
Submitted to Transportation Science

Optimal Routing for Plug-in Hybrid Electric Vehicles

Mark M. Nejad
School of Industrial and Systems Engineering, University of Oklahoma, Norman, OK 73019, mark.nejad@ou.edu,

Lena Mashayekhy
Department of Computer and Information Sciences, University of Delaware, Newark, DE 19716, mlena@udel.edu,

Daniel Grosu
Department of Computer Science, Wayne State University, Detroit, MI 48202, dgrosu@wayne.edu,

Ratna Babu Chinnam
Department of Industrial and Systems Engineering, Wayne State University, Detroit, MI 48202, r chinnam@wayne.edu

We propose routing algorithms for plug-in hybrid electric vehicles (PHEVs) that account for the significant

energy efficiency differences of vehicle operating modes and recommend the predominant mode of operation

for each road segment during route planning. This is to enhance fuel economy and reduce emissions. We

introduce the Energy-Efficient Routing problem (EERP) for PHEVs, and formulate this problem as a new

class of the shortest path problem. The objective of the EERP is to not only find a path to any given

destination, but also to identify the predominant operating mode for each segment of the path in order

to minimize the fuel consumption. EERP can be generalized to a new class of problems in the context of

network optimization, where for each arc we need to choose which resources to use in order to minimize

the consumption of one of the resources subject to a constraint on the other resource. In this problem, the

resource selection is mutually exclusive, which means we cannot choose both resources together for an arc.

We prove that the EERP is NP-complete. We then propose two exact algorithms, and a Fully Polynomial

Time Approximation Scheme (FPTAS) to solve the EERP. We demonstrate the performance of our proposed

exact and FPTAS algorithms using road network data from Southeast Michigan. The results show that

incorporating our proposed algorithms during route planning leads to significant energy savings for PHEVs

over simplistic routing algorithms and current practice.

Key words : energy-efficient routing, plug-in hybrid electric vehicles, approximation schemes

1. Introduction

Electrified vehicles promise to enable diversification of the transportation energy feedstock that can

reduce the dependence on petroleum for transport, lessen greenhouse gas and other emissions, and

provide more sustainable transportation. The governments of the U.S., European Union, China,

Japan, Korea and others are aggressively promoting vehicle electrification objectives, and the major

automobile companies of the world are being challenged by environmentally conscious consumers

and governments to produce affordable electrified vehicles. Several companies have accepted the

challenge, and more models of electrified vehicles (hybrid vehicles, plug-in hybrid vehicles, pure

1

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
2 Article submitted to Transportation Science; manuscript no.

battery electric vehicles) are being introduced every year around the world (Hybrid Vehicle Timeline

2012).

Hybrid vehicles have become increasingly popular in the automotive marketplace in the past

decade. The most common type is the electric hybrid, which consists of an internal combustion

engine (ICE), a battery, and at least one electric machine (EM). Hybrids are built in several

configurations including series and parallel. In a series PHEV, only the EM is connected to the

wheel and can operate the vehicle, while its ICE produces electricity as a generator. In a parallel

PHEV, both EM and ICE are connected to the wheel, thus, the vehicle can be operated on EM,

ICE, or both. In this paper, we consider parallel plug-in hybrid electric vehicles, and refer them by

the term PHEVs.

While pure battery electric vehicles (BEVs) are desired for their significant reduction in emis-

sions, their deployment presents a host of challenges resulting from a current lack of supporting

infrastructure: charging stations are relatively sparse, charging takes considerable time, and cur-

rently the driving range of BEVs is significantly limited. PHEVs partially address these concerns

by allowing the vehicle to be operated in an all electric mode, internal combustion mode, or a com-

bination, mitigating the range anxiety associated with BEVs. When the batteries are depleted, the

ICEs of PHEVs work as a backup, providing a driving range comparable to conventional internal

combustion vehicles. Unlike standard hybrid vehicles, PHEVs also offer the ability to be recharged

from an external electrical outlet. However, the unique capability of hybrids and PHEVs to operate

in multiple modes (electric, gasoline, or hybrid mode) brings about new challenges to their routing

problems. This is unlike routing algorithms for pure BEVs that employ just one operating mode

(i.e., the electric mode).

Literature offers a number of routing algorithms for BEVs (Sachenbacher et al. (2011), Eisner

et al. (2011), Sweda and Klabjan (2012)). However, unlike BEVs, the routing algorithms for PHEVs

should also account for the significant energy efficiency differences of different operating modes

and recommend the predominant mode of operation for each road segment during route planning.

The energy efficiency differences are also a function of the vehicle (e.g., payload) and road segment

features (e.g., speed limits, terrain geometry). Given that ICEs tend to be most efficient when

operating at steady highway speeds of 45-65 MPH, the electric mode is relatively efficient on city

roads with lower speed limits (Plotkin et al. 2002). Given that the all-electric range is limited, the

routing algorithm should explicitly exploit these energy efficiency differences for the different road

segments in planning the route.

The strategy to control the energy among these multiple energy sources of a hybrid vehicle

is termed “Powertrain Energy Management”. An overview of this area is provided by Sciarretta

and Guzzella (2007). Currently, powertrain energy management control algorithms for PHEVs are

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
Article submitted to Transportation Science; manuscript no. 3

mostly “static” and try to utilize the charge within the battery as soon as possible, without explicit

consideration for real opportunities that might be present within the route to best utilize the

battery charge. This is also attributable to the fact that there exist no route planning algorithms for

PHEVs, and automotive original equipment manufacturers (OEMs) are yet to develop “dynamic”

energy management control algorithms that account for the complete route plan in controlling the

vehicle powertrain operating modes.

Given that powertrain energy management systems take control actions in the order of few mil-

liseconds and trip travel times can span minutes to several hours, it is not practical for routing

algorithms to explicitly optimize the actions to be taken by the energy management system along

the route. Instead, routing algorithms for PHEVs should consider segmenting the roads into seg-

ments with relatively uniform energy efficiency conditions and identify the predominant operating

mode (electric mode or gasoline mode) for each road segment and delegate the actual energy man-

agement to lower level control algorithms. In this paper, we propose routing algorithms for PHEVs

that find an optimal path along with the predominant operating mode for road segments of the

path.

Our proposed routing algorithms assume (without loss of generality) that the arcs of the road

network have been pre-segmented into short-distance sections with uniform energy efficiency con-

ditions for the different operating modes (electric mode or gasoline mode). The task of the routing

algorithms is to identify the optimal route as well as the predominant operating mode for each

segment. While PHEVs can occasionally operate in a hybrid mode where both power sources (EM

as well as the ICE) can be employed simultaneously to drive the vehicle, the power split policies

are managed by powertrain energy management systems, which form a lower level control than

routing. Therefore, the routing algorithms for any given road segment to be traversed can only

consider a single operating mode (all electric or all gasoline). In the rest of this paper, we refer

to the two vehicle modes as electric mode, when operated by a battery driven EM, and gasoline

mode, when operated by the ICE (irrespective of the type of petroleum derived fuel employed by

the engine).

The cost to drive the vehicle in electric mode, at least in the U.S., is currently several times

cheaper than using the gasoline mode (Romm and Frank (2006), Sioshansi (2012)). Therefore,

the objective of routing algorithms for PHEVs is to minimize the cost of using the gasoline mode

through the planned route. In doing so, the routing algorithm should explicitly consider the battery

state of charge (SOC) at the beginning of the trip (once depleted, the rest of the trip should only

employ the gasoline mode).

In this paper, we propose energy-efficient routing algorithms for PHEVs considering battery

SOC constraints. The decision is to not only select the route (i.e., the road segments), but also the

vehicle’s operating mode for each road segment (i.e., gasoline or electric).

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
4 Article submitted to Transportation Science; manuscript no.

1.1. Our Contribution

We address the problem of Energy-Efficient Routing (EERP) for PHEVs by designing exact and

approximation algorithms for solving it. The primary contributions of this paper include intro-

ducing a new class of the shortest path problems for the energy-efficient routing of PHEVs, and

designing two exact algorithms and a fully polynomial time approximation scheme (FPTAS) to

solve the EERP.

The proposed algorithms are applicable to the emerging field of EV routing and to more general

network optimization problems. In the context of network optimization, our proposed algorithms

improve the state-of-the-art in constrained shortest path, where for each arc we need to choose

which resource to use in order to minimize consumption of one of the resources subject to a

constraint on the other resource. In this problem, the resource selection is mutually exclusive, which

means we cannot choose both resources together for an arc. The algorithms proposed in this paper

can also be applied to solve such a generalized problem.

We propose to represent the fuel consumption network as a multigraph, so that the alternative

fuel consumptions (gasoline or electricity) are considered. Our proposed algorithms to solve the

EERP consider general networks, which makes them suitable for road networks that are not acyclic,

ordered, etc. We first model the problem as an Integer Program, and present the hardness proof of

the EERP. In the absence of solution methods for solving the EERP, we design two exact pseudo-

polynomial algorithms Exact-EER-I and Exact-EER-II that find the exact solution with minimum

gasoline consumption, with time complexity of O(C(|A|+ |V |2)) and O(C(|A|+ |V | log |V |)), respec-

tively, where C is the battery SOC at the beginning of the trip, A is the set of arcs in the network,

and V is the set of vertices in the network. We then design an approximation scheme for the

EERP, called FPTAS-EER. In addition, we prove that the proposed FPTAS-EER is a fully poly-

nomial time approximation scheme. We analyze the properties of Exact-EER-I, Exact-EER-II, and

FPTAS-EER, and conduct extensive experiments. The results show significant energy savings for

PHEVs over simplistic routing algorithms and current practice.

1.2. Related Work

The EERP can be considered as a class of the shortest path problem (SPP). The SPP is at the

heart of general network problems. There is extensive literature on different classes of the SPP

and their applications to vehicle routing problems (Bertsekas (1991), Ahuja et al. (1993), Bazaraa

et al. (2011)).

We focus on studies of SPP that are closely related to our work, in particular, those on the

resource constrained shortest path problem (RCSPP). The resource constrained shortest path

problem is defined as follows:

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
Article submitted to Transportation Science; manuscript no. 5

Definition 1 (Resource Constrained Shortest Path Problem). Given a graph in

which each arc is characterized by cost and a set of resource consumptions, find the shortest path

from O to D such that the total consumption of each resource along the path is less than or equal

to a specified value.

Unlike the SPP, which is solvable in polynomial time, the RCSPP is NP-hard. For a recent sur-

vey on exact solution approaches for the RCSPP we refer the reader to (Di Puglia Pugliese and

Guerriero 2013). The solution methods for the RCSPP can be briefly classified into path ranking

methods (e.g., Santos et al. (2007)), Lagrangian relaxation methods (e.g., Mehlhorn and Ziegel-

mann (2000)), and node labelling methods (e.g., Pugliese and Guerriero (2013)). RCSPP has been

studied extensively, however, here we only focus on a special case of RCSPP that considers one

resource consumption. This problem is referred to as the restricted shortest path problem (RSPP)

or weighted constrained shortest path problem. The RSPP is closer to our introduced problem

since it has one resource. Note that we consider the battery SOC as a resource, and we assume

that there is plenty of gasoline to complete the trip in just gasoline mode.

The RSPP is defined as follows:

Definition 2 (Restricted Shortest Path Problem). Given a graph in which each arc is

characterized by length and transition time, find the shortest path from O to D such that the total

delay of the path is less than or equal to a specified value.

The RSPP is suggested to be NP-hard (Garey and Johnson 1979), even if the graph is acyclic, and

all length and transition times are positive (Dumitrescu and Boland 2003). However, the RSPP is

NP-Complete if the graph does not contain negative length cycles, and can be solved in pseudo-

polynomial time (Pugliese and Guerriero 2013). For a survey on exact and approximate solution

approaches for the RSPP and the RCSPP we refer the reader to (Garroppo et al. 2010). Warburton

(1987) was the first to introduce a polynomial-time approximation scheme (PTAS) for the RSPP

on acyclic graphs. Hassin (1992) improved the results of Warburton (1987) by deriving an FPTAS

with time complexity of O((|A||V |/ε) log log(U/L)) on acyclic graphs, where U and L are upper and

lower bounds on the optimal solution. Phillips (1993) proposed a PTAS for the RSPP, which uses a

Dijkstra-based algorithm with time complexity of O((|A||V |/ε+(|V |2/ε) log(|V |2/ε)) log log(U/L)).

Goel et al. (2001) proposed a PTAS for the RSPP from a source to all destinations with the time

complexity of O(|V |/ε(|A|+ |V | log |V |)). However, their approach relaxes the time delay instead

of the length, that is, they allow for an error in the delay bound. In general, rounding for the delay

is easier since the bound is known. Lorenz and Raz (2001) reduced the complexity of the results

by Hassin (1992) to O(|A||V |(1/ε+ log log(U/L))) by proposing an FPTAS. Ergun et al. (2002)

further improved this time complexity to O(|A||V |/ε). However, their FPTAS method works only

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
6 Article submitted to Transportation Science; manuscript no.

on acyclic graphs, where nodes have a topological order. Chen et al. (2008) proposed two approxi-

mation algorithms for the RSPP based on rounding delays instead of lengths. Their approach has

the same worst time complexity as that proposed by Goel et al. (2001). In simulation, however,

their algorithms run one order of magnitude faster on the average case. Finding several paths with

different length-delay trade-offs was investigated by Diakonikolas and Yannakakis (2009), where

they approximated the Pareto curves. Bernstein (2012) proposed an approximation approach for

the RSPP with close to linear running time. However, his approach only works for undirected

graphs, and it is randomized. In addition, the approach achieves a (1+ε) approximation in both

parameters (i.e., delay and length). For various applications of the RSPP, the reader is referred to

Lorenz and Orda (1998), Raz and Shavitt (2000), Lu et al. (2005), and Sherali and Hill (2009).

In the RSPP, the goal is to solve the shortest path by selecting the arcs based on all of their

attributes (length and delay). However, in our introduced problem, the EERP, the decisions are

not only about choosing arcs but also about choosing the mode of operation (gasoline or electric

mode) for each arc. As a result, in our problem two resources cannot be selected together which is

the case for RSPP (where delay and length are properties that are selected together by choosing an

arc). In our case, electricity and gasoline cannot be selected together for the same arc. In addition,

our proposed exact and approximation algorithms work on general graphs, and do not require any

assumptions regarding the network, such as, acyclicity and predetermined order of the nodes in

the network.

Research on different decision problems related to EVs has attracted a great deal of attention

in the past few years. Such research includes forecasting EV market shares (Glerum et al. 2014,

Kieckhäfer et al. 2014), proposing battery-swapping policies (Mak et al. 2013, Almuhtady et al.

2014), managing EV powertrains (Salmasi 2007), pricing EV charging (Nejad et al. 2016), and

placing charging stations (Xi et al. 2013). Sweda et al. (2014) studied the problem of finding

an optimal recharging policy for a BEV along a given path. Schneider et al. (2014) studied an

EV routing problem with time windows and recharging stations incorporating the possibility of

recharging at any of the available stations. Lin (2014) proposed a framework for optimizing the

driving range by minimizing the sum of battery price, electricity cost, and range limitation cost

as a measurement of range anxiety. Bay and Limbourg (2015) defined the electric vehicle traveling

salesman problem. They presented models and preliminary results focusing on maximizing the

battery state of charge at the end of the trip, and thus, maximizing the driving range of the

BEV. Several researchers investigated the powertrain management for hybrids and PHEVs from an

energy management control perspective (e.g., Gong et al. 2008, Murgovski et al. 2013). However,

none of them have addressed the energy-efficient routing of PHEVs during route planning, which

is a higher level energy management process for PHEVs. In the absence of energy-efficient routing

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
Article submitted to Transportation Science; manuscript no. 7

algorithms for PHEVs, we design exact and approximation routing algorithms that consider general

graphs.

1.3. Organization

The rest of the paper is organized as follows. In Section 2, we introduce the energy-efficient routing

problem for PHEVs. In Section 3, we describe our proposed exact algorithms for solving the

EERP. In Section 4, we propose an FPTAS for solving the EERP, and characterize its properties.

In Section 5, we evaluate the proposed algorithms by extensive experiments on the Southeast

Michigan road network. In Section 6, we conclude the paper and present possible directions for

future research.

2. Energy-Efficient Routing Problem for PHEV

PHEVs can run on both electric and gasoline modes as long as there is adequate charge in the bat-

tery and the gasoline tank is not empty, respectively. This feature necessitates routing algorithms

to incorporate decision on vehicle’s operating mode in path planning in order to enhance fuel econ-

omy and reduce emissions. The decision in energy-efficient routing problems for PHEVs involves

not only choosing road segments to traverse, but also choosing vehicle’s predominant operation

mode for each segment. As a result, energy-efficient routing algorithms considering battery SOC

constraints should be designed to find a path to any given destination while minimizing the fuel

consumption of PHEVs.

We model the road network as a directed graph GR = (V,AR), where V is the set of nodes and

AR is the set of arcs. Arc (i, j)∈AR represents the road segment connecting nodes i and j, where

i, j ∈ V . Since each arc in the network can be traversed by the vehicle using either the gasoline-

based engine or the electrical motor, we associate with it the gasoline consumption (in gallons)

or battery charge consumption (in Watt hours). Taking into account these two parameters, we

model the fuel consumption network as a directed multigraph G= (V,A) of multiplicity two. The

multiplicity represents the maximum number of edges from one node to another. The graph G is

induced by the road segment network graph GR in the sense that for each arc (i, j) in GR, there

are two arcs (i, j)e and (i, j)g in G that correspond to the choice of traversing the arc (i, j) in GR

using electrical power and gasoline power, respectively. The set of all arcs in G of these two types

is denoted by A. We associate with each arc (i, j)e ∈A a weight weij representing the battery charge

consumption when traversing arc (i, j) ∈ AR. Similarly, we associate with each arc (i, j)g ∈ A a

weight wgij representing the gasoline consumption when traversing arc (i, j) ∈ AR. We denote by

Ae the set of all arcs (i, j)e ∈ A and by Ag the set of all arcs (i, j)g ∈ A. We define two decision

variables xij and yij as follows:

xij =

{
1 if the vehicle passes through arc (i, j) in gasoline mode,

0 otherwise.
(1)

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
8 Article submitted to Transportation Science; manuscript no.

Table 1 Notation

V Set of nodes
Ae Set of all arcs (i, j)e ∈A
Ag Set of all arcs (i, j)g ∈A
weij Battery charge consumption when traversing arc (i, j)
wgij Gasoline consumption when traversing arc (i, j)
O Origin node
D Destination node
C Available battery SOC at O
Γ Total gasoline consumption
E Total battery charge consumption

yij =

{
1 if the vehicle passes through arc (i, j) in electric mode,

0 otherwise.
(2)

The vehicle has an available battery SOC C ∈Z≥0 (non-negative integer value) and needs to travel

from an origin node O ∈ V to a destination node D ∈ V . The total gasoline consumption Γ on

a path P in GR from O to D is given by Γ =
∑

(i,j)∈P w
g
ijxij. Similarly, the total battery charge

consumption E on a path P in GR from O to D is given by E =
∑

(i,j)∈P w
e
ijyij. Table 1 summarizes

the notation used throughout the paper.

We define the problem of Energy-Efficient Routing (EERP) for PHEVs as follows.

Definition 3 (Energy-Efficient Routing Problem (EERP)). Given a fuel consumption

network G= (V,A) and a PHEV with available battery SOC C, find a path from an origin node

O ∈ V to a destination node D ∈ V such that the total gasoline consumption Γ is minimized.

We formulate the EERP as an Integer Program as follows:

Minimize
∑

(i,j)∈Ag
wgijxij (3)

Subject to:∑
i∈V

(xOi + yOi) = 1 (4)∑
i∈V

(xiD + yiD) = 1 (5)∑
i∈V

(xij + yij)−
∑
k∈V

(xjk + yjk) = 0, ∀j ∈ V ; j 6∈ {O,D} (6)∑
(i,j)∈Ae

weijyij ≤C (7)

xij + yij ≤ 1, ∀i, j ∈ V (8)

xij, yij ∈ {0,1},∀i, j ∈ V. (9)

The objective function represents the total gasoline consumption for a trip from O to D. Con-

straint (4) ensures that there is an outgoing arc in the final path from O. Constraint (5) guarantees

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
Article submitted to Transportation Science; manuscript no. 9

that there is an incoming arc to D in the final path. Connectivity of the path from O to D is

ensured by constraints (6). Constraint (7) guarantees that the battery charge consumption does

not exceed the available battery SOC of the vehicle. Constraints (8) ensure that for each pair of

nodes at most one vehicle operating mode is selected. Constraints (9) represent the integrality

requirements for the decision variables. The solution to the EERP is represented as a tuple of

matrices (X,Y), where X = [xij]i,j∈V and Y = [yij]i,j∈V .

The minimum gasoline consumption satisfies the triangle inequality given any battery SOC c,

where c≤C. That is, for all nodes i, j ∈ V and a battery SOC c, the minimum gasoline consumption

from O to j is less than or equal to the sum of the minimum gasoline consumption from O to i

and from i to j.

We now define the EERP for a PHEV along a given path called EERP-PATH, as follows:

Definition 4 (EERP-PATH). Find operating modes for a PHEV with available battery

SOC C that must travel along a fixed path P such that the total gasoline consumption Γ is

minimized.

This problem considers a fixed route P consisting of a sequence of nodes 1, . . . ,N . For each arc,

there are two choices for a PHEV to operate: electric mode or gasoline mode. We formulate the

problem as an Integer Program as follows:

Maximize
N−1∑
i=1

−wgi,i+1xi,i+1 (10)

Subject to:
N−1∑
i=1

wei,i+1yi,i+1 ≤C (11)

xi,i+1 + yi,i+1 = 1, ∀i= 1, . . . ,N − 1 (12)

xi,i+1, yi,i+1 ∈ {0,1},∀i= 1, . . . ,N − 1. (13)

The objective function represents the total saving of gasoline consumption for the path P =

(1, . . . ,N). Constraint (11) guarantees that the battery charge consumption does not exceed the

available battery SOC of the vehicle. Constraints (12) ensure that for each arc on the path, only

one vehicle operating mode is selected. Constraints (13) represent the integrality requirements for

the decision variables. The objective function is considered to be maximized since in the hard-

ness proof of the problem, presented in Theorem 1, we rely on a reduction to the multiple-choice

knapsack problem, which is a maximization problem.

Theorem 1. EERP-PATH is NP-complete.

Proof. To show that EERP-PATH is NP-complete we consider its decision version, called

EERP-PATH-D. EERP-PATH-D is defined as follows: Given a fuel consumption network G =

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
10 Article submitted to Transportation Science; manuscript no.

(V,A) and a path P , a PHEV with available battery SOC C, and a given bound F on gasoline

consumption, is there a solution such that the total gasoline consumption Γ is at most F?

The first step is to prove that EERP-PATH-D is in NP by showing that given a certificate

(X,Y), it can be decided in polynomial time that (X,Y) is a solution to the problem or not. Given

a path P from O to D, battery SOC C, and gasoline consumption F , it is easy to check if (X,Y)

is a solution. This verification involves checking that (X,Y) is a path from O to D. In addition,

it includes computing two sums and comparing the results against F and C, that is, checking∑
(i,j)∈P w

g
ijxij ≤ F and

∑
(i,j)∈P w

e
ijyij ≤C. This requires an amount of time linear in the number

of arcs in G. Thus, EERP-PATH-D is in NP.

The second step is to find a polynomial-time reduction from the decision version of the 0-1

multiple-choice knapsack problem (denoted here by MCKP-D), which is known to be NP-complete

(Kellerer et al. 2004). The MCKP-D problem is defined as follows: Given k mutually disjoint sets

{S1, . . . , Sk} of items to pack in a knapsack of capacity C, where each item j ∈ Si has a value vij

and a weight wij, is there a subset T of k items, where each item sij ∈ T is from one set Si with

total weight at most C (i.e.,
∑k

i=1

∑
j∈Si

∑
sij∈T

wij ≤C), such that the corresponding profit is at

least R (i.e.,
∑k

i=1

∑
j∈Si

∑
sij∈T

vij ≥R)?

We consider an instance of the EERP-PATH-D on a given path P = (1, . . . ,N), and a battery

SOC of C. We then use a one-to-one mapping between the items in {S1, . . . , Sk} and the arcs in

P , where P consists of N − 1 arcs. For each arc (i, i+ 1) ∈ P in the EERP-PATH-D, there is a

corresponding set of items Si in MCKP-D. That means, there are k = N − 1 mutually disjoint

sets of arcs. We consider a specific version of MCKP-D, where each set has two items. Each arc

(i, i+ 1) ∈ P has two choices (wei,i+1,0) and (0,−wgi,i+1), corresponding to two items in its set in

MCKP-D. The first choice, (wei,i+1,0), represents traversing the arc by electric mode, which corre-

sponds to an item of size wi1 =wei,i+1 and value vi1 = 0. The second choice, (0,−wgi,i+1), represents

traversing the arc by gasoline mode, which corresponds to an item of size wi2 = 0 and value vi2 =

−wgi,i+1. MCKP-D selects one of these choices for each arc to maximize the sum of values satisfying

the capacity constraint, where the total battery charge consumption of arcs in {S1, . . . , SN−1} is∑N−1
i=1

∑
j∈Si

∑
sij∈T

wij, and the total gasoline consumption is
∑N−1

i=1

∑
j∈Si

∑
sij∈T

vij.

The Yes/No answer to the EERP-PATH-D instance corresponds to the same answer to

the MCKP-D instance. If there is a Yes answer to the EERP-PATH-D instance, it means

we can find such a set T of arcs in path P that satisfies
∑N−1

i=1

∑
j∈Si

∑
sij∈T

wij ≤ C and∑N−1
i=1

∑
j∈Si

∑
sij∈T

vij ≥−F . Then, this subset T is also a solution to the MCKP-D instance. As a

result, the answer to the MCKP-D instance must also be Yes. Conversely, if there is a No answer to

the EERP-PATH-D instance, it means there is no set T that satisfies
∑N−1

i=1

∑
j∈Si

∑
sij∈T

wij ≤C

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
Article submitted to Transportation Science; manuscript no. 11

and
∑N−1

i=1

∑
j∈Si

∑
sij∈T

vij ≥−F . As a result, the answer to the MCKP-D instance must also be

No.

This reduction from the MCKP-D to the EERP-PATH-D can be done in polynomial time.

Therefore, the EERP-PATH-D is NP-complete. Since the EERP-PATH-D is the decision version

of the EERP-PATH it follows that the EERP-PATH is also NP-complete. �

In the following, we show that the EERP is NP-complete.

Theorem 2. EERP is NP-complete.

Proof. To show that the EERP is NP-complete we consider its decision version, called EERP-

D. EERP-D is defined as follows: Given a fuel consumption network G = (V,A), a PHEV with

available battery SOC C, and a given bound F on gasoline consumption, is there a path in G from

an origin node O ∈ V to a destination node D ∈ V such that the total gasoline consumption Γ is

at most F?

The first step is to prove that the EERP-D is in NP by showing that given a certificate (X,Y), it

can be decided in polynomial time that (X,Y) is a solution to the problem or not. Given a path P

from O to D, battery SOC C, and gasoline consumption F , it is easy to check if (X,Y) is a solution.

This verification involves checking that (X,Y) is a path from O to D. Then, it includes computing

two sums and comparing the results against F and C, that is, checking
∑

(i,j)∈P w
g
ijxij ≤ F and∑

(i,j)∈P w
e
ijyij ≤ C. This requires an amount of time linear in the number of arcs in G. Thus,

EERP-D is in NP.

The second step is to find a polynomial-time reduction from the decision version of the 0-1

multiple-choice knapsack problem. We consider an instance of the EERP-D on a given path. Such

instance is the same decision problem as the EERP-PATH-D. As in Theorem 1, we proved that

there is such a polynomial time reduction from an instance of MCKP-D to EERP-PATH-D, thus,

there exits a polynomial time reduction from an instance of MCKP-D to an instance of EERP-D.

Therefore, EERP-D is NP-complete as its special case EERP-PATH-D is NP-complete. Since

EERP-D is the decision version of EERP it follows that EERP is also NP-complete. �

2.1. Illustrative Example

To illustrate the EERP, we present an example shown in Figure 1. The multigraph in the example

consists of two kinds of arcs: solid arcs and dotted arcs. The solid arcs correspond to arcs in set

Ag (i.e., arcs corresponding to gasoline mode), while the dotted arcs correspond to arcs in set Ae

(i.e., arcs corresponding to electric mode). The values on the solid arcs correspond to wgij, while

the values on the dotted arcs correspond to weij. We assume that the battery has SOC C = 3 units.

The goal is to find a path from O to D minimizing the gasoline consumption.

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
12 Article submitted to Transportation Science; manuscript no.

1

23

Electricity

Gasoline

1

1

1

O A B D

C

1 1

2

3

2

12

3

2

1

Figure 1 EERP: Illustrative example of a fuel consumption network

A näıve approach to solve the EERP is to use a greedy-based method, where we first find a

path with minimum gasoline consumption from O to D. The path can be found by using Dijkstra’s

algorithm (Dijkstra 1959) on only the gasoline consumption network. In this example, the selected

path is ((O,A), (A,B), (B,D)). Then, the näıve approach solves the EERP on the given path by

first running on electric mode until the SOC is fully depleted and then operating only on gasoline

mode for the rest of the path. This approach may result in a path far from the optimal in terms

of fuel economy. In this example, the result of this approach is the path ((O,A)e, (A,B)g, (B,D)g)

with a gasoline consumption given by wgAB +wgBD, that is 2 units. However, the optimal solution

is the path ((O,A)g, (A,B)e, (B,D)e) with a gasoline consumption given by wgOA, that is 1 unit.

3. Exact Algorithms

In this section, we propose two algorithms that find the exact solution to the EERP. The algorithms,

called Exact-EER-I and Exact-EER-II, find the path from O to D that leads to the minimum

gasoline consumption while satisfying the battery SOC constraint.

The fuel consumption network, considered in this paper, is a general graph without any assump-

tions on the order of the nodes. As a result, simple dynamic programming fails to obtain an optimal

solution. To address this problem, we propose two-phase approaches that find exact solutions to

the EERP. For the first phase, we propose a dynamic programming recurrence to find an initial

gasoline consumption from O to all the nodes for a specific battery SOC. However, the obtained

results do not guarantee the optimality of the solution. This is due to the fact that for any battery

SOC, the gasoline consumption to reach a node from O is calculated in each iteration of dynamic

programming, where those values may have effect on gasoline consumption to reach other nodes on

that iteration. Since the nodes do not have any order, the gasoline consumption of some nodes may

be decreased by using the just updated values, where the dynamic programming cannot capture

these updates during that iteration. To obtain the optimal solution, we propose the second phase,

where we update the results obtained by the first phase in each iteration. Note that using only the

first phase leads to an error from the optimal value, and this error cannot be bounded.

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
Article submitted to Transportation Science; manuscript no. 13

3.1. Basic Algorithm: Exact-EER-I

In this subsection, we propose an exact algorithm, Exact-EER-I, to solve the EERP. Exact-EER-I

iteratively increases the SOC and finds the minimum gasoline consumption for that SOC. In each

iteration, Exact-EER-I solves the problem for a fixed SOC c in two phases. In the first phase, the

algorithm employs a dynamic programming recurrence to find the gasoline consumption to reach

a node for a specific battery SOC. In the second phase, it uses the latest updates of the first phase

in order to find the optimal gasoline consumption for that SOC.

Exact-EER-I employs a dynamic programming table Γ with C + 1 columns and |V | rows. We

denote by Γ(j, c) the minimum gasoline consumption for the subproblem that considers finding

a path from O to j when the available battery SOC is not greater than c. Exact-EER-I initial-

izes Γ(j,0) to be the minimum gasoline consumption between nodes O and j, for all j, when there

is no battery charge available. Note that Γ(j,0) can be obtained using Dijkstra’s algorithm on

the gasoline consumption network. Then, the dynamic programming table is calculated using a

two-phase approach for each iteration (column) c= 1, . . . ,C as outlined next.

In the first phase of iteration c, to find Γ(j, c) for a battery SOC c, Exact-EER-I computes whether

using the electric mode on any of the incoming arcs to node j leads to less gasoline consumption.

Given the additional battery SOC unit, the following recurrence function investigates the possibility

of gasoline consumption savings from employing the electric mode for all arcs (i, j)∈AR that earlier

employed gasoline mode:

Γ(j, c) = min
∀(i,j)∈Ae;weij≤c

{Γ(i, c−weij),Γ(j, c− 1)}. (14)

The recurrence compares the value of two cases: First, it uses the minimum gasoline consumption

of reaching node i with electricity capacity c−weij, and then uses electricity to traverse arc (i, j).

Second, it uses the minimum gasoline consumption to reach node j with electricity capacity c− 1.

The minimum between Γ(i, c−weij) and Γ(j, c−1) gives an initial value of Γ(j, c). This initial value

may be reduced in the second phase.

In the second phase of iteration c, Exact-EER-I investigates the possibility of further gasoline

consumption savings for node j by leveraging any new savings observed in the first phase (i.e., Γ(i, c)

for all nodes that observed new savings in the first phase) coupled with pre-computed optimal all

gasoline paths from these promising nodes to j. We denote by ∆(i→ j) the minimum gasoline

consumption between nodes i and j without consuming electricity. Computing ∆(i→ j), ∀i, j ∈ V ,

is equivalent to computing all-pairs shortest paths on (V,Ag). This can be done in O(|V |2 log(|V |)+

|V ||A|) using Johnson’s algorithm (Johnson 1977). In this phase, Exact-EER-I updates Γ(j, c) by

considering only gasoline consumption on the path (i→ j), for all i∈ V , as follows:

Γ(j, c) = min
∀i∈V
{Γ(j, c),Γ(i, c) + ∆(i→ j)}. (15)

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
14 Article submitted to Transportation Science; manuscript no.

Γ(j, c) is updated for all nodes i ∈ V by considering the path from O to node i obtained from the

first phase, and then the path from node i to j using only gasoline mode (i.e., ∆(i→ j)). The

minimum among all these paths from O to j that go through i gives the optimal value of Γ(j, c)

for SOC c.

Note that Equation (14) does not assume any ordering of the nodes. If gasoline consumption

of a node changes in an iteration by Equation (14), the dynamic program in the first phase can-

not capture its effect on the gasoline consumption of other nodes. As a result, the recurrence in

Equation (14) cannot guarantee optimal results. However, the second phase of the algorithm imple-

menting the recurrence in Equation (15) goes through all the nodes, and it updates the gasoline

consumption of each node considering all the recent changes in the first phase of this iteration.

Even though Equation (15) does not consider any ordering of the nodes, Exact-EER-I finds the

optimal gasoline consumption for each node by the end of this phase in each iteration. This is due

to the fact that any new changes in gasoline consumption for a node through Equation (15) do

not affect the gasoline consumption of any other nodes since these changes are implicitly consid-

ered in ∆. Therefore, Γ(j, c) in the second phase is independent of any new changes to Γ(i, c) for

all i ∈ V in the second phase. As a result, the obtained results of Exact-EER-I are optimal. For

example, consider that the optimal gasoline consumption to reach j is obtained by going through

a path with gasoline consumption that starts at node h and ends at node j. We assume node i

is on this path from h to j, and Exact-EER-I calculates Γ(i, c) after finding Γ(j, c). In this case,

Γ(i, c) will be updated based on the gasoline consumption of a path from h to i. The value of

Γ(i, c) decreases, however, Γ(j, c) does not need to consider such decrease since it has already been

considered through the path from h to j. This is a key property of Exact-EER-I, that is, it does

not consider any ordering of the nodes while finding optimal solutions.

Exact-EER-I is given in Algorithm 1. The Exact-EER-I algorithm has three input parameters,

a multigraph G (V,A), an OD pair, and the battery SOC C. The algorithm has three output

parameters: Γ∗, the optimal gasoline consumption; (X∗,Y∗) the optimal solution; and P ∗ the

optimal path. We assume that all-pairs shortest paths, ∆(i→ j), are precomputed.

Exact-EER-I starts by setting ∆(i→ j) to the minimum gasoline consumption between nodes i

and j (line 1). Then, it sets Γ(j,0) to ∆(O→ j) for all j 6=O (lines 2-3) and Γ(O,0) to zero (line 4).

The algorithm then updates the dynamic programming table for each column c≤ C (lines 5-13).

For each capacity c, the algorithm first finds Γ(j, c) in the first phase (lines 6-10), then updates

Γ(j, c) in the second phase (lines 11-13). Note that the second phase uses the precomputed values

of ∆(i→ j).

Once the algorithm reaches column C of the table and finishes the two phases, it finds Γ∗ (line 14).

At the end, Exact-EER-I finds (X∗,Y∗), and P ∗ by back-tracking the optimal path from Γ(D,C).

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
Article submitted to Transportation Science; manuscript no. 15

Algorithm 1 Exact-EER-I (G, OD, C)

1: ∆(i→ j)← Shortest path on Ag from i to j, ∀i, j ∈ V

2: for all nodes j ∈ V , j 6=O do

3: Γ(j,0)←∆(O→ j)

4: Γ(O,0)← 0

5: for all c= 1 to C do

6: for all nodes j ∈ V do

7: Γ(j, c)← Γ(j, c− 1)

8: for all arcs (i, j)∈Ae do

9: if weij ≤ c then

10: Γ(j, c) = min{Γ(j, c),Γ(i, c−weij)}

11: for all nodes j ∈ V do

12: for all nodes i∈ V , i 6= j do

13: Γ(j, c) = min{Γ(j, c),Γ(i, c) + ∆(i→ j)}

14: Γ∗ = Γ(D,C)

15: Find (X∗,Y∗) by looking backward

16: Find P ∗ from (X∗,Y∗)

17: Output: Γ∗, (X∗,Y∗), P ∗

We note that a key novel characteristic of the algorithm is that the second phase calculations are

only dependent on results from the first phase and pre-computed all gasoline all to all shortest

paths. This enables the algorithm to identify optimal solutions for general graphs in just two phases

for any given column (i.e., battery SOC) of the dynamic programming table.

3.1.1. Illustrative Examples of Exact-EER-I. To illustrate how Exact-EER-I works, we

present two examples in Figures 2 and 3. We use the same fuel consumption network as in Figure 1.

These figures show dynamic programming tables, where there is a row for each node of the network,

and a column for each battery SOC c = 0,1,2,3. However, each figure shows a different node

selection by the Exact-EER-I algorithm.

We first discuss the example presented in Figure 2. We only illustrate the results of the calcula-

tions for both phases of the column for a battery SOC of one unit (i.e., c= 1). This is due to the

fact that only for this column the values of the second phase are different than those of the first

phase. For c= 0, since there is no battery SOC available, the values of the dynamic programming

table are initialized using the costs from the precomputed all to all shortest paths of the gasoline

consumption network (i.e., ∆(i→ j)).

For brevity, we illustrate the calculations for only the cells that have changed their values for

column c= 1 (these cells are highlighted by the dotted circles). In the first phase, when we examine

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
16 Article submitted to Transportation Science; manuscript no.

3

2

2

1

0O

A

B

D

C

1

0

1

0

0

1

0

1

0

2

2

1

0

1

23

2

1

1

0

c=0 c=1 c=2 c=3

1

Phase IIPhase I

Figure 2 Illustrative Example I: Dynamic programming table of Exact-EER-I

the cost of reaching node B from the origin, the first phase identifies the opportunity to traverse

from node A to node B by electric mode using the unit charge available for the column. This reduces

the gasoline cost for the sub-pathO→B from 2 to 1 unit, represented by the path ((O,A)g, (A,B)e).

No other opportunities arise in the first phase for any other node. When we examine the cost of

reaching node D from the origin, in the second phase, the algorithm recognizes the opportunity

to reduce gasoline consumption by employing the just updated optimal sub-path O→B (in phase

one), and traversing from B to D using all gasoline mode (i.e., ∆(B→D)), reducing the cost from

3 units in column c = 0 represented by the path ((O,A)g, (A,B)g, (B,D)g) to 2 units in column

c= 1 represented by the path ((O,A)g, (A,B)e, (B,D)g). The rest of the columns are calculated to

find the optimal value of Γ∗(D,3) = 1 which represents the path ((O,A)g, (A,B)e, (B,D)e). Note

that the number of such updates are very large in actual networks to guarantee optimality. To

make the point, we choose to present this highly stylized example with limited updates.

To show that Exact-EER-I does not assume any ordering of the nodes in the fuel consumption

network, in Figure 3, we present the example with another node selection by the algorithm. Exact-

EER-I initializes the first column of the dynamic programming table (i.e., c = 0) with the costs

from the precomputed all to all shortest paths of the gasoline consumption network (i.e., ∆(i→ j)).

In addition, it sets Γ(O,0) to 0. Then, Exact-EER-I iteratively increases the SOC c from 1 to 3 and

updates the minimum gasoline consumption function in the table (lines 5-13). Note that Exact-

EER-I does not assume any ordering for node selection in lines 6, 8, 11, and 12. In the following, we

explain the details. For c= 1, the algorithm selects a node j ∈ V arbitrarily (e.g., D) (line 6), and

it sets Γ(D,1) to Γ(D,0) = 3 (line 7). Then, Exact-EER-I analyzes all incoming arcs to D, CD and

BD, in order to update the table (lines 8-10). None of weCD and weBD is less than or equal to 1, which

is a current value of c. As a result, Γ(D,1) does not change. Exact-EER-I selects another node j ∈ V

arbitrarily (e.g., C) (line 6), and it initializes Γ(C,1) with Γ(C,0) = 2 (line 7). None of the incoming

arcs to node C can use the 1 unit of available battery SOC to reduce Γ(C,1), thus, Γ(C,1) remains

the same. The algorithm selects another node j ∈ V arbitrarily (e.g., B) (line 6), and it initializes

Γ(B,1) with Γ(B,0) = 2 (line 7). Since weAB is 1, Exact-EER-I checks whether using electricity

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
Article submitted to Transportation Science; manuscript no. 17

0

1

0

2

3

2

1

0

0

Phase IIPhase I

D

C

B

A

O

c=0 c=1 c=2 c=3

2

0

1

3

1 1

12 0

1

2

1

1

1

0

0

2

Figure 3 Illustrative Example II: Dynamic programming table of Exact-EER-I (with a different node selection)

from A to B reduces the gasoline consumption to reach B (line 10). In this case, Γ(B,1) is set

to Γ(A,0) = 1. Then, the algorithm selects O (line-6), and Γ(O,1) remains 0. Finally, the algorithm

selects node A and initializes Γ(A,1) with Γ(A,0) = 1 (line 7). The incoming arc to node A cannot

use the 1 unit of available battery SOC, thus, Γ(A,1) remains the same. By the end of phase one of

iteration c= 1, Exact-EER-I investigates the possibility of updating the table (lines 11-13). Since

the algorithm can use such an opportunity for just node D during this iteration, we present the

phase two for node D. When node D is selected, for all other nodes i ∈ V the algorithm checks if

reaching to node i with available battery SOC c= 1, and then using gasoline mode from i to D

will reduce the total gasoline consumption to reach node D. When node A is selected (line 12),

Γ(A,1) is 1 and ∆(A→D) = 2, which is not less than Γ(D,1) = 3. Γ(D,1) remains the same value

also when nodes C and O are selected. However, when node B is selected (line 12), Γ(B,1) is 1

and ∆(B→D) = 1. As a result, a path from O to B with electricity mode with a path from B

to D with gasoline mode leads to less total gasoline consumption to reach D. Therefore, Γ(D,1)

will be updated to 2.

For c = 2, the algorithm selects a node j ∈ V arbitrarily (e.g., B) (line 6), and it sets Γ(B,2)

to Γ(B,1) = 1 (line 7). Then, Exact-EER-I analyzes the incoming arc to B in order to update

Γ(B,2). However, since Γ(A,1) = 1, Γ(B,2) remains the same. Exact-EER-I selects node C arbi-

trarily, and it initializes Γ(C,2) with Γ(C,1) = 2 (line 7). Then, the algorithm checks all incoming

arcs to C (AC, OC, and DC) (lines 8-10). For arc OC, Exact-EER-I reduces Γ(C,2) by Γ(O,0) = 0.

This means that the algorithm selects traversing arc OC by electric mode leading to the total gaso-

line consumption 0 from O to C. None of the other nodes can benefit from the additional battery

SOC in this iteration. In addition, there is no opportunity to reduce the gasoline consumption in

phase two of this iteration, therefore we skip this phase for c= 2.

For c = 3, the algorithm selects a node j ∈ V arbitrarily (e.g., D) (line 6), and it sets Γ(D,3)

to Γ(D,2) = 2 (line 7). For the incoming arc CD, Exact-EER-I checks Γ(C,3−2) = 2, and it cannot

reduce Γ(D,3). However, for the incoming arc BD, Exact-EER-I checks Γ(B,3− 2) = 1, and then

reduces Γ(D,3) to 1. Exact-EER-I selects node A with initial Γ(A,3) = 1. Using the incoming

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
18 Article submitted to Transportation Science; manuscript no.

arc OA with electricity consumption 3 units, Γ(A,3) is updated to 0. None of the other nodes

can benefit from the additional battery SOC in this iteration. In addition, there is no opportunity

to reduce the gasoline consumption in phase two of this iteration, therefore we skip this phase

for c= 3.

The optimal value of Γ∗(D,3) is 1, which represents the path ((O,A)g, (A,B)e, (B,D)e).

3.1.2. Properties of Exact-EER-I. In this subsection, we analyze the properties of the

proposed Exact-EER-I. We first discuss the time complexity of Exact-EER-I. Then, we prove that

Exact-EER-I finds the optimal solution to the EERP.

Exact-EER-I solves the EERP optimally in O(C(|A| + |V |2)), where |V | is the number of

nodes, |A| is the number of arcs, and C is the battery SOC. The algorithm builds a table, where

the rows are the nodes and the columns are the possible capacities. For each node, all its adjacent

nodes are analyzed. As a result, for all nodes the computation takes O(|A|). In addition, for each

node j, the algorithm updates the minimum gasoline consumption using the all-pair shortest paths

from all nodes i ∈ V . This takes O(|V |2) for all nodes. In general, the capacity C is not bounded

by a polynomial in the number of arcs or nodes in G. Since the execution time of the Exact-EER-I

algorithm depends on C, Exact-EER-I is a pseudo-polynomial time algorithm. An algorithm has

pseudo-polynomial time complexity if its running time is polynomial in the numeric value of the

input, but it is exponential in the size of the input (i.e., number of bits required to represent the

input).

Theorem 3. The Exact-EER-I algorithm finds the optimal solution to the EERP.

Proof. We prove the theorem by induction. We denote by Γ∗(j, c) the optimal solution, for

every node j and battery SOC c.

Base case: For c = 0, Γ(j,0) = Γ∗(j,0) is the optimal gasoline consumption to reach node j, for

all j ∈ V . This is due to the fact that Γ(j,0) = ∆(O→ j), where ∆(O→ j) is the minimum

gasoline consumption from O to j without consuming electricity.

Inductive hypothesis: We assume that for c= n, Γ(j,n) = Γ∗(j,n) is the optimal gasoline consump-

tion to reach node j, for all j ∈ V given battery SOC n.

Inductive step: We need to prove that for c= n+1, Γ(j,n+1) = Γ∗(j,n+1). We have the following

two cases depending on which fuel consumption mode (either gasoline or electric) has been used

for traversing the incoming arc to j.

In case one, Exact-EER-I checks all paths for which the incoming arc to j (e.g., (i, j)) is traversed

by electric mode. Based on lines 8-10, we have Γ(j,n+ 1) = min∀(i,j)∈Ae;weij≤n+1 Γ(i, n+ 1−weij).

Since n+1−weij ≤ n, we have Γ(i, n+1−weij) = Γ∗(i, n+1−weij) based on the inductive hypothesis.

That is, the gasoline consumption to reach node i with SOC n + 1 − weij has its optimal value

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
Article submitted to Transportation Science; manuscript no. 19

in the table. That means, for node j Exact-EER-I checks the optimal path to reach any node i,

for all nodes i that have an outgoing arc to j. As a result, the minimum of all optimal gasoline

consumption for all nodes i incident to j with SOC n+ 1−weij is the minimum value. Since Exact-

EER-I checks all arcs that reach j in electric mode, and it finds the minimum value among all

paths, Γ(j,n+ 1) has the minimum value when traversing the last arc by electric mode. This value

can be reduced only in case two, where the incoming arc to j (e.g., (i, j)) is traversed by gasoline

mode. This is due to the fact that at this point, only paths for which the incoming arc to j is

traversed by gasoline have not been checked.

In case two, Exact-EER-I checks all paths for which the incoming arc to j (e.g., (i, j)) is traversed

by gasoline mode. Based on lines 11-13, we have Γ(j,n+ 1) = min∀h∈V {Γ(h,n+ 1) + ∆(h→ j)}.

Exact-EER-I checks all paths from O to j passing through any node h, where h is the first node of

a subpath of the path that uses gasoline mode to reach j. If h=O, Γ(h,n+ 1) = Γ∗(h,n+ 1) = 0.

Otherwise, node h is the last node whose incoming arc in the path is traversed by electric mode.

Based on case one, Γ(h,n+ 1) = Γ∗(h,n+ 1) since the incoming arc to h is traversed by electric

mode, and Γ∗(h,n+ 1) does not change during phase two. This is due to the fact that all paths

to reach h by traversing its incoming arcs are investigated in phase one. Exact-EER-I checks all

such paths from any node h ∈ V to reach j, and it finds the minimum value of Γ∗(h,n + 1) +

∆(h→ j), where ∆(h→ j) is the minimum gasoline consumption from h to j. Since the triangle

inequality holds in the gasoline consumption paths, Exact-EER-I calculates the minimum gasoline

consumption from O to j by finding the minimum of all paths that go through any node h. As a

result, Γ(j,n+ 1) has the minimum value when traversing the last arc by gasoline mode.

The obtained gasoline consumption Γ(j,n+ 1) is the minimum value of case one and two. Since

we check all paths to reach j considering traversing the incoming arc to j by either electric (case

one) or gasoline (case two) mode, we have Γ(j,n+ 1) = Γ∗(j,n+ 1).

We conclude that Γ∗(j, c) = Γ(j, c), and that this property is maintained for all j and c. �

3.2. Improved Algorithm: Exact-EER-II

In this subsection, we propose another exact algorithm, Exact-EER-II, to solve the EERP with bet-

ter time complexity than Exact-EER-I. The algorithm also eliminates the need for pre-computing

all-pairs shortest paths for the gasoline network, which is a very time consuming task.

Exact-EER-II uses a dynamic programming table Γ with C+1 columns and |V | rows, and similar

to Exact-EER-I, it iteratively increases the SOC and finds the minimum gasoline consumption for

that SOC. In each iteration, Exact-EER-II employs a two-phase approach to solve the problem

for a fixed SOC c and updates each column of the dynamic programming table. In the first phase,

Exact-EER-II employs the same dynamic programming recurrence used in Exact-EER-I to find the

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
20 Article submitted to Transportation Science; manuscript no.

gasoline consumption to reach a node for a specific battery SOC. In addition, it builds a priority

queue that will be used for node selection in the second phase. In the second phase, it uses the

priority queue to capture the latest updates in the first phase in order to find the optimal gasoline

consumption for that SOC. Exact-EER-II reduces the number of calculations while guaranteeing

optimality.

The first phase of iteration c of Exact-EER-II is identical to the first phase procedure of Exact-

EER-I for finding the gasoline consumption to reach a node with battery SOC c. In this phase,

Exact-EER-II computes Γ(j, c) for all nodes j ∈ V by considering whether using the electric mode

on any of the incoming arcs to node j leads to lower gasoline consumption. However, Exact-EER-II

gives priorities to nodes in order to be explored in the second phase. The priority of a node is based

on Γ(j, c). Exact-EER-II uses a priority queue, Q, to store the gasoline consumptions computed in

this phase as node priorities. Priority queue Q will be used in the second phase of Exact-EER-II

when considering paths that use gasoline in traversing the last arc by selecting the node with the

minimum gasoline consumption computed in the first phase. Using the priority queue, Exact-EER-

II imposes an order on the nodes to be explored for the update process in the second phase to

guarantee the optimality of the solution.

In the second phase of iteration c, Exact-EER-II uses the stored values of the priority queue, Q,

and the values of the dynamic programming table. The priority queue gives priorities to the nodes to

be explored in this phase. A priority is given to a node based on the gasoline consumption computed

in the first phase, and it may change during the second phase. The gasoline consumption of a node

with a lower priority in Q can be updated through an all gasoline path from a higher priority node

to that node. However, a node with a lower priority in Q cannot improve the gasoline consumption

of a node with a higher priority. This is the reason that Exact-EER-II finds the optimal gasoline

consumption of nodes without the need to cycle numerous times. In the second phase, Exact-EER-

II extracts the nodes from Q based on their priority. The node j with the smallest total gasoline

consumption in Q is extracted, and its Γ(j, c) is finalized with the optimal gasoline consumption

for that iteration. Exact-EER-II then updates the values of gasoline consumption for all nodes

connected to j remaining in Q by considering traversing arcs from j by gasoline consumption. The

priorities of the remaining nodes in Q are updated accordingly as follows:

Γ(k, c) = min
∀(j,k)∈Ag

{Γ(k, c),Γ(j, c) +wgjk}. (16)

Γ(k, c) is updated for all nodes k ∈ Q that have an incoming arc from j by considering the path

with minimum gasoline consumption from O to j, Γ(j, c), and then traversing arc (j, k) using

only gasoline mode (i.e., wgjk). Traversing through these arcs (i.e., (j, k)) by gasoline mode forms

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
Article submitted to Transportation Science; manuscript no. 21

Algorithm 2 Exact-EER-II (G, OD, C)

1: for all c= 0 to C do

2: Create an empty priority queue Q

3: for all nodes j ∈ V do

4: if c= 0 then

5: Γ(j, c)←∞

6: else

7: Γ(j, c)← Γ(j, c− 1)

8: if j =O then

9: Γ(O,c)← 0

10: for all arcs (i, j)∈Ae do

11: if weij ≤ c then

12: Γ(j, c) = min{Γ(j, c),Γ(i, c−weij)}

13: Q.enqueue(j)

14: Q.updateKey(j,Γ(j, c))

15: while Q is not empty do

16: (j,Γ(j, c)) =Q.extractMin()

17: for all arcs (j, k)∈Ag and k ∈Q do

18: Γ(k, c) = min{Γ(k, c),Γ(j, c) +wgjk}

19: Q.updateKey(k,Γ(k, c))

20: Γ∗ = Γ(D,C)

21: Find (X∗,Y∗) by looking backward

22: Find P ∗ from (X∗,Y∗)

23: Output: Γ∗, (X∗,Y∗), P ∗

a gasoline sub-path from j to another node (e.g., node h). That means, Γ(h, c) is the sum of

the minimum gasoline consumption of a path from O to j computed as Γ(j, c) and the minimum

gasoline consumption of a path from j to h using only gasoline mode (computed by
∑

(a,b)∈(j→h)w
g
ab

based on updated priorities of nodes).

Exact-EER-II is given in Algorithm 2. The Exact-EER-II algorithm has three input parameters,

a multigraph G (V,A), an OD pair, and the battery SOC C. The algorithm has three output

parameters: Γ∗, the optimal gasoline consumption; (X∗,Y∗) the optimal solution; and P ∗ the

optimal path.

Exact-EER-II builds a dynamic programming table where rows are nodes and columns are

battery capacities from 0 to C (lines 1-19). The algorithm initializes Γ(j, c) for each node j and

capacity c (lines 4-9). Then, it updates Γ(j, c) if traversing an arc (i, j) ∈AR using electric mode

reduces the total gasoline consumption to reach j (lines 10-12). Therefore, for each node j the

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
22 Article submitted to Transportation Science; manuscript no.

algorithm finds its adjacent node i, and reduces Γ(j, c) if traveling arc (i, j) in electric mode is

beneficial.

By the end of this step, the dynamic programming table contains minimum gasoline consumption

to reach node j with capacity c while traversing the last arc (i, j) in electric mode. The obtained

gasoline consumption to reach node j is added to a priority queue, Q (lines 13-14).

Exact-EER-II uses a priority queue, Q, to find the optimal gasoline consumption (lines 15-19).

In the priority queue, each node j has a key (priority) associated with it which represents the

total gasoline consumption from O to j, Γ(j, c), considering the maximum battery SOC c. A node

with the smallest key has the highest priority. There are three operations associated with priority

queue Q: Q.enqueue(), Q.updateKey(), and Q.extractMin(). Q.enqueue() inserts a node in Q and

assigns to it the greatest possible key (i.e., key = +∞). Q.updateKey(j,K) updates the value of

the key of node j ∈Q to K if it is less than j’s current key. Q.extractMin() extracts the node with

the smallest key from Q.

The node with the smallest key (i.e., the node with the smallest total gasoline consumption) is

always the first node to be extracted from Q and its Γ(j, c) is finalized in the DP table. In this

phase, Exact-EER-II checks whether using the gasoline mode on any of the outgoing arcs from

node j leads to less gasoline consumption. Then, the keys of the other nodes in Q are updated

accordingly. By the end of this iteration, the algorithm updates the values of gasoline consumption

by considering all paths to reach all nodes with SOC c. Once the algorithm reaches column C of the

table and finishes the two phases, it finds Γ∗ (line 20). At the end, Exact-EER-II finds (X∗,Y∗),

and P ∗ by backtracking Γ(D,C).

3.2.1. Properties of Exact-EER-II. In this subsection, we analyze the properties of the

proposed Exact-EER-II. We discuss the time complexity of Exact-EER-II, and we then prove that

Exact-EER-II finds the optimal solution to the EERP.

Exact-EER-II solves EERP optimally in O(C(|A| + |V | log |V |)), where |V | is the number of

nodes, |A| is the number of arcs, and C is the battery SOC. This is due to the fact that the

algorithm builds a table, where the rows are the nodes and the columns are the possible battery

SOC capacities. For each node, all its visited adjacent nodes are analyzed. This step takes O(|A|).

Inserting all nodes in Q takes O(|V |). In addition, for each node, Q.extractMin() takes O(log |V |).

Using a Fibonacci heap for implementing the priority queue, Q.updateKey() and Q.enqueue()

take O(1) for each node. Therefore, the time complexity of the second step of Exact-EER-II is

O(
∑|V |

j=1 log |V |+ degree(j) + 1 ∗degree(j)) =O(|A|+ |V | log |V |), where degree(j) is the number of

outgoing arcs of node j. Since in general the capacity C is not bounded by a polynomial in the

number of arcs in G, the Exact-EER-II algorithm is a pseudo-polynomial time algorithm.

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
Article submitted to Transportation Science; manuscript no. 23

Theorem 4. The Exact-EER-II algorithm finds the optimal solution to the EERP.

Proof. We prove the theorem by induction. We denote by Γ∗(j, c) the optimal solution, for

every node j and battery SOC c.

Base case: For c = 0, Γ(j,0) = Γ∗(j,0) is the optimal gasoline consumption to reach node j, for

all j ∈ V . This is due to the fact that lines 15 to 19 of Exact-EER-II is similar to Dijkstra’s

algorithm, and it finds the minimum gasoline consumption from O to j by only considering the

gasoline consumption network.

Inductive hypothesis: We assume that for c= n, Γ(j,n) = Γ∗(j,n) is the optimal gasoline consump-

tion to reach node j, for all j ∈ V given battery SOC n.

Inductive step: We need to prove that for c= n+1, Γ(j,n+1) = Γ∗(j,n+1). We have the following

two cases depending on which fuel consumption mode (either gasoline or electric) has been used

to traverse the incoming arc to j.

In case one, Exact-EER-II checks all paths for which the incoming arc to j (e.g., (i, j)) is traversed

by electric mode. Based on the inductive hypothesis and similar arguments as in case one of the

proof of Theorem 3, Γ(j,n+ 1) has the minimum value when traversing the last arc by electric

mode.

In case two, Exact-EER-II checks all paths for which the incoming arc to j (e.g., (i, j)) is traversed

by gasoline mode. In doing so, Exact-EER-II finds Γ(j, c) = min∀(i,j)∈Ag{Γ(j, c),Γ(i, c)+wgij}. When

node j is extracted from Q (line 16), Exact-EER-II has already checked all paths to reach node j

for which arc (i, j) (for all arcs (i, j) ∈ Ag) is traversed by gasoline mode (lines 17-19), and the

minimum gasoline consumption is stored in Q (line 19). Therefore, Γ(j,n+ 1) has the minimum

value when traversing the last arc by gasoline mode.

The obtained gasoline consumption Γ(j,n+ 1) is the minimum value of case one and two. Since

we check all paths to reach j traversing the incoming arc to j by either electricity (case one) or

gasoline (case two) mode, we have Γ(j,n+ 1) = Γ∗(j,n+ 1).

We conclude that Γ∗(j, c) = Γ(j, c), and that this property is maintained for all j and c. �

4. A Fully Polynomial Time Approximation Scheme for EERP:
FPTAS-EER

The time complexity of our proposed Exact-EER-I and Exact-EER-II algorithms depends on bat-

tery SOC C thus, they are pseudo-polynomial. In this section, we propose a fully polynomial-time

approximation scheme (FPTAS) for EERP, called FPTAS-EER, to eliminate the dependency of

time complexity on the battery SOC. Since EERP is an NP-complete problem, an FPTAS is by

far the strongest approximation result that can be achieved unless P =NP (Vazirani 2004).

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
24 Article submitted to Transportation Science; manuscript no.

Definition 5 (FPTAS). A minimization problem has an FPTAS if for every instance I and

for every ε > 0, it finds a solution S for I in time polynomial in the size of I and in 1
ε

that satisfies:

S(I)≤ (1 + ε)S∗(I),

where S∗(I) is the optimal value of a solution for I.

All the FPTASs proposed in the literature are based on dynamic programming formulations

(Woeginger (2000)). There are two methods for transforming an exact dynamic programming-based

algorithm into an FPTAS: rounding and scaling, and reducing the state space iteratively. The

rounding and scaling method, first introduced by Sahni (1976), rounds the input data reducing the

size of the dynamic programming table. The rounding and scaling method has been extensively

used in the design of polynomial approximation schemes (e.g., Mashayekhy et al. (2015)). The

method of reducing the state space was first introduced by Ibarra and Kim (1975). Our proposed

FPTAS is based on the rounding and scaling method, where the rounding is applied to gasoline

consumption weights.

Our proposed FPTAS-EER finds a near-optimal solution in polynomial time in the size of the

input and 1
ε
, where ε is a given error parameter. To design an FPTAS, we need to design an exact

algorithm that uses rounded values and finds the optimal solution on the rounded values, then the

solution is rounded back to the original values with some bounded error. Given that battery SOC

constraints are hard, we cannot use rounding on electricity consumption. As a result, we need to

design an exact algorithm (Exact-EER-GC) that given a gasoline capacity finds the optimal battery

consumption. Therefore, in the problem statement we swap electricity and gasoline as objective

and constraint. Our FPTAS uses rounding on gasoline consumption and applies Exact-EER-GC

to find optimal results on the rounded values. Our proposed FPTAS checks for a value of gasoline

capacity whether the obtained optimal battery consumption exceeds the battery SOC C. Based

on the result, our proposed FPTAS calculates new upper or lower bound values for the gasoline

capacity. This procedure continues until the proposed FPTAS finds close upper and lower bounds

on the gasoline consumption leading to ε error guarantee. Finally, considering our approach, our

proposed FPTAS always satisfies the battery SOC constraint.

We first present an exact algorithm similar to Exact-EER-II that uses the rounded values of gaso-

line consumption, and then, we propose our FPTAS algorithm. Finally, we analyze the properties

of our proposed FPTAS.

4.1. Exact-EER-GC Algorithm

In this subsection, we propose a two-phase exact algorithm, called Exact-EER-GC (the name is

derived from Exact-EER Gasoline Constrained), similar to Exact-EER-II. However, Exact-EER-

GC finds a path from O to D given an available gasoline capacity such that the total electricity

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
Article submitted to Transportation Science; manuscript no. 25

consumption E is minimized. In order to use Exact-EER-GC in our FPTAS algorithm, Exact-

EER-GC needs to determine the path with the minimum gasoline consumption less than a given

gasoline capacity F and with the total battery charge consumption satisfying the battery SOC

constraint C. This is due to the fact that FPTAS updates the lower and upper bounds on gasoline

consumption using the obtained output of Exact-EER-GC.

Exact-EER-GC employs a dynamic programming table E with F + 1 columns and |V | rows.

We denote by E(j, f) the optimal battery charge consumption for the subproblem that considers

finding the path from O to j where the available gasoline consumption is not greater than f .

In the first phase, Exact-EER-GC finds the initial value of E(j, f) for each node j and gasoline

consumption f . Exact-EER-GC uses the following dynamic programming recurrence to find if

traversing an arc (i, j) ∈ AR using gasoline reduces the total electricity consumption E(j, f) to

reach j:

E(j, f) = min
∀(i,j)∈Ag ;wgij≤f

{E(i, f −wgij),E(j, f − 1)}. (17)

To consider paths that use electricity in traversing the last arc, Exact-EER-GC uses a priority

queue Q to select the node with the minimum electricity consumption computed in the first phase.

The node with the smallest total electricity consumption (e.g., j) is always the first node to be

extracted from Q and its E(j, f) is finalized in the dynamic programming table. Then, the keys of

all nodes connected to j remaining in Q are updated accordingly as follows:

E(k, f) = min
∀(j,k)∈Ae

{E(k, f),E(j, f) +wejk}. (18)

Exact-EER-GC is given in Algorithm 3. The Exact-EER-GC algorithm has four input param-

eters, a multigraph G (V,A), an OD pair, the battery SOC C, and a given gasoline capacity F .

The algorithm has three output parameters: E∗, the electricity consumption; (X∗,Y∗) the optimal

solution; and P ∗ the optimal path. The algorithm is similar in structure to Exact-EER-II with

the exception that Γ is replaced by E and the weights corresponding to gasoline consumption are

changed to the weights corresponding to battery charge consumption and vice versa. Exact-EER-

GC has also an additional input parameter, the gasoline capacity F .

Exact-EER-GC builds a dynamic programming table, where rows are nodes and columns are

gasoline consumption (lines 2-23). The algorithm initializes E(j, f) for each node j and gasoline

consumption f (lines 5-9). Then, it updates E(j, f) if traversing an arc (i, j) ∈AR using gasoline

reduces the total electricity consumption to reach j (lines 10-12). Therefore, for each node j the

algorithm finds its adjacent node i, and reduces E(j, f) if traveling arc (i, j) with gasoline is

beneficial.

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
26 Article submitted to Transportation Science; manuscript no.

Algorithm 3 Exact-EER-GC (G, OD, C, F): Exact Algorithm

1: E∗←∞

2: for all f = 0 to F do

3: Create an empty priority queue Q

4: for all nodes j ∈ V do

5: if f = 0 then

6: E(j, f)←∞

7: else

8: E(j, f)←E(j, f − 1)

9: E(O,f)← 0

10: for all arcs (i, j)∈Ag do

11: if wgij ≤ f then

12: E(j, f) = min{E(j, f),E(i, f −wgij)}

13: Q.enqueue(j)

14: Q.updateKey(j,E(j, f))

15: while Q is not empty do

16: (j,E(j, f)) =Q.extractMin()

17: for all arcs (j, k)∈Ae and k ∈Q do

18: E(k, f) = min{E(k, f),E(j, f) +wejk}

19: Q.updateKey(k,E(k, f))

20: if E(D,f)≤C then

21: E∗ =E(D,f)

22: Γ∗ = f

23: break;

24: Find (X∗,Y∗) by looking backward

25: Find P ∗ from (X∗,Y∗)

26: Output: Γ∗,E∗, (X∗,Y∗), P ∗

By the end of this step, the dynamic programming table contains minimum electricity consump-

tion to reach node j with gasoline consumption f while traversing the last arc (i, j) with gasoline.

The obtained gasoline consumption to reach node j is added to a priority queue, Q (lines 13-14).

Exact-EER-GC uses a priority queue, Q, to find the optimal electricity consumption (lines 15-

19). In the priority queue, each node j has a key associated with it which represents the total

electricity consumption from O to j, E(j, f), considering the maximum gasoline consumption f .

The usage of Q is the same as in Exact-EER-II and we will not describe it here.

The node with the smallest key (i.e., the node with the smallest total electricity consumption)

is always the first node to be extracted from Q and its E(j, f) is finalized in the DP table. In this

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
Article submitted to Transportation Science; manuscript no. 27

step, the algorithm updates the values of electricity consumption by considering all paths to reach

node j. Once the final values are determined, the algorithm checks if the obtained E(D,f) satisfies

the battery SOC constraint (lines 20-23), if not, E∗ has its initial value which is +∞. Based on the

determined value f , Γ∗ is set to f (the optimal gasoline consumption). At the end, the algorithm

finds (X∗,Y∗), and P ∗ by backtracking the optimal solution.

Exact-EER-GC solves EERP optimally in O(F (|A|+ |V | log |V |)), where |V | is the number of

nodes, |A| is the number of arcs, and F is the given gasoline capacity. The derivation of the time

complexity of Exact-EER-GC is similar to that presented for Exact-EER-II and it will not be

presented here. Note that F is a given value for the gasoline capacity and it is not known a priori.

By controlling the given gasoline capacity value, the algorithm finds a path with minimum gasoline

consumption satisfying the battery SOC constraint.

4.2. FPTAS-EER Algorithm

In this subsection, we propose our FPTAS algorithm, called FPTAS-EER. As noted earlier, FPTAS-

EER rounds the arc weights on the gasoline consumption network, iteratively, to reduce the size of

the dynamic programming table. The iterative procedure Exact-EER-GC is used as a subroutine on

the rounded problems, to tighten the lower and upper bounds, L and U , respectively. The iterative

procedure terminates when U/L < 2. Once the iterative procedure terminates, the final problem

with properly updated arc weights for the network is solved one last time using Exact-EER-GC,

which satisfies the guaranteed optimality bound. The details follow.

The gasoline consumption weights wgij for all arcs (i, j)∈Ag are updated as follows:

w′gij←
(⌊

wgij|V |
Fδ

⌋
+ 1

)
Fδ

|V |
, (19)

where δ is an adaptive factor for the approximation, set to
√
U/L− 1, and F is an arc weight

rounding parameter selected to lie between L and U and chosen based on the results of Exact-

EER-GC, as follows: F =
√
LU/(1 + δ). During the procedure of closing the gap to less than L, δ

is calculated based on the new values of L and U .

Equation (19) updates all gasoline consumption weights of the network such that the FPTAS

algorithm uses equi-sized units of gasoline consumption (i.e., Fδ
|V |). As a result, the dynamic pro-

gramming table uses these equi-sized units to avoid checking all values that are considered for the

columns. The main idea of our approach is to bring the running time of the dynamic programming

on the rounded input (i.e., gasoline weights) down to polynomial. Such an approach is called round-

ing and scaling. The exact solution obtained by Exact-EER-GC has pseudo-polynomial complexity

which is proportional to F . However, the scaled version of the problem based on rounding can be

solved by Exact-EER-GC optimally in polynomial time. Then, the solution is rounded back to the

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
28 Article submitted to Transportation Science; manuscript no.

original gasoline consumption values with a controlled bounded error. Furthermore, we have chosen

the rounding to control the error that is introduced by the updates of the gasoline consumption

weights in such a way that we can prove that FPTAS-EER will lose only a bounded amount of

value.

In each iteration of FPTAS-EER, the number of columns in the dynamic programming table are

determined by δ. When δ is large, there are fewer columns, and Exact-EER-GC is faster. Given

that the bounds are updated in every iteration, they tighten faster initially with larger δ. As the

gap decreases, δ becomes smaller, to increase precision. After reaching a gap less than L, δ is set

to ε.

The algorithm starts with initial values of L and U , and then successively narrows down this

range of possible values for the optimal gasoline consumption. This is achieved by calling Exact-

EER-GC and narrowing down the range [L,U] based on the results of Exact-EER-GC in each

iteration. When L and U are within a constant factor of each other, FPTAS-EER uses the dynamic

programming procedure of Exact-EER-GC to obtain the approximation result.

A key property of our proposed FPTAS is that, it rounds up the weights of the arcs. Therefore,

there is no arc with a new weight of zero. This property leads to optimal results using Exact-

EER-GC such that after rounding back to the original values, the results are within the bounded

error.

FPTAS-EER is given in Algorithm 4. The FPTAS-EER algorithm has four input parameters,

a multigraph G (V,A), an OD pair, the battery SOC C, and a given ε. The algorithm has three

output parameters: Γ̂, (X̂, Ŷ), and P̂ , where Γ̂ is the near-optimal gasoline consumption for the

path, (X̂, Ŷ) is the near-optimal solution, and P̂ is the near-optimal path.

The FPTAS-EER starts by setting the lower bound on gasoline consumption to 1 (line 1). The

upper bound on gasoline consumption is set to the gasoline consumption obtained by computing

the shortest path on the gasoline consumption network (line 2). This upper bound can be found

by using Dijkstra’s algorithm on gasoline consumption network in O(|A|+ |V | log |V |).

Then, FPTAS-EER iterates to reduce the gap between the lower and upper bounds to less than L

(lines 3-13). In each iteration, the gasoline consumption F is updated based on the current lower

and upper bounds (line 5). The algorithm uses an adaptive parameter δ set to
√
U/L− 1 (line 4).

FPTAS-EER rounds the gasoline consumption of each arc (lines 6-7). Then, it calls Exact-EER-

GC using the rounded values w′gij stored as A′, and a gasoline capacity F ′ as the input parameters

(line 9). If there is no feasible solution, then the lower bound is updated to F , otherwise the upper

bound is updated to (1 + δ)F . Finding a feasible solution by Exact-EER-GC means that with a

given total gasoline consumption F ′, we have E(D,F ′)≤C.

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
Article submitted to Transportation Science; manuscript no. 29

Algorithm 4 FPTAS-EER(G,OD,C, ε)

1: L← 1

2: U ← gasoline consumption determined as a shortest path from O to D

3: while U > 2L do

4: δ =
√
U/L− 1

5: F =
√
LU/(1 + δ)

6: for all arcs (i, j)∈Ag do

7: w′gij ←b
w

g
ij
|V |

Fδ
c+ 1

8: F ′←b|V |/δc+ 1

9: (E, (X,Y), P) =Exact-EER-GC(G(V,A′),OD,C,F ′)

10: if E ≤C then

11: U ← (1 + δ)F

12: else

13: L← F

14: for all arcs (i, j)∈Ag do

15: w′gij ←b
w

g
ij
|V |
εL
c+ 1

16: F ′←b|V |/εc+ 1

17: (Ê, (X̂, Ŷ), P̂) =Exact-EER-GC(G(V,A′),OD,C,F ′)

18: Calculate Γ̂ based on original value of P̂

19: Output: Γ̂, (X̂, Ŷ), P̂

At the end of the while loop iterations, FPTAS-EER finds a lower bound and an upper bound on

gasoline consumption, where the gap between them is less than the lower bound. FPTAS-EER then

rounds the gasoline consumption of each arc based on the latest lower bound and ε (lines 14-15).

Finally, FPTAS-EER calls Exact-EER-GC to solve the problem using the rounded values based

on the obtained lower bound stored as A′ (line 17).

4.3. Properties of FPTAS-EER

In this subsection, we analyze the properties of the proposed FPTAS-EER. We first prove that

our proposed approximation algorithm is an FPTAS, that is, for every fixed ε, its running time is

polynomial in the size of the input and in 1
ε
. We then compare the time complexity of FPTAS and

Exact-EER-II.

Theorem 5. The FPTAS-EER algorithm is an FPTAS.

Proof. To prove that the algorithm is FPTAS, we need to show that the solution determined

by the algorithm is in a (1 + ε) neighborhood of the optimal, and that the time complexity of the

algorithm is polynomial in the size of the input and in 1
ε
.

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
30 Article submitted to Transportation Science; manuscript no.

First, we show that the solution obtained by FPTAS-EER is within (1+ε) of the optimal solution.

Let Γ∗ be the optimal gasoline consumption, and Γ be the obtained solution by FPTAS-EER.

FPTAS-EER finds a lower bound L and an upper bound U , where L ≤ Γ ≤ U . If U ≤ (1 + ε)L,

then Γ is within (1 + ε) of the optimal solution Γ∗. If U > (1 + ε)L, we can select F such that

L<F <U(1 + ε)
−1

. Using Exact-EER-GC with selected F can improve the bounds such that either

U is decreased to F (1 + ε) (line 11 in Algorithm 4) or L is increased to F (line 13 in Algorithm 4).

The while loop (lines 3-13) continues to reduce the ratio of U/L below a constant (here 2). Then,

FPTAS-EER calls Exact-EER-GC with rounded values for arcs’ gasoline consumption for all arcs

in Ag based on the determined lower bound L. Since FPTAS-EER replaces the arcs’ gasoline

consumption by w′gij ← (b
w
g
ij |V |
εL
c+ 1) εL|V | , for each arc, we have |wgij −w

′g
ij | ≤ εL

|V | . That means, there

is an error of at most εL
|V | for each arc. In the worst case, where the number of arcs in the path is

|V |−1, the total error is εL(|V |−1)
|V | , which is less than εL. Since L≤ Γ∗, we have εL< εΓ∗. Therefore,

Γ is within (1 + ε) of the optimal solution Γ∗.

We now show that the time complexity of FPTAS-EER is polynomial in the number of nodes,

the number of arcs, and 1
ε
. The time complexity of FPTAS-EER is given by the time complex-

ity of its three major parts. In the first part, the upper bound U is determined by finding the

shortest path from O to D on gasoline consumption network using Dijsktra’s algorithm (line 2) in

O(|A|+ |V | log |V |). In the second part, the algorithm reduces the gap between the upper and lower

bounds (lines 3-13). The running time of this step depends on the number of iterations and the

time complexity of Exact-EER-GC in each iteration. The time complexity of Exact-EER-GC in

iteration i is O(|V |/δi(|A|+ |V | log |V |)), where |V | is the number of rows and |V |/δi is the number

of columns based on the rounding. For each node, Exact-EER-GC checks all its adjacent nodes such

that
∑

j∈V
∑

i;(i,j)∈A 1 = |A|, and needs O(|V | log |V |) for the updates. Even though Exact-EER-GC

is a pseudo-polynomial time algorithm because its execution time depends on F , FPTAS-EER

calls Exact-EER-GC with parameter b|V |/δc + 1 as the input value instead of F leading to a

polynomial time Exact-EER-GC. FPTAS-EER adapts parameter δ based on the gap between the

upper bound and the lower bound in each iteration i such that if the gap is large, the algorithm

applies a coarse approximation, whereas if the gap becomes narrower, the algorithm applies a finer

approximation. That is, the algorithm reduces the gap faster by coarse approximations, and then

applies more precise approximations. The number of iterations is in O(log log(U/L)) by using δ

to reduce the gap. Then, the total run time of the second step is
∑

i |V |/δi(|A|+ |V | log |V |) =

(|V |2 log |V |+ |A||V |)
∑

i 1/δi, where i is in O(log log(U/L)) and
∑

i 1/δi is O(1). As a result, the

second part of the algorithm has time complexity O(|V |2 log |V |+ |A||V |). In the third part, the

algorithm calls Exact-EER-GC using the rounded values based on the determined lower bound.

The time complexity of this step is O((|A|+ |V | log |V |)|V |/ε), where |V | is the number of rows and

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
Article submitted to Transportation Science; manuscript no. 31

Figure 4 Southeast Michigan road network, 465,938 road segments (arcs), 168,806 cross sections (nodes)

|V |/ε is the number of columns based on the rounding. Thus, the time complexity of the algorithm

is O((|V |2 log |V |+ |A||V |)/ε). This concludes that the algorithm is FPTAS. �

In the following, we compare the performance of FPTAS-EER and Exact-EER-II. The time

complexity of FPTAS-EER is less than Exact-EER-II if and only if |V |
ε
<C. This is derived from

the time complexity of the Exact-EER-II algorithm and the FPTAS-EER algorithm, which are

O(C(|A|+ |V | log |V |)) and O((|V |2 log |V |+ |A||V |)/ε), respectively. This indicates that in a setting

where |V |
ε
≥ C, it is better to use the pseudo-polynomial algorithm Exact-EER-II in terms of

execution time. In addition, Exact-EER-II obtains optimal results. Note that if C is bounded and

|V | is not, it is best to use Exact-EER-II instead of FPTAS-EER.

5. Experimental Results

We extract real road network features of Southeast Michigan from data provided by NAVTEQ

using ArcGIS Desktop 10.1. Figure 4, shows the full road network of Southeast Michigan. The

extracted data from Southeast Michigan map consists of 465,938 arcs and 168,806 nodes along

with their longitudes and latitudes, speed limits, travel time, distance of road segments, etc.

The proposed algorithms are implemented in C++, and the experiments are conducted on an

Intel 3.3GHz with 48GB RAM. In this section, we describe the experimental setup and analyze

the experimental results.

5.1. Generating Multigraph Road Networks

Given the absence of gasoline and battery consumption data for any production PHEV for all

the arcs of Southeast Michigan, we adopt the following procedure for generating this data. For

estimating the gasoline consumption for different arcs of the network for a hypothetical PHEV,

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
32 Article submitted to Transportation Science; manuscript no.

Table 2 Available battery SOC in each class of OD distance

Attribute Value

OD distance (mile) 0-5 5-10 10-20 20-30 30-40 above 40

SOC (Wh) 200 1000 2000 3000 4000 5000

we rely on fuel economy (mpg) by speed (mph) plots available in the public domain for differ-

ent vehicles (Davis et al. 2012). In particular, we employ the following expression that estimates

the gasoline mode fuel economy (mpg) as a function of posted speed limit (PSL) in mph for

any road segment: 45 − 0.015(PSL− 45)
2
. The gasoline consumption for the segment can then

be calculated readily based on the length of the segment. For estimating the battery charge con-

sumption rate during electric mode of the PHEV (kWh/mile), we rely on battery consumption

rate (kWh/mile) by speed (mpg) data posted by actual users of hybrid vehicles in public domain

sites (e.g., priuschat.com (2014)). We employ the following expression to estimate the electric

mode battery charge consumption rate (kWh/mile) as a function of PSL for any road segment:

0.18581 + 0.00321(PSL)− 0.00011(PSL)
2

+ 0.0000014(PSL)
3
. The total battery charge consump-

tion for the segment can then be calculated readily based on the length of the segment.

5.2. Analysis of Results

We compare the performance of Exact-EER-I, Exact-EER-II, and FPTAS-EER on different net-

work sizes. In subsection 5.2.1, we present the results for Exact-EER-II on the whole Southeast

Michigan network. In subsection 5.2.2, we present the results for all the proposed algorithms on a

small network selected from Southeast Michigan network. The reason that we present the results

for large and small networks separately is that Exact-EER-I is not able to find the optimal results

in reasonable amount of time due to its large memory requirements, and the setting for Southeast

Michigan network is such that |V |
ε
< C for the chosen range of C, therefore, as discussed in Sec-

tion 4, we only present the results for Exact-EER-II. We present the performance of Exact-EER-I

and FPTAS-EER on a smaller network within Southeast Michigan network.

5.2.1. Large scale networks. We evaluate the performance of Exact-EER-II on actual

Southeast Michigan road network with all its 465,938 arcs and 168,806 nodes using 3,000 randomly

generated OD pairs. To analyze effects of OD pairs distance on the proposed algorithm, our tests

are executed on six different classes of OD pairs distance shown in Table 2: less than 5 miles, 5

to 10 miles, 10 to 20 miles, 20 to 30 miles, 30 to 40 miles, and more than 40 miles (the longest

distance is 59 miles). Each class consists of 500 random OD pairs. The available battery SOC (at

the start of the trip) in the classes are 200 Wh, 1000 Wh, 2000 Wh, 3000 Wh, 4000 Wh, and

5000 Wh, respectively. The selected battery SOCs are realistic for PHEVs in production currently

available in the market.

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
Article submitted to Transportation Science; manuscript no. 33

Note that, if the OD distance is within all electric range, the algorithm selects only the electric

mode for all the arcs in the path to minimize gasoline consumption. In fact, there is no point in

minimizing gasoline consumption in this scenario. The amount of gasoline consumption is always

zero in this case, and the remaining SOC is the SOC at the beginning of the trip minus the

electricity consumption of the path. It is for this reason that we choose smaller available battery

SOC for shorter distances. When the OD distance is not within all electric range, the algorithm

uses the most or all of the available SOC. In this case, the remaining SOC, at the end of the trip,

is either zero or not greater than (or equal to) the electricity consumption of any arc (i.e., weij) in

the optimal path that is traversed by gasoline mode (i.e., xij = 1). Formally, the remaining SOC is

bounded by:

min
∀(i,j)∈P∗ and xij=1

weij. (20)

That means, if the remaining SOC had been greater than the bound, it would have been used to

traverse at least one more arc by electric mode.

We compare the performance of our proposed algorithm, Exact-EER-II, with that of a greedy

based algorithm called Greedy-EER. In addition, we present the minimum gasoline consumption

without considering electric mode for the selected OD pairs. The Greedy-EER algorithm incor-

porates a greedy approach to solve the EERP as follows. It first finds the route with minimum

gasoline consumption without considering the electric mode. The route can be found by using Dijk-

stra’s algorithm on gasoline consumption network with time complexity of O(|Ag|+ |V | log |V |).

Then, the algorithm selects to run the vehicle in electric mode along the established route until the

battery SOC is depleted, and then reverts to the gasoline mode for the rest of the trip. To find an

upper bound on the solution of Greedy-EER, we need to find in the worst case how much gasoline

savings the solution of Greedy-EER can have by using the battery SOC at the beginning of the

trip. An upper bound of Greedy-EER is given by:

∆(O→D)− C

max∀(i,j)∈P
weij
w
g
ij

(21)

where P is the path with minimum gasoline consumption (i.e., ∆(O→D)) and
weij
w
g
ij

is the ratio

of the electricity consumption to gasoline consumption on an arc with worst electric machine

performance. Several production vehicles are known to currently employ this greedy approach.

While the energy management control algorithms of production PHEVs do not currently have

access to the route plan, they try to greedily claim as many miles as possible in the electric mode

before being forced to switch to the gasoline mode.

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
34 Article submitted to Transportation Science; manuscript no.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

0-5
5-10

10-20

20-30

30-40

>40G
a
s
o
lin

e
 c

o
n
s
u
m

p
ti
o
n
 (

0
.0

0
1
 g

a
llo

n
)

OD distance (miles)

Exact-EER-II
Greedy-EER
All gasoline

Figure 5 Distributions (minimum, 10 percentile, average, 90 percentile, and maximum) of the gasoline consump-

tion (0.001 gallon)

1

10

58

100

0-5
5-10

10-20

20-30

30-40

>40

E
x
e

c
u

ti
o

n
 t

im
e

 (
S

e
c
o

n
d

s
)

in
 l
o

g
 s

c
a

le

OD distance (miles)

Exact-EER-II

Figure 6 Execution time of Exact-EER-II (Seconds)

Figure 5 shows the distributions of the gasoline consumption in 0.001 gallon units obtained by

the algorithms. This figure presents the distribution of the results with minimum, 10 percentile,

average, 90 percentile, and maximum values. The results show that the range of the gasoline

consumption for 0−5 miles and 5−10 miles classes is smaller than other classes. This is due to the

fact that these two classes contain OD pairs with difference in distances within 5 miles whereas the

classes of 10−20, 20−30, and 30−40 contain OD pairs with difference in distances within 10 miles.

We observe an increase in the range again for the above 40 miles class since this class contains OD

pairs with difference in distances within 19 miles. Higher OD distance difference in a class results

in a higher range of gasoline consumption. In addition, we observe that the all gasoline algorithm

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
Article submitted to Transportation Science; manuscript no. 35

0.5

1

1.2

1.4

1.6

1.8

2

0-5
5-10

10-20

20-30

30-40

>40

N
o

rm
a

liz
e

d
 g

a
s
o

lin
e

 c
o

n
s
u

m
p

ti
o

n

OD distance (miles)

Greedy-EER
Exact-EER-II

Figure 7 Normalized gasoline consumption ratio of Greedy-EER

has a higher range of gasoline consumption in all classes compared to Exact-EER-II and Greedy-

EER. This is due to the fact that Exact-EER-II and Greedy-EER can utilize the battery SOC for

a part of the route and decrease the range of gasoline consumption in a class. The results show

that Greedy-EER can be far from the optimal solution provided by Exact-EER-II. With increase

in OD distance and battery SOC, the gap between Greedy-EER and Exact-EER-II increases. This

is due to the fact that Exact-EER-II takes into account the energy efficiency differences of the

vehicle operating modes in jointly selecting the path, and with a higher SOC the vehicle can have

more choices on the operating mode in order to reduce gasoline consumption.

Figure 6 presents the execution time of the Exact-EER-II. The execution time of Exact-EER-II

depends on the battery SOC, which is higher for longer OD distances. It is worth mentioning

that CPLEX 12 solver cannot find the optimal solution for the EERP for any of the selected OD

pairs even after 3600 seconds. Greedy-EER is a Dijkstra-based algorithm with time complexity

of O(|Ag|+ |V | log |V |). Since the time complexity of Greedy-EER depends only on the number

of arcs and nodes and not on the battery SOC C, its execution time is negligible, and we do not

present it here.

In Figure 7 and 8, we compare the gasoline consumption obtained by Exact-EER-II and Greedy-

EER. Figure 7 shows the normalized gasoline consumption of Greedy-EER and Exact-EER-II over

the optimal solution obtained by Exact-EER-II for each OD distance class, where the normalized

gasoline consumption is the ratio of the gasoline consumption obtained by Greedy-EER and the

optimal gasoline consumption (obtained by Exact-EER-II). Note that the normalized optimal

results remain the same in all classes. This figure shows how many times larger is the gasoline

consumption obtained by Greedy-EER than the optimal result for each class. In the less than five

miles class, the ratio is 1.14, which is the lowest ratio among all classes of OD pairs. This is due

to fact that the battery SOC has its lowest value (i.e., 200 Wh) leading to using electric modes

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
36 Article submitted to Transportation Science; manuscript no.

 0

 50

 100

 150

 200

 250

 300

0-5
5-10

10-20

20-30

30-40

>40

G
a

s
o

lin
e

 s
a

v
in

g
 (

0
.0

0
1

 g
a

llo
n

)

OD distance (miles)

Figure 8 Gasoline saving of Exact-EER-II compared to Greedy-EER

 0

 20

 40

 60

 80

 100

200
1000

2000
3000

4000
5000

G
a

s
o

lin
e

 s
a

v
in

g
 (

%
)

Battery SOC (Wh)

Figure 9 Percentage of gasoline saving of Exact-EER-II compared to All gasoline

on a few arcs in the selected path. As a result, the obtained results by both algorithms are close.

However, for the class of 5-10 miles, where the battery SOC is 1000, this ratio increases to 1.46.

This is due to the fact that Exact-EER-II uses electric mode on the selected path more efficiently,

and there are more arcs that are traversed by the electric mode compared to the total number

of arcs along the path. For the remaining OD pair classes, the ratio is higher than 1.27, which

shows the significant energy efficiency of our proposed algorithm. Figure 8 shows the difference of

gasoline consumption obtained by Exact-EER-II compared to that of the Greedy-EER. This value

can be interpreted as the gasoline saving when using our proposed algorithm. It is clear that with

higher battery SOC, Exact-EER-II is able to save more gasoline.

Figure 9 shows the percentage of gasoline saving obtained by Exact-EER-II compared to that of

the All gasoline due to the use of battery SOC. This figure shows how much more gasoline could

have been consumed if there was no battery SOC at the beginning of the trip. Since there is a

significant increase in the amount of battery SOC for the class of 5-10 miles compared to that of

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
Article submitted to Transportation Science; manuscript no. 37

 0

 20

 40

 60

 80

 100

 120

 140

50 100 150 200 250

G
a

s
o

lin
e

 c
o

n
s
u

m
p

ti
o

n
 (

0
.0

0
1

 g
a

llo
n

)

Battery SOC (Wh)

FPTAS-EER
Greedy-EER
All gasoline

Figure 10 Effect of battery SOC on the gasoline consumption

 1

 10

 100

 1000

50 100 150 200 250

E
x
e

c
u

ti
o

n
 t

im
e

 (
S

e
c
o

n
d

s
)

in
 l
o

g
 s

c
a

le

Battery SOC (Wh)

FPTAS-EER
Exact-EER-I
Exact-EER-II

Figure 11 Effect of battery SOC on the execution time

0-5 miles, Exact-EER-II covers more arcs of the path using electricity. In this case, 68.46% of the

path is traversed with electricity.

For all the above results, we conclude that Exact-EER-II not only provides energy efficient

solutions, but also obtains them in a reasonable amount of time. However, the execution time of

Exact-EER-II depends on the available battery SOC.

5.2.2. Small networks. We evaluate the performance of the proposed algorithms in the gen-

erated multigraph based on a selected small network with 2,000 nodes extracted from Southeast

Michigan data provided by NAVTEQ using ArcGIS Desktop 10.1.

We compare the performance of our proposed algorithms, Exact-EER-I, Exact-EER-II, and

FPTAS-EER. In addition, we present the results of the Greedy-EER (as we explained in the

previous subsection), and the minimum gasoline consumption only on the gasoline consumption

network, called All gasoline. We select randomly 100 OD pairs by considering several battery SOC

between 50,000 to 250,000 mWh. For FPTAS-EER, we set ε= 0.1.

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
38 Article submitted to Transportation Science; manuscript no.

We perform sensitivity analysis for the battery SOC parameter to analyze the effects of change in

battery SOC on gasoline consumption (Figure 10) and execution time (Figure 11) of our proposed

algorithms. Figure 10 shows the average gasoline consumption in 0.001 gallon units obtained by

FPTAS-EER, Greedy-EER, and All gasoline algorithms. For all the instances, FPTAS-EER obtains

the optimal solution, the same as that obtained by both Exact-EER-I and Exact-EER-II. Note

that the gap between gasoline consumption obtained by Greedy-EER and the optimal gasoline

consumption is low due to the small range of battery SOC and the size of the network.

Figure 11 presents the execution time of our proposed algorithms with several values of battery

SOC. This sensitivity analysis on the available battery SOC C, clearly shows that unlike Exact-

EER-I and Exact-EER-II, the performance of the FPTAS-EER does not depend on C. However,

the execution time of both exact algorithms increases by increasing the battery SOC, since they

have pseudo-polynomial time complexity in terms of the battery SOC. As we expected based on the

time complexity, Exact-EER-I has a higher execution time than that of Exact-EER-II. In addition,

FPTAS-EER performs much faster than Exact-EER-II when the network size is small.

We also perform sensitivity analysis for the error bound parameter ε. The execution time of

FPTAS-EER for values of ε between [0.01,0.1] and battery SOC of 250,000 mWh is presented in

Figure 12. The results show that by increasing the error bound, the execution time of FPTAS-EER

decreases. In addition, the figure shows that the execution time of FPTAS-EER is polynomial in 1
ε
.

From all the above results, we conclude that applying our proposed energy-efficient routing algo-

rithms over the current static energy management systems can lead to significant fuel consumption

savings (reaching over 25% for OD distances exceeding 5 miles). For example, as shown in the

results, our proposed algorithms can save over 0.25 gallon of gasoline compared to the currently

employed static algorithm for one long trip (more than 40 miles). Note that this improvement

depends on the type of production of PHEVs, terrain geometry, traffic dynamics, payload, etc.

These features can be captured into our proposed multigraph fuel consumption network as a pre-

possessing step for the routing algorithms. We suggest that based on the size of the network and

the SOC, one can incorporate Exact-EER-II or FPTAS-EER for energy-efficient route planning of

PHEVs.

6. Conclusion

In this paper, we introduced the Energy-Efficient Routing problem (EERP) for Plug-in Hybrid

Electric Vehicles. We presented the hardness proof of the EERP. We then proposed two exact

pseudo-polynomial algorithms and an FPTAS algorithm to solve the EERP.

From an algorithmic perspective, the proposed two-phase approaches improve the state of the

art in optimally solving shortest path problems on general constrained multi-graph networks. In

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
Article submitted to Transportation Science; manuscript no. 39

 0

 5

 10

 15

 20

 25

 30

 35

0.01 0.03 0.05 0.07 0.1

E
x
e

c
u

ti
o

n
 t

im
e

 o
f

F
P

T
A

S
-E

E
R

 (
S

e
c
o

n
d

s
)

 ε

Figure 12 Effect of ε on execution time of FPTAS-EER

the context of vehicle routing, this is the first study to take into account energy efficiency difference

of different operating modes of PHEVs during route planning, which is a high level power-train

energy management procedure. Experimental evaluations of the proposed algorithms on Southeast

Michigan road network demonstrate significant fuel economy improvement potential (exceeding

25% improvement in fuel efficiency over currently common greedy methods for trips exceeding 5

miles in distance). In addition, the results show the computational efficiency and accuracy of the

proposed algorithms.

It would be interesting to extend this research by considering the combination of a lower level

energy management system (powertrain energy management) and our proposed higher level routing

algorithms on an actual PHEV in production. Our estimate is that such a combined approach would

further improve the fuel consumption savings. Another interesting extension can be incorporating

stochastic features into the problem. However, this extension will make the problem strongly NP-

hard, thus, incorporating the stochasticity in the solution methods would be a challenge on large-

scale road networks.

References

Ahuja, R.K., T.L. Magnanti, J.B. Orlin. 1993. Network flows: theory, algorithms, and applications. Prentice

Hall, Englewood Cliffs, NJ.

Almuhtady, A., S. Lee, E. Romeijn, M. Wynblatt, J. Ni. 2014. A degradation-informed battery-swapping

policy for fleets of electric or hybrid-electric vehicles. Transportation Science 48(4) 609–618.

Bay, M., S. Limbourg. 2015. Tsp model for electric vehicle deliveries, considering speed, loading and road

grades. Proc. of the 6th International Workshop on Freight Transportation and Logistics. 439–442.

Bazaraa, M.S., J.J. Jarvis, H.D. Sherali. 2011. Linear programming and network flows. Wiley Online Library.

Bernstein, A. 2012. Near linear time (1+ ε)-approximation for restricted shortest paths in undirected graphs.

Proc. of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms. 189–201.

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
40 Article submitted to Transportation Science; manuscript no.

Bertsekas, D.P. 1991. Linear network optimization: algorithms and codes. MIT Press, Cambridge.

Chen, S., M. Song, S. Sahni. 2008. Two techniques for fast computation of constrained shortest paths.

IEEE/ACM Transactions on Networking 16(1) 105–115.

Davis, S.C., S.W. Diegel, R.G. Boundy. 2012. Transportation Energy Data Book: Edition 31 . Oak Ridge

National Laboratory, Oak Ridge, TN.

Di Puglia Pugliese, L., F. Guerriero. 2013. A survey of resource constrained shortest path problems: Exact

solution approaches. Networks 62(3) 183–200.

Diakonikolas, I., M. Yannakakis. 2009. Small approximate pareto sets for biobjective shortest paths and

other problems. SIAM Journal on Computing 39(4) 1340–1371.

Dijkstra, E.W. 1959. A note on two problems in connexion with graphs. Numerische mathematik 1(1)

269–271.

Dumitrescu, I., N. Boland. 2003. Improved preprocessing, labeling and scaling algorithms for the weight-

constrained shortest path problem. Networks 42(3) 135–153.

Eisner, J., S. Funke, S. Storandt. 2011. Optimal route planning for electric vehicles in large networks. Proc.

of the 25th Assoc. Advancement Artificial Intell. Conf . 1108–1113.

Ergun, F., R. Sinha, L. Zhang. 2002. An improved fptas for restricted shortest path. Information Processing

Letters 83(5) 287–291.

Garey, M.R., D.S. Johnson. 1979. Computers and intractability , vol. 174. Freeman, New York.

Garroppo, R.G., S. Giordano, L. Tavanti. 2010. A survey on multi-constrained optimal path computation:

Exact and approximate algorithms. Computer Networks 54(17) 3081–3107.

Glerum, A., L. Stankovikj, M. Thémans, M. Bierlaire. 2014. Forecasting the demand for electric vehicles:

accounting for attitudes and perceptions. Transportation Science 48(4) 483–499.

Goel, A., K.G. Ramakrishnan, D. Kataria, D. Logothetis. 2001. Efficient computation of delay-sensitive

routes from one source to all destinations. Proc. of the 20th Annual Joint Conference of the IEEE

Computer and Communications Societies. 854–858.

Gong, Q., Y. Li, Z.R. Peng. 2008. Trip-based optimal power management of plug-in hybrid electric vehicles.

IEEE Transactions on Vehicular Technology 57(6) 3393–3401.

Hassin, R. 1992. Approximation schemes for the restricted shortest path problem. Mathematics of Operations

Research 17(1) 36–42.

Hybrid Vehicle Timeline. 2012. URL http://www.hybridcenter.org/hybrid-timeline.html.

Ibarra, O.H., C.E. Kim. 1975. Fast approximation algorithms for the knapsack and sum of subset problems.

Journal of the ACM 22(4) 463–468.

Johnson, Donald B. 1977. Efficient algorithms for shortest paths in sparse networks. Journal of the ACM

24(1) 1–13.

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
Article submitted to Transportation Science; manuscript no. 41

Kellerer, H., U. Pferschy, D. Pisinger. 2004. Knapsack Problems. Springer.

Kieckhäfer, K., T. Volling, T.S. Spengler. 2014. A hybrid simulation approach for estimating the market

share evolution of electric vehicles. Transportation Science 48(4) 651–670.

Lin, Z. 2014. Optimizing and diversifying electric vehicle driving range for us drivers. Transportation Science

48(4) 635–650.

Lorenz, D.H., A. Orda. 1998. Qos routing in networks with uncertain parameters. IEEE/ACM Transactions

on Networking 6(6) 768–778.

Lorenz, D.H., D. Raz. 2001. A simple efficient approximation scheme for the restricted shortest path problem.

Operations Research Letters 28(5) 213–219.

Lu, G., N. Sadagopan, B. Krishnamachari, A. Goel. 2005. Delay efficient sleep scheduling in wireless sensor

networks. Proc. of the IEEE INFOCOM 24th Annual Joint Conference of the IEEE Computer and

Communications Societies. 2470–2481.

Mak, H., Y. Rong, Z.M. Shen. 2013. Infrastructure planning for electric vehicles with battery swapping.

Management Science 59(7) 1557–1575.

Mashayekhy, L., M. Nejad, D. Grosu. 2015. A PTAS mechanism for provisioning and allocation of hetero-

geneous cloud resources. IEEE Transactions on Parallel and Distributed Systems 26(9) 2386–2399.

Mehlhorn, K., M. Ziegelmann. 2000. Resource constrained shortest paths. Proc. of the 8th Annual European

Symposium on Algorithms. 326–337.

Murgovski, N., L. Johannesson, J. Sjöberg. 2013. Engine on/off control for dimensioning hybrid electric

powertrains via convex optimization. IEEE Transactions on Vehicular Technology 62(7) 2949–2962.

NAVTEQ. . URL http://www.navteq.com/.

Nejad, M., L. Mashayekhy, R. Chinnam, D. Grosu. 2016. Online scheduling and pricing for electric vehicle

charging. IIE Transactions .

Phillips, C.A. 1993. The network inhibition problem. Proc. of the 25th annual ACM symposium on Theory

of computing . 776–785.

Plotkin, S., D. Santini, A. Vyas, J. Anderson, M. Wang, D. Bharathan, J. He. 2002. Hybrid electric vehicle

technology assessment: methodology, analytical issues, and interim results. Tech. rep., Argonne National

Lab., IL (US).

priuschat.com. 2014. URL {http://priuschat.com/threads/toyota-prius-c-53-mpg-city-46-mpg-hwy-under-19-000.

102114/page-15}.

Pugliese, L.D.P., F. Guerriero. 2013. A reference point approach for the resource constrained shortest path

problems. Transportation Science 47(2) 247–265.

Raz, D., Y. Shavitt. 2000. Optimal partition of qos requirements with discrete cost functions. Proc. of the

IEEE INFOCOM 19th Annual Joint Conference of the IEEE Computer and Communications Societies.

613–622.

Nejad et al.: Optimal Routing for Plug-in Hybrid Electric Vehicles
42 Article submitted to Transportation Science; manuscript no.

Romm, J.J., A.A. Frank. 2006. Hybrid vehicles gain traction. Scientific American 294(4) 72–79.

Sachenbacher, M., M. Leucker, A. Artmeier, J. Haselmayr. 2011. Efficient energy-optimal routing for electric

vehicles. Proc. of the Assoc. Advancement Artificial Intell. Conf . 1402–1407.

Sahni, S.K. 1976. Algorithms for scheduling independent tasks. Journal of the ACM 23(1) 116–127.

Salmasi, F.R. 2007. Control strategies for hybrid electric vehicles: Evolution, classification, comparison, and

future trends. IEEE Transactions on Vehicular Technology 56(5) 2393–2404.

Santos, L., J. Coutinho-Rodrigues, J.R. Current. 2007. An improved solution algorithm for the constrained

shortest path problem. Transportation Research Part B: Methodological 41(7) 756–771.

Schneider, M., A. Stenger, D. Goeke. 2014. The electric vehicle-routing problem with time windows and

recharging stations. Transportation Science 48(4) 500–520.

Sciarretta, A., L. Guzzella. 2007. Control of hybrid electric vehicles. IEEE Control systems 27(2) 60–70.

Sherali, H.D., J.M. Hill. 2009. Reverse time-restricted shortest paths: Application to air traffic management.

Transportation Research Part C: Emerging Technologies 17(6) 631–641.

Sioshansi, R. 2012. Or forum-modeling the impacts of electricity tariffs on plug-in hybrid electric vehicle

charging, costs, and emissions. Operations Research 60(3) 506–516.

Sweda, T.M., I.S. Dolinskaya, D. Klabjan. 2014. Optimal recharging policies for electric vehicles. Trans-

portation Science, forthcoming 15(6) 2015.

Sweda, T.M., D. Klabjan. 2012. Finding minimum-cost paths for electric vehicles. Proc. of the IEEE Intl.

Electric Vehicle Conf . 1–4.

Vazirani, V.V. 2004. Approximation algorithms. Springer.

Warburton, A. 1987. Approximation of pareto optima in multiple-objective, shortest-path problems. Oper-

ations Research 35(1) 70–79.

Woeginger, G.J. 2000. When does a dynamic programming formulation guarantee the existence of a fully

polynomial time approximation scheme (fptas)? INFORMS Journal on Computing 12(1) 57–74.

Xi, X., R. Sioshansi, V. Marano. 2013. Simulation–optimization model for location of a public electric vehicle

charging infrastructure. Transportation Research Part D: Transport and Environment 22(5) 60–69.

