) of (i — 1) iteration. Hence,
for two candidate probes 7}, and T, if in the previous iteration
of evaluation I(T,|D;—1) > I(Tp|D;—1) then in the current
iteration also I(T,|D;) > I(Ty|D;). So, reevaluation of T
and also all probes with information gain less than 7} can be
avoided. Another property of conditional independence is also
exploited to reduce the evaluations in each iteration. If probes
T; and Tj are conditionally independent, and T; is the probe
selected in the i*" iteration, then in the (i + 1)** iteration of
evaluation, the information gain of 7); will remain the same as
in the 7*" iteration.

E. Active Integrated Reasoning

A novel fault localization technique called Active Integrated
fault Reasoning or AIR was proposed by Tang et al. [46].
This technique integrates the advantages of both passive and
active monitoring into one framework, by incorporating actions
into the traditional Symptom-Fault model. A Symptom-Fault-
Action (SFA) model is shown in Figure 10, where f; is a
node for fault i, s; is a node for symptom j that can be
caused by one or more faults, and ay is a node for action
k that can be used to verify existence of symptoms. Actions
can simply include commonly used network utilities like ping
and traceroute. Table III contains a list of the notations used
by the AIR framework.

The AIR framework is shown in Figure 11, and it consists of
three modules: fault reasoning, fidelity evaluation, and action
selection. The fault reasoning module passively analyzes the
observed symptoms So and generates a fault hypothesis set
‘H. The fault hypothesis set H includes a set of hypotheses
(h1, ha, ..., hy), where each hypothesis contains a set of faults
that explains all the observed symptoms so far. The fault
hypotheses set is then sent to the fidelity evaluation module
to verify if the fidelity value of any hypothesis h;(h; € H) is
satisfactory. If the correlated symptoms necessary to explain
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TABLE III. NOTATIONS FOR AIR FRAMEWORK AND SFA MODEL
Notation | Definition

F The set of all possible faults { f1, fa, ..., fn}

S The set of all possible symptoms {s1, S2, ..., Sm }

A The set to denote the list of actions {a1, az,...,ap}

fi A fault f; € F

s A symptom s that can be caused by one or more faults in F'

ay An action ay, to verify existence of one or more symptoms in S

So The set of all observed symptoms so far

H The set of fault hypotheses

h; A set of faults that constitutes a possible hypothesis to explain So

SN The set of correlated but unobserved symptoms

Sv A subset of Sn for symptoms whose existence is confirmed

Su A subset of S for symptoms whose existence is not confirmed

the fault hypothesis are observed then the fault reasoning
process terminates. Otherwise, a list of most likely unobserved
symptoms Sy that can contribute to the fidelity of h; are sent
to the action selection module. The action selection module
then selects actions (probes) to verify symptoms that have
occurred but not observed (i.e. lost) and accordingly adjusts
the fidelity value of h;. The actions return the test results
along with a set of existing symptoms Sy and non-existing
symptoms Sy. The set of symptoms < Sy, Sy > are sent to
the fidelity evaluation module and if the new fidelity value
is satisfactory (i.e. above a threshold) then the reasoning
process terminates; otherwise, the new symptom evidence
< So,Sy > is fed into the fault reasoning module to create
a new hypothesis. This process is recursively invoked until a
highly credible hypothesis is found.

Actions

Symptoms

Faults

Fig. 10.
work.

Example of a Symptom-Fault-Action (SFA) model in AIR frame-

The AIR technique is the first to seamlessly integrate passive
and active fault reasoning in order to reduce fault detection
time as well as to improve accuracy of fault diagnosis. AIR
is designed to minimize the intrusiveness of probing while
enhancing the accuracy of fault hypothesis and optimizing
the action selection process. The use of the action selection
verification module decreases the impact of lost or spurious
symptoms that may be caused by malfunctioning agents or
devices.
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Fault
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Fig. 11. AIR framework [46].

IV. TECHNIQUES FOR OVERLAY AND VIRTUAL
NETWORKS

Overlay networks have emerged as a powerful and flexible
platform for today’s Internet. An example of an overlay
network is shown in Figure 12. Overlay networks have pro-
vided ways to improve the Internet’s routing by guaranteeing
quality of service. But the flexible characteristics of overlay
networks bring new challenges for the fault diagnosis process.
These challenges include inaccessible substrate network fault
information, incomplete and inaccurate network observations,
dynamic symptom-fault causal relationships, and multi-layer
complexity. To tackle these challenges, various overlay fault
diagnosis techniques have been proposed in the past few years
[47]-[55]. The novel AIR framework [46] described in Section
III-E has been extended by Tang ef al., and a new Overlay-
AIR framework has been proposed in [47]. Some of the
other approaches are based on end-user observations [51]-[53],
multi-layer diagnosis [49], [50], [54], and efficient placement
of overlay nodes [55]. Instead of probing the networks or using
alarms from monitoring agents for analysing the state of the
network, some of the approaches just use the end-user observa-
tions as symptoms to perform fault diagnosis. The multi-layer
monitoring approaches focus on selecting an optimal set of
native (physical) and overlay links to monitor the entire overlay
network. The overlay node placement approaches look to place
the overlay nodes in an efficient manner in order to reduce the
fault diagnosis time.

A. O-AIR

Similar to the previous AIR framework shown in Figure 11,
the overlay fault diagnosis framework O-AIR [47] integrates
the use of active monitoring with passive fault reasoning. This
approach assumes hosting of overlay agents on each overlay
node. An agent monitors the links and collects information
regarding the fault probability of the network components,
and the conditional probabilities of observing the correspond-
ing overlay symptoms. The collected information is used to
construct a centralized query-based knowledge system called
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Overlay
Network

Physical
Network

Fig. 12. Example overlay network to show a mapping between the overlay
network layer and the physical network layer.

Overlay Network Profile (ONP). The knowledge-based system
is then used to build an Overlay Symptom-Fault model by
correlating end-to-end symptoms and faults. However, the
observed symptoms may not be sufficient to identify a network
fault, so a set of monitoring actions are taken to determine
the root cause. The actions are then integrated with symptoms
to build an Overlay Symptom-Fault-Action (O-SFA) model to
verify faults. Table IV describes the notations used for the
O-SFA model.

TABLE IV. NOTATIONS FOR OVERLAY SFA MODEL

Notation Definition

L The set of overlay links

An overlay link between overlay nodes % and j

An overlay path between overlay nodes 4 and j

The underlying network between overlay nodes ¢ and j
The set of overlay path symptoms {O1, Oz, ..., Oq}
An overlay symptom between overlay nodes i and j
The set of overlay link symptoms {S1, Sa, ..., Sy }
The set of faults in overlay nodes { F1, Fa, ..., F, }
The set of overlay actions {a1, as, ..., ap}

IS
&

<

2T 000 R

The overlay fault diagnosis (O-AIR) process includes three
functional modules: symptom mining, fault reasoning, and
action selection. The symptom mining module uses observed
overlay symptoms to dynamically create an O-SFA model
based on an ONP. The fault reasoning module takes O-SFA
as input and returns a fault hypothesis 4 as output. The fault
hypothesis 4 contains a set of faulty components that explains
all the observed symptoms. The corresponding overlay actions
are selected to verify the hypothesis. If all faults in A are
verifiable, the overlay fault diagnosis process terminates and
faults are reported. Otherwise, the action results are used to up-
date previously constructed O-SFA by removing unexplained
overlay symptoms, as well as irrelevant components, and
adding new symptoms and related components. This process
repeats until a verifiable hypothesis is found.

Figure 13 shows the overlay network in correspondence
to the network shown in Figure 12. The overlay network
has two overlay paths: Ppg between the overlay nodes D

Overlay link
""" Overlay path

Underlying
network

Fig. 13. An overlay network showing overlay paths and overlay links.

and E; and P4p between the overlay nodes A and B. The
overlay path Ppp consists of two overlay links [pc and
lcg. Similarly, the overlay path P4p consists of two overlay
links l4¢ and lcp. Nac represents the underlying network
components between overlay nodes A and C. Similarly, N¢g,
Npc and Neop represent their respective underlying network
components. The Overlay-SFA model of the overlay network is
shown in Figure 14. The O-SFA model has nodes: O; for every
overlay path related symptom; .S; for every overlay link related
symptom; Fj, to represent a fault in the overlay component or
its underlying network; and a; is an action node to verify the
faults.

0={0}

S={sy

Fo Foc Fa Fac FC Fce Fe FcB Fg F={F}
NN

ay ap ag ay as A={a}

Fig. 14. Overlay Symptom-Fault-Action model for overlay network in Figure
13.

B. End-user observations

Most of the fault diagnosis solutions either require massive
information collected passively by using the network mon-
itoring agents, or by actively monitoring the network using
probes. Both these approaches have their limitations. Passive
monitoring approaches require extensive network knowledge
regarding posterior or aprior fault probabilities of the underly-
ing network components which may limit their effectiveness in
real practice. Whereas the additional synthetic traffic generated
for probing the network may burden the underlying network
infrastructure. So, various solutions have been proposed based
on the usage of only the end-user observations as negative
symptoms to develop hypotheses of potential faulty network
components [51]-[53].

An overlay fault diagnosis framework called DigOver has
been proposed by Tang et al. in [51]. In this framework, the
end-user observations are associated with the related overlay
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path, and represented by the set of components along the
overlay path. The evidences are used as negative symptoms
to develop hypotheses of potential faulty network components.
Each hypothesis is evaluated using the Dempster-Shafer theory
[56] to quantify the fault probability along with the evaluation
uncertainty. The use of Dempster-Shafer theory (DST) for fault
diagnosis makes this framework different than other probabilis-
tic fault diagnosis frameworks which use Bayesian reasoning.
Adequate a-priori information regarding the fault probabilities
collected by active monitoring or network monitoring agents
is required for Bayesian reasoning. However, the DigOver
framework requires no such information and assumes little or
no knowledge about the network topology. In particular, the
faults are reasoned at real-time based on the user observations,
where the end-user views are used as evidence to compute a
belief for most plausible root causes. However, the reasoning of
all the end-user evidences using DST can be time consuming,
especially in the case of complex mapping of substrate and
overlay nodes. Improvements to the DigOver framework are
proposed by Wang et al. in their DiaEO framework [52],
wherein the end-user observations are screened and broken
down into subsets before the evidence reasoning analysis, in
order to improve the reasoning time.

Another fault diagnosis approach based on end-user ob-
servations has been proposed by Gillani et al. in [53]. The
end-users share their network performance information which
is considered as negative symptoms, and is used to local-
ize performance anomalies and determine the packet loss
contribution of each network component. The problem is
formulated as a constraint-satisfaction problem, wherein the
model localizes packet loss in large-scale networks accurately
without requiring information collected from active probing or
network monitoring agents. This model exploits the correlation
in the end-user negative symptoms due to shared symptoms
and path segments, in conjunction it also identifies network
loss invariants, which are all then encoded as constraints and
solved using satisfiability modulo theories (SMT). Advanced
SMT solvers are available that can solve large number of
constraints and variables which makes this approach scalable
to a large number of symptoms and network components. The
model used in this approach develops hypotheses of potential
root causes in the network which satisfy the reported end-
user observations and network loss invariants. However, this
approach may inherit the problem of insufficient observations
by end-users which is solved by adding more observations
through selectively asking appropriate end-users to generate
network probes. These probes are targeted to only the potential
root cause network components which may help to minimize
the probing traffic in the network. Also, the problem of
spurious observations by malicious end-users is addressed by
performing an in-depth analysis of each end-user to identify
any malicious users and remove them from the system, and
also the SMT solvers provide features to remove spurious
symptoms from the evidence set.

C. Multi-layer fault diagnosis in Overlay Networks

Monitoring all links in a multi-layer overlay network is
important; however, a full monitoring operation in a large
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network can constitute a significant overhead in terms of
bandwidth and processing. A flexible technique has been
proposed by Demirci [49] that monitors end-to-end overlay
measurements along with certain native physical links. A
suitable combination of native layers and overlay links is then
used to infer the state of the overlay network. This approach
is named multi-layer monitoring. Along similar lines, Chen
et al. [50] has proposed a linear algebraic approach to find
a minimal basis set of just the overlay links to monitor and
infer the loss rates of the remaining links. This multi-layer
monitoring strategy is a general approach to offer significant
flexibility in monitoring overlay networks. The main idea is to
minimize monitoring cost by monitoring the optimal mix of
overlay and native links. The problem of selecting the mix of
native and overlay links is formulated as a linear programming
problem. Constraints such as cost to monitor each link (overlay
and native), and overlapping relationship between native and
overlay links are represented as linear mathematical relation-
ships. The constraints are used to determine the optimal mix
of native and overlay links using linear programming.

Most of the passive fault diagnosis approaches developed
for overlay networks use the network model which represents
the relationship between substrate network, virtual network,
and symptoms. Then the fault diagnosis problem is formulated
as a probabilistic inference problem to identify the faults at
the substrate layer given the observed symptoms as evidence.
However, these methods ignore the existence of independent
faults at the virtual layer. Yan ef al. in [54] provides a clear
distinction between the three types of faults that can occur
in a virtual network environment. The faults at the substrate
layer are called substrate faults (SFs), which can lead to the
failure of corresponding virtual nodes and links, which are
called correlative virtual faults (CVFs). The faults that occur
because of software errors in the virtual layers are called
independent virtual faults (IVFs). Yan er al. have described
a method to identify all virtual faults (CVFs and IVFs) based
on the symptom fault relationship and the observed symptoms.
The substrate faults (SFs) are located based on the mapping
relationship between CVFs and SFs. The layer-by-layer fault
diagnostic approach can solve the problem which is caused
by the inaccessible substrate network information. A filtering
mechanism is used to distinguish CVFs from IVFs, which
improves the quality of fault diagnosis and also help in efficient
recovery in case of failure.

D. Efficient Overlay Network Placement

Along with the multi-layer monitoring approach, Demirci
has also proposed the idea of efficient node placement that
can accelerate fault diagnosis and optimize overlay monitoring
[55]. A new term diagnosability is defined as the overlay
network’s property to allow accurate diagnosis of potential
faults with minimum overhead. A large part of diagnosability
depends on the topology of the substrate network. However,
the placement of overlay nodes can also play a significant role
in determining an overlay’s diagnosability. Figure 15 shows
an example of different placements of three-node overlay on
a substrate network. For overlay ABC, a failure of substrate
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node X could be observed on path BC through end-to-end
monitoring of that path. However, the fault cannot be pinned
down to a single component because there are two substrate
links and a substrate node that can be the source of the fault.
On the other hand, with the overlay placement of A’'BC, the
failure of node X could be observed on all three end-to-end
paths and will be uniquely identified. Usually a trade-off exists
between diagnosability and the amount of stress on substrate
components, and higher diagnosability comes at the expense
of stressing out the substrate network. The overlay placement
approach is based on the following ideas:

1) Increase sharing between overlay paths on average: The
more end-to-end paths that share a substrate component,
the higher the number of symptoms that can observe a
fault at that component. This is helpful in localizing the
fault.

2) Limit the maximum stress on a component: A substrate
node/link shared by too many overlay nodes/links has
more risk of congestion and resource exhaustion. An
upper limit on stress is required for substrate compo-
nents.

3) Limit the number of overlay paths that overlap almost
completely: Two complete overlapping end-to-end paths
observing a fault provide no more valuable information
for diagnosis than one.

Overlay ABC
------- . Overlay ABC
. Substrate

Fig. 15.  Sample topology with two possible placements of an overlay
network, ABC and A’BC.

The three ideas are combined into a single metric g that
represents suitability of placement of overlay nodes. The goal
of the placement algorithm is to maximize the placement
quality metric g. The algorithm starts with a random placement
of the overlay onto the substrate, and gradually improves g
by making small adjustments. At each step, the overlay path
whose placement may reduce ¢ is changed by moving its end
nodes to other substrate nodes. This approach leverages the
flexibility in overlay design to maximize the diagnosability of
the overlay network.

V. DECENTRALIZED PROBABILISTIC MANAGEMENT
TECHNIQUES

Most probabilistic network management solutions typically
follow a paradigm in which a few dedicated network nodes
autonomously execute management tasks in order to manage
a set of network nodes. The dedicated nodes then communicate
with a centralized system to report failures and anomalies in
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the network. Yu er al. [57] have identified one of the main
risks of centralized approaches to be increased link load at the
central collection node. Further, the authors have also elicited
that coordination between neighbors for fault detection can
reduce communication overhead and detect network faults with
higher certainty. Different strategies for fault detection and
fault localization have been investigated by Zhuang et al. [58],
in which nodes can either independently or collaboratively
decide the status of a neighboring node. Their results show
a decrease in detection time of fault localization but an
increase in control overhead with the use of algorithms that
employ neighbor-collaboration and information-sharing among
nodes. Figure 16 shows a comparison between centralized
and decentralized management approaches. The network nodes
in centralized management approach communicate with a
centralized system where all the analysis is done. On the other
hand, in decentralized management approach, each network
node is embedded with a management process. The network
nodes communicate with each other and the final analysis is
reported to the network administrator.

| Management
commands

777777 —
Network |- I
nodes with 7 AN
: AN
' . A
.

embedded “-.__
managemeni, |
process

_ Network
" nodes

Peer-to-peer

Managed domain interaction

Managed domain

Centralized management Decentralized management

Fig. 16. Centralized vs decentralized management.

More recently, Prieto et al. [59], [60] and Steinert [61],
[62] have also proposed decentralized probabilistic fault man-
agement techniques. Prieto described a network monitoring
protocol that provides a management station with a continuous
estimate of a global metric for given performance objectives
[63]. An example of a global metric in the context of the
Internet could be a list of subscribers with the longest end-to-
end delay. The global aggregate metric is computed from the
local metrics of nodes across a network system. Key parts of
this model are the distributed monitoring process and the nodes
communication using spanning-tree based approach. In order
to incrementally compute a global metric, each node holds
information about its children in the tree structure and push-
based updates are used to send information to management
stations along the spanning tree.

Another distributed and adaptive algorithm for fault detec-
tion and fault localization has been proposed by Steinert [62].
This probing based approach is based on the requirements of
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Fig. 17. Example of distributed fault localization algorithm.

reducing the manual efforts of configuring the algorithms to
run on networks of different sizes and types, and to improve
bandwidth usage compared to conventional probing fault lo-
calization techniques. The algorithm autonomously adapts to
local network conditions and parameters of network resources
to continuously monitor link disturbances. The data collected
by monitoring neighbor nodes is processed locally to allow
for faster detection of network failures. The aim of this
approach is to observe network behavior and look for patterns
that deviate from normal observations, rather than finding
any particular type of fault. For each link in the network,
parameter estimation of the observed response delays, drop
rate, etc. is performed to model their probability distribution.
Based on the probability distribution, the expected response
delay and drop rate are computed. Probes are sent in certain
intervals to test the availability of adjacent nodes. The intervals
autonomously adapt to the observed behavior of individual
connections. If a probe on a connection fails, a symptom is
marked and the fault-localization process is initiated. The fault
localization process involves collaboration between nodes in
order to localize the origin of the abnormal network behavior.
The algorithm is designed to distinguish node faults from link
faults. A distributed fault localization algorithm is shown in
Figure 17. In this algorithm, when a probe test from A to
C fails, A initiates the fault localization process by asking
neighbors of C to test their connection with C and report back
to A. In this case, the neighbors of C were successfully able
to probe C, so a broken link was concluded and reported by
A. Similarly, when a probe test from B to D fails, B initiates
the fault localization process, by asking neighbors of D to test
their connection with D and report back to B. However, in this
case none of the neighbors receive a probe response from D,
so a faulty node is concluded and reported by B.

“NATO - Not All at Once” is another probabilistic algorithm
proposed by Cohen et al. [64]. The algorithm estimates the
ideal size of a group of nodes that should report their collabora-
tive group metrics. The bandwidth and resources are efficiently
utilized, and excessive traffic is avoided at the ingress channel
of the management station by not having each node report
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its local metric independently. Aggregating local metrics of
nodes to compute a group metric can significantly reduce node-
collaboration traffic at the expense of marginal computational
load on each node. Examples of such metrics are number
of nodes with high packet rate, emerging congestion, etc.
This approach is an alternative to Prieto's metric aggregation
approach described previously. NATO! is an example of a
family of algorithms that implement grouping of nodes to avoid
congestion at the ingress channel of the management station.
The approach aims to be scalable to networks of any size, and
provide a flexibility to control the trade-off between accuracy,
timeliness, and overhead in the network.

VI. TEMPORAL CORRELATION TECHNIQUES

Some of the newer fault localization techniques have ex-
plored temporal and dynamic aspects of a network model.
Many existing fault localization techniques assume a static
model of a network, i.e. the network state does not change
during the diagnostic process. Such an assumption may not
be valid in dynamically changing networks. For instance, in
a mobile ad-hoc network, mobility of nodes results in a high
degree of non-determinism in the network model because of
dynamically changing topology and lack of accurate and timely
information [65]. While “hard” failures on network compo-
nents are relatively rare, “soft” failures such as performance
degradation, e.g. response time exceeding a certain threshold,
may happen more frequently in a dynamic network. So, there
is a need to have more sophisticated models that can account
for network dynamics and provide more accurate diagnosis.

An approach to use a temporal model is to consider the
general framework of Dynamic Bayesian Networks (DBNs)
for representing symptom-fault relationship of a network. This
approach can handle a wide range of dynamic systems, but
suffers from the same computational complexity problem as
the basic BN framework (i.e., inference in DBNs is NP-
hard) [40], [66]. Steinert et al. [67] have also developed an
approach that considers a spatio-temporal correlation between
events that are spread across multiple layers in a multi-layer
virtual network. This fully distributed approach is based on the
assumption that events in one layer may arise from a series of
events in lower layers. Natu er al. [65] have also developed
an approach that considers a temporal correlation between
dependency models of a network over a period of time and
tries to capture the changing dependencies. The dependency
model used in the approach is in the form of a symptom-fault
relationship.

A. Dynamic Bayesian Network

One usage of dynamic Bayesian networks to model situa-
tions where the state of a network component changes over
time has been shown by Rish ef al. in [40] and by Li et
al. in [66]. Dynamic BN model extends the static BN model
by introducing the notion of time-slices and specifying tran-
sition probabilities P(X?|X*~1) between these slices, where
Xt = (zt,...,2t) is the vector of node states at time slice t.
However, the key thing here is that the DBN model is time-
invariant; the term “Dynamic” represents a dynamic system,
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not a system that changes over time. DBN uses the Markov
property that the future network state is independent of its
past states given the present state. The intra-slice dependencies
are described by a static BN, and inter-slice dependencies
are described by the transition probabilities. A DBN model
describes a stationary stochastic process (i.e., the transition
probabilities and intra-slice dependencies do not change with
time). Figure 18(a) shows a static BN, which is extended
by a dynamic BN in Figure 18(b), by adding inter-slice
dependencies that encode the transition probabilities.

Once a dynamic BN is specified, any standard BN inference
algorithm can be applied to compute P(X*| X!~ Y1), given
the prior distribution P(X?"1) and the observations Y at
time-slice ¢, where Y C T' is a subset of symptoms observed
at time ¢. The computational complexity of exact inference in
DBN is high, but some efficient approximation algorithms are
available in [68]-[70]. The most recent work of using DBN
to model a dynamic network describes the use of clusters for
reducing the time complexity of inference. Li et al. [66] have
used DBN model to represent a large-scale IP network. In
their work they have divided the fault nodes into independent
clusters, to reduce the diagnosis time and make inference
feasible. Clustering of fault nodes is valid because of the
ubiquitous assumption of conditional independence among
fault nodes to model symptom-fault relationship. However, the
use of clusters reduces the accuracy of fault diagnosis.

Fig. 18.

(a) Bayesian network, and (b) Dynamic Bayesian network.

B. Spatio-Temporal Event Correlation for Multi-layer Virtual
Network

Steinert et al. [67] have considered spatio-temporal correla-
tion among network events in multi-layer virtual networks. In
this work, the problems addressed are related to asynchronous
clocks among stacked overlay networks and network equip-
ment, which complicates the problem of event correlation. As
event correlation is highly dependent on the temporal order
in which the events appear, the collection of events from
monitoring nodes requires some kind of synchronization. In
wired networks, nodes are often synchronized through the
Network Time Protocol (NTP). However, in wireless ad-hoc
networks with some degree of heterogeneity, synchronization
can be a problem. Therefore, a protocol to compensate for
asynchronous timestamps can be useful. A cross-layer protocol
design is proposed by Steinert et al. [67] that operates in a
fully distributed manner and takes asynchronous timestamps
into account.
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In a multi-layered virtualized network, a virtual overlay
can be assumed to have inherited the characteristics from the
underlay layers in the hierarchical stack. So, a failure in an
overlay is likely to be caused by events in the underlay. An
example of event correlation in a multi-layer network is shown
in Figure 19. The events can be related to malfunctioning
equipment, malicious activity, reconfiguration, performance
degradation, and changes in load patterns in shared resources.
In order to accurately localize the root cause of events, the
information from the underlying layers needs to be considered,
in addition to observed relevant events of the layer in which
the alarm was first reported.

{Events at layer A,

Timestamp} A
{Events at layer B,
Timestamp} B
{Events at layer C, C
Timestamp}
Fig. 19. An example showing spatio-temporal event correlation.

The algorithms used for fault detection and localization in
a particular virtual layer are from the authors’ previous work
[60], [61] and are described in Section V. For correlating the
events across multiple layers, the detection time ¢ is recorded,
of an event E() in a layer [ with topology T"), and the time t,,
is also recorded when everything was known to be functional
in the layer. All events that are relevant in accordance with the
topology 7" and the timestamps [t,,, ;] are then aggregated
and disseminated to the underlay. The set of aggregated events
constitute a root cause at level [ which is also disseminated to
the underlay. As the underlay [ — 1 knows what the topology
T® corresponds to in terms of its own topology 7'¢~1), the
events that have occurred within the time interval [t,,,ty] are
searched in 7(~1. Again, the set of reported events within
the time interval constitutes a root cause at level [ — 1, and
is disseminated to the next underlay layer. The dissemination
of events to the underlay is terminated when no events in the
current underlay are found, or if the protocol has reached the
physical layer. Aggregated events are temporally ordered and
reported for further analysis.
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C. Temporal Correlations in Network Topology

An architecture has been presented by Natu et al. [65] that
considers temporal correlation in the network topologies over
a period of time. A dynamic dependency model is introduced
to capture changing dependencies of the network. A fault
hypotheses search space is used to store different hypotheses
generated over a period of time. A timestamp is assigned to
each dependency model and also to each reported symptom.
Timestamp information is used to calculate the relevancy of a
dependency model used for processing a particular symptom.
The fault correlation algorithm processes the observed symp-
toms incrementally as they arrive, and a fault hypothesis set
is generated. The hypothesis set is modified after receiving
a change in topology information. A set of hypotheses is
reported as possible causes of failure symptoms and are ranked
based on the degree of confidence. The ranks (beliefs) are
computed by using the IHU algorithm [71] and also according
to the temporal information present in the dependency model
and reported symptoms. The temporal information is weighted
based on the difference in timestamp of symptoms and depen-
dency models being considered. The smaller the difference,
the higher is the relevance. As the individual symptom-fault
dependencies are stored in the hypotheses search space, the
belief computation is not required to be done on arrival of each
new symptom. Instead, to improve the performance, the beliefs
are computed after collecting certain number of symptoms or
after a period of time has elapsed.

VII. LEARNING TECHNIQUES

All the techniques described in the previous sections require
knowledge of a dependency model of the network. But for
a real-world complex network, obtaining a full dependency
model is challenging. So, fault localization based on learning
techniques can be useful as it would not require complete
dependency model of a network. A network management
system that monitors complex networks can generate large log
files. The empirical data in these log files can be diagnosed
using statistical and machine learning techniques. Statistical
techniques can summarize and interpret empirical data using
approaches such as correlation, histogram comparison and
dimension-reduction techniques. The statistical techniques are
data-centric and require little expert knowledge or detailed
model of the system. Machine learning is a scientific disci-
pline that is concerned with the design and development of
algorithms that can learn based on a sample of data. Machine
learning techniques rely on training and cross-validating which
involves partitioning a sample of data into subsets, performing
the analysis on one subset called the training set, and validating
the analysis on the other subset called the validation set. Cross-
validation helps in providing an estimate of accuracy of the
model.

A. Statistical Techniques

Most of the passive monitoring techniques discussed earlier
rely on statistical techniques, such as correlation and regres-
sion, in conjunction with deep knowledge of the system’s
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behavior to diagnose problems?. By contrast, the statistical
techniques discussed in this section make fewer assump-
tions about the system’s behavior. Statistical techniques can
be classified as parametric and non-parametric techniques.
Parametric techniques assume that the data is drawn from a
known distribution and makes inferences about the parameters
of the distribution, e.g., normal distribution. Non-parametric
techniques do not rely on data belonging to a particular dis-
tribution but rather estimate the underlying distribution. Non-
parametric methods make fewer assumptions than parametric
methods, which make them more robust and give them wider
applicability. The difference between parametric model and
non-parametric model is that the former has a fixed number of
parameters, while the latter grows the number of parameters
with the amount of training data.

1) Parametric techniques: Parametric techniques assume
that data is drawn from a known distribution. Normal distribu-
tions are commonly used for anomaly detection and diagnosis
because of their tractability, and also because normality can
sometimes be justified by the central-limit theorem which
explains why many distributions tend to be close to the normal
distribution. These techniques typically detect anomalous be-
havior by identifying significant deviations from the mean of
performance counters, which they assume to follow a normal
distribution.

In statistical analysis, change point detection techniques
[72] can be used to identify the times, when the probability
distribution of a stochastic process or time series changes.
In general, the problem concerns both detecting whether or
not a change has occurred, or whether several changes might
have occurred, and identifying the times of any such changes.
Agarwal et al. [73] use change point detection technique,
to detect changes in time series of performance metrics of
individual nodes in the system and then identify a failure
condition based on its signature. Abrupt changes in system
behavior are detected by monitoring changes to the mean
value of performance counters over consecutive windows of
time. The change point detection technique works better than
the static or dynamic thresholds set for individual metrics, as
they require an in-depth knowledge of the system architecture
and design. Change point detection techniques operate on a
window of samples rather than individual sample points to find
change points. In this way, only statistically important events
are generated, and the false positives and false negatives are
considerably reduced. However, this technique does not scale
well with large number of nodes and metrics.

Kandula er al. [74] have developed a system NetMedic
that can diagnose faults in enterprise networks. The goal is
to design and implement a comprehensive system that can
diagnose and provide solutions to a wide variety of faults in
the system. The propagating faults are diagnosed by analyzing
dependencies between nodes, and correlating the state pertur-
bations to localize them. Figure 20 shows the workflow of the
NetMedic system. The three main modules of the workflow

2The literature on learning techniques generally uses the term "problem"
to refer to a fault. To be consistent with conventions in the mainstream fault
management community, we use the term "fault" in this paper, including this
section.
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are to capture the state of network components, generate the
dependency graph, and diagnose based on component states
and the dependency graph. During diagnosis, the first step
is to determine the extent to which various components and
variables are statistically abnormal. Then the weight for edges
in the dependency graph are computed. The weights are used
to compute path weights and produce a ranked list of likely
culprits. The state for each system component is represented
as a vector that indicates whether each metric was anomalous
or normal, by assuming that each metric obeys a normal
distribution and flagging anomalies based on deviation from
the mean. If two components which depend on each other
are anomalous, the system searches for time periods where
the source component’s state is similar to its current state, and
searches for destination states that have experienced significant
changes in the same period. The destination states are the likely
culprits. The system is based on an intuitive technique that uses
the joint behavior of two components in the past to estimate
the likelihood of them impacting one another in the present.

Generate
dependency
graph

Capture state of
network component

Compute abnormality

=

Dependency
graph

Ranked list of
likely causes
for each

affected
network
components

Compute edge weight

Component states >

Time period to Rank likely causes

diagnose, and historical :>

time range

000

Diagnosis

Fig. 20. The workflow of NetMedic.

Kavulya et al. [75] have discussed the challenges associated
with discovering and diagnosing chronics, i.e., recurrent faults
that fly under the radar and do not trigger alarm thresholds. A
statistical approach is used for diagnosis of never-before seen
chronics that does not rely on models of system behavior, or
historical data to localize problems. The approach uses a scal-
able Bayesian distribution learner coupled with an information
theoretic measure of distance, to identify the sets of attributes
that best distinguish failed requests from successful requests.
Draco, a statistical fault diagnosis tool that implements this
approach, is presented in [76]. Draco performs statistical
diagnosis of faults in large Voice-over-IP (VoIP) systems by
comparing differences in the distributions of attributes, such as
hostnames and customer IP addresses, in successful and failed
calls. Draco assumes that these attributes are drawn from a
Beta distribution and localizes faults by identifying attributes
that are most correlated with failed calls. Due to its statistical
nature, Draco does not require extensive domain expertise in
the form of rules or models, thus making it easily portable
to multiple applications. By comparing successes and failures
over the same window of time, Draco avoids the need for
separate learning passes, and can thus diagnose faults that have
never been seen before.

2) Non-Parametric techniques: Non-parametric techniques
assume that data is drawn from an unknown distribution. Non-
parametric techniques estimate the underlying data distribution
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using kernel density estimation, or make generalizations about
the populations from which the samples were drawn, e.g.,
using correlation. The term non-parametric is not meant to
imply that such models completely lack parameters, but that
the number and nature of the parameters are flexible and not
fixed in advance.

Correlation-based techniques can be used to analyze data
and automatically discover causal relationships among pairs of
metrics [24], [77]-[79]. Perturbation in the learned correlations
may indicate faults. Several solutions have been proposed
for event correlation and alarm filtering with applications
in network management. The codebook approach by Yemini
et al. [24] discussed earlier in Section II correlates each
known fault with a specific set of events, which is essentially
used as the signature in fault determination. Gruschke’s use
of dependency graphs to represent correlation knowledge in
[78], and alarm filtering approach by Mas et al. discussed
in [80], are correlation approaches that are essentially also
used to determine fault signatures. These approaches assume
that the prior knowledge of system dependency is available.
However, as discussed earlier, it is difficult to extract system
dependencies or define fault signatures in complex network
systems.

Mahimkar et al. [81] have developed a tool Giza, which uses
correlation techniques for characterizing and troubleshooting
faults and performance impairments in IPTV distribution net-
works. The tool uses hierarchical heavy hitter detection to
identify the spatial locations where the symptom events are
dominant in the network. The hierarchy for spatial locations
is created using the IPTV multicast tree structure. This greatly
reduces the amount of data for subsequent processing. Then
statistical event correlation analysis at heavy hitter locations
are applied to identify those event-series that are strongly
correlated with the heavy hitter symptom. The list of strongly
correlated event-series includes both potential root causes
and impacts of the symptom events. Then, the statistical lag
correlation and /' norm minimization techniques are applied to
discover the causal dependencies between events. A causal de-
pendency graph for each symptom event-series is constructed.
The graph generated by Giza is sparse, and helps network
operators to effectively and automatically diagnose symptom
events. The discovery process requires minimal domain knowl-
edge. Figure 21 shows the architecture of the tool Giza.

The usage of statistical techniques for diagnosis have certain
limitations. The diagnosis techniques need to rely on well
established statistical theories to ground their algorithms, and
to prove their results are statistically significant. However, to
build a statistical profile of behavior, sufficient data samples are
required, and valid assumptions on data distribution need to be
considered. Incorrectly assuming that the data is drawn from
a normal distribution can lead to a high error rate. Also, the
statistical techniques do not integrate the semantic knowledge
about semantic behavior of the system, so certain difficulties
can be experienced to distinguish legitimate changes in behav-
ior, such as workload changes from performance problems.
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Fig. 21. The architecture of Giza.

B. Machine learning techniques

Machine learning techniques borrow heavily from statisti-
cal techniques, e.g., data distributions and probability theory.
Machine learning techniques rely on learning algorithms, to
study the correlation of network events from a limited set of
data, called the training data. The training data consists of
observed network events and corresponding network faults.
This information is obtained from historical data recorded
in logs and diagnosis reports. The training data is used to
develop a hypothesis about the relationships of network events.
The learned hypothesis is then applied to new observations to
predict the state of the network. During the process of devel-
oping a hypothesis and predicting network outcome, the prior
probability distribution of faults or the conditional probabilities
of observing symptoms are not required. Diagnosis algorithms
that rely on machine learning can be categorized into two
broad categories namely: 1) Supervised learning which infer
a function that best classifies successful and failed states from
labeled data, and 2) Unsupervised learning which identifies
patterns in unlabeled data typically through clustering.

1) Supervised learning: Supervised learning algorithms in-
fer a function from labeled training data. The training data
consist of a set of training examples, where each example
is a pair consisting of an input object, typically a vector,
and a desired output value. A supervised learning algorithm
analyzes the training data and produces an inferred function,
which can be used for mapping new examples. Symptom
attribution approaches localize faults by identifying network
components that are highly correlated with failed states. This
can allow network operators to filter thousands of symptoms
in their system, and narrow down the handful of symptoms
that can yield insight to the cause of the fault and its location.
This approach guides the network operators to perform more
detailed root-cause analysis. After the root-cause analysis, the
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output of symptom attribution can be annotated with the root-
cause and the database of known failures can be built. This
database can be used by the knowledge based techniques
described in Section II.

Chen et al. have developed frameworks Pinpoint [82] and
MinEntropy [83] that use data clustering and decision trees,
respectively, to diagnose faults in large network systems.
The frameworks do root cause analysis, and do not require
application-level knowledge of the systems being monitored.
The frameworks are developed to automatically detect faults
in large and dynamic systems. In these approaches, the real
client requests are tagged and traced as they travel through the
system. Each request is recorded as believed success or failure,
and the set of components used to service it.

In Pinpoint approach, the data clustering and statistical
techniques are performed to correlate the believed failures
and successes of the tagged requests to determine which
components are most likely to be at fault. In MinEntropy
approach, decision trees are trained on the traces of requests
from time periods in which failures are present. Paths through
the tree are ranked according to their degree of correlation with
failure, and nodes are merged according to the observed partial
order of system components. Tracing real requests through the
system enables them to support fault determination in dynamic
systems where using dependency models is not possible.
Tracing also allows to distinguish between multiple instances
of what would be a single logical component in a dependency
model. These approaches claim to achieve high accuracy and
low false positives, as they analyze the components that are
used in the failed requests, but are not used in the successful
requests. The analysis detects individual faulty components,
as well as faults occurring due to interactions among multiple
components. The approach is well suited for large and dynamic
Internet services as live tracing of client requests allows to
analyze both the logical and physical behavior of the system.
Tracing does not require human intervention to adapt to
system changes, so these approaches can scale to constantly
evolving Internet services. However, some limitations of these
approaches are that they assume the requests fail independently
and they do not fail because of the activities of other requests.
These approaches also cannot distinguish between failure of
network components that are tightly coupled and are always
used together.

Cohen el al [84] have also proposed the use of learn-
ing techniques for automating performance diagnosis and
performance management of computer networks. They have
used Tree-Augmented Bayesian Networks or TANs [85], to
identify combinations of resource-usage metrics and threshold
values that are most correlated with anomalous periods. They
basically automate the analysis of instrumentation data from
network services in order to forecast, diagnose, and repair
failure conditions. TANs are less powerful than generalized
Bayesian networks, but they are simple, compact and efficient.
An extension to this work has also been proposed that uses
ensembles of Bayesian models to adapt to changing workloads
and infrastructure [86].

2) Unsupervised learning: Unsupervised learning identifies
patterns in unlabeled data typically through clustering, and
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TABLE V. COMPARISON OF ALL THE FAULT LOCALIZATION TECHNIQUES IN SECTIONS III TO VII
Active probing Techniques for overlay Decentralized Temporal models Learning techniques
and virtual networks probabilistic
management
Approach Monitor and diagnose the Overlay symptom-fault Distribute the network Use of temporal models Use of learning
network nodes and links relationship models, diagnosis to reduce the to capture the temporal algorithms and correlate
using probes end-user observations, communication overload and dynamic aspects of the network events to
multi-layer diagnosis, and at the central node networks diagnose the network for
efficient placement of faults
overlay nodes
Strategy « Adaptive probing ¢ AIR framework « All nodes participate in * Dynamic Bayesian « Statistical — learning

« Probabilistic inference
for probe selection

« Integrate active and
passive monitoring

* Linear programming

* Placement quality
metric

« Dempster-Shafer theory
« Constraint-satisfaction
problem

diagnosing all other
nodes

* Global aggregate
metrics are used

network
 Spatio-temporal event
techniques correlation in
multilayer virtual network
« Temporal correlation in
network topology

parametric and
non-parametric techniques
* Machine — learning
supervised, unsupervised
and particle filtering
techniques

Network overhead

Increase in network traffic

No increase in network
traffic

Increase in network traffic
and control overhead

No increase in network
traffic

No increase in network
traffic

Challenges

Selection and placement
of probing-stations,
selection of a smallest
probe set

Monitoring agents need
to be installed on all
overlay nodes

All networking devices
need to have embedded
management process

Large space complexity
to do the analysis

Large space complexity,
overfitting, lengthy
retraining period,
insufficient data samples

Response time

Event-driven

Event-driven

Event-driven

Time-window based

After the hypothesis has
been learned it can be
instantly applied to set of
symptoms

Resilient to change in
network topology

No, probe set will need
to be modified based on
new network topology

No, overlay placement
will need to be modified.
A new O-SFA model will
need to be created

Yes, algorithms will adapt
to collect global
aggregate metrics and
also monitor nodes
according to new network

topology

No, new model will need
to be created based on
the new network topology

No, new hypothesis will
need to be learned based
on the new
symptoms-fault
relationship

Advantages

Quick response to large
number of network events
as compared to passive
event correlation
techniques

Reduces the cost to
monitor multilayer
overlay networks. Use of
end user observations
instead of network

Reduces the
communication load at
central collection node.
Also, results show
decrease in detection time

Better monitoring in
dynamically changing
networks

Useful when complete
dependency model
(symptoms-fault
relationship) of a network
is not available

symptoms

of network faults

detects unexpected anomaly in data points that might be
indicators of failures.

Kiciman et al. [87] have proposed a similar approach as
Chen [82] [83] to model the causal path in the system by
capturing the runtime path of each request serviced by the
system. From these paths, they extract two specific low-level
behaviors likely to reflect high-level functionality: component
interactions and path shapes. A reference model of the normal
behavior of the system with respect to component interactions
and path shapes is built as a probabilistic context-free grammar
(PCFG) [88]. The current behavior of the system is to analyze,
and search for anomalies with respect to the learned reference
model. The primary differentiator between this work and the
fault localization approach described by Chen et al. in [82]
[83] is that these systems assume the existence of prelabeled
data, e.g., failed or successful requests, and attempt to localize
the fault to part of the system. In contrast, Kiciman’s work
with PCFG assumes no prior knowledge of faults and starts
with fault detection.

Another novel learning technique of using particle filtering,
to compute a probabilistic model of the network links, is
proposed by Johnsson et al. in [89], [90]. The approach is
autonomous in nature and provides the network administrator
with a probability mass function that indicates the location
of faulty components in the network. The algorithm per-

forms online computation without storing results from previous
measurements. The particle filtering analysis is lightweight
from a computational perspective and does not need detailed
knowledge about the network components being measured
[O1].

The algorithm starts by measuring end-to-end metrics such
as one-way delay, round-trip time, loss, and jitter for each
link in the network. The measurements are then fed into the
Network Management System (NMS) where the network fault
localization algorithm operates. The algorithm maps network
segment identifiers to probability mass distribution values
(weights). Each measurement result is compared to an agreed
SLA for the path between the two nodes. Weights are assigned
to the edges of a model that represents the network. The
algorithm assigns equal weight to all paths in the network
model. The weights of edges on a path are increased when
an SLA violation is detected for that path, whereas all other
edge weights are decreased. The weights in the vector must
sum up to one, in order to make the weights correspond to
probabilities. If there is an edge in the network not meeting
the SLA requirement, the probability associated with that edge
will increase over time. The measurements used as sample data
for computing probability mass distribution are represented by
a vector < m;, me, P,b >, where m; and m, are start and
end nodes, P is the path between m; and m,. and b is a value
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which is either true or false according to the SLA agreement.
The basic principle of the particle filtering algorithm is
to construct a discrete sample based representation of the
probability function for the tracked network state. The state
space is discretized by assigning each particle to exactly one
discrete point in the state space (i.e. one edge from the set
of edges). The weight of each particle is updated according
to the measurement model, and the system state estimate is
obtained by calculating the weighted average of all particles.
A threshold value is selected for the particle weights. If the
weight of a specific particle crosses the threshold and stays
there for a defined period of time, that particle is selected as
the fault location. The algorithm finds the exact location of an
anomaly or performance degradation in the network links, and
is suitable for multi-layer and multiple fault localization.
Machine learning techniques can be used to automatically
learn profiles of system behavior by using clustering to identify
fault signatures. Machine learning can also be used to localize
problems by identifying network components that are highly
correlated with faults. However, for large systems with large
number of symptoms, these techniques can suffer because
of their space complexity, and approximation algorithms that
try to reduce space requirement compromising their accu-
racy. Also, these techniques are susceptible to overfitting,
a phenomenon in which the learner learns features of the
evidence that are circumstantial rather than those that actually
define the relationship between the faults and their symptoms.
Over-fitted models can generalize poorly, and can fail when
presented with an evidence that is only slightly different from
the one on which the model was trained. Finally, lengthy
retraining may be required whenever the system behavior
changes significantly, because machine learning techniques
learn a direct mapping between the symptoms and underlying
root causes, without an intermediate structural model of the
system. Furthermore, previously learned models often have
to be thrown away during the period of retraining, leaving
the systems vulnerable to any failures. Therefore, machine
learning techniques may not be appropriate for systems that
are frequently upgraded.
VIII. OPEN RESEARCH PROBLEMS AND FUTURE
RESEARCH DIRECTIONS

Despite several years of active research in fault localization
many problems remain to be solved. Also, some of the recent
developments in the industry have introduced new challenges
for fault localization and to overall network management. In
this section we elaborate on some of the existing and new
research problems.

A. Obtaining network models

The fault localization techniques that are based on a model
representation of the network are faced with the challenges
of obtaining and maintaining accurate information [15], [29],
[36]. The accuracy of a technique directly depends upon the
accuracy of the information in the model. However, little
research has been done to standardize and automate the process
of obtaining the information and building a network model.
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The task of obtaining the information is considered to be a
separate process because of the complexity associated with it.
In fact, most of the techniques assume prior existence of the
model.

The information used in the model may be static or dynamic
in nature depending upon the type of network and model.
Use of dynamic information is significantly more challenging
since the information has to be incorporated in the model
while the system is running. Furthermore, partial, incomplete
or inaccurate information may delay the diagnosis process
or remarkably affect the accuracy of the diagnosis. Some
of the researchers have considered utilizing non-deterministic
models to incorporate dynamic dependencies [34], [71]. In
these models, the uncertainty is represented by assigning
probabilities to the dependencies. However, the assignment of
feasible probabilities and the use of non-deterministic models
are also challenging tasks.

B. Intractable computation

The intrinsic high time and space complexity associated with
probabilistic inference makes the computation intractable for
large and complex networks. Furthermore, these computations
need to be repeatedly performed in order to continuously
monitor the network. Over the years, several approximation
solutions have been proposed but they degrade the accuracy of
fault diagnosis [27], [40], [42], [66]. In spite of the significant
work done, several research opportunities exist. Some of these
opportunities are: 1) design approximation algorithms that
reduce the time and space complexity of probabilistic infer-
ence without degrading the diagnostic accuracy, 2) develop
optimization strategies for the information theoretic approaches
used in selecting optimal probe sets, 3) utilize pruning strate-
gies in some of the graphical approaches, 4) create online
algorithms to continuously diagnose the network symptoms
instead of using event-driven or time-window based strategies.

C. Decentralized fault localization techniques

The decentralized techniques help to reduce the fault de-
tection time and bottleneck at the centralized management
node [59], [62]. However, this increases the control overhead
in the network. In order to reduce the control overhead,
network partitioning strategies can be applied. The partitioning
strategies can be based on clustering algorithms or graph
partitioning to select an optimal number of diagnostic nodes in
the network. Having an optimal number of diagnostic nodes
can help to reduce the communication overhead as well as
reduce the control overhead.

Furthermore, changing the monitoring objective of a net-
work management system may require a certain amount of
manual configuration in the nodes. This configuration proce-
dure further complicates the decentralized techniques. There-
fore, flexible ways to modify monitoring objectives should be
added to the design constructs for future solutions.

D. Fault localization in Software Defined Networks

Software defined networking (SDN) has emerged as a new
network paradigm which transforms the network by abstracting
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the physical network devices from the control logic. The SDN
architecture provides a centralized programmability of the
network devices, which leads to separation of the control plane
from the forwarding plane. This separation may help to de-
velop generic network management and monitoring solutions,
which are indifferent to the vendor-specific physical devices
and proprietary protocols. Another benefit of this separation
and centralized control is to enable a more global view of
the overall network which encourages intelligent management
decisions. However, the centralized design faces some of the
existing problems of traditional networks. The SDN controller
placement problem can be mapped to the problem of placing
a centralized network management system in a traditional
network. The centralized control can help to provide better
diagnostic and monitoring capabilities. However, it introduces
a single point of failure for the entire network operation. The
SDN environment may also present some new categories of
faults for the network management systems.

E. Network management in highly dynamic environments

The frequency of infrastructure changes in the highly dy-
namic environments composed of SDN-enabled components
and NFV-based components brings new challenges to the
network management. Some of the challenges could be with
respect to the frequency and scale of configuration changes
enabled by SDN, dynamic addition and removal of the NFV-
based components depending on the business and user re-
quirements, tracking the inventory fluctuations, and monitoring
resource utilization. One example is monitoring of an interface
for a specific utilization threshold, which can change dramat-
ically by addition or removal of services. Another problem is
to keep track of all the frequent changes to network services
and consider them in making management decisions.

The deployment of next-generation network management
solutions should be based on agile methodologies to keep
up with the pace of frequent infrastructure changes. New
functionalities should be included in the management tasks
where the system not only detects and locates the problems
but also helps to prevent them by capturing and considering
the most recent view of the state of the network components.
In order to provide a possibility of better network stability
and service delivery, different aspects of management such as
provisioning, monitoring, analytics, and notification should be
coupled into a single solution.

F. Heterogeneity in network environments

As new network environments are deployed, the traditional
and legacy network environments are still expected to coexist
with the newer technologies for a long time. During this
transition period, the network management solutions should
have the ability to manage this heterogeneity in the network.
Moreover, the network-based services will typically traverse
both the traditional and new networks as well as physical and
virtual components. Therefore, the coexistence is required to
be managed seamlessly considering the end-to-end view of the
composite network environment.
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IX. CONCLUSIONS

Networks are dramatically scaling and various new
paradigms are being rapidly developed. These changes demand
development of a new generation of network fault management
tools. Faults in network systems will remain unavoidable, so
their quick and accurate detection and diagnosis is important
for the stability, consistency, and performance of network
systems. Therefore, fault localization will continue to play an
essential role in the overall network management operations.

This paper presents a comprehensive survey of recent fault
localization techniques proposed for computer networks. These
techniques are designed considering the evolution of computer
networks over the past decade. We discuss the benefits and lim-
itations associated with each of the techniques and categorized
them based on their applicability and key design principles. In
order to highlight the key ideas, challenges, and advantages
of each of the techniques, a summary of the comparisons
is included in Table V. We believe that description and
comparisons of the fault localization techniques presented in
this paper will be helpful for developing new generic network
management solutions for various network environments.
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