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ABSTRACT
Vehicular Edge Computing (VEC) is a distributed computing para-

digm that utilizes smart vehicles (SVs) as computational cloudlets

(edge nodes) by virtue of their inherent attributes such as mobility,

low operating costs, flexible deployment, and wireless communi-

cation ability. VEC extends edge computing services by expand-

ing computing coverage and further improving quality-of-services

(QoS) for devices. Due to limited onboard energy and computation

capabilities of SV-mounted cloudlets, a single vehicle might not be

able to execute a large number of tasks and guarantee their desired

QoS. To address this problem, the overloaded vehicle can fulfill its

overwhelming workload by offloading its tasks to other available

connected vehicles. However, data privacy and accessibility are of

critical importance that need to be considered for offloading. In

this paper, we propose privacy-by-design offloading solutions for

VEC to facilitate latency requirements of user demands and reduce

energy consumption of vehicles. We formulate the Data pRotection

Offloading Problem (DROP) as an Integer Program and prove its

NP-hardness. To provide computationally tractable solutions, we

propose three distributed algorithms by leveraging graph theory to

solve this problem. We evaluate the performance of our proposed

algorithms by extensive experiments and compare them to the opti-

mal results obtained by IBM ILOG CPLEX. The results demonstrate

the flexibility, scalability, and cost efficiency of our proposed algo-

rithms in providing practical privacy-by-design offloading solutions

enabling edge services along the cloud-to-thing continuum.
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1 INTRODUCTION
The ubiquitous penetration of smart connected devices (Internet

of Things) into everyday life is projected to reach 50 billion by

2020 [23]. The growth of IoT will continue as users enjoy the con-

venience of mobility and with the emergence and progress of new

technologies such aswearable devices, autonomous vehicles/drones,

and collaborative augmented/virtual reality. To enable these IoT

applications and scale over the number of participants and large

geographical areas, computational capabilities of IoT devices are

not sufficient due to being restricted by weight, size, battery life,

and heat dissipation. To handle this challenge, offloading compu-

tation to clouds to remotely execute IoT applications is one of the

promising solutions. As data proliferation increases exponentially,

however, sending data from IoT devices to the cloud is not feasible

for time-sensitive applications.

Edge Computing (EC) has been introduced as a new paradigm [21]

that optimizes cloud computing systems to provide a distributed

computing solution at the edge of the network, where IoT devices

utilize the computing resources, called cloudlets, in their vicinity.

Edge computing can be leveraged to bridge the gap between the

increasing computational demand of IoT devices and their limited

computational capabilities [24]. However, deploying cloudlet in-

frastructure at the edge of the network is costly and may not be

feasible in many situations (e.g., disaster situations, emergency res-

cue, unexpected surge in user demand) and regions with sparse or

no infrastructure of wireless access points such as remote rural ar-

eas [1]. Moreover, a single cloudlet has finite computing resources,

which makes it hard to fulfill demand spikes (e.g., a massive number

of offloading requests from IoT devices).

To overcome these problems, Vehicular Edge Computing (VEC)

has recently been introduced as an emerging edge platform [4,

16, 17, 30], where smart vehicles (SVs) such as Unmanned Aerial

Vehicles (UAVs) and Connected and Autonomous Vehicles (CAVs)

are considered as computational cloudlets by virtue of their inherent

attributes such as mobility, low operating costs, flexible deployment,

and wireless communication ability. SV-mounted cloudlets can

expand edge computing services and further improve quality-of-

services (QoS) for IoT devices.

While VEC can bring many opportunities to avoid QoS viola-

tions and balance the load, these SV-mounted cloudlets have of-

ten limited computing capacities and energy budgets. To expand

the computational capacity and coverage of a single SV-mounted

cloudlet, especially when serving large computational demands,

autonomous cooperation and coordination among multiple SVs are

needed to form an interconnected computing system and improve
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quality of edge services [11, 12, 22]. Such a perspective, on the other

hand, opens new research challenges on account of the current lack

of efficient data protection mechanisms for task offloading. In par-

ticular, the major categories are considered privacy and accessibility

restrictions defined as follows:

Privacy restrictions: If some tasks are offloaded to the same

SV, they can reveal sensitive information, which could harm IoT

user privacy [15, 18] (e.g., in finance and healthcare data).

Accessibility restrictions: There are often some restrictions in

offloading a task to a specific SV due to lack of trust, reliability, or

system compatibility/preferences [14, 27] (e.g., cannot provide a

proper type of VM for a task). In addition, there may exist some en-

forced policies that do not allow a third party to access confidential

user data.

These restrictions eliminate the privacy-breach problem and en-

able privacy-by-design solutions. Many studies have been conducted

to protect outsourced data by designing steganography and encryp-

tion [9]. However, these algorithms have limitations, especially in

edge computing domain, due to requiring additional processing

before offloading. Moreover, encryption may dramatically increase

the amount of data. Privacy by design is a suitable approach for

offloading in VEC, by incorporating privacy principles as early as

in the design phase of systems–a proactive rather than reactive to

risk.

In this paper, we consider a set of SV-mounted cloudlets coop-

erating to provide edge computing services for IoT devices. They

are capable of both communicating with the devices and offloading

computation to other SVs via the wireless communication tech-

nology in order to fulfill the overwhelming demand. We focus on

the critical problem of offloading tasks from an overloaded SV to

minimize computation overhead in terms of energy consumption

and processing time while satisfying privacy and accessibility re-
strictions. We first design an optimal offloading mathematical model

for this Data pRotection Offloading Problem (DROP), and we theo-

retically prove that this is an NP-hard problem. We then propose

three distributed algorithms by virtue of graph theory to obtain

efficient and computationally tractable solutions in order to mini-

mize the total computation overhead of the offloading. We finally

evaluate the performance of our proposed solutions in extensive

experiments. To the best of our knowledge, this is the first work
that provides privacy-by-design offloading solutions among a set of
cooperative SVs.

Organization. The rest of the paper is organized as follows. In Sec-

tion 2, we discuss the state-of-the-art research in this domain. In Sec-

tion 3, we introduce the problem of optimal task offloading among

cooperative SVs considering the privacy and accessibility restric-

tions, and we mathematically formulate the problem. In Section 4,

we present our proposed computationally tractable algorithms. In

Section 5, we evaluate our proposed algorithms by extensive exper-

iments. In Section 6, we summarize our results and present possible

directions for future research.

2 RELATEDWORK
The key challenges of DROP lie in the combinatorial nature of of-

floading decisions, the necessity of data protection requirements,

and the limited capacities of SVs. Due to the dynamics and un-

planned deployment of SV-mounted cloudlets, centralized opti-

mization approaches for task offloading may not be efficient in such

a distributed environment. Moreover, they require each IoT user to

report his/her own information including the capacity of the IoT

device and the size of each task to a centralized entity, e.g., cloud,

which decides the offloading decisions accordingly. Therefore, extra

concerns such as high computational complexity, tremendous com-

munication overhead, and massive data transfers, are unavoidable

in centralized optimization. All these points accelerate the emer-

gence of efficient offloading schemes by designing decentralized

approaches.

Recently, a few studies [12, 13, 16], devised distributed approaches

to optimize the offloading problem in EC by exploiting multi-player

noncooperative games. Messous et al . [16] presented a game-

theoretic approach to address the intensive computation offloading

problem for multiple UAVs, and they showed that the formulated

game admits a Nash equilibrium. Ma et al . [12] investigated the

feasibility of offloading computational tasks in a network of ca-

pacitated UAV-mounted cloudlets in order to minimize the energy

consumption of UAVs while satisfying QoS requirements of the

tasks. They devised an efficient decentralized approach based on

potential games. Ma et al . [13] proposed a distributed computation

offloading approach for multiple users to offload their tasks to a

single cloudlet via multiple access points. However, the game theo-

retic approaches present some drawbacks [5]. For example, finding

the best response of each player usually requires the knowledge

of other players’ actions at each round, which instead increase the

computational complexity of the solution. Furthermore, to find an

equilibrium of a game, the objective function requires a specific

structure.

With the rapid proliferation of smart vehicles, the task offload-

ing problem in VEC has received considerable attention. Zhang

et al . [29] proposed a contract-based offloading and computation

resource allocation scheme in VEC. Zhang et al . in [28] studied the

feasibility of combining vehicular cloudlets with the centralized

cloud and proposed a flexible offloading strategy to explore under-

utilized resources via task migration. Yu et al . in [26] proposed

a coalitional game model for cooperation among cloud service

providers in cloud-enabled vehicular networks in order to share

and utilize idle resources.

Nevertheless, none of the existing work investigated both data

privacy and cloudlets accessibility in a multi-cloudlet cooperative

computing system.

3 PRIVACY-BY-DESIGN OPTIMIZATION
FORMULATION

In this section, we introduce the system model and the data protec-

tion offloading problem.

3.1 System Model
In this subsection, we describe the system model with a set of SVs

acting as mobile computational cloudlets that provide edge com-

puting services to IoT devices. We consider that an overloaded SV

has to offload its overwhelming computation to other SVs in order

to fulfill its demands and guarantee the desired QoS of its workload.



The objective is to minimize the overhead cost of offloading while

satisfying the aforementioned privacy and accessibility restrictions.
This is an offloading decision-making problem that requires an

efficient and proactive data protection offloading solution.

We consider u0 as the overloaded SV and U = {u1, . . . ,um } as
the set ofm SVs with available computational resources. The set

of tasks at SV u0 to be offloaded is denoted by K = {k1, . . . ,kn },
where n ≥ 1 is the number of tasks (u0 has at least one task to be

offloaded). Let Fi be the CPU frequency (i.e., CPU cycles per second)

of ui , and ei denotes its energy consumption per CPU cycle. The

capacity ofui is denoted byu
cap
i = (C

cap
i ,D

cap
i ), whereC

cap
i is the

number of idle computational cycles of ui and D
cap
i is the available

memory size ofui . Each taskki ∈ K has some requirements defined

by (Ci ,Di ), whereCi represents the number of computational cycles

required to obtain the outcome of ki and Di denotes its data size.

Similar to previous studies in mobile wireless networks [2, 7], for

tractability, we assume that the locations of SVs remain fixed during

the offloading decision making. More details are presented in the

following subsections.

SV u0 does not have enough computational resources to com-

plete all its incoming tasks with their required QoS, and hence

this overloaded SV has to offload these tasks to other SVs. As we

described in the Introduction Section, there are two restrictions to

be considered when offloading tasks to other SVs: (i) the privacy
restrictions, specifying that some tasks cannot be offloaded to the

same SV; (ii) the accessibility restrictions, specifying that a task can-

not be offloaded to a specific SV. To model these two restrictions, we

visualize them in the form of a conflict graph and searching matrix,
respectively.

We model the privacy restrictions using a conflict graph G⟨V,
E⟩, where V = {v1, . . . ,vn } is a set of vertices representing the

tasks in K 1
and E is a set of edges ⟨i, j⟩ representing a conflict

between task ki and kj , where i, j ∈ {1, . . . ,n}. Specifically, if
tasks ki and kj cannot be offloaded to the same SV, an edge ⟨i, j⟩ is

1
We use the terms task and vertex interchangeably.

Figure 1: VEC architecture: an overloaded SV u0 offloads its
tasks to other SVs

added between vi and vj in the graph. If there is no edge between

two vertices, their corresponding tasks can be offloaded to the same

SV. Therefore, G is an undirected graph, and E is symmetric.

We model the accessibility restrictions by am × n matrix Tm,n =

(ti j ), where the ith row represents SV ui ∈ U and the jth column

represents task kj ∈ K . In particular, if SV ui is accessible to task kj ,
we set ti j = 1; otherwise, ti j = 0.

Fig 1 shows an overloaded SV offloads its overwhelming tasks

to other SVs with enough computational resources via vehicle-to-

vehicle (V2V) communications, while considering the data protec-

tion restrictions.

3.2 Data Protection Offloading Problem
In this subsection, we introduce the optimal mathematical model

for the data protection offloading problem. We first describe the

communication, energy consumption, and latency models, and we

then present our optimization model.

1) Communication Model.
To avoid generating severe interference during offloading tasks, we

consider the overloaded SV applies a Frequency-Division Multiple

Access scheme (FDMA) to transmit tasks to other SVs. In FDMA,

each channel between u0 and uj ∈ U is unique, and u0 can hence

offload tasks to other SVs simutaneously without co-channel in-

terference. As a result, the transmission rate of u0 to uj is defined
as [20]:

R0j = Bj log(1 +
P0

N0d
h
0j

),

where Bj is the total bandwidth of uj , P0 denotes the transmission

power of u0, and d0j is the distance between u0 and uj . In addi-

tion, N0 and h represent the background noise and the path-loss

factor, respectively.

2) Energy Consumption Model.
The total energy consumption for completing a task via offloading

(e.g., from u0 to uj , where uj ∈ U ) consists of three components:

the transmission energy consumption from u0 to uj , the execution
energy consumption at uj , and the backhaul energy consumption

of the outcomes of computation from uj to u0. Similar to many

studie [2, 6, 12], the backhaul energy consumption can be ignored,

since the size of output is generally much smaller than the size of

input. As a result, the total energy consumption for completing

task ki via offloading from u0 to uj is calculated as:

Ej (i) =
DiP0
R0j

+Ciej . (1)

The first term represents the transmission energy, and the second

term represents the energy consumption of executing the task at uj .

3) Latency Model.
Likewise, the total delay of completing taskki by offloading (fromu0
to uj ) is calculated as:

Tj (i) =
Di
R0j
+
Ci
Fj
, (2)



where the first term represents the total transmission time of ki
from u0 to uj , and the second term represents the total execution

time of ki at uj .

4) Optimization Model.
Both latency and energy consumption are important factors in

offloading among SVs. One of the main limitations of SVs is their

restricted battery lifetime. On the other hand, most IoT applications

are sensitive to delay such as video streaming and real-time games.

We hence consider an overhead cost as a combination of both

latency and energy consumption. According to (1) and (2), the

overhead cost of offloading task ki to uj in terms of the energy and

latency is calculated by:

Z j (i) = αiEj (i) + βiTj (i), (3)

where 0 ≤ αi , βi ≤ 1 represent the relative weights of energy

consumption and latency of the objectives, and αi + βi = 1. This

provides rich modeling flexibility to prioritize the objectives (en-

ergy and latency) according to the required QoS of the applications

and the current battery status of the SVs. For instance, when a

task is delay-sensitive and the SVs are at a high-battery state, more

weight is assigned to the latency (i.e., higher βi ). In practice, the

proper weights can be determined by exploiting multiple criteria de-

cision making (MCDM) and multi-attribute utility theory (MAUT)

approaches [25].

We define an indicator variablebi j ,∀i ∈ {1, . . . ,n},∀j ∈ {1, . . . ,m},
that characterizes the accessibility relationship between task ki and
SV uj as follows:

bi j =

{
1 if task ki can be offloaded to uj ,
0 otherwise.

This indicates whether SVuj is accessible to task ki or not. We then

define a decision variable xi j as follows:

xi j =

{
1 if task ki is offloaded to uj ,
0 otherwise.

This specifies whether task ki is offloaded to SV uj or not. We now

formulate the data protection offloading problem (DROP) as an

Integer Program (IP), called IP-DROP, as follows:

Minimize Z =

n∑
i=1

m∑
j=1

Z j (i)xi j (4)

Subject to:

n∑
i=1

Cixi j ≤ C
cap
j , ∀j ∈ {1, . . . ,m}, (5)

n∑
i=1

Dixi j ≤ D
cap
j , ∀j ∈ {1, . . . ,m}, (6)

m∑
j=1

bi jxi j = 1, ∀i ∈ {1, . . . ,n}, (7)

xv j + xv ′j ≤ 1, ∀⟨v,v ′⟩ ∈ E,∀j ∈ {1, . . . ,m}, (8)

xi j ∈ {0, 1}, ∀i ∈ {1, . . . ,n},∀j ∈ {1, . . . ,m}. (9)

The objective function (4) is to minimize the overhead cost of

offloading all tasks in K . Constraints (5)-(6) ensure that the as-

signment of the offloaded tasks to each SV does not exceed the

available computational cycles and memory size of that SV, respec-

tively. Constraints (7) ensure that each task is offloaded to exactly

one SV obeying the accessibility restrictions. Constraints (8) ensure
the privacy restrictions such that any two conflicted tasks cannot

be offloaded to the same SV. Finally, Constraints (9) guarantee that

the decision variables are binary.

3.3 Computational Complexity of DROP
To verify the computational complexity of DROP, we first introduce

the related preliminaries from graph theory.

Definition 1. Given a graph G(V ,E) and a set of colors, a proper
coloring is an assignment of colors to vertices such that no two

adjacent vertices have the same color.

Definition 2. Given a graph G(V ,E) and a list of colors L(v)
for v ∈ V , a proper list coloring is a choice function c(·) that maps

every vertex v ∈ V to a color in the list L(v) such that c(v) ∈ L(v)
and c(i) , c(j) if ⟨i, j⟩ ∈ E for all i, j ∈ V .

We now define DROP as a list coloring problem (LCP) considering

G(V,E) and Tm,n . Each taskv ∈ V, represented by a vertex, is given
a list of accessible SVs (permissible colors)

2
based on Tm,n . For

our analysis, we let each task v ∈ V have a list of permissible SVs

L(v) ⊆ {u1,u2, . . . ,um }, wherem is the total number of SVs. We

then sort SVs in L(v) based on their corresponding overhead cost

in ascending order. We define the sorted list of permissible SVs of

task v as Ls (v) and its corresponding sorted overhead cost list is

defined as Z s (v).

Lemma 1. If all tasks have the same requirements (computation Ci
and data size Di , for all tasks ki ∈ K) and considering consistent pri-
orities for the objectives (αi , βi remains the same), then the offloading
cost Z j (i) to any uj is the same for all tasks ki ∈ K .

Proof. Since the offloading scenario in DROP is that an over-

loaded SV u0 offloads n tasks K = {k1, . . . ,kn } via FDMA scheme

tom SVs, the parameters P0,N0,h,γ ,Bj , Fj ,d0j with respect to any

SV uj are hence constant. Therefore, if any two tasks ku ,kw ∈ K
have the same requirements Cu = Cw ,Du = Dw while αu =
αw , βu = βw , according to Eq. (1-3), for these tasks we have

Z j (u) = Z j (w),∀j ∈ {1, . . . ,m}. □

In graph theory, a sum coloring of a graph is a labeling of its ver-

tices by natural numbers (positive integers), with no two adjacent

vertices having equal labels, that minimizes the sum of the labels.

The minimum sum that can be achieved is called the chromatic sum
of the graph.

Definition 3. The chromatic sum
∑
G of graph G is the smallest

sum of labels (colors) among all proper colorings with natural

numbers.

The chromatic sum problem is NP-complete [10]. We now prove

the computational complexity of DROP. The following lemma con-

structs the decision version of DROP by imposing a bound on the

cost value and proves its NP-completeness.

2
From now, we use the terms SV and color interchangeably.



Lemma 2. The decision version of DROP, called D-DROP, is NP-
complete: Given G⟨V, E⟩, Tm,n , and a value F , is there a complete
assignment such that the overhead cost of all tasks, calledZ, does

not exceed F (i.e.,Z ≤ F )?

Proof. The first step is to prove that D-DROP is in NP by show-

ing that given a complete assignmentX, it can be decided in polyno-

mial time that X is a solution to the problem or not. This is easy to

show since a nondeterministic program guesses a complete assign-

ment X for all vertices and checks it in polynomial time whether

this assignment is feasible andZ ≤ F .
The second step is to find a polynomial-time reduction from

the decision version of the chromatic sum problem (denoted here

by CSP-D), a well known NP-complete problem [10], to D-DROP.

The CSP-D problem is defined as follows: Given graph G(V ,E)
and an integer F , is there a feasible coloring c of graph G such

that

∑
v ∈V c(v) ≤ F? We construct an instance of D-DROP as fol-

lows: We use a one-to-one mapping between G(V, E) and G(V ,E),
and considering F . We let each task v ∈ V have a list of permis-

sible SVs L(v) = {u1,u2, . . . ,um }, wherem is the total number of

SVs. Following Lemma 1, we assume all tasks ki ∈ K have the

same required computational cycles and data size for simplicity.

Therefore, all tasks have the same Ls (v) and Z s (v). The Yes/No

answer to the D-DROP instance corresponds to the same answer as

for the CSP-D instance. Is there a feasible complete assignment

L = {l(v)|l(v) ∈ L(v)} such that

∑
v ∈V Zl (v)(v) ≤ F , where

Zl (v)(v) ∈ Z s (v) is the overhead cost that task v is offloaded to

its permissible SV l(v)? Obviously, the new constructed problem

is equivalent to the CSP-D, and this construction is done in poly-

nomial time. Therefore, we have the CSP-D ≤P D-DROP. In other

words, we can transform the decision version of the chromatic sum
problem to a special case of D-DROP in polynomial time.

Therefore, the D-DROP is NP-complete. □

The decision version of a problem is easier than (or the same

as) the optimization version. We now prove the computational

complexity of the optimization version of DROP.

Theorem1. The optimization version of DROP (O-DROP) for finding
the minimum overhead cost of offloading all tasks is NP-hard.

Proof. The proof is by contradiction. If a polynomial-time al-

gorithm can be found to solve O-DROP, it implies that we can

obtainZ in polynomial time. Then, we just need to check if there

is a solution for D-DROP consideringZ as F . Obviously, this com-

parison is done in polynomial time, and thus, the D-DROP can be

solved in polynomial time, which contradicts Lemma 2. Since the

D-DROP is NP-complete, then the O-DROP is NP-hard (D-DROP

≤P O-DROP).

□

4 DISTRIBUTED SOLUTIONS
In this section, we propose three algorithms for solving DROP. The

reason we prefer distributed algorithms is due to their robustness

and scalability. Since DROP is NP-hard, optimal solutions may only

be obtained when the problem size is relatively small (a few vehicles

and tasks). We design proper distributed offloading algorithms that

Algorithm 1 DIST-RAND-DROP

1: S ← ∅ /*offloading decisions*/

2: repeat
3: smin ← minki ∈K |L(ki )|
4: Vmin ← {ki ∈ K , |L(ki )| = smin }

5: each task ki ∈ Vmin receives a unique random number ri
in [1, |Vmin |]

6: if ki has the highest ri among its neighbors in G then
7: ki selects SV u∗ with minimum overhead cost

8: S(ki ) ← u∗

9: ki multicasts (ki ,u
∗) to all its neighbors

10: else
11: task ki ∈ V that is adjacent to kj receives (kj ,u

∗)

12: V = V \ {kj }
13: T(u∗,ki ) ← NaN

14: until all tasks are assigned
15: Return S

are computationally tractable in finding complete assignments with

small overhead cost for privacy-by-design task offloading.

4.1 Distributed Randomized Algorithm
In this subsection, we design an iterative randomized distributed

algorithm called DIST-RAND-DROP in which the offloading will

be based on a uniform distribution. In each round, tasks with the

highest value among their neighbors (i.e., conflicting tasks) select

their SVs for offloading. Then, each of these tasks, called a winning

task, multicasts its offloading information to all its neighbors in

which the selected SV will be removed from their permissible list.

Next, these winning tasks are removed, and the remaining tasks

that lose this contention update their own sets for the next round.

DIST-RAND-DROP, given in Algorithm 1, works as follows. It

defines integer smin to be the minimum number of permissible SVs

for any task ki ∈ K . Then, a list of tasks with minimum number of

permissible SVs, smin , is added toVmin . Each task inVmin receives

a unique random number uniformly from [1, |Vmin |] without any

replacement. Within one round, if one task has the highest random

number among all its neighbors, it wins the contention and selects

its permissible SVwith minimum overhead cost. Then each winning

task multicasts offloading information to all its neighbors in which

the selected SV will be removed from their permissible SVs lists (by

setting it to NaN or not available). Next, these winning tasks are

removed from V and the remaining tasks that lose the contention

update their ownUcap ,G(V,E),T(m,n). The algorithm continues

to the next round.

Example 1 (Infeasible assignment). This algorithm can re-

sult in infeasible assignments. Consider a privacy-restriction con-

flict graph shown in Fig. 2, where all tasks have the same size of

permissible SVs list (here 2) and all SVs have adequate capacity.

According to the property of DIST-RAND-DROP, a unique random

number is assigned to each task (shown in green). Task 2 has the

highest number among all its neighbors, thus it selects the first

SV in its list (i.e., u1) and multicasts it to other tasks to update

their lists for the next rounds. This selection results in an infeasible

assignment, since both tasks 3 and 4 have only SV u3 for offloading



{u1,u3} {u1,u3}

{u1,u2}

{u1,u2}
task1

task2

task3task4

4

31

2

Figure 2: Infeasible assignment

while they conflict with each other and cannot be offloaded to the

same SV.

This encourages us to design an efficient selection function at

each round to improve the probability of finding a complete assign-

ment.

4.2 Distributed Clique Algorithm
In this subsection, we introduce our second algorithm called DIST-

CLIQUE-DROP, shown in Algorithm 2, that considers feasibility of

assignments in cliques.

Given the conflict graph G(V,E), accessibility matrix Tm,n , and

SVs capacityUcap
, the algorithm first calculates smin andVmin . It

then arbitrarily selects a task ki ∈ Vmin , and sorts its permissible

SVs in ascending order of their overhead cost, denoted by Ls (ki ).
Next, this task checks whether a selected SV from the list Ls (ki )
leads to a feasible assignment. This step is done using cliques. First,

all cliques containing any adjacent task kj ∈ V to ki , where ⟨i, j⟩ ∈
E are found. If the number of unique SVs in each of these cliques is

larger than or equal to the clique size itself, then there is a feasible

assignment. Task ki investigates if choosing the first SV from the

list Ls (ki ) (minimum cost) leads to a feasible assignment for all

neighboring tasks. Otherwise, it chooses the next SV in the list and

check the feasibility. This is a backtracking search approach, and it

is halted when all the neighboring tasks are assigned to some SVs.

Task ki sends its offloading information to all its neighbors to

remove its selected SV from their permissible SVs list. Finally, this

task is removed from V and the remaining tasks update their own

Ucap ,G(V,E),T(m,n). The algorithm continues to next round it-

eratively. If none of the SVs are selected for ki , that means the

algorithm could not find a complete solution and it starts the next

iteration with another task. Note that only one task is processed

within one round through the algorithm.

Since there are multiple restrictions and constraints in DROP,

including privacy and accessibility restrictions, and SVs capacities,

we devise the next algorithm based on a proactive renew rule to
enhance performance in finding efficient solutions.

4.3 Distributed Renew Algorithm
In this subsection, we present the distributed renew algorithm based

on a proactive renew rule to increase the probability of finding a

complete assignment.

The distributed renew algorithm, given in Algorithm 3, is called

with S = ∅. It first collects tasks with the minimum number of

permissible SVs. If any of these tasks has a conflict with another

task in the set, the task with the minimum degree is selected. In case

of a tie, the task is selected randomly. Otherwise, if no edge exists

Algorithm 2 DIST-CLIQUE-DROP

1: S ← ∅ /*offloading decisions*/

2: smin ← minki ∈K |L(ki )|
3: Vmin ← {ki ∈ K , |L(ki )| = smin }

4: ki ← a task fromVmin
5: Ls (ki ) ← sort SVs in L(ki ) in ascending order of cost

6: Cad j ← calculate all cliques containing any adjacent task kj ∈
V to ki

7: repeat
8: u∗ ← min cost unchecked SV in Ls (ki )
9: ki checks whether to select SV u∗

10: u∗ is temporarily removed from the permissible SVs list

of all neighbors of ki
11: Flag← True

12: for every clique ci ∈ C
ad j do

13: fi ← the number of unique permissible SVs of

tasks in clique ci
14: if fi < |ci | then
15: /*Infeasible assignment*/

16: Move to the next unchecked SV

17: Flag← False
18: break
19: if Flag then
20: /*feasible assignment*/

21: ki multicasts offloading information to all its

neighbors

22: S(ki ) ← u∗

23: for each task kj ∈ V that is adjacent to ki do
24: Receive (ki ,u

∗
)

25: V = V \ {ki }
26: T(u∗,kj ) ← NaN

27: break
28: until Flag or there is no unchecked SV in Ls (ki )
29: if Flag is False then
30: No complete solution

31: V = V \ {ki }
32: Continue to the next iteration from line 2

33: Return S

among the tasks in Vmin , a task with the minimum degree (not

including tasks with degree of zero) is selected. The selected task

chooses an SV from its permissible SVs list which has the minimum

overhead cost. Then, it multicasts the offloading information to

all its neighbors in order to remove the selected SV from their

own permissible SVs list. Finally, the remaining tasks update their

Ucap ,G(V,E) accordingly. This procedure continues iteratively.
With defining these priorities for offloading, the above procedure

can largely reduce the chance of finding infeasible solutions. To

further boost the probability of finding a complete assignment, we

then design a proactive renew rule as shown in Algorithm 4. In doing

so, a task ki ∈ V is selected randomly and the first SV in Ls (ki ) will
be selected for offloading of task ki . If a complete solution is not

obtained by DIST-RENEW-DROP, the proactive renew rule updates
the offloading decision of task ki to the next SV in Ls (ki ). After
checking all permissible SVs of a task if the proactive renew rule



Algorithm 3 DIST-RENEW-DROP(S)

1: repeat
2: smin ← minki ∈K |L(ki )|
3: Vmin ← {ki ∈ K , |L(ki )| = smin }

4: F ← all tasks ki ∈ Vmin that has an edge with

any kj ∈ Vmin
5: if F is non empty then
6: Select an unchecked ki ∈ F with the minimum

degree

7: else
8: Select an unchecked ki ∈ Vmin with the minimum

non-zero degree

9: u∗ ← min cost SV in Ls (ki )
10: ki selects SV u∗

11: ki multicasts (ki ,u
∗
) to all its neighbors

12: S(ki ) ← u∗

13: for each task kj ∈ V that is adjacent to ki do
14: Receive (ki ,u

∗
)

15: V = V \ {ki }
16: T(u∗,kj ) ← NaN

17: until all tasks inVmin are assigned

18: Return S

Algorithm 4 PR-rule: Proactive Renew Rule

1: for task ki ∈ V selected randomly do
2: Ls (ki ) ← sort SVs in L(ki ) in ascending order of cost

3: for each SV u∗ ∈ Ls (ki ) do
4: S ← ∅ /*offloading decisions*/

5: ki checks whether to select SV u∗

6: u∗ is temporarily removed from the permissible

SVs list of all neighbors of ki
7: ki is temporarily removed from V
8: S(ki ) ← u∗

9: S′ ← DIST-RENEW-DROP(S)

10: if |S′ | = n then
11: break
12: if |S′ | = n then
13: break
14: Return S′

cannot find a complete solution, it halts and moves to the next

task that is randomly selected. Note that the proactive renew rule
only applies when Algorithm 3 cannot achieve a complete solution.

Our experimental results demonstrate that the proactive renew rule
greatly improves the probability of finding a complete assignment.

5 EXPERIMENTAL RESULTS
In this section, we comprehensively evaluate the performance of

our proposed algorithms from three aspects: finding a complete

assignment, the overhead cost, and execution time. For a bench-

mark, we obtain the optimal solution, calledDROP-OPTIMAL, using

IBM ILOG CPLEX Optimization Studio for Academics Initiative

(Python API). The proposed algorithms and DROP-OPTIMAL are

Table 1: Parameters

Parameter Value Description

µc 40 × 103 Megacycles mean of CPU cycles of SVs

µs 5 MB mean of memory size of SVs

µb 5.0 MHz mean of transmission bandwidth of SVs

µf 5.0 GHz mean of CPU frequency of SVs

µd 100 m mean of distance between u0 and other SVs

γ 1.0 × 10−28 effective switched capacitance of SV

Ci [1000 − 4000]Megacycles computational cycles of task ki

Di [100 − 500] KB data size of task ki

P0 0.1 Watts transmission power of u0

h 3.4 path-loss factor

N0 4 × 10−15 Watts background noise power

implemented in Python 3.6, and the experiments are conducted on

2.3GHz Intel Core i5 with 16GB of RAM.

5.1 Experimental Setup
We consider a set of ten SVs are scattered across an area in which

they can communicate with u0. As a result, we consider the dis-
tance d0i between u0 and ui obeys Gaussian distribution with

mean µd and standard deviation σd = 0.25µd . Moreover, the CPU

frequency of SVs obeys Gaussian distribution with mean µf and

standard deviation σf = 0.30µf .
For the wireless access, we set the transmission bandwidth Bi

obeys Gaussian distribution with mean µb and standard devia-

tion σb = 0.30µb . We consider diffrenet number of tasks n =
{20, 30, 40, 50, 60, 70, 80} at u0. For the computational tasks, sim-

ilar to the previous studies [16, 19], we set (Ci ,Di ) of task ki
uniformly selected from [1000, 2000, 3000, 4000] Megacycles and

[100, 200, 300, 400, 500] KB, respectively. To experiment with a set

of heterogeneous SVs, CPU cycles C
cap
i and memory D

cap
i of ui

obey Gaussian distribution with mean µc , µs and standard deviation
σc = 0.30µc , σs = 0.30µs , respectively. In addition, ej is calculated

using ej = γF
2

j [8], where γ is the effective switched capacitance.

To enable tractable analysis and useful insights, we assume that

the energy cost and delay cost are equally important for each

tasks ki , i.e., αi = βi = 0.5. The main parameters used in the

experiments are summarized in Table 1.

For the privacy restrictions, we setup a well-known random graph

model, the Erdös-Rényi model [3], as the conflict graph G(V, E). An
Erdös-Rényi graph (n, P) is a random graph constructed by connect-

ing vertices randomly, where n is number of tasks and any conflict

(edge between any pair of tasks) has a probability of P . Based on the
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Figure 5: Overhead Cost: Sensitivity Analysis

value of P ∈ [0, 1], we can obtain a sparse or complex conflict graph.

For the accessibility restrictions, the probability associated with SVs

for each task (column) in matrix T is P01 (the probability of gen-

erating 1 using the Bernoulli distribution). In our experiments, we

study the performance of the proposed algorithms with different

values of n, P , and P01.

5.2 Analysis of Results
In this subsection, we evaluate the performance of the proposed

algorithms in finding complete assignments, obtained overhead

cost, and execution time.

We first analyze the assignments to find out the percentage of

offloaded tasks in the obtained solutions of our algorithms. We

fix (n, P , P01) = (80, 0.12, 0.4) in which both of the privacy and

accessibility restrictions are constricted. As shown in Fig. 3, even

though our proposed algorithms cannot always ensure complete

assignments, the obtained results in 100 experiments show that

the algorithms are able to achieve close to complete assignments,

where at least 95.0% of tasks are offloaded.

To further verify the performance of the proposed algorithms

in finding complete assignments, we perform sensitivity analysis

on the number of tasks n, value of P , and P01 (results are shown in

Fig. 4). In each set of experiments, we fix the other two parameters.

We present the complete assignment ratio defined as the number

of experiments with complete assignments over the total number

of experiments. Fig. 4a shows the performance of the algorithms

with different number of tasks, considering P = 0.12 and P01 = 0.4.

The complete assignment ratio is at least 90.0% by DIST-RAND-

DROP in 100 experiments. Fig. 4b shows the performance of the

algorithms with different values of P , considering n = 80 and

P01 = 0.4. The results show that the proposed algorithms are able

to achieve a high complete assignment ratio as the probability of

having conflicts increases. Fig. 4c presents the performance of the

algorithms with different values of P01, considering n = 80 and

P = 0.12. Similarly, the proposed algorithms obtain high complete

assignment ratio as P01 (SVs accessibility) increases. Overall, DIST-
RENEW-DROP outperforms the other two proposed algorithms in

terms of complete assignment ratio due to the fact that it executes

a proactive renew rule once an unfeasible solution happens. DIST-

RAND-DROP, however, performs the worst compared to the other

two algorithms. Since it does not consider an iterative rule for

improving the probability of obtaining a complete assignment.

We then analyze the performance of the proposed algorithms in

terms of the obtained overhead cost compared to the optimal cost

obtained by DROP-OPTIMAL. As shown in Fig. 5, the proposed

algorithms obtain near optimal solutions with respect to different

values of N , P , and P01. Specifically, the dashed lines represent the

average cost obtained by the proposed algorithms, and the red line

indicates the average optimal cost obtained by DROP-OPTIMAL.
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Figure 6: Execution Time: Sensitivity Analysis

Moreover, the standard deviation of the obtained solutions is pre-

sented in shaded error bands (semi-transparent areas). The results

show that the the standard deviation is low and the average op-

timality gap remains small in all experiments. This is due to the

fact that our proposed algorithms always allocate a proper SV with

minimum cost to the selected task at each round in any experiment.

Finally, we verify the performance of the proposed algorithms

in terms of execution time. Fig. 6a shows that the proposed algo-

rithms obtain the results in a short amount of time and scale well

as the number of tasks increases. Moreover, their execution time

is stable in 100 experiments as the standard deviation is very low

compared to the execution time of the optimal algorithm, DROP-

OPTIMAL, obtained by CPLEX. We also study the performance of

algorithms with different values of P and P01. Again, Fig. 6b and

Fig. 6c show that our proposed algorithms are fast. The execution

time by DROP-OPTIMAL can be very unstable with respect to the

three parameters N , P , and P01 due to its NP-hardness. It can only

be the best choice for solving DROP when the problem size is very

small, which is not practical.

From the above results, we conclude that the proposed algo-

rithms are able to achieve complete assignments with a very high

probability. In case that a complete assignment is not achieved,

the proposed algorithms are still able to offload almost all tasks.

Moreover, the proposed algorithms are scalable and obtain near

optimal overhead cost for offloading in a short amount of time.

6 CONCLUSION
In this paper, we formulated the general Data pRotection Offloading

Problem (DROP) in a network of capacitated SV-mounted cloudlets

and proved its NP-hardness. We proposed three distributed iterative

algorithms based on different updating rules. The experimental

results demonstrate that the proposed algorithms are efficient in

terms of overhead cost and execution time. In addition, they scale

well as the system size grows. In our future work, we will study

the impacts of SVs mobility on task offloading.
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