
Joint Load-Balancing and Energy-Aware Virtual
Machine Placement for Network-on-Chip Systems

Xuanzhang Liu
Department of Computer
and Information Sciences
University of Delaware

Newark, DE, 19716
xzliu@udel.edu

Lena Mashayekhy
Department of Computer
and Information Sciences
University of Delaware

Newark, DE, 19716
mlena@udel.edu

Abstract—Virtualization is one of the key enabler technologies
of cloud computing in providing on-demand sharing of computing
resources. Virtualization requires mechanisms and algorithms
for virtual resource allocation, virtual machine deployment,
migration, and servers consolidation. Most of the existing studies
have only focused on how to solve the problem of virtual
resource allocation among servers. However, as cloud servers with
multi-core architectures become popular, the virtual machine
resource allocation in a single server becomes a critical challenge.
In this paper, we propose a multi-objective virtual machine
placement algorithm by jointly considering energy efficiency
and load balancing criteria in a multi-core server with the
Network-on-Chip architecture. Our proposed algorithm is based
on Markov approximation optimization theory. We perform
extensive experiments to evaluate our proposed algorithm. The
results show that our proposed algorithm achieves higher energy
efficiency, load balancing, and calculation speed compared with
the state-of-the-art algorithms.

Index Terms—VM placement; Network-on-Chip; Markov Ap-
proximation; Server consolidation

I. INTRODUCTION

Cloud computing has become a promising computing
paradigm, which provides a simple pay-as-you-go business
model for users. A cloud computing environment may have
multiple data centers, and these data centers are interconnected
by tens of thousands of high-performance computers and
servers. One of the important issues in such a large-scale
computing environment is how to effectively allocate resources
to users by using virtualization technology. In recent years,
managing energy consumption has become a key challenge
in data centers, and research shows that it is necessary to
take energy saving into account in the process of allocating
resources [1], [2]. Server consolidation [3] is becoming an
increasingly popular technique to make more efficient use of
hardware and computing resources. In server consolidation,
virtual machines (VMs) running different applications are
deployed on minimum number of physical servers according
to an elaborate design of VM placement algorithms. Using this
method, unused servers can run on lower power states (e.g.,
idle or shutdown) to reduce unnecessary energy consumption
of the data center. Most existing studies in this domain have
focused on how to place VMs or migrate them between
servers. However, there is limited information on intra-server

VM placement methods and their impacts on the internal
energy consumption and communication quality of the server.

In addition to the application-level methods used for server
consolidation, the hardware-level supports such as Chip Mul-
tiprocessors (CMPs) are also critical for server consolida-
tion [4]. Moreover, emerging technologies such as self-driving
cars and industrial Internet of Things require to move com-
puting to the edge in order to obtain low-latency and fast-
response-time computing services. This leads to new advance-
ments in designing powerful chips for edge computing such as
Intel Xeon D-2100 processor, by integrating several identical
processor/cache tiles on a single chip. With increasing number
of integrated Intellectual Property (IP) cores and processors,
the overall performance of the server has also been greatly
improved accordingly, while the amount of communication
traffic inside the server is significantly increased. Network-
on-Chip (NoC) is a technology of on-chip interconnection
network that provides efficient communication schemes for
these multicore servers [5]. Compared with the traditional bus
structure used for small-scale multicores, NoC uses intercon-
nection network and packet switching technologies to obtain
low latency, high performance, and low power consumption,
which avoid the competition in the bus architecture and
make it more suitable for server consolidation. Therefore,
NoC architectures are widely used as the most promising
design for the communication platform for many-core systems
including cloud computing infrastructures, primarily due to
their scalability.

Using virtualization on a NoC, each VM can be held by
a single processor core to achieve its functionality. However,
the communication between VMs increases the energy con-
sumption of the processors [6]. In addition, with the enhanced
capability of the processor cores and a higher degree of virtu-
alization, a single processor core can carry multiple VMs at the
same time [7]. For example, a 3GHz CPU could be shared by
three small instances in the Amazon EC2 platform. To shield
application performance from infrastructure management and
performance interference due to VM co-location, resource
management in virtualized data centers requires a careful VM
placement both on a single chip and a data center to avoid (or
minimize) resource contention on diverse physical resources.

Currently, the inter-core communication power consumption
has already taken an important part of the total power budget
due to the long distance on-chip communication and the
ultra-high bandwidth requirement (e.g., tens to hundreds of
terabits per second). The intuitive idea to decrease the energy
consumption is to place VMs of each application in a relatively
close distance to each other. However, placing many VMs on
a processor core forms a chip “hotspot”. The generation of
“hotspot” not only increases the network delay, but also surges
the leakage current, which seriously damages system perfor-
mance. Optimizing the temperature of the system is relatively
hard since a key parameter, the resistance matrix, is varied
for different topologies [8]. In this study, we demonstrate that
the temperature of a processor core and the CPU usage of
VMs are related. Therefore to avoid hotspots, we optimize the
CPU usage of processor cores by proposing an on-chip VM
placement algorithm, which considers both energy efficiency
and load balancing criteria.
Our Contribution. We propose an energy-aware and load bal-
ancing on-chip VM placement algorithm for cloud computing.
We formulate the problem considering these objectives and
investigate their combinatorial structures. An approximation
algorithm based on a Markov chain model is proposed to solve
this multi-objective problem. We run extensive experiments
to evaluate the energy consumption and workload of each
processor core and analyze the performance of our proposed
VM placement algorithm compared with the state-of-the-art
algorithms. The results show that our proposed algorithm
achieves significantly better performance compared with the
existing algorithms.
Organization. The rest of the paper is organized as follows.
In Section II, we discuss the state-of-the-art research in this
domain. In Section III, we introduce the problem of VM
placement in NoC, and we optimally formulate the problem.
In Section IV, we present our proposed approximation method
and VM placement algorithm. In Section V, we evaluate the
proposed VM placement algorithm by extensive experiments.
In Section VI, we summarize our results.

II. RELATED WORK

In multi-core systems, there is a body of literature on task
mapping to utilize the system efficiently [9]–[12]. Yoosefi
et al. [9] proposed a communication-aware mapping of task
graphs to the processing reconfigurable cores. Ruggiero et
al. [10] combined Integer programming and Constraint pro-
gramming, and proposed an iterative procedure for task map-
ping in Multi-Processor System-on-Chip (MPSoC). In [11],
an Integer Linear Programming (ILP) model is proposed to
optimize the energy yield of MPSoC. All these frameworks are
based on a traditional or an improved bus architecture, which
are not scalable. Moreover, a bus interconnect architecture
allows only one device to obtain the bus usage right at
one time. When there are more devices participating in the
competition at the same time, the usage right is allocated to
one device according to a pre-designed allocation mechanism

to prevent bus contention, and other devices can only wait
for the current device to release the bus, which causes heavy
bottlenecks.

Task or application mapping on a NoC system has attracted
considerable attention in recent years. In [13], an ant colony-
based heuristic approach is proposed for a task to core map-
ping in order to reduce the network traffic and communication
energy consumption. He et al. [14] proposed an ILP and a
heuristic algorithm for a unified task scheduling and core
mapping for NoC architectures. However, these studies are not
in the context of virtualization and VM placement; moreover,
sharing of a processor core by multiple processes is not
considered.

The problem of VM placement mainly focuses on how to
reasonably allocate cloud resources according to cloud users
and cloud service providers by abstracting physical resources
(e.g., computing resources, storage resources, and network
resources) into uniform virtual resources in order to make them
accessible over the Internet. We proposed offline and online
mechanisms for VM placement in clouds, federated clouds,
and edge computing [15]–[19]. Early placement schemes [8],
[20]–[22] only took the CPU capacity of a physical machine
and the computational resources of the VM into account,
which simplifies the placement problem into only one dimen-
sion. That means a set of VMs can be placed on a server if
and only if their total CPU load is not greater than the CPU
capacity of the server. In reality, both servers and VMs may
have multiple cores, and they require other resources such
as memory. When a VM is placed on a server, each of the
VM’s cores must also be placed on one of the server’s cores.
Careless placement of VMs on cores may lead to performance
degradation due to the competition of the hardware resources,
especially when the cores in the servers adopt a unique
architecture such as NoC.

For the emerging field of virtualization in NoCs, Triviño et
al. [23] proposed a partitioning mechanism that enables man-
agement and allocation of resources to applications to improve
the performance of the applications running simultaneously on
a CMP (chip-level multiprocessor). Grot et al. [24] proposed
the Kilo-NoC architecture, which guarantees the service re-
quirements of data flows by placing the VMs on a shared CMP.
Wang et al. [25] proposed a VM placement algorithm for a het-
erogeneous multi-core system that exploits different properties
of each core to optimize the overall system performance and
energy efficiency. Hu et al. [26] presented a VM scheduling
model to solve the I/O performance bottleneck based on the
multi-core dynamic partitioning. Beechu et al. [27] proposed
a system-level mapping of spare cores of tiles of the NoC
to enhance the performance. For multicore platforms such
as Cyber Physical Systems, Kanduri et al. [28] explored the
impacts of application mapping on network contention due
to their data flows. All the current studies of on-chip VM
placement for multi-core systems mainly target some specific
architectures and applications. However, none of the existing
studies have focused on general mathematical formulations
and optimal solutions for the on-chip VM placement problem

considering multiple objectives, which is critical in designing
high performance and scalable multi-core systems.

III. VM PLACEMENT MODEL

In this section, we describe our model for the VM placement
problem on the NoC architecture. We formulate an optimiza-
tion problem by jointly considering energy efficiency and load
management criteria. A 4⇥ 4 2D Mesh topology is shown in
Fig. 1.

A. Problem Statement
We consider a NoC architecture composed of N cores. The

set of processor cores is denoted by C = {C1, C2, . . . , CN}.
Each core provides d resources (e.g., CPU, memory), and
the capacity of these resources is presented by a d-length
vector ~H

n for core Cn.
We consider K applications from users in the form of

VMs to be placed on the NoC. Each application k has vk

VMs. As a result, the total number of VMs to be placed
is M =

P
k2K vk, and their set is represented by V =

{V1, V2, . . . , VM}.
An application k is characterized by (Wk

, { ~Dk,i}i=1,...,vk),
where Wk is a vk ⇥ vk matrix such that its element W

k
ij

represents the communication traffic between VM Vi and
VM Vj belonging to application k. Each element of the
vector ~Dk,i is a d-tuple representing the d resources required
by VM Vi.

For each application k, we need to find ck feasible host
cores to support the physical resource requirements of the
application. We define a binary decision variable Xin for
placing VM Vi on the processor core Cn as follows:

Xin =

(
1 if Vi is assigned to Cn,
0 otherwise.

(1)

Each VM can be only placed on one processor core.
Therefore, the following constraint condition must be satisfied:

NX

n=1

Xin = 1, 8Vi 2 V,Cn 2 C. (2)

In addition, constraints (3) ensure that the placement of VMs
on a core does not violate its capacity:

KX

k=1

vkX

i=1

Xin
~Dk,i � ~H

n
, 8Cn 2 C. (3)

B. Optimization Model
In this section, we describe our VM placement model opti-

mizing the CPU loads and minimizing energy consumption.

1) Minimizing Energy Consumption: Energy consumption
consists of two parts: static and dynamic. The static energy
consumption of a core is influenced by the NoC technol-
ogy, temperature, and supply voltage. For different placement
schemes on a NoC chip, supply voltage and temperature tend
to vary within a small range, while the NoC technology
remains the same. In addition, the computation energy, as a

router

core

cross
bar

L1C CPU
L1D

L2

buffer

buffer

bu
ff
er

buffer

link

Fig. 1. The architecture of a 4⇥ 4 2D Mesh topology

part of the dynamic energy, is consumed by processor cores for
computing the tasks of the applications. This energy remains
the same for different placement schemes as the overall tasks
are the same and the cores are homogeneous. Unlike these two
types of energy consumption (static and computation), com-
munication energy consumption varies dramatically when the
placement scheme is changed. Moreover, the communication
energy is about 28% of the total energy consumption of a
router [29], and for multimedia applications, this can reach
to 40% [30]. Therefore, we only focus on the communication
energy consumption.

The communication energy consumption is defined as the
energy consumption of transmitting data in the system caused
by communication requirements of VMs belonging to an
application, which includes i) the energy consumption of
transferring data through a router and ii) the energy con-
sumption consumed by the transmission links between routers.
According to [31], the energy consumption of transmitting 1-
bit data is calculated as follows:

Ebit = E
R
bit + E

L
bit, (4)

where E
R
bit and E

L
bit are the energy consumption of trans-

ferring data through a router and a one-hop inter-router link,
respectively. As a result, the energy consumed by transmitting
1-bit data between VM Vi and Vj , where they are placed on
core Cn and Cl is:

E
n,l
bit = (d (Cn, Cl) + 1)⇥ E

R
bit + d (Cn, Cl)⇥ E

L
bit, (5)

where d(Cn, Cl) is the number of hops between two cores Cn

and Cl. Since each core is connected to a router, thus the data
is transferred through d(Cn, Cl) + 1 routers.

Finally, our objective to minimize the energy consumption
is formulated as follows:

min E =
i=M,j=MX

i=1,j=1

n=N,l=NX

n=1,l=1

E
n,l
bit ⇥W

k
ij ⇥Xin ⇥Xjl (6)

2) Balancing Load: Transistors generate heat during the
execution of applications. When a large number of transistors
are integrated on a chip, the chip temperature rises rapidly.
High chip temperature not only results in leakage current, but

also increases the network delay, leading to the system perfor-
mance degradation. As a result, reducing the chip temperature
is an important issue in VM placement. Hung [32] proposed
a temperature calculation method, called HotSpot, where the
temperature of each core depends on the power consumption
and the position of the core on the chip. Let Rnm denote
the thermal resistance between cores Cn and Cm 2 C (for
simplicity, we use n and m). The increase of �Pn in power
consumption of core n leads to temperature rise of �Tm at
core m. This relationship can be expressed as the following
equation:

�Tm = Rnm ⇥�Pn. (7)

When the system is in a steady state, the temperature of each
core can be determined by Eq. (8):
0

BBBBBBBB@

T1

T2

...

...
TN

1

CCCCCCCCA

=

0

BBBBBBBB@

R11 R12 · · · · · · R1N

R21 R22 · · · · · · R2N

...
... · · · · · ·

...
...

... · · · · · ·
...

RN1 RN2 · · · · · · RNN

1

CCCCCCCCA

0

BBBBBBBB@

P1

P2

...

...
PN

1

CCCCCCCCA

,

(8)
where Pn is the power consumed by core n, and Tn is
the temperature at core n. The thermal resistance matrix R
is a constant matrix related to the positions of the cores.
This matrix can be obtained from HotSpot [32]. The peak
temperature of the cores on the chip is calculated as follows:

Tmax = max {Tn |n = 1, 2, · · · , N, 8Cn 2 C } . (9)

According to the recent study [8], the power consumption
of a core has an approximated linear relationship with the
computational resource utilization of the core. Therefore, the
power consumption of core Cn is:

Pn = ↵ · L̄n + �, (10)

where L̄n =
P
k

vkP
i=1

Xin
~Dk,i(CPU) is the sum of CPU

consumption by the VMs placed on core Cn. Combined with
Eq. (7), the temperature equation can be transferred to:

T = ↵R · L̄+ � ·R. (11)

Since the thermal resistance matrix R is deterministic, the
peak temperature of the core can be rewritten as:

Tmax = ↵R · L̄max + � ·R, (12)

where L̄max is the maximum CPU consumption by the VMs
on the chip. As a result, in order to minimize the core peak
temperature, we focus on minimizing the maximum load of
cores on the chip. According to the definition of minimum -
maximum load balancing rule by [33], our optimization goal
can be expressed as follows:

min max1nN L̄n. (13)

Moreover, when VMs of an application are placed on the
same core at the same time, the performance is severely de-
graded due to a competing relationship between resources [34].
As a result, we set the thresholds of CPU utilization to
L̄
k
n  90% (following [35]), where L̄

k
n =

vkP
i=1

Xin
~Dk,i(CPU)

represents the sum of CPU consumption by the VMs of
application k on core n.

3) Joint Load-Balancing and Energy-Aware VM Placement
Model: Based on the two objectives described in this section,
we formulate the VM placement problem considering both
energy consumption and load balancing as the following
optimization problem (called, ELVMP):

min E =
i=M,j=MP
i=1,j=1

n=N,l=NP
n=1,l=1

E
n,l
bit ⇥W

k
ij ⇥Xin ⇥Xjl

min max1nN L̄n

Subject to:
KP

k=1

vkP
i=1

Xin
~Dk,i � ~H

n
, 8Cn 2 C

NP
n=1

Xin = 1, 8Vi 2 V,Cn 2 C

(14)
ELVMP belongs to the quadratic assignment problem,

which has already been demonstrated as an NP-hard prob-
lem [36]. As a result, we propose an approximation algorithm
for the VM placement problem in the next Section.

IV. APPROXIMATE VM PLACEMENT

In this section, we describe our approximation VM place-
ment model optimizing the CPU loads and minimizing energy
consumption, and we present our proposed Markov-based VM
placement algorithm.

A. Approximation Method

The ELVMP problem depicted in Eq. (14) is NP-hard [36],
meaning that no computationally-efficient algorithm exists to
obtain optimal solutions for all cases. Our goal is to find an
approximate solution to this problem in a distributed manner.
Systems adopting distributed algorithms are more robust than
those running centralized algorithms. Moreover, for the Noc
architecture, it is quite difficult to set a dedicated core to
have the global information of the chip. Inspired by the idea
of Markov chain approximation to obtain an approximated
solution, we reconstruct the problem of on-chip VM placement
to specific log-sum-exp structures.

We define f = {X} as a solution (called configuration) of
the ELVMP problem, and F as a set of feasible configurations.
Since the log-sum-exp approximation cannot be deployed
directly on multiobjective problems according to [37], we
reconstruct each objective of the ELVMP in this form.

For the energy-efficiency objective, let pef be the probability
associated with configuration f 2 F . Then, we define x

e
f as

the value of the energy consumption under configuration f .

Therefore, the energy-aware objective (i.e., Eq. (6)) is recon-
structed as follows:

min
P e�0

P
f2F

p
e
fx

e
f + 1

⇠e

P
f2F

p
e
f log p

e
f

s.t.
P

f2F
p
e
f = 1,

(15)

where ⇠e is a large positive constant.
Different from the standard form, which belongs to L1 norm

given in [37], the form of the load-balance objective (i.e.,
Eq (13)) is an infinite norm. Since each type of norms is a
convex function in the linear space, it is feasible to use log-
sum-exp approximation for this objective. Therefore, similar
to the energy-aware objective Eq (6), the objective Eq (13) is
also approximated to the log-sum-exp structure as follows:

min
Pl�0

P
f2F

p
l
fx

l
f + 1

⇠l

P
f2F

p
l
f log p

l
f

s.t.
P

f2F
p
l
f = 1

(16)

Therefore, there are 2 independent approximation optimiza-
tion problems. By combining them into one problem, we
define ELVMP-Approx, while we plan to find the Pareto
optimal solutions. Therefore, the formulation of ELVMP-
Approx is as follows:

min
p�0

P
f2F

pf ⇧ xf + 1
⇠e

P
f2F

p
e
f log p

e
f + 1

⇠l

P
f2F

p
l
f log p

l
f

s.t.
P

f2F
p
e
f = 1,

P
f2F

p
l
f = 1.

(17)
For convenience, let pf = (pef , p

l
f) and xf = (xe

f , x
l
f) be

the vector variables. According to Cauchy-Schwarz inequality,
we obtain a relaxation problem, called ELVMP-Re, as follow:

min
P�0

X

f2F

pfxf +
1

⇠

X

f2F

pf log pf

s.t.

X

f2F

pf =
p
2,

(18)

where pf = |pf |, xf = |xf |, and ⇠ =
q

1
(⇠e)

2 + 1
(⇠l)

2 .
By introducing the Karush-Kuhn-Tucker (KKT) conditions

of ELVMP-Re problem, the optimal solution to ELVMP-Re is
given by:

p
⇤
f (x) =

exp(�⇠xf)P
f 02F

exp(�⇠xf 0)
, 8f 2 F (19)

B. Markov-based VM Placement Algorithm
To solve ELVMP-Re, we design a reversible Markov chain,

which allows a distributed implementation. In order to design
a distributed solution, the proposed Markov chain should
satisfy the following equilibrium equation, which ensures its
convergence to a stationary distribution:

p
⇤
f (x) qf,f 0 = p

⇤
f 0 (x) qf 0,f , 8f, f 0 2 F , (20)

where qf,f 0 is the transition probability of the current configu-
ration f to the next configuration f

0. This equation shows that

Algorithm 1 MVMPA: VM placement algorithm given a fixed
number of VMs
Input:

Set of VMs V , set of processor cores C, and traffic matrix W

Output:
A VM placement solution

1: /*Initialization*/
2: Rank all the cores based on their average distance to each other
3: Calculate the communication traffic for each application
4: /*Placing the application with the highest communication traffic

such that its VMs are placed on different cores*/
5: for k = 1 to K do /*K is the number of applications*/
6: Calculate the communication traffic for each VM in applica-

tion k

7: placed = ;, not placed = {V1, . . . , Vvk} /*placed includes
the VMs that have been placed and not placed includes the VMs
that have not been placed*/

8: while not placed 6= ; do
9: Place VM Vi 2 not placed with the largest communica-

tion traffic on the current highest priority core Cn

10: Place the VMs connected to Vi on the cores with the
shortest distance to Cn

11: end while
12: end for
13: Consider this initial placement of all applications as f0

14: fbest f0 /*f0 is the initial feasible configuration*/
15: xbest xf0 /*xf0 is the value of the objective for Eq. (18).

*/
16: /*Improving the placement*/
17: for t = 0 to T do /*T is the number of iterations*/
18: Calculate the load of each core
19: Pick a VM Vi from the highest-load core
20: gi V

0
i s current placement

21: ft ft\gi /*Remove Vi from the system*/
22: Gi FindConfigurations(ft, Vi)
23: Ft {ft}⇥ Gi

24: Choose a configuration f 2 Ft according to Eq (20)
25: Reassign VM Vi to a new configuration f

26: if xf < xbest then
27: fbest f , xbest xf , ft+1 f

28: end if
29: end for
30: Return fbest, xbest

the transmission probability is only determined by the per-
formance of the current configuration. The transition between
the two configurations means changes to the existing virtual
machine location (placement). In particular, the reassignment
of a virtual machine is a transition to a next configuration, and
we set the qf!f 0 / exp�1(⇠xf 0) according to [37]. By doing
so, the Markov chain for the static problem is constructed.

Algorithm 1 is proposed to find a near-optimal configuration
using the equilibrium equation (20). This algorithm keeps track
of the observed configurations and finds the best configuration
among them as the final solution. Algorithm 1 first selects a
feasible configuration as an initial solution. Then, it calculates
the load of each core and selects a VM (e.g., Vi) on the
highest-load core. The algorithm calls FindConfigurations
function (given in Algorithm 2) for Vi, which returns G a
set of � feasible potential future positions for this VM.

In previous algorithms using the Markov approximation
method, an initial solution is usually set by a random pick.

Algorithm 2 FindConfigurations
Input:

Current State ft, VM Vi
Output:

A set G of � feasible configurations for VM Vi given ft

1: Divide the topology of NoC into four sections
2: Choose section S with the maximum number of VMs commu-

nicating with Vi

3: G ;
4: while |G | < � do /*� is the number of feasible configurations*/
5: Calculate the resource usage of core Cn in section S

6: if
KP

k=1

vkP
j=1

Xjn
~Dk,i + ~Dk,i � ~H

n then

7: G G [Cn

8: end if
9: end while

10: Return G

However, such a random method will cause a longer time
for these algorithms to converge. In order to overcome this
limitation, we design our algorithm by taking advantage of the
topology used in a NoC system (e.g., mesh). As a result, our
proposed algorithm starts with an intelligent initial solution
so that the time to find the final result is cut down. For
the multi-objective problem, the general method is to find an
optimal (or near-optimal) solution for one of the objectives,
and then evaluate the current solution iteratively until there is
a non-dominated solution (leading to a Pareto-optimal result
for the original multi-objective problem). Our proposed al-
gorithm, MVMPA (Markov-based VM Placement Algorithm),
optimizes the energy consumption and load-balance for each
application first, and then it iteratively decreases the maximum
load on the chips to balance the load for the system.

MVMPA receives the set of VMs V , set of processor
cores C, and traffic matrix W as inputs. It prioritizes the
cores based on their average distance (to all other cores on
the NoC) such that the core in the center of the NoC has the
highest priority, Cn. For each application, MVMPA algorithm
finds the sum of the total communication traffic among its
VMs. The application with the highest communication traffic
has the highest priority among all the applications, and it
will be placed first. For each VM, we calculate the total
communication traffic that it has with other VMs belonging
to the same application. We place the VM with the highest
communication traffic, Vi, on the current highest priority core.
Then, all VMs communicating with Vi are placed on the next
neighbor cores.

In the initialization step, MVMPA ranks the cores based
on their average distance to each other, and calculates the
communication traffic among VMs of each application as a
priority. MVMPA places the applications bases on their pri-
orities, where an application with the highest communication
traffic is placed on the NoC first. VMs belonging to the same
application are ranked based on their communication traffic as
well. VM Vi with highest communication traffic is picked first,
and it is placed on the current highest priority core, Cn. Then,
MVMPA places the VMs connected to Vi on the cores with
the shortest distance to Cn until all VMs from the application

are placed. Thus, each VM of the application is placed on one
core in order to make the load of the application balanced.
By the end of this step, we have an initial VM placement
configuration, f0.

MVMPA iteratively improves the VM placement. In doing
so, it evaluates the load of each core, and selects VM Vi

randomly from a core with the maximum load. For this
placement of Vi, the energy consumption is calculated as
follow: Ei

k = w1d1+. . .+wi�1di�1+wi+1di+1+. . .+wvkdvk ,

where wvk is the communication traffic between Vi and Vvk

and dvk represents the Manhattan distance between Vi and Vvk .
The optimal placement minimizes E

i
k for each VM. To find

a near-optimal solution, MVMPA calls FindConfigurations
to generate a feasible solution set that can be used for the
Markov approximation to evolve. Since wvk is a constant
value, we need to minimize the distance between Vi and any
other VM belonging to application k. Recall the NoC topology,
the characteristics of a regular topology imply that some of the
cores are symmetric. Therefore, FindConfigurations divides
the topology into four sections, and finds the number of
VMs which have communication with Vi in different sections.
It then selects a section with the most number of VMs
communicating with Vi, where only the cores in that section
are included in the feasible solution set. FindConfigurations
returns a feasible solution set G containing � configurations
for reassignment of Vi. Among these potential placements
for Vi, MVMPA chooses one of them with probabilities
according to Eq. (20). When the state transmissions are done,
the current best solution is selected as the final solution.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
algorithm, MVMPA, under different scenarios. Two existing
multi-objective VM placement algorithms, VMPACS [8] and
MGGA [38], are augmented based on the objectives of the
ELVMP problem and are used as benchmarks. VMPACS
is an ant-colony based algorithm, and MGGA is derived
from a genetic algorithm. Both algorithms are categorized as
intelligent algorithms requiring some predefined parameters
and a long search time. All algorithms are implemented in C
and the experiments are conducted on an iMac with 2.3 GHz
Intel Core i5 and 16 GB 2133 MHz DDR4.

The VM instances for each application are generated using
similar configurations in [8], where the CPU and memory
utilization of each VM are correlated. Based on GT-ITM
Rule [39], each VM is communicating with other VMs of
the application with a probability of 0.5. The communication
traffic demands between VMs are interdependent and subject
to normal distributions [22].

Since the mesh topology has plenty of advantages such as
high regularity, modularity, and simple routing, most stud-
ies on NoC [25], [40], [41] are based on this topology.
Therefore, we also employ mesh topology in the experiment.
All algorithms are evaluated over the mesh NoC topologies
with 64 to 256 cores. The processor cores in the system are
homogeneous. The E

R
bit and E

L
bit are set to be 4.171 nj/bit and

0 20 40 60 80 100

750

800

850

900

950

1000

0 20 40 60 80 100
0.20

0.21

0.22

0.23

0.24

0.25

0.26
En

er
gy

 C
on

su
m

pt
io

n(
m

W
)

Iteration Number
(a)

 MGGA
 VMPASC
 MVMPA

M
ax

 R
es

ou
rc

e
U

til
iz

at
io

n

Iteration Number
(b)

 MGGA
 VMPASC
 MVMPA

Fig. 2. Comparison of the obtained solutions, where DCPU= DMEM =
20%

0.449 nj/bit, respectively, according to [42]. Every experiment
for each VM placement instance is conducted 20 times, and the
average results over these 20 independent runs are reported.

A. Evaluation of MVMPA with different resource demand
We compare the performance of MVMPA with the two

benchmark algorithms considering different VM resource re-
quirements. Each VM uses CPU and memory resources,
and it is assumed that its CPU and memory demands are
linearly correlated [43]. All VMs’ utilizations are randomly
generated using the method presented in [35] such that the
distributions of the generated CPU and memory demands are
[0, 40%) with DCPU and DMEM being 20%, and [0, 80%)
with DCPU and DMEM being 40%. DCPU and DMEM

are the mean value of CPU demand and memory demand
respectively indicating the resource intensity of VM requests.
All algorithms are evaluated over an 8⇥8 mesh NoC topology
considering communication traffic of VMs follows N(0.4, 0.1)
distribution. To make a fair comparison of the algorithms,
we fix the total number of VMs of all the applications to
a constant 64.

Figs. 2 and 3 show the convergence of the algorithms after
100 iterations. Each point in Figs. 2 and 3 represents the value
of energy consumption and resource utilization of the obtained
solution, respectively. The results show that all algorithms
improve their solutions as they converge, and MVMPA outper-
forms VMPACS and MGGA algorithms. The initial solution
of MVMPA is better than those of MGGA and VMPACS
since MVMPA takes into account the characteristic of NoC
topology at its initial steps. Moreover, MVMPA achieves faster
convergence. The maximum resource utilization is almost
doubled in Fig. 3 compared to that of Fig. 2 since the VMs are
more resource intensive. This is also the case for the energy
consumption. As VMs need to satisfy the application load-
balance constraint, they have to be placed on different cores
leading to more distance among VMs and a higher energy
consumption.

To evaluate the computational efficiency of our proposed
algorithm, we also present the execution time of the algo-
rithms. The execution time reflects the time used on searching
for the approximate solution after 100 iterations. The results
are presented in Table I. The execution time of MVMPA is

0 20 40 60 80 100
900

950

1000

1050

1100

0 20 40 60 80 100

0.38

0.40

0.42

0.44

0.46

0.48

En
er

gy
 C

on
su

m
pt

io
n(

m
W

)

Iteration Number
(a)

 MGGA
 VMPASC
 MVMPA

M
ax

 R
es

ou
rc

e
U

til
iz

at
io

n

Iteration Number
(b)

 MGGA
 VMPASC
 MVMPA

Fig. 3. Comparison of the obtained solutions, where DCPU= DMEM =
40%

much smaller since our algorithm uses a heuristic method
to decrease the searching space. The results show that our
proposed algorithm is computationally efficient.

B. Scalability of MVMPA with respect to topology
This section mainly considers the performance of the algo-

rithms when VMs are placed on different scales of a mesh
topology from a 8 ⇥ 8 to a 16 ⇥ 16 NoC while considering
communication traffic of VMs follows N(0.4, 0.1) distribu-
tion. We also increase the number of VMs from 64 to 256,
according. We fix DCPU= DMEM = 40%. The results are
obtained after 100 iterations.

In Fig. 4(a), MVMPA provides about a combined average
of 11.65% improvements in both energy efficiency and bal-
ancing load compared with MGGA and 5.65% improvements
compared with VMPASC. Since MVMPA takes into account
the characteristic of the NoC topology and the communication
traffic of each application, it searches the solution space more
efficiently. In Fig. 4(b), the maximum utilization of the cores
increases with respect to the increasing number of VMs. This
is due to the fact that the energy consumption will augment
sharply when the scale of the topology becomes larger. This
makes MVMPA give priority to energy consumption, and thus
MVMPA places more VMs on the same core to reduce the
total communication traffic on the NoC. The results show that
MVMPA is suitable for large-scale NoC topologies.

C. Evaluation of MVMPA with different communication traffic
In this section, we compare the performance

of the algorithms when the communication traffic
increases among the VMs. The communication

TABLE I
EXECUTION TIME

Reference value Algorithm Execution time (s)
DCPU= DMEM = 20% MGGA 12.059

VMPASC 10.523
MVMPA 2.249

DCPU= DMEM = 40% MGGA 18.168
VMPASC 11.682
MVMPA 2.520

64 100 144 196 256
0

500

1000

1500

2000

En
er

gy
 C

on
su

m
pt

io
n(

m
W

)

Number of VMs
(a)

 MGGA
 VMPASC
 MVMPA

64 100 144 196 256
0.0

0.2

0.4

0.6

0.8

M
ax

 R
es

ou
rc

e
U

til
iz

at
io

n

Number of VMs
(b)

 MGGA
 VMPASC
 MVMPA

Fig. 4. Scalability of the algorithms with increasing demand

0.2 0.4 0.6 0.8
0

500

1000

1500

2000

En
er

gy
 C

on
su

m
pt

io
n(

m
W

)

Traffic Load
(a)

 MGGA
 VMPASC
 MVMPA

0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

M
ax

 R
es

ou
rc

e
U

til
iz

at
io

n

Traffic Load
(b)

 MGGA
 VMPASC
 MVMPA

Fig. 5. Performance comparison considering different communication traffic

traffic of VMs is drawn from the following normal
distributions: N(0.2, 0.1), N(0.4, 0.1), N(0.6, 0.1),
and N(0.8, 0.1) [44]. The increasing mean value of the
normal distributions implies that the communication traffic
among VMs are getting intensive.

The performance of the algorithms considering different
communication traffic is depicted in Fig. 5, where x-axes
represent the mean traffic of each VM. The results show a
similar trend for the obtained solutions by the algorithms.
MVMPA can also be used for traffic intensive scenarios.

D. Evaluation of MVMPA with different application scale
Finally, we study whether the proposed MVMPA algorithm

is scalable by considering different application sizes. In these
experiments, the number of VMs for each application is varied
from 4 to 16, which is generated by using a uniform distribu-
tion. These applications are then organized in three scenarios.
The other settings remain the same as in subsection B.

Fig. 6 shows the results, where x-axes represent the mean
number of VMs in the applications. The MVMPA has a better
performance than MGGA and VMPACS for different range
of applications. Although the difference between the results of
MVMPA and VMPACS is not distinguish, MVMPA converges
quicker towards a solution leading to a better performance
compared with the existing algorithms.

VI. CONCLUSION

In this paper, we proposed a load-balancing and energy-
aware VM placement for NoCs. We formulated the on-chip
VM placement problem as an optimization model and derived

6 10 14
0

500

1000

1500

En
er

gy
 C

on
su

m
pt

io
n(

m
W

)

Average Number of VMs
(a)

 MGGA
 VMPASC
 MVMPA

6 10 14
0.0

0.1

0.2

0.3

0.4

0.5

M
ax

 R
es

ou
rc

e
U

til
iz

at
io

n

Average Number of VMs
(b)

 MGGA
 VMPASC
 MVMPA

Fig. 6. Performance comparison considering different application sizes

the detailed energy model and load model. We designed
a Markov-based approximation algorithm, considering the
characteristic of the NoC architecture and the communica-
tion traffic among the VMs of applications. Compared with
the classical multi-objective placement algorithms, the results
show that our algorithm obtains much better results in different
scenarios including different resource demands of the VMs,
NoC topologies, communication traffic between VMs, and
scales of the applications. For the future work, we plan to
consider the dynamic virtual machine placement on chip.

ACKNOWLEDGMENT

This research was supported in part by NSF grant CNS-
1755913.

REFERENCES

[1] M. P. Mills, “The cloud begins with coal: Big data, big networks, big
infrastructure, and big power,” Digital Power Group, 2013.

[2] L. Mashayekhy, M. Nejad, D. Grosu, Q. Zhang, and W. Shi, “Energy-
aware scheduling of mapreduce jobs for big data applications,” IEEE
Transactions on Parallel and Distributed Systems, vol. 26, no. 10, pp.
2720–2733, 2015.

[3] D. A. Alboaneen, B. Pranggono, and H. Tianfield, “Energy-aware virtual
machine consolidation for cloud data centers,” in Proceedings of the
2014 IEEE/ACM 7th International Conference on Utility and Cloud
Computing, 2014, pp. 1010–1015.

[4] M. R. Marty and M. D. Hill, “Virtual hierarchies to support server
consolidation,” in ACM SIGARCH Computer Architecture News, 2007,
pp. 46–56.

[5] M. M. Ahmed, M. S. Shamim, N. Mansoor, S. A. Mamun, and A. Gan-
guly, “Increasing interposer utilization: A scalable, energy efficient and
high bandwidth multicore-multichip integration solution,” in Proc. of the
IEEE 8th International Green and Sustainable Computing Conference,
2017, pp. 1–6.

[6] C. Batten, A. Joshi, V. Stojanovć, and K. Asanović, “Designing chip-
level nanophotonic interconnection networks,” Integrated Optical Inter-
connect Architectures for Embedded Systems, pp. 81–135, 2013.

[7] C. Xu, S. Gamage, H. Lu, R. R. Kompella, and D. Xu, “vturbo:
Accelerating virtual machine i/o processing using designated turbo-
sliced core,” in USENIX Annual Technical Conf., 2013, pp. 243–254.

[8] Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu, “A multi-objective
ant colony system algorithm for virtual machine placement in cloud
computing,” Journal of Computer and System Sciences, vol. 79, no. 8,
pp. 1230–1242, 2013.

[9] A. Yoosefi and H. R. Naji, “A clustering algorithm for communication-
aware scheduling of task graphs on multi-core reconfigurable systems,”
IEEE Transactions on Parallel & Distributed Systems, no. 10, pp. 2718–
2732, 2017.

[10] M. Ruggiero, A. Guerri, D. Bertozzi, F. Poletti, and M. Milano,
“Communication-aware allocation and scheduling framework for stream-
oriented multi-processor systems-on-chip,” in Proc. of the IEEE Con-
ference on Design, Automation and Test in Europe, vol. 1, 2006, pp.
6–16.

[11] M. Ghorbani, “A variation and energy aware ILP formulation for task
scheduling in MPSoC,” in Proc. of the 13th International Symposium
on Quality Electronic Design, 2012, pp. 772–777.

[12] L. Ghalami and D. Grosu, “Scheduling parallel identical machines to
minimize makespan: A parallel approximation algorithm,” Journal of
Parallel and Distributed Computing, pp. –, 2018.

[13] M. Farias, E. Barros, A. Araujo, A. Silva, J. Melo et al., “An ant colony
metaheuristic for energy aware application mapping on nocs,” in Proc.
of the IEEE 20th International Conference on Electronics, Circuits, and
Systems, 2013, pp. 365–368.

[14] O. He, S. Dong, W. Jang, J. Bian, and D. Z. Pan, “Unism: Unified
scheduling and mapping for general networks on chip,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 8,
pp. 1496–1509, 2012.

[15] L. Mashayekhy, M. Nejad, D. Grosu, and A. Vasilakos, “An online mech-
anism for resource allocation and pricing in clouds,” IEEE Transactions
on Computers, vol. 65, no. 4, pp. 1172–1184, 2016.

[16] L. Mashayekhy, M. Nejad, and D. Grosu, “Physical machine resource
management in clouds: A mechanism design approach,” IEEE Transac-
tions on Cloud Computing, vol. 3, no. 3, pp. 247–260, 2015.

[17] ——, “A PTAS mechanism for provisioning and allocation of heteroge-
neous cloud resources,” IEEE Transactions on Parallel and Distributed
Systems, vol. 26, no. 9, pp. 2386–2399, 2015.

[18] ——, “A two-sided market mechanism for trading big data computing
commodities,” in Proc. of the IEEE International Conference on Big
Data, 2014, pp. 153–158.

[19] N. Sharghivand, F. Derakhshan, and L. Mashayekhy, “QoS-aware match-
ing of edge computing services to internet of things,” in Proceedings of
the 37th IEEE International Performance Computing and Communica-
tions Conference, 2018, pp. 1–8.

[20] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers,” Concurrency
and Computation: Practice and Experience, vol. 24, no. 13, pp. 1397–
1420, 2012.

[21] D. Ihara, F. L. Pirez, and B. Baran, “Many-objective virtual machine
placement for dynamic environments,” in Proceedings of the 2015
IEEE/ACM 8th International Conference on Utility and Cloud Com-
puting, 2015, pp. 75–79.

[22] T. Yapicioglu and S. Oktug, “A traffic-aware virtual machine placement
method for cloud data centers,” in Proceedings of the 2013 IEEE/ACM
6th international conference on Utility and Cloud Computing, 2013, pp.
299–301.

[23] F. Triviño, J. L. Sánchez, F. J. Alfaro, and J. Flich, “Virtualizing
network-on-chip resources in chip-multiprocessors,” Microprocessors
and Microsystems, vol. 35, no. 2, pp. 230–245, 2011.

[24] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu, “Kilo-noc: a
heterogeneous network-on-chip architecture for scalability and service
guarantees,” in ACM SIGARCH Computer Architecture News, 2011, pp.
401–412.

[25] Y. Wang, X. Wang, and Y. Chen, “Energy-efficient virtual machine
scheduling in performance-asymmetric multi-core architectures,” in Pro-
ceedings of the 8th International Conference on Network and Service
Management, 2012, pp. 288–294.

[26] Y. Hu, X. Long, J. Zhang, J. He, and L. Xia, “I/o scheduling model of
virtual machine based on multi-core dynamic partitioning,” in Proceed-

[29] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi, “Orion 2.0: A fast
and accurate noc power and area model for early-stage design space
exploration,” in Proceedings of the Conference on Design, Automation
and Test in Europe, 2009, pp. 423–428.

ings of the 19th ACM International Symposium on High Performance
Distributed Computing, 2010, pp. 142–154.

[27] N. K. R. Beechu, V. M. Harishchandra, and N. K. Y. Balachandra, “High-
performance and energy-efficient fault-tolerance core mapping in NoC,”
Sustainable Comp.: Informatics and Systems, vol. 16, pp. 1–10, 2017.

[28] A. Kanduri, A.-M. Rahmani, P. Liljeberg, and H. Tenhunen, “Predictable
application mapping for manycore real-time and cyber-physical sys-
tems,” in Proceedings of the 9th IEEE International Symposium on
Embedded Multicore/Many-core Systems-on-Chip, 2015, pp. 135–142.

[30] A. Das, A. Kumar, and B. Veeravalli, “Energy-aware communication and
remapping of tasks for reliable multimedia multiprocessor systems,” in
Proceedings of the 18th IEEE International Conference on Parallel and
Distributed Systems, 2012, pp. 564–571.

[31] J. Hu and R. Marculescu, “Exploiting the routing flexibility for en-
ergy/performance aware mapping of regular NoC architectures,” in
Design, Automation and Test in Europe Conference and Exhibition,
2003, pp. 688–693.

[32] W. Hung, C. Addo-Quaye, T. Theocharides, Y. Xie, N. Vijakrishnan,
and M. J. Irwin, “Thermal-aware ip virtualization and placement for
networks-on-chip architecture,” in Proceedings of IEEE International
Conference on Computer Design: VLSI in Computers and Processors,
2004, pp. 430–437.

[33] L. Lu, H. Zhang, E. Smirni, G. Jiang, and K. Yoshihira, “Predictive
vm consolidation on multiple resources: Beyond load balancing,” in
Proceedings of the IEEE/ACM 21st International Symposium on Quality
of Service, 2013, pp. 1–10.

[34] S. Govindan, J. Liu, A. Kansal, and A. Sivasubramaniam, “Cuanta: quan-
tifying effects of shared on-chip resource interference for consolidated
virtual machines,” in Proceedings of the 2nd ACM Symposium on Cloud
Computing, 2011, p. 22.

[35] Q. Zheng, R. Li, X. Li, N. Shah, J. Zhang, F. Tian, K.-M. Chao, and
J. Li, “Virtual machine consolidated placement based on multi-objective
biogeography-based optimization,” Future Generation Computer Sys-
tems, vol. 54, pp. 95–122, 2016.

[36] S. Sahni and T. Gonzalez, “P-complete approximation problems,” Jour-
nal of the ACM, vol. 23, no. 3, pp. 555–565, 1976.

[37] M. Chen, S. C. Liew, Z. Shao, and C. Kai, “Markov approximation for
combinatorial network optimization,” IEEE Transactions on Information
Theory, vol. 59, no. 10, pp. 6301–6327, 2013.

[38] J. Xu and J. A. Fortes, “Multi-objective virtual machine placement in
virtualized data center environments,” in Proc. of the IEEE/ACM Int’l
Conf. on Green Computing and Communications, 2010, pp. 179–188.

[39] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to model an
internetwork,” in Proc. of IEEE INFOCOM, vol. 2, 1996, pp. 594–602.

[40] R. Marculescu, U. Y. Ogras, L.-S. Peh, N. E. Jerger, and Y. Hoskote,
“Outstanding research problems in noc design: system, microarchitec-
ture, and circuit perspectives,” IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, vol. 28, no. 1, pp. 3–21, 2009.

[41] K. Bhardwaj, W. Jiang, and S. M. Nowick, “Achieving lightweight
multicast in asynchronous nocs using a continuous-time multi-way
read buffer,” in Proc. of the 11th Eleventh IEEE/ACM International
Symposium on Networks-on-Chip, 2017, pp. 1–8.

[42] C. Wu, C. Deng, L. Liu, J. Han, J. Chen, S. Yin, and S. Wei, “An efficient
application mapping approach for the co-optimization of reliability,
energy, and performance in reconfigurable NoC architectures,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 34, no. 8, pp. 1264–1277, 2015.

[43] Y. Ajiro and A. Tanaka, “Improving packing algorithms for server
consolidation,” in Int. CMG Conference, vol. 253, 2007, pp. 399–406.

[44] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data
center networks with traffic-aware virtual machine placement,” in Proc.
of IEEE INFOCOM, 2010, pp. 1–9.

