
A Coalitional Game-Based Mechanism for Forming
Cloud Federations

Lena Mashayekhy
Department of Computer Science

Wayne State University
Detroit, MI 48202, USA

Email: mlena@wayne.edu

Daniel Grosu
Department of Computer Science

Wayne State University
Detroit, MI 48202, USA

Email: dgrosu@wayne.edu

Abstract—We model the cloud federation formation problem
using concepts from coalitional game theory by considering the
cooperation of the cloud providers in providing the requested
VM instances. We design a mechanism that enables the cloud
providers to dynamically form a cloud federation maximizing
their profit. Furthermore, the mechanism guarantees that the
cloud federation structure is stable, that is, the cloud providers
do not have incentives to break away from the current federation
and join some other federation.

I. I NTRODUCTION

In this paper, we consider the IaaS offering by a federation
of cloud providers. Acloud federationis a collection of cloud
providers that cooperate in order to provide the resources
requested by users [1]. Cloud providers offer IaaS using
virtualization of low level resources. Cloud providers provision
their resources into different types of virtual machine (VM)
instances. We model the cloud federation formation as a
coalitional game where cloud providers decide to form a
coalition (cloud federation) to allocate VMs dynamically based
on users’ requests.

We focus on designing a mechanism for solving the cloud
federation formation problem. The mechanism allows the
cloud providers to make their own decisions to form a fed-
eration yielding the highest total profit. In this mechanism,
coalitions of cloud providers decide to merge and split in order
to form a federation providing requested resources as a service
to the user. The mechanism also determines the individual
profit of each participating cloud provider in the federation.
Each cloud provider covers its incurred costs, and receivesits
individual profit based on its market power. The mechanism
provides a stable federation structure, that is, none of thecloud
providers has incentives to merge to another federation or split
from a federation to form another federation. We analyze the
properties of our proposed cloud federation mechanism and
perform extensive simulation experiments to investigate its
properties.

Related Work.The primary requirements for forming feder-
ations of cloud providers are discussed by Rochwergeret
al. [1]. Goiri et al. [2] provided models that assist the cloud
providers in making decisions on forming cloud federations.
A game theoretic solution for dynamic resource allocation in
a cloud federation was proposed by Hassanet al. [3]. The

authors defined a price function for a cloud provider that gives
incentives to other clouds to contribute resources and to form
a federation. A revenue sharing mechanism for multiple cloud
providers using stochastic linear programming games was pro-
posed by Niyatoet al. [4]. Coalitional games have been used
in many fields where cooperation is important. Saadet al. [5]
proposed a merge-and-split coalition formation mechanismin
wireless networks. Their proposed mechanism partitions the
network of antenna devices into coalitions maximizing their
utilities. A mechanism for dynamic virtual organization forma-
tion in grids based on coalitional game theory was proposed
by Mashayekhy and Grosu [6]. The mechanism considers the
incentives of the grid service providers while providing the
required capabilities to execute the user application. In this
paper, we target VM allocation in federated clouds and not
the allocation of jobs to grid service providers which was the
focus of [6]. We also employ a new method for profit division
among cloud providers instead of the equal share method used
in [6].

II. CLOUD FEDERATION FORMATION FRAMEWORK

System Model.We first describe the system model which
considers a set of cloud providers, a set of brokers as
mediators, and several cloud customers. We assume that a
set of cloud providersI = {C1, C2, . . . , Cm} is available
to provide resources in the form of VM instances to cloud
users. The cloud providers offern types of VM instances:
VM = {VM1, . . . , V Mn}, where each instance provides a
specific number of cores, amount of memory, and amount
of storage. The VM instance of typeVM j (j = 1, . . . , n)
is characterized bywc

j , the number of cores, and byws
j ,

the amount of storage provided. The amount of memory is
proportional to the number of cores. We assume that all cloud
providers offer the same types of VM instances.

Each cloud providerCi ∈ I has a specific number of
cores and storage available. We denote byNi, the number
of available cores of cloud providerCi, and bySi, the amount
of available storage of cloud providerCi. Each providerCi

incurs cost when providing resources. For a cloud providerCi,
we denote byccij , the cost associated with each core of VM
instance of typeVMj , and bycsij , the cost associated with each
GB of storage of each VM of typeVMj , wherej = 1, . . . , n.

The cost of memory is included in the cost of the cores. We
use different costs for one core in different VM instances since
it is the most general case and prices employed by the current
cloud providers reflect that [7]. However, a cloud provider bills
a user based on the allocated VM instances. To do so, all cloud
providers set a pricepc

j on the cores, andps
j on the storage

of each type of VM instanceVMj , wherej = 1, . . . , n. As
a result, from the user’s point of view the way the cloud
providers provide the requested VM instances does not affect
the final price that she pays for her request.

A user sends a request consisting of the number of VM
instances of each type needed to a broker. A request is denoted
byR = {r1, . . . , rn}, whererj is the number of requested VM
instances of typeVMj , j = 1, . . . , n. The final price paid by
the user for each of therj VM instances isrj(pc

j +ps
j), where

pc
j +ps

j is a fixed price for an instance of typeVM j . A broker
has all the information about cloud providers such as their
available resources and associated cost, and it is responsible
for forming the federation.

Cloud Federation Formation as a Coalitional Game.We model
the cloud federation formation problem as a coalitional game.
A coalitional game[8] is defined by the pair(I, v), whereI is
the set of players (cloud providers) andv is thecharacteristic
function, defined onF ⊆ I. The characteristic function is a
real-valued function such thatv : F → R

+ andv(∅) = 0.
Each subsetF ⊆ I is a coalition (in our case we will

call it federation). If all the available cloud providers form a
federation, it is called thegrand federation. A federationF
has avalue given by the characteristic functionv(F). Here
v(F) represents the profit obtained when the cloud providers
of federationF cooperate as a group and is given by:

v(F) =
∑

Ci∈F

n∑

j=1

xc
ij(p

c
j − wc

jc
c
ij) + xs

ij(p
s
j − ws

jc
s
ij), (1)

where xc
ij represents the number of VM instances of type

VMj from Ci providing the cores, andxs
ij represents the

number of VM instances of typeVMj from Ci providing the
storage.

Since a given federationF ’s goal is to maximize its profit,
we can formulate the cloud federation profit maximization
problem as an integer program (IP) as follows:

Maximize
∑

Ci∈F

n∑

j=1

xc
ij(p

c
j − wc

jc
c
ij) + xs

ij(p
s
j − ws

jc
s
ij) (2)

Subject to:
n∑

j=1

wc
jx

c
ij ≤ Ni, (∀Ci ∈ F), (3)

n∑

j=1

ws
jx

s
ij ≤ Si, (∀Ci ∈ F), (4)

∑

Ci∈F

xc
ij = rj , (∀j = 1, . . . , n), (5)

∑

Ci∈F

xs
ij = rj , (∀j = 1, . . . , n), (6)

n∑

j=1

(xc
ij + xs

ij) ≥ 1, (∀Ci ∈ F), (7)

xc
ij ≥ 0, xs

ij ≥ 0, and are integers

(∀Ci ∈ F and∀j = 1, . . . , n), (8)

The objective function (2) representsv(F), the total profit the
participating cloud providers in federationF receive, which
is equal to the revenue received from the user minus the cost
incurred by the cloud providers. Constraints (3) ensure that the
number of cores a cloud provider assigns to a user is less than
the available number of cores provided by that cloud provider.
Constraints (4) guarantee that the amount of storage assigned
to the user is less than the amount of available storage at
each cloud provider. Constraints (5) guarantee that the number
of cores assigned to the user for each type of VM by all
cloud providers is exactly the number of cores requested by
the user for that type of VM. Constraints (6) guarantee that
the storage assigned to the user for each type of VM by all
cloud providers is exactly the amount of storage requested
by the user for that type of VM. Constraints (7) ensure that
each cloud provider in the federation contributes at least one
type of resource. These constraints force the cloud providers to
contribute resources to the federation. Constraint (8) represents
the integrality requirement for the decision variables.

The payoff or the share of cloud provider Ci part of
federationF , denoted byψCi

(F) is given by the normalized
Banzhaf value [9]. TheBanzhaf valueis a division of payoffs
for the grand federation that takes into account the power
of the players. In this study, the power is defined as the
market share of the cloud providers. A cloud provider that
contributes more resources in all the possible federationsin
which it participates should receive higher profit regardless of
its resource allocation in the selected federation.

III. C LOUD FEDERATION FORMATION MECHANISM

Federation Formation Framework.The core of the cloud
federation game can be empty. If the grand coalition does not
form, independent and disjoint federations would form. Coali-
tion formation theory investigates the coalitional structures in
games where the grand coalition does not form.Coalition
formation [10] is the partitioning of the players into disjoint
sets. A federation structureFS = {F1,F2, . . . ,Fh} forms a
partition of the set of cloud providersI such that each provider
is a member of exactly one federation,i.e., Fi ∩ Fj = ∅ for
all i and j, wherei 6= j and

⋃
Fi∈CF Fi = I. The set of all

federation structures is denoted byΠ. The problem of finding
the optimal federation structure is NP-complete [11].

In the cloud federation formation game defined in the
previous section only one of the federations in the federation
structure is selected to provide the resources requested by
users. As a result, the formation of other federations with cloud
providers outside of the selected federation is not important.

We model the cloud federation formation problem as a
hedonic game [12] considering that cloud providers have
preferences over the federations.

Definition 1 (Hedonic game):A hedonic game is a pair
(I,�), where�i is a reflexive, complete, and transitive binary
relation onΠi, whereΠi is the set of coalitions inI containing
Ci.

We define thefederation preference relation�i for eachCi.
This allowsCi to compare two federations and to indicate its
preference to be a part of one of them.A �i B implies thatCi

prefers to be a member of federationA than to be a member
of federationB, or at least it prefers both federations equally.
In addition,A ≻i B indicates thatCi strictly prefers to be a
member ofA than a member ofB.

To model the cloud federation formation as a hedonic game,
we need to define the federation preference relation. For all
Ci ∈ I and for allF ,F ′ ∈ Πi, we define�i as

F �i F
′ ⇐⇒ v(F) ≥ v(F ′). (9)

That means a cloud provider prefers the federation that gives
the higher profit. Using this preference relation, every cloud
provider can evaluate its preferences over the set of possible
federations that the cloud provider can be a member of.

We define two comparison relations in order to find a
federation that is more preferred than other federations, the
merge comparison⊲m and thesplit comparison⊲s, as follows:

{F ∪ F ′} ⊲m{F ,F ′} ⇐⇒
{∀Ci ∈ F ; {F ∪ F ′} ≻i F and
∀Cj ∈ F ′; {F ∪ F ′} ≻j F ′}

(10)

{F ,F ′} ⊲s{F ∪ F ′} ⇐⇒
{∃Ci ∈ F ;F �i {F ∪ F ′} or
∃Cj ∈ F ′;F ′ �j {F ∪ F ′}}

(11)

Equation (10) implies that federation{F ∪ F ′} is preferred
over two disjoint federations{F ,F ′}, if the profit obtained
by federation{F ∪ F ′} is greater than the profit obtained by
the providers inF , and it is greater than the profit obtained
by the providers inF ′. As a result, all providers are able to
improve the total profit. Equation (11) implies that{F ,F ′} is
preferred over{F ∪ F ′}, if at least one federation is able to
keep the same amount of profit or to increase the profit of its
members regardless of the effect on the other players outside
that federation.

Using the defined comparison relations, we propose a cloud
federation formation mechanism involving two types of rules
as follows [10]:

Merge Rule:Merge any set of federations{F ,F ′}, where
{F ∪ F ′}⊲m{F ,F ′}.
Split Rule: Split any federation{F ∪ F ′}, where
{F ,F ′}⊲s{F ∪ F ′}.

Federations decide to merge only if all cloud providers are
able to strictly improve the total profit through the merge rule.
Therefore, the merge rule is an agreement among the cloud
providers to operate together if it is beneficial for them.

As we mentioned before, one of the formed federations, the
final federation, provides the requested VM instances, thus,
the formation of the rest of the federations is not important.

The reason for this is that the rest of the cloud providers
which are not in the final federation can participate again in
another federation formation process for allocating resources
to another request. Therefore, a federation decides to split only
if there is at least one sub-federation that strictly improves
the total profit of its constituent cloud providers. Under the
split rule, the profit of the other sub-federations may decrease.
The split rule can be seen as the implementation of aselfish
decision by a federation, which does not take into account the
effect of the split on the other federations.

Through the merge-and-split process some of the possible
federations are visited and their values are calculated. Based
on those values, we define theestimated Banzhaf valueof Ci

as follows:

ECi
(I) =

1

λ

∑

F⊆I\{Ci}
F∈V
F∪Ci∈V

[v(F ∪ {Ci}) − v(F)]. (12)

whereV is the set of all visited federations, andλ is the total
number of visited federations containingCi. That means,λ =
2m−1 − α, whereα is the number of non-visited federations.
The estimated Banzhaf value is based only on the value of
federations that are visited during the merge and split process.
The normalized estimated Banzhaf value is defined as

ECi
(I) =

ECi
(I)∑

Cj∈I ECj
(I)

. (13)

The profit that each memberCi receives in the grand federation
is calculated as follows:

ψCi
(I) = ECi

(I)v(I). (14)

The payoff vectorΨ(I) = (ψC1
(I), · · · , ψCm

(I)) gives the
payoff divisions of the grand federation. We defineψCi

(F),
the payoff of cloud providerCi ∈ F , as follows:

ψCi
(F) =

ψCi
(I)∑

∀Cj∈F ψCj
(I)

v(F). (15)

During the merge-an-split we estimate the Banzhaf value for
each provider based only on the federations that were already
explored. The profit obtained by the federation is divided
among participating cloud providers in proportion to their
power in the federation.

Cloud Federation Formation Mechanism (CFFM).The pro-
posed cloud federation formation mechanism (CFFM) is given
in Algorithm 1. A broker executes the mechanism. CFFM uses
a branch-and-bound method to solve the IP problem for each
federation to find the allocation and the profit of the federation.
We denote by B&B-VM-ALLOCATION(Fi) the function that
implements the branch-and-bound method for solving the IP
problem for a federationFi.

CFFM starts with a request from a user. A federation
structureFS consisting of every singletonCi ∈ I as a
federationFi is formed. Then, CFFM calculatesv(Fi). CFFM
uses a matrixvisited to keep track of all pairs of federations
in FS that are visited for merging. By using this matrix, all

Algorithm 1 Cloud Federation Formation Mechanism (CFFM)
1: Receive requestR
2: FS = {{C1}, · · · , {Cm}}
3: Calculatev(Fi) for eachFi ∈ FS
4: repeat
5: stop← TRUE
6: for all Fi,Fj ∈ FS, i 6= j do
7: visited[Fi][Fj]← FALSE
8: end for
9: {Merge process starts:}

10: repeat
11: flag ← TRUE
12: Randomly selectFi,Fj ∈ FS for which

visited[Fi][Fj] = FALSE, i 6= j
13: visited[Fi][Fj]← TRUE
14: B&B-VM-ALLOCATION(Fi ∪ Fj)

{Allocate VMs usingFi ∪ Fj}
15: if Fi ∪ Fj⊲m{Fi,Fj} then
16: Fi ← Fi ∪ Fj {mergeFi andFj}
17: Fj ← ∅ {Fj is removed fromFS}
18: for all Fk ∈ FS, k 6= i do
19: visited[Fi][Fk]← FALSE
20: end for
21: end if
22: for all Fi,Fj ∈ FS, i 6= j do
23: if not visited[Fi][Fj] then
24: flag ← FALSE
25: end if
26: end for
27: until (|FS| = 1) or (flag = TRUE)
28: {Split process starts:}
29: for all Fi ∈ FS where|Fi| > 1 do
30: for all partitions{Fj ,Fk} of Fi,

whereFi = Fj ∪ Fk,Fj ∩ Fk = ∅ do
31: B&B-VM-ALLOCATION(Fj)

{Allocate VMs usingFj}
32: B&B-VM-ALLOCATION(Fk)

{Allocate VMs usingFk}
33: if {Fj ,Fk}⊲sFi then
34: Fi ← Fj {that isFS = FS \ Fi}
35: FS = FS

⋃
Fk

36: stop← FALSE
37: Break (one split occurs;

no need to check other splits)
38: end if
39: end for
40: end for
41: until stop = TRUE
42: FindFk = arg maxFi∈FS {v(Fi)}
43: CalculateψCi

(Fk), ∀Ci ∈ Fk

44: Fk allocates and provides the requested VM instances.

possible combinations of two federations inFS are visited
during the merge process. The merge process starts every
time by choosing two non-visited federations inFS randomly,
e.g.,Fi andFj . B&B-VM-ALLOCATION is called to find an
optimal VM allocation onFi∪Fj . If Fi∪Fj⊲m{Fi,Fj}, then
federationsFi andFj decide to merge.Fi∪Fj is saved inFi,
andFj is removed fromFS. SinceFi is changed, it can be
selected in the next merge steps. Thus,visited[Fi][Fk] for all
Fk ∈ FS, k 6= i is set to false. The merge process tries to find
another pair of non-visited federations suitable for merging. If
all the federations are tested and a merge does not occur, or
the grand federation forms, the merge process ends.

The federation structureFS obtained by the merge process
is then subject to splits. In the split process, all federations
that have more than one member are subject to splitting. The

TABLE I: The properties of available VM instances.

V M1 V M2 V M3 V M4

w
c
j (1.6GHz CPU) 1 2 4 8

w
s
j (TB Storage) 0.22 0.48 0.98 1.99

mechanism tries to splitFi that has more than one member
into two disjoint federationsFj andFk whereFj ∪Fk = Fi.
B&B-VM-ALLOCATION is called twice to find an optimal
allocation onFj and an optimal allocation onFk. Since the
split is a selfish decision, the splitting occurs even if only
one of the members of federationFj or Fk can improve its
individual value. As a result, the federation with the higher
individual payoff is the decision maker for the split.

If one or more federations split, then the merging process
starts again. To do so, thestop flag is set to false. Multiple
successive merge-and-split operations are repeated untilthe
mechanism terminates. That means that there are no choices
for merge or split for all existing federations inFS. Let’s con-
siderFSfinal as the final federation structure. The mechanism
selects one of the federations in theFSfinal that yields the
highest total profit. The mechanism calculates the individual
profit of the participating clouds in the federation using the
normalized estimated Banzhaf value. The selected federation
will allocate and provide the requested VM instances to the
user.

In the following, we characterize the properties and the
stability of the cloud federation obtained by CFFM. We define
the individual federation stabilityas follows. A federationF
is individual federation stable if there is no cloud provider
Ci ∈ F that can leaveF without making at least one cloud
provider Cj ∈ F unhappy. We showed that CFFM produces
an individually stable federation. This result and its proof will
be presented in an extended version of this paper.

IV. EXPERIMENTAL RESULTS

Experimental Setup.We consider eight cloud provides of-
fering four types of VM instances. We considered only
eight cloud providers since it is a reasonable estimation of
the number of cloud providers that could potentially form
a federation in practice. We consider four types of VM
instancesVM = {VM1, V M2, V M3, V M4} representing
small, medium, large and extra large VM instances, respec-
tively. The description of the VM instances is provided in
Table I. The instance types and pricing are similar to the ones
used by Microsoft Azure [7].

The parameters used in our experiments and their values are
listed as follows:Ni, the number of cores, is a random number
between [100, 1000], andSi, the amount of storage (TB), is a
random number in [1, 100] for each cloud provideri. ccj , core
cost matrix,pc

j , core price vector,csj , storage cost matrix, and
ps

j , storage price vector are a random number in [0,1] for each
VM instancej. We use the ILOG Concert Technology APIs
in C++ to solve the IP problem by CPLEX solver [13].

Analysis of Results.We compare the performance of our
cloud federation formation mechanism, CFFM, with that of

 0

 5

 10

 15

 20

 25

 30

 35

small medium large xlarge

P
ro

fit

Request

CFFM
OCFM
RCFM

(a)

 0

 1

 2

 3

 4

 5

C1 C2 C3 C4 C5 C6 C7 C8

In
di

vi
du

al
 p

ro
fit

Cloud providers

CFFM
OCFM

OCFM-PPD

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

small medium large xlarge

T
im

e

Request

CFFM
OCFM
RCFM

(c)

Fig. 1: (a) Total Profit of the Cloud Federation; (b) Profit of Individual Cloud Providers; (c) Execution Time of the Mechanisms.

two other mechanisms: Optimal Cloud Federation (OCFM),
Random Cloud Federation (RCFM). The OCFM mechanism
finds the optimal allocation on all cloud providers by solving
a relaxed problem in which the constraints (7) in the proposed
IP are not considered. As a result, in OCFM it is not necessary
that all the cloud providers provide resources to fulfill theuser
request. The RCFM mechanism selects several cloud providers
randomly and forms a federation. All the mechanisms use
the branch-and-bound method for solving the proposed IP.
We consider four different customer requests,(10, 0, 0, 0),
(10, 10, 0, 0), (10, 10, 10, 0), and (10, 10, 10, 10) representing
small, medium, large and extra-large, respectively. All requests
cannot be served by only one cloud provider and they need
to form a federation in order to serve the user. We perform a
series of ten experiments in each case, and we represent the
average of the obtained results.

In Fig. 1a, we compare the total profit obtained by CFFM
with that obtained by the other two mechanisms. In all cases
CFFM provides the highest profit which is the same as the
optimal profit obtained by OCFM. These results show that
using a RCFM is not efficient in terms of the total profit of
the federation. For example, for a small request, CFFM and
OCFM obtain a total profit of $6.81, while RCFM obtains a
total profit of $4.8.

In Fig. 1b, we show the individual value of each partici-
pating cloud provider in the federation for a medium request.
We present three different profit divisions: CFFM, OCFM and
OCFM-PPD. CFFM uses the estimated normalized Banzhaf
value while the OCFM uses the normalized Banzhaf value.
OCFM-PPD is a variant of OCFM that uses proportional profit
division instead of the Banzhaf value. Here, the proportional
payoff division means that each cloud provider participating in
the federation and providing resources receives a profit equal
to the price that the user pays for that resource minus the cost
the cloud provider incurs to provide the resource. CFFM and
OCFM obtain a total profit $9.75, where both mechanisms find
a federation of size 4,{C2, C3, C4, C6}. CFFM explores 53
federations until it finds the final federation. As it is shown
in the figure, the individual profit of the participating cloud
providers are very close in CFFM and OCFM.

Fig. 1c shows the execution time of the three mechanisms.
These results were obtained on a 3.00GHz Intel quad-core
PC with 8GB of memory. From 255 federations that 8 cloud

providers could form, CFFM only considers some of them
in the merge-and-split process based on the merge and split
rules. On average, CFFM explores 48 federations until it finds
the final federation. As a result, the execution time of CFFM
is a lot less than that of OCFM which goes through all the
federations. For each federation, both mechanisms run the IP
solver once. In cases that the IP solver requires more time (i.e.,
for larger request), the execution time of both mechanisms
increases. RCFM execution time is close to zero since the the
IP solver is executed for only one federation taking about 3.3
milliseconds.

Acknowledgment.This research was supported in part by NSF
grants DGE-0654014 and CNS-1116787.

REFERENCES

[1] B. Rochwerger, D. Breitgand, E. Levy, A. Galiset al., “The reservoir
model and architecture for open federated cloud computing,”IBM J. of
Res. and Dev., vol. 53, no. 4, pp. 4–1, 2009.

[2] I. Goiri, J. Guitart, and J. Torres, “Characterizing cloud federation for
enhancing providers’ profit,” inProc. IEEE Intl. Conf. on Cloud Comp.,
2010, pp. 123–130.

[3] M. Hassan, B. Song, and E. Huh, “Distributed resource allocation games
in horizontal dynamic cloud federation platform,” inProc. IEEE Intl.
Conf. on High Perf. Comp. and Comm., 2011, pp. 822–827.

[4] D. Niyato, A. Vasilakos, and Z. Kun, “Resource and revenue sharing
with coalition formation of cloud providers: Game theoretic approach,”
in Proc. IEEE/ACM Intl. Symp. on Cluster, Cloud and Grid Comp., 2011,
pp. 215–224.

[5] W. Saad, Z. Han, M. Debbah, and A. Hjorungnes, “A distributed
coalition formation framework for fair user cooperation in wireless
networks,” IEEE Trans. on Wireless Comm., vol. 8, no. 9, pp. 4580–
4593, 2009.

[6] L. Mashayekhy and D. Grosu, “A merge-and-split mechanism for
dynamic virtual organization formation in grids,” inProc. IEEE Intl.
Perf. Comp. and Comm. Conf., 2011, pp. 1–8.

[7] WindowsAzure. [Online]. Available: http://www.windowsazure.com/en-
us/pricing/calculator/

[8] G. Owen,Game Theory, 3rd ed. New York, NY, USA: Academic Press,
1995.

[9] ——, “Multilinear extensions and the banzhaf value,”Naval Research
Logistics Quarterly, vol. 22, no. 4, pp. 741–750, 1975.

[10] K. Apt and A. Witzel, “A generic approach to coalition formation,”
International Game Theory Review, vol. 11, no. 3, pp. 347–367, 2009.

[11] T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohme,
“Coalition structure generation with worst case guarantees,” Artificial
Intelligence, vol. 111, pp. 209–238, 1999.

[12] A. Bogomolnaia and M. Jackson, “The stability of hedoniccoalition
structures,”Games & Econ. Behavior, vol. 38, no. 2, pp. 201–230, 2002.

[13] “IBM ILOG CPLEX Optimization Studio for Academics Initia-
tive.” [Online]. Available: http://www01.ibm.com/software/websphere/
products/optimization/academic-initiative/

