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Abstract—This work studies mixed-autonomy traffic optimiza-
tion at a network level with Deep Reinforcement Learning (DRL).
In mixed-autonomy traffic, a mixture of connected autonomous
vehicles (CAVs) and human driving vehicles is present on the
roads at the same time. We hypothesize that controlling dis-
tributed CAVs at a network level can outperform the individually
controlled CAVs. Our goal is to improve traffic fluidity in terms of
the vehicle’s average velocity and collision avoidance. We propose
three distributed learning control policies for CAVs in mixed-
autonomy traffic using Proximal Policy Optimization (PPO), a
policy gradient DRL method. We conduct the experiments with
different traffic settings and CAV penetration rates on the Flow
framework, a new open-source microscopic traffic simulator. The
experiments show that network-level RL policies for controlling
CAVs outperform the individual-level RL policies in terms of the
total rewards and the average velocity.

I. INTRODUCTION

Traffic congestion has always been a significant issue,
especially in metropolitan areas. Congestion will be even
worse in the near future due to the explosive growth in the
number of vehicles and the limited road network expansion. In
the United States, 87.9 percent of daily commuters use private
vehicles [1]. However, it is hard to alleviate traffic congestion
because there are many different factors to consider, such as
vehicles changing lanes or collisions. The traffic flow itself
is dynamic and stochastic and thus it is hard to capture or
observe in real-time (e.g., inconsistent driving speeds may
cause stop-and-go waves). Fortunately, new transportation
technologies including connected infrastructure and connected
vehicles pave the way to more intelligent transportation sys-
tems [2]. Mixed-autonomy traffic is a mixture of connected
autonomous vehicles (CAV) and human-driven vehicles. Early
work showed that using CAVs can improve traffic flow in
terms of speed and stability [3], [4], [5]. However, most of the
work held the perspective of CAV platooning or an individual
CAV. In this study, we extend mixed-autonomy traffic control
to a distributed, multi-agent scope.

Deep Reinforcement Learning (DRL) has been used as a
powerful tool in solving control problems and has achieved
significant success in many complex systems including robotic
control [6] and gaming [7]. We believe DRL is a promising
approach for solving traffic control as it is a theoretically
sequential decision-making problem. Compared to other ap-

proaches (e.g., game theory), DRL provides more flexible
solutions without high computation cost on the fly. In recent
years, RL has made many breakthroughs in the intelligent
transportation area, such as self-driving car control [8], [9],
coordinated traffic lights [10], and other connected infrastruc-
ture systems [11]. Vehicle driving control is a continuous time-
sequential task. RL also can be used to optimize the driving ve-
locity or more complex behaviors (e.g., merging). Autonomous
vehicles can improve traffic flow and fuel consumption by
adjusting their speeds as well as avoid oscillations with human-
driven vehicles [5]. Even a small percentage of autonomous
vehicles could have a significant impact to potentially reduce
total fuel consumption by up to 40 percent and braking events
by up to 99 percent [5].

In this study, we consider distributed CAVs within a certain
distance as a multi-agent network and use DRL to learn
their cooperative driving control policies to optimize mixed
traffic flow in terms of improving the average velocity. We
propose three network-level control strategies: single-agent
asynchronous learning; joint global cooperative learning, and
joint local cooperative learning. We use the first one as the
baseline to compare with the latter two, which learn a joint
global control policy over multiple CAVs. We hypothesize that
network-level control can improve the control policy perfor-
mance compared to individual CAV’s independent controls.
We use Proximal Policy Optimization (PPO) [12], a DRL
method, to learn the CAVs control policies. The experiments
are conducted on an open-source framework, Flow [13] with
the SUMO built-in environment. The experiment settings
include mixed traffic with 10%, 20%, and 30% CAVs, re-
spectively. The experiments show that a network-level RL
policy outperforms an individual control RL policy in terms
of the total rewards and the average velocity. An RL reward is
associated with the current velocity compared to the desired
velocity within a safety threshold. The desired velocity is a
high velocity that traffic flow is expected to drive at without
any safety concerns, and it can be designed by a human expert.
In this paper, we use the speed limit as the desired velocity.
The total RL rewards are the reward summation within a given
time horizon. The average velocity of the traffic flow is a more
straightforward metric, and it is proportional to the cumulative
rewards. Due to their proportional relationship, it is reasonable



to train the RL control policy by maximizing the cumulative
rewards which will lead to a high average velocity in the real
world.

The rest of the paper is organized as follows. In the next
section, we present the existing work in this domain. We then
formulate our problem as a multi-agent Markov Decision Pro-
cess (MDP) model in Section III and provide a brief overview
of the traffic control strategies. In Section IV, we propose
our three learning strategies for the CAVs control problem. In
Section V, we evaluate the properties of the proposed strategies
by extensive experiments. Finally, we summarize our results
and present possible directions for future research.

II. RELATED WORK

With the rapid growth of autonomous vehicle technologies,
it is reasonable to envision near future mixed traffic conditions,
where autonomous and human-driven vehicles coexist. In the
early years, Game Theory was widely used to build smart
traffic systems, including traffic light control [14] and vehicle-
to-vehicle interactions [15], [16]. Khanjary [14] employed
Cournots oligopoly game to solve the traffic light controlling
problem. In the proposed game model, streets were considered
as players and competed to increase their share of green light
time. From the vehicle aspect, Elhenawy et al. [15] proposed
an algorithm inspired from the chicken-game for traffic control
at uncontrolled intersections to reduce the average travel time
and delay. Different from previous studies that consider traffic
lights, Wei et al. [16] extend the traffic controlling problem
to the case that there is no explicit traffic signals. They
designed a hybrid game strategy for connected autonomous
vehicles in order to maximize intersection throughput and
to minimize traffic accidents and congestion. However, these
approaches may perform poorly in large-scale scenarios due
to the inherent high computational complexity of many game-
theoretic approaches.

Recently, several studies have focused on equipping au-
tonomous vehicles with RL controllers to alleviate traffic
problems in various scenarios, such as traffic light control [17],
Vehicle-to-Infrastructures (V2I) network scheduling [11], and
vehicle driving control [18], [19]. We categorized these studies
into two groups: 1) improving traffic stabilization and 2)
improving average velocity (throughput).

Improving traffic stabilization. Traffic flow is a non-
stationary system that may produce backward propagation
waves in different shapes of roads causing part of the traffic
to come to a complete stop [20]. Related autonomous vehicle
control strategies have been proposed such as “FollowerStop-
per” and “PI with Saturation Controller” that aim to reduce the
emergence of stop-and-go waves in a traffic network. However,
the performance of these approaches are sensitive to the
parameters set and limited to a known desired velocity. Wu et
al. [13] demonstrates that with DRL methods, using the same
state information and samples from the overall traffic system,
DRL surpasses the state-of-the-art hand-crafted controllers in
terms of system-level velocity. However, the trade-off is larger
headways. Kreidieh et al. [18] shows the feasibility of DRL

on dissipating these stop-and-go traffic waves in mixed traffic.
Similarly, Vinitsky et al. [19] shows the application of RL
controllers on more complex road situations such as on-ramp
merging.

Improving throughput. Several studies have shown DRL’s
success in controlling traffic (e.g., in traffic light control).
Liu et al. [17] optimized large-scale real-time traffic light
control policy with a Deep Q-network (DQN) to increase the
system’s throughput. The proposed DQN algorithms are tested
in a linear topology with several intersections to confirm their
ability of learning desirable structural features. Lin et al. [21]
utilized the Actor-Critic method to optimize a large-scale
traffic light system to maximize the capacity of each traffic
road and balance the traffic load around each intersection. Garg
et al. [22] proposed a vision-based DRL approach to solve
the problem of congestion around the road intersections. They
implemented their scheme on a traffic simulator and showed
that their method increase the traffic throughput through the
intersection in a simple traffic light intersection scenario.
Similarly, we explore an approach with DRL to control traffic
at a network level. However, we form the network with CAVs
only and integrate these two goals to improve the throughput
by increasing the traffic flow.

III. PROBLEM DEFINITION

This study considers mixed-autonomy traffic, where mul-
tiple connected autonomous vehicles (CAVs) are distributed
arbitrarily among human-driven vehicles and drive with Re-
inforcement Learning (RL) control policies. We model a
mixed traffic flow as a discrete-time Markov Decision Pro-
cess (MDP), defined as 〈N ,S,A, ρ0,P,R〉, where N is the
model’s capacity of the number of agents (CAVs), S is the
state space, A is the action space, ρ0 is the initial state distri-
bution, P is the transition model, andR is the reward function.
The transition model P represents the environment dynamics:
P(s′|s, a) ∈ [0, 1] where s, s′ ∈ S and a ∈ A. The reward
function, R(s′|s, a) ' R(s′) ∈ R, outputs a real number as
a reward measuring how good a transition 〈s, a〉 → s′ is,
and it can be approximated by measuring how good the next
state s′ is in this scenario. A parameterized RL policy πθ (θ is
is the policy approximator’s parameter) outputs a probability
distribution across the whole action space. Given an input
state, an RL agent will take the action with the highest
probability if it is exploited from the RL policy. Let η(πθ) be
the discounted total reward following a policy πθ with a certain
time horizon T : η(πθ) = Eτ [

∑T−1
t=0 γtrt], where γ is the

discount factor, τ = (s0, a0, · · · , sT−1) is the entire trajectory,
and each action is selected by the policy πθ: s0 ∼ ρ0(s0),
at ∼ πθ(at|st) and st+1 ∼ P(st+1|st, at). Our goal is to find
the optimal policy π∗ by maximizing the total reward η(πθ).

In our study, each single-CAV state consists of its absolute
speed and its headway. The headway can be calculated by the
vehicles’ absolute positions. Vehicles’ absolute positions and
velocities are assumed to be accessible by the V2V and V2I
technologies. Actions represent the velocity changes at each
time step, and the values are continuous between [−1, 1]. The



Fig. 1. IDM controller example with vehicles indexed by i and i − 1:
vehicle i− 1 is the leader of i and i is the follower of i− 1

traffic flow itself is a continuous process, and we discretize
it as a sequence of discrete steps. The state-action-state is set
to be deterministic in the experiments. The reward function is
predefined based on a desired high velocity and the current
velocity aiming to encourage a CAV to drive as fast as possi-
ble, while avoiding safety risks. More detailed are presented
in Section IV.

We now introduce the control strategies of human-driven ve-
hicles (Intelligent Driver Model) and the RL learning method
(Proximal Policy Optimization) for the driving policies of
CAVs.

A. Human-driven Vehicle Control

We use the Intelligent Driver Model (IDM) [23], a time-
continuous car-following model, to model human driving be-
haviors and represent the human-driven vehicles’ dynamics of
the positions and velocities. Considering two adjacent vehicles
which are indexed as i−1 and i, vehicle i−1 is directly in front
of i, as shown in Fig 1. Their absolute positions are indicated
by xi−1 and xi, respectively, measured from a fixed reference
position. The length of vehicle i is leni. At a certain time step t
(we omit the time t in the notation in the following equations
for simplification), the acceleration of vehicle i controlled by
the IDM controller is represented by aIDMi :

aIDMi =
dvi
dt

= a[1− (
vi
v∗

)δ − (
s∗(vi,∆vi)

si
)2], (1)

where all notations and parameters are described as:
• si = xi−1−xi− leni−1: the headway from vehicle i−1,
• vi: the current velocity of vehicle i,
• s∗: the desired headway which represents the minimum

safe distance between two vehicles, formulated as

s∗(vi,∆vi) = s0 + max(0, viT +
vi∆vi

2
√
ab

), (2)

where b is the comfortable braking deceleration
• v∗: the desired velocity (velocity in free traffic).

B. Reinforcement Learning

Reinforcement Learning (RL) is a category of machine
learning which learns policies for solving sequential deci-
sion making problems through interaction with the real en-
vironment. The RL policy is optimized by maximizing the
cumulative rewards within a time horizon. In autonomous
vehicle control problems, the RL decisions work on controlling
the vehicle driving dynamics, such as changes in velocity
or lane at each discrete time point. In this study, we only

Centralized RL Agent
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Fig. 2. A multi-agent network can be formed from the distributed CAVs, and
an RL controller learns a cooperative control policy to adjust the CAVs driving
behaviors (acceleration or deceleration). We use 4 CAVs as an example here.

consider the decisions on velocity changes, and the actions are
assumed to be continuous: a positive value for an acceleration
and a negative value for a deceleration. In the traffic control
scenario, real environment interactions are infeasible for safety
concerns, thus a control policy can be explored within a
simulator where vehicles’ absolute positions and velocities can
be accessed in real time. An RL module as an external part can
be connected to the simulator and learn an RL policy with the
collected data. The complete workflow is shown in Fig 2. All
CAVs are assumed to be homogeneous which means they have
the same dynamical features (e.g., acceleration or deceleration
response time), routing controller (e.g., controlling algorithm),
and reward function.

C. Learning with Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) [12] is a policy-based
RL method with significantly less computational complexity
than other policy gradient methods. Instead of imposing a
hard constraint, PPO formalizes the constraint as a penalty
in the objective function and updates the policy directly by
maximizing the discounted total reward as:

η(πθ) = Eτ [πt(a|s; θ)At(s, a)], (3)

where πt(a|s; θ) is the current parameterized policy and θ
is the policy’s parameter. In addition, Eτ [· · · ] indicates the
empirical expectation of rewards within a certain time horizon
over a finite batch of trajectories, and τ is a CAV driving trajec-
tory. In this study, each trajectory contains 2000 discrete time
steps (seconds), or it terminates early if a collision happens.
At each time step, a decision on the velocity change will be
made by the RL policy. CAVs change their speeds accordingly,
then CAVs update their state based on sensory data. The
policy is represented as a neural network, where θ represents
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Fig. 3. Three policy learning processes with different autonomous vehicle networks (yellow vehicles are autonomous vehicles, and red vehicles are human-
driven). Shared single-agent policy is defined based on single-agent states and actions; global joint cooperative policy is updated with the joint states and
actions over all agents; local joint cooperative policy regulates a single agent’s actions with the local joint states of two adjacent CAVs.

the network’s weights, bias and other hyper-parameters. An
advantage value A(s, a) is defined for each state and action
pair. This value measures how good an action a is compared
to the average performance of all actions in a given state s.
We use A(st, at) equivalently with At(s, a), and the advantage
value for state st and action at is calculated as:

A(st, at) = Q(st, at)− V (st),

Q(st, at) = rt +

T−1∑
i=1

γirt+i + γt+TV (st+T ),
(4)

where Q(st, at) is the estimated discounted total reward the
CAV will receive by taking action at at state st, and V (st) is
the estimated discount reward from state st onwards. Note
that T is a time horizon for look ahead, and γ is the
discounted factor. In general, a value approximator network
can be trained independently from the policy approximator
for the value V (s).

Moreover, a policy ratio Rt is defined to evaluate the
similarity between the updated policy and the previous policy
at time step t as:

Rt(θ) =
πθ(at|st)
πθold(at|st)

, (5)

where a large value of Rt(θ) means that there is a large
change in the updated policy compared to the old one, πθold .
The policy controls the actions, which are velocity changes,
thus a large policy change may cause a large velocity change
within one time step and lead to a safety issue. Therefore, to
avoid large changes in velocity, we use the clipping of PPO
which constrains policy updates within a reasonable range, as
follows:

clip(Rt(θ)) =

Rt(θ) if 1− ε ≤ Rt(θ) ≤ 1 + ε
1− ε if 1− ε > Rt(θ)
1 + ε if Rt(θ) > 1 + ε

(6)

where ε is a small positive constant.

With the constrained policy update and clipping operation,
the policy optimization objective function can be adapted from
Eq (3) as:

ηCLIP(π(θ)) = Eτ [min(RtAt, clip(Rt), 1− ε, 1 + ε)At], (7)

where At abbreviates the advantage value At(s, a) at time
step t, clip(·) is the clipping function, and Rt is short
for Rt(θ).

When the advantage value At is positive, the objective
function value is at most (1+ ε)At, because the ratio Rt(θ) is
bounded by (1 + ε). On the other hand, when At is negative,
the objective function value is bounded between (1 − ε)At
and At. A set of driving trajectories are collected within a
time horizon, and the policy is updated by maximizing the
clipped discounted total reward (as Eq (7)) with a gradient
ascent.

IV. METHODOLOGY

In this study, we propose three different learning strategies
with multiple CAVs: a) shared single-agent learning, b) global
joint cooperative learning, and c) local joint cooperative learn-
ing, as shown in Fig 3.

A. Shared Single-agent Learning

A shared policy, as our baseline, is an individual-level strat-
egy. This policy is learned for single CAV’s states and actions,
however, it is updated with all CAVs’ driving experience data
simultaneously, as shown in Fig 3(a). This is a process of
updating a centralized single-agent policy by using a decen-
tralized execution. An action is a continuous number within a
range representing the speed change at one discrete time step,
where a positive value is for acceleration and a negative value
is for deceleration. One state si(t) = {vi,t, hi,t} of CAV i
includes the current absolute speed vi,t and the current time
headway hi,t between CAV i and CAV i−1, where CAV i−1
is directly in front of CAV i. A time headway for a vehicle
is the duration of time to catch up to the vehicle directly
in front without a change in the current speed of vehicles:



Algorithm 1 Shared Single-Agent Policy
1: Initialize policy network with random weighs θ0 and

clipping threshold ε
2: Initialize experienced data buffer B
3: for episode = 1, . . . ,M do
4: for CAV=1, . . . , N do
5: Collect trajectories {τi} on policy π(ai,t|si,t; θ)
6: Extend B with {τi}
7: end for
8: end for
9: Estimate advantage A with Eq (4)

10: Update the policy by θ′ ← arg maxθ η
CLIP(θ) as Eq (7)

hi,t = li−1,i/vi,t, where li−1,i is the distance between two
adjacent CAVs that is calculated using the difference of their
absolute positions. The reward function is defined to optimize
the vehicles’ velocities while maintaining safety and is adapted
from the reward function proposed in [24]:

ri,t = max(‖v̂‖ − ‖v̂ − vi,t‖ , 0)/ ‖v̂‖ , (8)

where ri,t is the reward for CAV i at time step t, and v̂ is the
desired velocity, an arbitrary large value to encourage high
velocity. The advantage of this strategy is that it collects more
information at one time (high data sample efficiency) because
all CAVs can use their observation data to update a shared
policy in parallel. However, the policy may have high variance
or oscillation due to the frequent updates from different CAVs
with different aspects of the environment. The shared single-
agent learning strategy is summarized in Alg 1.

B. Global Joint Cooperative Learning

In the global joint cooperative learning scenario, the policy
is defined with the joint states and joint actions. The joint
state space is defined as S = S0 × · · · × SN where N is the
system capacity, therefore, all joint states have the same size
of N . If there are less than N CAVs in the system, the joint
states are post zero padded. Similarly, the joint action space
is defined as the cross product of each CAV action space as
well: A = A0 × · · · × AN .

We provide two reward functions with the max operation
presented in Eq (9) and the average operation presented in
Eq (10). Both rewards are defined on velocities of all CAVs
in the system as follows:

rt = max
i∈{1,...,N}

(‖v̂‖ − ‖v̂ − vi,t‖ , 0)/ ‖v̂‖ (9)

rt = Ei∈{1,...,N}[max(‖v̂‖ − ‖v̂ − vi,t‖ , 0)]/ ‖v̂‖ (10)

A centralized connected infrastructure can be used to learn
this centralized policy in this scenario (as shown in Fig 3(b)).
Alternatively, real-time information of a single CAV (e.g.,
velocity and position) can also be sent between pairs of
CAVs through vehicle-to-vehicle (V2V) communications so
that global joint states can be formed on every single CAV.
However, in this situation, the communication cost grows

Algorithm 2 Global Joint Cooperative Policy
1: Initialize policy network with random weighs θ0 and

clipping threshold ε
2: for episode = 1, . . . ,M do
3: if N < N then
4: form joint states as s = {s1, · · · , sN , 0, · · · , 0}
5: else if then
6: from joint states as s0 = {s1, · · · , sN }
7: end if
8: Collect set of trajectories on policy at ∼ π(at|st; θ)
9: Estimate advantage A with Eq (4)

10: Update the policy by θ′ ← arg maxθ L
CLIP(θ) as Eq (7)

11: end for

exponentially with the number of CAVs. With PPO as the
learning method, the procedure of learning the control policy
with a global joint cooperative learning is summarized in
Alg 2.

C. Local Joint Cooperative Learning

In order to alleviate the high communication cost with joint
global policy, a joint policy in a smaller scale is defined with
a local MDP 〈D,S,A, ρ0,P, r〉, where D is the local network
radius of a CAV based on the number of CAVs (as shown in
Fig 3(c)). Specifically, CAV i, the D − 1 CAVs in the front
of it, and D − 1 CAVs following that CAV compose a local
joint CAV network of 2D − 1 CAVs. Therefore, the state of
CAV i is formed by the states of CAVs in its local network.
Note that the policy is defined for a single CAV. For example,
Fig 4 shows two local networks {CAV5,CAV1,CAV2} and
{CAV1,CAV2,CAV3}. In the first network, CAV1 is the main
learner which adjusts its speed according to the local joint
states of CAV5 and CAV2. In the second network, CAV1 is

CAV1

CAV2

CAV3

CAV4

CAV5

a2         π2(s1, s2, s3)

a1         π2(s5, s1, s2)

(a)

(b)

Fig. 4. Demonstration of local joint cooperative learning with D = 1 (Red
vehicles are human-driven and yellow ones are CAVs.)



Algorithm 3 Local Joint Cooperative Policy for one agent
1: Initialize policy network with random weighs θ0 and

clipping threshold ε
2: for episode = 1, . . . , D do
3: Reset experience buffer B
4: for t= 0, . . . , T do
5: Detect neighboring CAVs within radius of D
6: Form joint states st = {si−D, . . . , si, . . . , si+D}
7: Collect transition (st, at, st+1) on policy π(at|st)
8: Extend B with transitions
9: end for

10: Estimate advantage A with Eq (4)
11: Update the policy by θ′ ← arg maxθ L

CLIP(θ) as Eq (7)
12: end for

only a part of the joint state for CAV2 which learns its control
policy using its local network. In this example, the radius
is 1 for both local networks. Our hypothesize is that a small-
scale local joint cooperative CAV network performs better
compared to the single-CAV shared policy, and requires less
communication cost than the global joint cooperative solution.

V. EXPERIMENTS

A. Simulator

Our experiments are conducted with Flow [13] which
is an open-resource framework for DRL implementation in
SUMO [25], a microscope traffic simulator. Flow combines
the RL library RLlib [26] (RLlab) in multiple traffic sce-
narios including ring-shaped roads, traffic light grids, and
on-ramp merging. We use the built-in ring-shape scenario
in this study. We also utilized Ray [27] to allow multiple
CAVs asynchronous updates (in the case of the shared single-
agent RL policy). In the simulator, each human-driven vehicle
is modeled as an IDM and CAVs are controlled with RL
described in Section III.

B. Scenario Setup

Three comparison experiments with different CAV pene-
tration rates are conducted in a ring-shape road shown in
Fig 5. We classify the CAV penetration rates as low (10%),
medium(20%), and high(30%), where they represent different
levels of autonomy. PPO is used as the RL learning method.
In a ring-shape road, local slow speed congestion is caused
by an individual vehicle’s deceleration or inconsistent driving
speed. An extreme case is that if a vehicle drives very slowly or
stops, the whole traffic flow can suffer a stop as a consequence.
This phenomenon behaves like a traveling wave (also called
“stop-and-go” wave). With an optimal driving strategy, CAV
can drive relatively faster within a safe distance from its
neighboring vehicles, and it can lead the following vehicles
behind the CAV have a better driving experience and thus it
enhances the whole flow driving performance.

Our goal is to provide an autonomous vehicle control
strategy at a network level to alleviate the traffic stop-and-go
waves and increase the average velocity. PPO is our learning

Fig. 5. A Ring-Shape Road

TABLE I
PARAMETERS

Parameter Setting
horizon 2000
trajectories 20
No. of human-driven 30
No. of CAVs 3, 6, 9
a 1m/s2

b 1.5m/s2

v∗ 30m/s
s∗ 1s
ε 0.3
λ 0.999

ĥ 1s
v̂ 25m/s

method and the RL policy’s performance is evaluated with
1) the average total reward for individual CAVs from each
training episode and 2) the average velocity of the whole
traffic flow. We set the road length to 230m. CAVs are set
near-uniformly distributed among human-driven vehicles. All
of the parameters of the experimental setup are summarized
in Table I, where a, b, v∗, s∗ are the parameters for human-
driven vehicle control (IDM controlled discussed in Section
III-A.) and the others are for the RL learning. Time horizon is
the total discrete time steps in each training episode; in some
cases, the episode terminates early due to a collision. We keep
these settings the same for all three learning strategies under
three different CAV penetration rates. Finally, we only present
the reward obtained by Eq (9) for the global joint cooperative
learning as we observed similar performance with both reward
functions. For simplicity, we use the terms “single-agent pol-
icy”, “global joint policy”, and “local joint policy” to represent
the policy learned based on the shared single-agent learning,
global joint cooperative learning, and local joint cooperative
learning, respectively.

C. Performance and Analysis

We run 200 training episodes with each environment setting.
Fig 6 shows the average total reward received in each iteration
considering different CAV penetration rates. Fig 7 shows the
obtained average velocity in each iteration. Overall, all three
RL policies perform better with a higher penetration rate of
CAVs. Both global policy and the local policy surpass the
baseline, shared single-agent policy, in all three different CAV
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(b) Total reward with 20% CAVs
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(c) Total reward with 30% CAVs

Fig. 6. Comparison of training rewards
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(a) Average velocity with 10% CAVs

25 50 75 100 125 150 175 200
Episode

5

10

15

20

25

30

A
ve

ra
ge

 v
el

oc
ity

 (m
/s

)

single-agent policy
global joint policy
local joint policy

(b) Average velocity with 20% CAVs
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Fig. 7. Comparison of average velocities

penetration rates. Both joint RL policies with 30% CAVs
converge faster compared with 20% and 10% because these
joint policies consider collaboration among the CAVs and
capture more information about the environment. The joint
global policy achieves the best convergence in terms of total
reward and average velocity, especially in 10% and 20%
CAVs. Moreover, in a 10% CAV penetration rate, all RL
policies perform similarly in the obtained average velocity
and the impacts of the proposed joint policies on velocity
are significantly higher with a higher CAV penetration rate.
This suggests a lower bound on the number of CAVs in
the traffic (e.g., ≥ 20%) to achieve a high stable speed for
all vehicles and guarantee an optimal control performance
(reaching the target velocity without accident). For example,
with 20% penetration of CAVs, the average velocity obtained
by the global joint policy almost reaches the target velocity
(30m/s).

With fewer CAVs in the traffic, the RL policies at the
network level (both joint global policy and local joint policy)
perform ∼ 1.3 times better than the baseline, shared single-
agent policy. With 30% CAVs, the highest total reward is
reached by all three policies, and the fastest average velocity
is obtained as well. The results show that with a sufficient rate
of CAV penetration, any autonomous control policy, even at
the individual level, can influence the traffic flow positively.
Moreover, the system has a performance upper bound with a
fixed traffic setting by reaching the minimum distance between
adjacent vehicles to avoid accidents. Another observation is
that a high total reward results in a high average traffic flow

velocity under different traffic settings, which means learning
the control policy by maximizing the total RL reward can be
correctly transferred to the real world and result in a high
average traffic flow velocity.

When there are fewer CAVs, the joint global policy does not
outperform the joint local policy significantly. However, both
of them surpass the shared single-agent policy (e.g., Fig 6(a)).
The shared single-agent policy learns slowly with lower CAV
penetration rates, and the RL policy performance does not
improve over the time. This is caused by frequent updates
with insufficient experience data. On average, the local joint
policy does not perform as well as the joint global policy due
to its limited view. However, with a sufficient CAV penetration
rate, the local joint policy has asymptotic performance as the
joint global policy.

To investigate the impact of radius on the performance of
the local joint cooperative learning, we consider three different
radii: D = 1, D = 2, and D = 3 for a CAV and compare its
performance in terms of the average total reward along each
trajectory. As shown in Fig 8 (data are smoothened with each 5
episodes), a larger radius brings a better performance. This is
due to the fact that a more global view or higher number of
joint states are captured and thus a better cooperation can be
learned.

In summary, considering that the local joint policy requires
much less V2V and V2I communications, we believe this
policy could be the best choice for the mixed autonomy traffic
regularization with a sufficient CAV penetration rate. With a
few number of CAVs, however, the joint global policy is the
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Fig. 8. Average total reward with different local joint network radius (D)

best choice as the communication cost would not be high due
to the small number of CAVs.

VI. CONCLUSION AND FUTURE WORK

This paper implements deep reinforcement learning in traffic
optimization under mixed-autonomy traffic conditions. Com-
pared to the state-of-the-art where individual RL controls are
solved with reinforcement learning, we proposed network-
level learning policies for CAVs. Experimental results were
conducted on a microscopic traffic simulator (Flow), and
the results showed the network-level policies outperform the
individual-level policy and the RL policy learned with cus-
tomized rewards can also be correctly transferred to velocity
control. The global joint policy obtains the best performance,
however it leads to high communication overhead as the
penetration rate of CAVs increases. When there is no available
V2I resources or V2V communications are costly, the joint
local policy is a better choice. In our future work, we plan
to study impacts of communication cost and latency on the
control policies, instead of analyzing them intuitively. In
addition, we plan to design a more efficient individual-level
policy to stabilize the policy updates.
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