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Abstract—Computing Nash equilibria is a very important problem in strategic analysis of markets, conflicts, and resource allocation.
Unfortunately, computing these equilibria even for moderately sized games is computationally expensive. To obtain lower execution
times it is essential to exploit the parallel processing capabilities offered by the currently available massively parallel architectures. To
address this issue, we design a GPU-based parallel support enumeration algorithm for computing Nash equilibria in bimatrix games.
The algorithm is based on a new parallelization method which achieves high degrees of parallelism suitable for massively parallel GPU
architectures. We perform extensive experiments to characterize the performance of the proposed algorithm. The algorithm achieves
significant speedups relative to the OpenMP and MPI-based parallel implementations of the support enumeration method running on
a cluster of multi-core computers.
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1 INTRODUCTION

GAME theory studies the interaction between strate-
gic decision-makers [1]. Over the past fifty years,

the developments in game theory and computing have
provided researchers with methods and tools that allow
them to better understand the behavior of agents in
strategic situations. Arguably, the most famous equi-
librium concept for noncooperative games is the Nash
equilibrium [2], [3], the solution of a game from which
no player can improve her payoff by deviating. This
equilibrium can be used as a prediction of the outcome
of noncooperative games. The Nash equilibrium concept
has been used in diverse fields such as economics,
biology, politics, and computer science to understand the
behavior of agents in competing situations.
Understanding real world strategic interactions usu-

ally requires the modeling of a large number of agents
having a large number of choices or actions. For in-
stance, computers worldwide requesting resources over
a given time interval on the Internet can be modeled as a
large game, where the computation required to solve for
equilibrium is intractable. The best approach to compute
Nash equilibria for such large games relies on the power
of parallelism.
The ability to leverage parallel systems for solving

large, complex problems is certainly of interest to any
researcher who is investigating large scale games. With
access to hundreds of computing cores on a single
device, Graphics Processing Units (GPUs) are suitable
platforms for massively parallel execution, low cost
processing, and fast implementation. In this paper, we
design a GPU-based parallel algorithm for computing
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all Nash equilibria in bimatrix games (i.e., nonzero-sum
two-player noncooperative games).
The existing methods and algorithms for solving bi-

matrix games can be classified into two categories: (i)
algorithms for computing a sample Nash equilibrium, and
(ii) algorithms for computing all Nash equilibria.

One of the first algorithms for computing a sample
Nash equilibrium in bimatrix games was proposed by
Lemke and Howson [4]. The algorithm is a complemen-
tary pivoting algorithm that solves the linear comple-
mentarity problem corresponding to the bimatrix game.
Savani and von Stengel [5] showed that it is possible
to create bimatrix games in such a way that in the best
case it takes exponential time to find a Nash equilibrium
using the Lemke-Howson algorithm [5]. The complexity
of computing Nash equilibria has been investigated by
Daskalakis [6] who showed that the problem is PPAD-
complete, where PPAD stands for Polynomial Parity
Arguments on Directed Graphs. It is not known whether
a Nash equilibrium can be found in polynomial time in
the worst case [7].
The simplest algorithm for finding all Nash equilibria

is the support enumeration algorithm. This algorithm is
searching all the possible pairs of supports of mixed
strategies and checks if they satisfy the Nash equilib-
rium conditions. It takes exponential time since the total
number of pairs that need to be explored is exponential
in the number of actions. This method is described
in [1], [8]. A Mathematica implementation of the support
enumeration algorithm is described in [9]. Gambit [10]
which is a software tool for solving games also im-
plements this algorithm. Computing all Nash equilibria
can also be based on enumerating the vertices of the
best response polytopes of the two players. This method
was proposed by Mangasarian [11] and implemented
in Gambit [10]. Avis [12] designed the lexicographical
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reverse search library, lrslib, for vertex enumeration of
polyhedra, which has recently been used in a sequential
algorithm for finding Nash equilibria in bimatrix games.
ZRAM [13] was developed by Marzetta as a portable
library for parallel search using an old implementation
of lrs library. However, it does not appear to have been
maintained in the last several years to reflect changes
and optimizations in lrslib.
The standard software package for generating games

to support the performance analysis of game solving
algorithms is GAMUT [14]. Gambit [10] is a collection
of software tools created to analyze games. Gambit
implements almost all the algorithms described above.
However, the implementation of these algorithms is
sequential.
Results such as those of Datta [15] promote analytic

developments. For instance, it has been shown that any
set of Nash equilibria is equivalent to a semi-algebraic
set for representing the probability of agents selecting
actions. Through these results, existing computer algebra
tools may be used to solve for equilibria. In particular,
Datta’s investigation of using computer algebra [15] in
games surveys two methods: Gröbner bases method,
which uses geometric information to solve a system
of polynomial equations; and, polynomial homotopy
continuation, which transforms a system representative
set of equations into an approximate system set of
equations, where the solutions to the approximations
are easier to compute. Govindan and Wilson [16] pro-
posed a robust method for finding equilibria in finite
games by using topological properties and combining
path-following algorithms. von Stengel [17] provided a
comprehensive survey of methods for computing Nash
equilibria in finite games.
Parallel algorithms for computing Nash equilibria

have been investigated by Widger and Grosu [18],
[19], [20]. The closest work to ours is by Widger and
Grosu [18] who proposed a parallel support enumeration
algorithm for finding all equilibria in bimatrix games
that was specifically designed for message-passing ar-
chitectures. Widger and Grosu [19] also proposed a
message-passing parallel algorithm for computing all
Nash equilibria in bimatrix games based on vertex enu-
meration. In the vertex enumeration method, all vertices
of both players polytopes are enumerated and checked
to determine if the vertices are completely labeled and
the corresponding mixed Nash equilibrium is produced.
Lastly, Widger and Grosu [20] proposed a parallel algo-
rithm for computing Nash equilibria in n-player games
based on polynomial continuation methods. There exist
very few research papers investigating the use of GPU-
based systems for solving game theory problems. Peters
et al. [21] leveraged GPU-based platforms to model
and investigate behavioral strategies in evolutionary
games. Leskinen et al. [22] used GPU processing to find
Nash equilibria of a specific multi-objective optimization
problem. Bleiweiss [23] exploited the massively paral-
lel GPU architecture to solve zero-sum combinatorial

games. None of these works provided a general GPU-
based parallel algorithm for finding all Nash equilibria
in bimatrix games.

1.1 Our Contributions

We design a GPU-based parallel support enumeration
algorithm for computing all Nash equilibria in bimatrix
games. The design of the algorithm is based on a new
parallelization method which exploits the nature of the
problem in order to achieve high degrees of parallelism
suitable for massively parallel GPU architectures. The
design differs from the existing parallel support enu-
meration algorithms [18] since it exploits the maximum
possible degree of parallelism available. To the best of
our knowledge, this is the first parallel algorithm for
computing Nash equilibria specifically designed for GPU
platforms presented in the literature.

1.2 Organization

The rest of the paper is organized as follows. In Section 2,
we introduce the necessary game theoretic concepts and
present the support enumeration method for computing
Nash equilibria. In Section 3, we describe the GPU
platform and the new parallelization method used in the
design of our GPU-based parallel support enumeration
algorithm. In Section 4, we present the proposed GPU-
based parallel support enumeration algorithm. In Sec-
tion 5, we analyze the proposed algorithm. In Section 6,
we investigate the performance of the proposed algo-
rithm by performing extensive experiments. In Section 7,
we draw conclusions and present directions for future
work.

2 BIMATRIX GAMES AND EQUILIBRIA
COMPUTATION

In this section, we present the support enumera-
tion method for solving Nash equilibria in bimatrix
games [1], [24]. A bimatrix game [3] is a finite, two-
person, non-zero-sum, non-cooperative game.
Definition 1 (Bimatrix game): A bimatrix game Γ(A,B)

consists of:

• A set of two players: {Player 1, Player 2}.
• A finite set of actions for each player:

M = (s1, s2, . . . , sm), Player 1’s set of actions;
N = (t1, t2, . . . , tn), Player 2’s set of actions.

• Payoff matrices A, B ∈ R
m×n corresponding to

Player 1 and Player 2, respectively.

A mixed strategy for a player is a probability distribu-
tion on the set of player’s actions. The mixed strategy
of Player 1 is a m-vector, x = (x1, x2, . . . , xm), where
xi is the probability of Player 1 choosing action si. The
mixed strategy of Player 2 is a n-vector, y = (y1, y2, . . . ,
yn), where yj is the probability of Player 2 choosing
action tj . A pure strategy is a strategy where a player
chooses a single action with probability 1 to use against
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the other player. We denote by Mx the support of mixed
strategy x, which is the set of actions having positive
probability in x, that is, Mx = {si|xi > 0}. Similarly, we
denote by Ny the support of mixed strategy y, which is
the set of actions having positive probability in y, that
is, Ny = {tj |yj > 0}.
A best response of Player 1 to the mixed strategy y of

Player 2 is a mixed strategy x that maximizes Player 1’s
expected payoff, xT Ay. Similarly, the best response of
Player 2 to the mixed strategy x of Player 1 is the mixed
strategy y that maximizes Player 2’s expected payoff,
xT By.
The objective of both players is to choose a strategy

resulting in the highest payoff. A common solution for
noncooperative games is the Nash Equilibrium, which
is guaranteed to exist for any finite game [3]. Nash
equilibrium for a bimatrix game is defined as the pair
of strategies (x, y), where x and y are the best responses
to each other. The following theorem characterizes the
Nash equilibria for bimatrix games [17].
Theorem 1 (Nash Equilibrium): The mixed strategy pair

(x,y) is a Nash equilibrium of Γ(A,B) if and only if the
following two conditions are satisfied,

∀si ∈ Mx, (Ay)i = u = max
q∈M

{(Ay)q} (1)

∀tj ∈ Ny, (xT B)j = v = max
r∈N

{(xT B)r} (2)

The first condition ensures that a mixed strategy x of
Player 1 is a best response to mixed strategy y of Player 2,
that is, if all pure strategies si in the support of x are best
responses to mixed strategy y. The second condition is
the best response condition for Player 2.
In this paper, we are considering only non-degenerate

games. These are games in which no mixed strategy
having the support of size k has more than k pure best
responses. A useful property of non-degenerate games is
that their Nash equilibria are given by strategies having
supports of equal size [17].
The support enumeration method consists of enumer-

ating all possible pairs of supports (Mx, Ny) of mixed
strategies, where Mx ⊂ M and Ny ⊂ N , and checking
the Nash equilibrium conditions given in Theorem 1 for
each pair of supports. For the pair of supports (Mx, Ny)
of mixed strategies (x, y), the method involves solving
the following equations:

∑

i∈Mx

xiBij = v, ∀j ∈ Ny (3)

∑

i∈Mx

xi = 1 (4)

and
∑

j∈Ny

yjAij = u, ∀i ∈ Mx (5)

∑

j∈Ny

yj = 1 (6)

Algorithm 1 SEQ-SE(A, B)
1: Input: Player 1 payoff, Player 2 payoff (A, B)
2: Output: Set of equilibria (E)
3: E = ∅
4: q = min(m, n)
5: for k = 1, . . . , q do
6: for each (Mx, Ny), Mx ⊆M, Ny ⊆ N, |Mx| = |Ny | = k do
7: Solve:
8:

∑

i∈Mx
xiBij = v, ∀j ∈ Ny

9:
∑

i∈Mx
xi = 1

10:
∑

j∈Ny
yjAij = u, ∀i ∈Mx

11:
∑

j∈Ny
yj = 1

12: if xi, yj ≥ 0, ∀ i, j and x, y satisfy Theorem 1 then
13: E = E ∪ (x, y)

14: output E

Formally, the set of equations (3) and (4) determines
the strategy x from support set Mx of Player 1 that
makes Player 2 indifferent among playing the strategies
in Ny . Similarly, equations (5) and (6) determine the
strategy y from support set Ny of Player 2 that makes
Player 1 indifferent among playing the strategies in Mx.
Any solution (x, y) meeting all these conditions is a
candidate for the Nash equilibrium. Once the candidate
solution for Nash equilibrium is determined the method
checks if all the components of x and y are non-negative
and if all the pure strategies in the supports yield the
same maximum payoff. According to Theorem 1, if these
conditions are satisfied the candidate solution (x, y) is a
Nash equilibrium.

The sequential support enumeration algorithm, SEQ-
SE, given in Algorithm 1, implements the support enu-
meration method described above. The algorithm gen-
erates all possible pairs of supports having the same
size q, where q = 1, . . ., min(m,n) (Lines 4-6). For each
generated pair of supports of equal size the algorithm
determines the candidate mixed strategy (x, y) by solv-
ing the system of linear equations given by equations (3)
to (6) (Lines 8-11). If the system of equations does not
have a solution, then no Nash equilibrium is possible for
that pair of supports. If the system has (x, y) as a unique
solution then, the algorithm checks that xi, i = 1, . . . ,m,
and yj , j = 1, . . . , n, are non-negative and that all pure
strategies in the supports yield equal and maximum
payoff (Line 12). If a Nash equilibrium is found, it is
included in the set of Nash equilibria, denoted by E
(Line 13).

The complexity of SEQ-SE has been shown to be
O((n + m)

3
( m+n

n )), where m > n [18]. This results from
the complexity of solving the system of linear equa-
tions in O((n + m)

3
) for each of the O(( m+n

n )) possible
strategy pairs of the two players. For square games
(where m = n), the time complexity of SEQ-SE becomes
O(n34n).

Example. To show how the support enumeration algo-
rithm works, we consider the following bimatrix game
as an example:



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2014 4

L M R
T 5,3 0, 0 0,1
B 0,0 3, 5 1,3

(7)

Player 1 is the row player with two available actions,
T and B, while Player 2 is the column player with three
actions, L, M and R. The entries in the table represent
the payoffs of Player 1 and Player 2, respectively. As
a result, Player 1 and Player 2 payoff matrices are as
follows:

A =

[

5 0 0
0 3 1

]

, B =

[

3 0 1
0 5 3

]

. (8)

Since m = 2 and n = 3, the support enumeration
algorithm explores the mixed strategies of support size
k = 1 and k = 2. It first explores the supports of
size 1 which give the pure strategy Nash equilibria of the
game. This game has two pure strategy Nash equilibria
given by ((1, 0), (1, 0, 0)) and ((0, 1), (0, 1, 0)).

Next, the support enumeration algorithm explores the
mixed strategies with support size 2. There are three pos-
sible pairs of mixed strategies with support size 2 that
are explored, ((x1, x2), (y1, y2, 0)), ((x1, x2), (y1, 0, y3)),
and ((x1, x2), (0, y2, y3))

For the first pair of mixed strategies the algorithm
solves the following equations: 3x1 = 5x2; x1 + x2 = 1
and 5y1 = 3y2; y1 + y2 = 1. The solution to these
equations is: x1 = 5/8, x2 = 3/8 and y1 = 3/8,
y2 = 5/8. The vector of expected payoffs to Player 2 is
xT B = (15/8, 15/8, 14/8). The best response conditions
from Theorem 1 are satisfied, and thus, the mixed strat-
egy pair ((5/8, 3/8), (3/8, 5/8, 0)) is a Nash equilibrium
of the bimatrix game.

For the second pair of mixed strategies, the algorithm
solves the following equations: 3x1 = x1+3x2; x1+x2 = 1
and 5y1 = y3; y1+y3 = 1. The solution to these equations
is: x1 = 3/5, x2 = 2/5 and y1 = 1/6, y3 = 5/6. The vector
of expected payoffs to Player 2 is xT B = (9/5, 10/5, 9/5).
The best response conditions from Theorem 1 are not
satisfied because Player 2’s payoffs corresponding to
y1 and y3 are not maximal. Thus, there is no mixed
Nash equilibrium corresponding to the considered pair
of strategies.

For the third pair of mixed strategies the algorithm
solves the following equations: 5x2 = x1+3x2; x1+x2 = 1
and 0 = 3y2 + y3; y2 + y3 = 1. The solution to these
equations is: x1 = 2/3, x2 = 1/3 and y2 = −1/2, y3 = 3/2.
The vector y is not a vector of probabilities, and thus,
there is no mixed Nash equilibrium corresponding to
the considered pair of strategies.

The game considered in this example has two pure
Nash equilibria given by ((1, 0), (1, 0, 0)) and ((0, 1), (0,
1, 0)), and one mixed strategy Nash equilibrium given
by ((5/8, 3/8), (3/8, 5/8, 0)).

3 GPU-BASED PARALLEL SUPPORT
ENUMERATION

In this section, we introduce the GPU platform and
present the parallelization method used in the design of
our proposed GPU-based parallel support enumeration
algorithm.

3.1 GPU Platform

The GPU device uses streaming multiprocessors suited
for parallel tasks. This streaming architecture follows the
Single Instruction Multiple Data (SIMD) model, making
it ideal for problems requiring large data sets and/or
large number of computations.
The Compute Unified Device Architecture (CUDATM)

is a parallel computing platform that uses the graphics
processing unit to increase computing performance [25].
The data parallel computations are performed by call-
ing a method from the CPU that hosts the GPU de-
vice known as a kernel function. Processing threads
are created and grouped together in blocks. A block is
executed by the GPU scheduler in subsets of parallel
threads (known as a warp). Each block and thread have
a unique index. CUDATMmaintains built-in variables
threadIdx.x and blockIdx.x to identify these in-
dices. The GPU memory consists of three major types,
global and shared memory. Information placed in the
GPU global memory can be accessed by the GPU and
the CPU. Global memory hosts the kernel method and is
accessible to the threads. Due to the overhead induced by
data transfers, minimizing the accesses to global memory
should be considered when designing GPU programs.
A special type of global memory is the constant mem-
ory, which is used for storing global constants. Shared
memory is local to each streaming multiprocessor and
can be accessed by all threads within the same block.
Shared memory accesses are multiple times faster than
global accesses. Thousands of threads can be scheduled
efficiently taking advantage of the available parallelism
through the device load balancing mechanism. We or-
ganize the functions we use in the proposed algorithms
presented in Section 4 as either being callable from the
host machine and/or the GPU device. These functions
have the following type qualifiers: host (callable from the
host machine), global (callable from the host to the device,
i.e., kernel function), and device (callable from the GPU
device).

3.2 Parallelization Method

In order to illustrate our parallelization method we con-
sider a particular bimatrix game in which both players
have four actions, that is, a 4-action bimatrix game.
Figure 1 shows the 4-action game with actions A, B,
C and D for each player. While there are four actions
in the game, the support size limits the number of
actions available to each player. For support of size 1,
both players are limited to choosing only one action
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Fig. 1: A 4-action bimatrix game.

with a positive probability (probability 1 in this case).
For support of size 2, both players may choose from
two of the four actions with positive probabilities. For
support of size 3, both players may choose from three
of the four actions with positive probabilities, and for
support of size 4, both players may choose from all four
actions in the game with positive probabilities. As an
example, in the case of support of size 3, Player 1 may
choose actions A, B, and C with positive probabilities,
and Player 2 may choose actions B, C, and D also with
positive probabilities. Here, the action combinations (A,
B, C) and (B, C, D) make up the supports of the mixed
strategies of the two players.

To organize all possible combinations of four actions,
we identify the support elements using support keys. Sup-
port keys are boolean arrays that indicate those actions
that are available to the player. The support keys are
shown next to the array of actions in Figure 1. Support
keys, σi

j , are organized by support size i and index j,
which refers to the order in which they are created (i.e.,
the lexicographical order). In Figure 1, Player 1’s support
is identified by the support key σ3

3 , while Player 2’s
support is identified by the support key σ3

0 . An entry
of 0 in σi

j specifies that the corresponding action is not
part of the support, while an entry of 1 specifies that the
action is part of the support.

There is a finite number of ways to produce sup-
ports identified by support keys when considering all
arrangements of the boolean value entries for a given
support size. Figure 2 shows all support key arrange-
ments for a 4-action bimatrix game grouped by support
size. For support of size 1, there are four support keys,
(σ1

0 , . . . , σ
1
3); for support of size 2, there are six support

keys, (σ2
0 , . . . , σ2

5); for support of size 3, there are four
support keys, (σ3

0 , . . . , σ3
3), and for support of size 4, there

is only one support key, (σ4
0).

We order the support keys according to the support
size and store them in an array Θk, where k is the size
of the support. For the game given in Figure 1, we have
four support arrays, Θ1 to Θ4. The proposed algorithm
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Fig. 2: Support keys for a 4-action game.

will access these arrays of support keys Θk in parallel
to compute Nash equilibria. To do so, the proposed
algorithm identifies every possible pair of both player’s
support elements and processes these pairs to determine
the expected payoff solutions in parallel. The resulting
solutions are the player strategies; two vectors x and y
where their components are the probabilities of selecting
an action identified by the support keys.
Using the 4-action bimatrix game as an example, the

number of pairs that need to be processed is 69; that is, 16
pairs corresponding to supports of size 1; 36 correspond-
ing to supports of size 2; 16 corresponding to supports of
size 3; and one pair corresponding to support of size 4.
A serial implementation of the algorithm would have to
compute the 69 pairs iteratively.
The existing parallel implementation of the support

enumeration method [18] was designed for message-
passing systems and involves a coarse-grained decompo-
sition. That is, each processor is assigned a set of support
pairs in a round-robin fashion starting with the smallest
size supports and ending with the largest size supports.
Each processor checks all the pairs of supports in the
assigned set sequentially.
Our proposed GPU-based parallel support enumera-

tion algorithm exploits the maximum degree of paral-
lelism available by using a fine-grained decomposition
as follows. Each block of threads is assigned a support
element (identified by its support key) from the set of
Player 1’s supports. Blocks, bi

j , are organized by sup-
port size i and index j. When a block is assigned an
element from Player 1’s support, operations in the pre-
kernel execution phase generate the number of threads
needed and each thread is assigned a support pair
as shown in Figure 3. Threads, tij,k are organized by
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Fig. 3: Block and thread distribution for supports of size 3 (4-action game).

support size i, block j to which the thread belongs, and
index k of the thread in the block. Threads are then
responsible for computing the strategies for Players 1
and 2, where Player 1 chooses a support element to
play against Player 2’s choice of support element. Thus,
each thread will be responsible for processing a single
pair of supports. For instance, thread t32,1 in Figure 3,
calculates the strategy for Player 1 choosing a support
element identified by support key σ3

2 and the strategy
for Player 2 choosing a support element identified by
support key σ3

1 . The result from the thread execution
is a 2-tuple of candidate mixed strategies (x, y) that is
checked for the Nash equilibrium conditions given in
Theorem 1.

4 GPU-BASED PARALLEL SUPPORT ENU-
MERATION ALGORITHM

In this section, we design a GPU-based parallel algo-
rithm for computing Nash equilibria in bimatrix games
using the support enumeration method. The main algo-
rithm is GPU-SE which utilizes three functions called
from the host machine, Generate, Pure, and Mixed.
Generate is the function that generates the array Θk of
support keys for support size k on the host machine.
Pure is the function which computes the pure Nash
equilibria. It is a kernel function with the global type
qualifier. Mixed is the function which computes the
mixed Nash equilibria, also a global kernel function.

4.1 GPU-SE: Parallel Support Enumeration

The GPU-SE function, presented in Algorithm 2, is
responsible for calling all functions from the host ma-
chine. Its input parameters are the two player’s payoff
arrays A and B. The output E is a container which

Algorithm 2 host GPU-SE(A, B)
1: Input: Player 1 payoff, Player 2 payoff (A, B)
2: Output: Set of equilibria (E)
3: E = ∅
4: q = min(m, n)
5: Θ = Generate(1, q)
6: E = Pure(A, B, q, Θ)
7: for k = 2, . . . , q do
8: Θ = Generate(k, q)
9: E = E ∪ Mixed(A, B, k, q, Θ)
10: output E

stores all Nash equilibria. The container E is used for
transferring solutions from the GPU to the host. GPU-
SE finds the minimum number of actions in the game
(Line 4). This ensures that both players choose from the
same number of actions. In Lines 5 and 8, Θ is the
support key array that identifies all possible supports for
a given support size. The pure strategy Nash equilibria
are computed by calling Pure (Line 6), while the mixed
strategy Nash equilibria are computed by calling Mixed
for each support size (Lines 7-10).

Algorithm 3 host Generate(k, q)
1: Input: Support size, Number of actions (k, q)
2: Output: Array of support keys for support size k (Θk)
3: for i = 0, . . . , q − 1 do
4: aux[i] = 0
5: for i = (q − k), . . . , q − 1 do
6: aux[i] = 1
7: i = 0
8: repeat
9: for j = 0, . . . , q − 1 do
10: Θk[q · i + j] = aux[j]
11: [flag, aux] = next(q, aux)
12: i++
13: until (flag)
14: return Θk
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Algorithm 4 global Pure(A, B, q, Θ)
1: Input: Player 1 payoff, Player 2 payoff, Number of actions, Array

of support keys (A, B, q, Θ)
2: Output: Set of pure equilibria (Ep)
3: Ep = ∅
4: for i = 0, . . . , q − 1 do
5: x[i], y[i], p1[i], p2[i] = 0
6: idx, idy = 0
7: for i = 0, . . . , q − 1 do
8: x[i] = Θ[q · blockIdx.x + i]
9: for i = 0, . . . , q − 1 do

10: for j = 0, . . . , q − 1 do
11: p1[i] += x[j] · B[q · j + i]
12: idx = arg max

l
{p1[l]}

13: for i = 0, . . . , q − 1 do
14: y[i] = Θ[q · threadIdx.x+ i]
15: for i = 0, . . . , q − 1 do
16: for j = 0, . . . , q − 1 do
17: p2[i] += y[j] · A[q · i + j]
18: idy = arg max

l
{p2[l]}

19: if (Θ[q · blockIdx.x + idy] = 1 & Θ[q · threadIdx.x+ idx] = 1)
then

20: Ep = Ep ∪ (x, y)

21: return Ep

4.2 Generate: Generating Support Keys

The Generate function, given in Algorithm 3, is responsi-
ble for creating the support key array for a given support
size. Generate requires as input the support size k,
the number of actions q, and outputs the support key
array Θk. To generate Θk, the host function next is called,
which implements the lexicographical arrangement al-
gorithm presented in [26]. The algorithm produces all
possible ways to arrange the support keys for a given
support size. In addition, the next function returns 0 in
the flag variable when all possible arrangements have
been produced. The auxiliary array, aux, is used as a
temporary container to hold the initial support key for
support size k. The function will directly modify aux by
returning it as the next support key arrangement which
is then stored in Θk (Line 11). The process continues until
the last possible arrangement has been generated using
the lexicographical ordering on the support key stored
in aux and the flag variable is set to 0.

4.3 Pure: Computing Pure Strategy Nash Equilibria

The Pure function, presented in Algorithm 4, is respon-
sible for calculating the pure strategy Nash Equilibria.
Since the pure strategies involve a single action, the
probability of using that action is 1 and only a simple
search is required to find the maximum expected payoff
for Players 1 and 2. The function copies the support
key into x, the strategy of Player 1 (Lines 7-8) and
then generates all expected payoff values p1 for Player 1
given the probability of selecting an action (Lines 9-
11). It then finds the maximum expected payoff value
for Player 1 and the index corresponding to that value,
which is stored in idx (Line 12). The same actions
are performed for Player 2, the support key is copied
into y, the strategy of Player 2 (Lines 13-14), and the
expected payoff p2 is generated (Lines 15-17). Then, the

Algorithm 5 global Mixed(A, B, k, q, Θ)
1: Input: Player 1 payoff, Player 2 payoff, Support size, Number of

actions, Array of support keys (A, B, k, q, Θ)
2: Output: Set of mixed equilibria (Em)
3: Em = ∅
4: for i = 0, . . . , q − 1 do
5: x[i], y[i], p1[i], p2[i], pay[i], z[i] = 0
6: idx1, idx2, idy1, idy2 = 0
7: z[(k - 1)] = 1
8: pay = Transform(B, k, q, Θ)
9: pay = Array-ludcmp(k, pay)

10: z = Array-bcksub(z, k, pay)
11: for i = 0, . . . , q − 1 do
12: if Θ[q · blockIdx.x + i] = 0 then
13: x[i] = Θ[q · blockIdx.x + i] · z[i]
14: else
15: x[i] = Θ[q · blockIdx.x + i] · z[idx1]
16: idx1++
17: for i = 0, . . . , q − 1 do
18: for j = 0, . . . , q − 1 do
19: p1[i] += x[j] · B[q · j + i]
20: idx2 = arg max

l
{p1[l]}

21: if Θ[q · threadIdx.x + idx2] = 1 then
22: proceed = TRUE
23: else
24: proceed = FALSE
25: if (proceed) then
26: z[(k - 1)] = 1;
27: pay = Transform(A, k, q, Θ)
28: pay = Array-ludcmp(k, pay)
29: z = Array-bcksub(z, k, pay)
30: for i = 0, . . . , q − 1 do
31: if Θ[q · threadIdx.x + i] = 0 then
32: y[i] = Θ[q · threadIdx.x + i] · z[i]
33: else
34: y[i] = Θ[q · threadIdx.x + i] · z[idy1]
35: idy1++
36: for i = 0, . . . , q − 1 do
37: for j = 0, . . . , q − 1 do
38: p2[i] += y[j] · A[q · i + j]
39: idy2 = arg max

l
{p2[l]}

40: if Θ[q · blockIdx.x + idy2] = 1 then
41: proceed = TRUE
42: else
43: proceed = FALSE
44: if (proceed) then
45: Em = Em ∪ (x, y)

46: return Em

the maximum expected payoff value p2 for Player 2 is
computed and the index corresponding to that value is
stored in idy (Line 18). After this the function determines
if both the index of Player 2’s highest expected payoff is
the response to Player 1’s choice of action and the index
of Player 1’s highest expected payoff is the response to
Player 2’s choice of action. If these two conditions are
satisfied, then the best pure response conditions for both
players are satisfied. The function stores the strategies x
and y as a 2-tuple in Ep (the set of pure equilibria) which
is then returned to the GPU-SE algorithm (Lines 19-21).

4.4 Mixed: Computing Mixed Strategy Nash Equilib-
ria

The Mixed function, presented in Algorithm 5, is re-
sponsible for calculating the mixed strategy equilibria.
The implementation of this function requires solving a
system of equations to determine the probabilities of
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a player choosing an action against the other player’s
choice of action. Mixed calls three device functions;
Transform, Array-ludcmp, and Array-bcksub. Transform
modifies the player’s payoff array by placing the coeffi-
cient of the constraint equations (4) and (6) on the last
entries of the array. The last entries are eliminated from
the array using similar operations that would perform
row elimination in a matrix. This process transforms the
player’s payoff array into an array representing a system
of equations with constraints. Array-ludcmp is a function
implementing the LU decomposition while Array-bcksub
implements the back-substitution method. Both Array-
ludcmp and Array-bcksub are array-based implementa-
tions presented in [27], where the original versions are
suited for matrix processing. We omit describing them in
this paper but refer the reader to [27] for the description
of the general methods.
The function uses a temporary solution array z when

solving for a player’s probabilities of choosing an action.
The last entry in z is set to one, satisfying constraint
equations (4) and (6) (Line 7). The Transform function
modifies the payoff array such that the last entries in
the array are substituted with the coefficients of the
constraint equations. After the Transform function re-
turns from the device, the result is stored in the pay
array (Line 8). The modified payoff array is decomposed
into lower and upper triangular partitions, which are
stored in pay (Line 9). The solution of the system of
linear equations is determined by back-substitution and
it is stored back in z (Line 10). The solution z does
not yet take into account which actions are available
according to the support key. For instance, suppose
Player 1 chooses a support element identified by σ2

1 then
the probabilities should reflect the actions identified by
the support key which are the second and fourth actions
(see Figure 2). When the solution z is returned from
Array-bcksub (Line 10), the two probabilities are in the
first and second entry. The position of the probabilities
are reorganized according to the support key, where the
first probability will be in the second entry of x and
the second probability will be in the fourth entry of x
coinciding with σ2

1 (Lines 11-16). The expected payoff to
Player 1 is then determined (Lines 17-20). The function
searches for the index of the action that represents the
highest expected payoff value in p1 for Player 1 (Line 21).
If the returned index is the response to Player 2’s choice
of action according to the support key (Line 21), then the
boolean variable proceed is updated to TRUE. If proceed
is updated to FALSE, then there is no need to further
execute the function for this support pair. If proceed is
TRUE, then the same sequence of actions as in the case of
Player 1 are performed with respect to Player 2 (Lines 36-
43). If both sections of the function result in proceed
being TRUE, then the strategies x and y are stored as
a 2-tuple in Em (the set of mixed equilibria) and Em is
returned to the GPU-SE algorithm (Lines 44-46).
The Transform function manipulates the player payoff

array information and adds the constraints (4) and (6)

Algorithm 6 device Transform({A, B}, k, q, Θ)
1: Input: {Player 1, Player 2} payoff, Support size, Number of

actions, Array of support keys ({A, B}, k, q, Θ)
2: Output: Modified player payoff (auxpay)
3: for i = 0, . . . , q − 1 do
4: for j = 0, . . . , q − 1 do
5: auxpay[q · i + j] = 0
6: if B then
7: for i = q − 1, . . . , 0 do
8: if Θ[q · threadIdx.x + i] = 1 then
9: for j = 0, . . . , i do

10: if Θ[q · threadIdx.x + j] = 1 then
11: for l = 0, . . . , i do
12: if Θ[q · blockIdx.x + l] = 1 then
13: auxpay[index] = B[q · l + j] - B[q · l + i]
14: index++
15: if A then
16: for i = q − 1, . . . , 0 do
17: if Θ[q · blockIdx.x + i] = 1 then
18: for j = 0, . . . , i do
19: if Θ[q · blockIdx.x + j] = 1 then
20: for l = 0, . . . , i do
21: if Θ[q · threadIdx.x + l] = 1 then
22: auxpay[index] = A[q · j + l] - A[q · i + l]
23: index++
24: for i = 0, . . . , k do
25: auxpay[k · (k - 1) + i] = 1

26: return auxpay

from Section 2 to create a system of equations repre-
sented as an array. There are two calls to Transform from
Mixed function, each with respect to the original payoff
arrays A and B. In addition, the function identifies
the actions which are part of the support through the
support keys. Modifying the payoff array by taking into
consideration which actions are part of the support is
necessary to produce the correct system of equations.
This is done in the triple-nested for loop, in Lines 7
through 14 for Player 1, and in Lines 16 through 23 for
Player 2, respectively. To avoid direct manipulation of
the original payoff arrays, auxpay is created in order
to store the temporary results. The coefficients of the
constraint equations are included in the auxpay which is
now ready to be passed to the Array-ludcmp and Array-
bcksub functions (Lines 24-25).

4.5 Memory Access and Allocation

We optimize the execution of GPU-SE for faster memory
accesses by identifying which data can be stored on the
GPU’s specialized memory areas. Since the payoff arrays
A, B are not modified during the execution of GPU-
SE, we allocate them to constant memory on the GPU
hardware. Since constant memory is cached, repetitive
thread accesses to the same memory locations when
calculating candidate Nash equilibrium strategies will
not require additional memory traffic. In Algorithms 2-
6, we specified the payoff arrays A, B as inputs to the
functions to facilitate the description of these algorithms,
but in the actual implementation these two arrays are
available from constant memory and do not need to be
passed.
The support key array Θ is an input parameter to

Pure, Mixed, and Transform functions and is accessed
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at the thread-level to identify strategies and compare
payoffs. After transferring Θ to Pure or Mixed from GPU-
SE, each of the kernels restructure Θ as either a two-
dimensional shared memory array or a two-dimensional
coalesced global memory array. For games with less
than 10 actions, Θ can be stored on shared memory
and accessed very fast. For games with more than 10
actions, more memory is required for storing Θ than the
available shared memory (96 KB); therefore, having to
default to global memory access. Restructuring Θ as a
two-dimensional global memory array and making sure
the threads in a warp access memory sequentially (i.e.,
coalescing), we were able to reduce the access times
substantially.
In addition to optimizing the memory accesses we

also optimize the data transfers between CPU and GPU
by using the facilities provided within the Thrust li-
brary [28]. Thrust is a GPU-specific library for paral-
lel algorithms and data structures accessible in CUDA
Toolkit (v5.5) [29]. With respect to our current im-
plementation, we manage transfers of data between
CPU and GPU through kernel executions using data
structures within Thrust library for fast and efficient
memory copy, allocation, and manipulation. In the
implementation of our proposed algorithm, we use
the data structures thrust::device_vector and
thrust::host_vector for the support key array Θ
and the equilibria container E . For games with more than
14 actions, the equilibria containers were too large to
store in local memory. Instead, we utilize the print func-
tionality which is available in CUDA compute capability
2.x and higher, to output the results.

5 ANALYSIS OF GPU-SE
In this section, we provide a formal description of the
thread-block workload allocation strategy implemented
in the GPU-SE algorithm and analyze the running time
of GPU-SE.

5.1 Thread-Block Workload Allocation Strategy

In Section 3.2, we described the parallelization method
and provided an example of how the proposed thread-
block workload allocation strategy works for a 4-action
game. We now describe the thread-block workload allo-
cation strategy for the general case of n-action bimatrix
games. Our proposed strategy is designed to maximize
the degree of parallelism by allocating the processing of
one strategy support pair to a single thread as follows.
We allocate to each block, a single support element (iden-
tified by its support key) from the set of Player 1’s sup-
ports, and then, allocate to each thread within the block
a support element from the set of Player 2’s supports.
Thus, each thread will be responsible for processing a
single pair of supports. Using this workload allocation
strategy, all threads within a given block check the
equilibrium conditions for the candidate mixed strategy

tuples using the shared memory; thereby reducing the
memory access and the overhead of data manipulation.
In order to formally describe the thread-block work-

load allocation strategy, we determine the number of
blocks and threads required for checking the equilibrium
conditions on the pairs of candidate mixed strategies. For
each support of size i in an n-action game, the number
of actions Wi is given by the number of possible combi-
nations of i actions chosen from a set of n-actions, that
is, Wi =

(

n

i

)

. Using our proposed workload allocation
strategy, we associate Wi blocks with Player 1, where
each block corresponds to one strategy out of Wi possible
strategies of Player 1. Since we are considering square
games, the number of actions for each support of size i
of Player 2 is also given by Wi =

(

n

i

)

. For each of the
Wi strategies of Player 2, we allocate a thread within
the block, and thus, the number of threads within a
block responsible for determining the Nash equilibria
from strategies of support size i is given by Wi. GPU-
SE executes Wi blocks, where each block contains Wi

threads. Therefore, the total number of threads executed
by GPU-SE is Wi × Wi = W 2

i =
(

n

i

)2
.

For larger games, executing Wi blocks, each containing
Wi threads checking all tuples of candidate strategies for
equilibrium conditions, reaches a limitation due to the
maximum number of threads that can be created within
a block. Since our GPU device has a maximum thread
count of 1024 per block, this limit is first reached for a 13-
action game of support size 5 (1,287 possible strategies).
In order to handle such cases, requiring processing of
more candidate strategies than the available threads
within a block, we increase the number of blocks to
W

′

i = Wi(1 + ⌊ Wi

1024
⌋). Thus, in such cases, some of the

blocks will consist of fewer than 1024 threads.

5.2 Run-Time Analysis

In this subsection, we investigate the running time of
GPU-SE. In order to determine the running time of
GPU-SE, we need to determine the amount of work
performed by each of the functions called from GPU-
SE. The function Generate is called in line 5 of GPU-
SE to generate the support keys corresponding to sup-
port size 1 (i.e., pure strategies). The amount of work
performed by Generate is O(n) since it generates n
support keys of size 1. The function Pure is called in
line 6 to determine the pure Nash equilibria for the
support keys determined by Generate, performing a
total amount of work of O(n2). Thus, the total amount
of work performed by these two functions (lines 5-6,
Algorithm 1) is given by O(n2).

The functions Generate and Pure are then called n−1
times within the GPU-SE algorithm to generate the
support keys of size 2 to n, and respectively, to determine
the Nash equilibria corresponding to supports of sizes
ranging from 2 to n (lines 7-9, Algorithm 1). We first
determine the amount of work performed by Generate
(Algorithm 3) which generates the support keys of size
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k of the n-action bimatrix game. The number of support
keys (i.e., supports) of size k is

(

n

k

)

, which gives the
amount of work performed by Generate. Since Generate
is called n−1 times in GPU-SE, the total amount of work
performed by Generate in the main loop of Algorithm 1
is given by

∑n

k=2

(

n

k

)

= 2n − (n + 1).
We now determine the total amount of work per-

formed by Mixed (Algorithm 4). The work performed
by Mixed is mainly determined by the work performed
by the function Transfer (Algorithm 6) and the LU de-
composition function Array-ludcmp. The triple for-loop
in Transfer, under the provided bounds, results in a
total amount of work of O(n3). The if-statements within
Transfer do not reduce the amount of work since each
thread will perform the three for-loops according to their
thread-block IDs. The array based LU decomposition
function Array-ludcmp (Lines 9 and 10, Lines 28) in
Mixed performs a total amount of work of O(n3). Mixed
explores all possible pairs of strategies of supports of size
k, k = 2, . . . , n, and since the total number of supports
of sizes 2 to n for one player is 2n − (n + 1), then
the total number of pairs checked by Mixed is given
by (2n − (n + 1))2, which is O(4n). Since checking the
equilibrium conditions for each pair amounts to O(n3),
then the total amount of work performed by the main
loop of GPU-SE is given by O(4nn3). Thus, the total
amount of work performed by GPU-SE is O(4nn3 + n2)
which is O(4nn3).
Since each thread is responsible for processing a pair

of supports, the total amount of work performed by a
single thread is given by O(n3). To determine the parallel
running time, we assume that the number of threads that
can be executed in parallel at any given time by the GPU
device is T . Therefore, the total parallel execution time of
GPU-SE is given by O(n3 4

n

T
). If T = Ω(4n) the parallel

running time becomes O(n3).

6 EXPERIMENTAL RESULTS

We perform extensive experiments to compare the per-
formance of the proposed GPU-based parallel sup-
port enumeration algorithm GPU-SE with that of two
other parallel support enumeration algorithms, OMP-
SE (for shared-memory parallel machines, based on
OpenMP [30]) and MPI-SE (for message-passing sys-
tems, based on MPI [31]).

6.1 Experimental Setup

GPU-SE is executed on a 2.6 GHz Intel R©CoreTM2 Quad
CPU Q8400 Dell OptiPlex 780 64-bit system using 4.6 GB
RAM. This system supports an NVIDIATMGeForce GT
440 graphics processing unit with two 48 cores streaming
multiprocessors and 2.6 GB RAM.

OMP-SE and MPI-SE are executed on the Wayne
State University Grid system [32]. Our experiments use
compute nodes on the grid, where each node consists
of a 16 core 2.6 GHz Quad processor and 128 GB RAM.
The nodes are connected using a 10Gb Ethernet network.

The algorithm is executed using five different parallel
configurations: 1, 2, 4, 8, and 16 processors.
When comparing execution times obtained on GPUs

with those obtained on systems with standard CPUs,
the research literature favors the GPUs. Gregg et al. [33]
makes the case for determining better ways to compare
the run times in order to take into account the memory
transfers and other activities managed by the CPU for
GPU processing. We have considered this and included
timing functions to record every operation for both the
GPU and CPU implementations which accounts for all
initialization, memory transfers, core computation, and
output.
To conduct the experiments, we randomly generate a

set of games using GAMUT [14]. We chose as benchmark
the Minimum Effort Games, where the payoff for an action
is dependent on the effort associated with the action
minus the minimum effort of the selected player. Player
payoffs are calculated using the formula a+ bEmin − cE,
where Emin is the minimum effort of a player in the
game, E is the effort of that player, and a, b, c are con-
stants, where b > c. In these games, the players have the
same number of actions. The GAMUT arguments used
when generating the games are: -int payoffs -output
TwoPlayerOutput -players 2 -actions n -g MinimumEf-
fortGame -random params. The value of n determines
the number of player actions, and thus, the size of the
test games. The number of players’ actions in a game
is the size of the game. We experiment with games of
different sizes ranging from 5 to 16 actions. For each of
the twelve game sizes, we randomly generate five games
and use them as test cases.

6.2 OpenMP-based implementation
In this subsection, we present the OpenMP-based im-
plementation of the support enumeration method for
finding Nash equilibria in bimatrix games (called OMP-
SE). OpenMP is a shared-memory parallel programming
model. OpenMP uses multithreading, where a master
thread forks a specified number of slave threads. Tasks
are divided among threads and the threads are assigned
to different processors in order to run concurrently.
The OMP-SE function is given in Algorithm 7. We

consider T threads available in the system, where each
thread is responsible for checking the Nash equilibrium
condition in Theorem 1 for a subset of support pairs
assigned in a round-robin fashion. Each thread has
a counter variable which selects a subset of supports
(Line 6). This implementation processes the support
sets Mx and Ny grouped by support size in parallel.
Candidate solutions (x, y) are determined for each sup-
port size in parallel using LU decomposition and back-
substitution (Lines 11-14). If a Nash equilibrium is found
by a thread, it is saved in the output variable E (Line 16).

6.3 MPI-based implementation
In this subsection, we present the MPI-based implemen-
tation of the support enumeration method for finding
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Algorithm 7 OMP-SE(A, B, T )
1: Input: Player 1 payoff, Player 2 payoff, Number of threads

(A, B, T )
2: Output: Set of equilibria (E)
3: q = min(m, n)
4: for each thread t = 1, . . . , T do in parallel
5: t.E = ∅
6: t.counter ← 0
7: for k = 1, . . . , q do
8: for each (Mx, Ny), Mx ⊆M, Ny ⊆ N, |Mx| = |Ny | = k do
9: if (t.counter mod T ) + 1 = t then

10: Solve:
11:

∑

i∈Mx
xiBij = v, ∀j ∈ Ny

12:
∑

i∈Mx
xi = 1

13:
∑

j∈Ny
yjAij = u, ∀i ∈Mx

14:
∑

j∈Ny
yj = 1

15: if xi, yj ≥ 0, ∀ i, j and x, y satisfies Theorem 1 then
16: t.E ← t.E ∪ (x, y)
17: t.counter++
18: output t.E

Nash equilibria in bimatrix games. MPI is a message-
passing interface used for designing programs leverag-
ing multiple processors. MPI defines a standard library
of message-passing routines allowing multiple proces-
sors to cooperate. We consider P processors available,
where each processor p is responsible for checking the
Nash equilibrium conditions in Theorem 1 for a subset
of support pairs assigned in a round-robin fashion.
The MPI-SE function, shown in Algorithm 8, is the

implementation proposed by Widger and Grosu [18].
Like the OpenMP implementation, MPI-SE also pro-
cesses the support sets Mx and Ny grouped by support
size in parallel. Each processor p is sent a copy of the
payoff matrices A and B through a broadcast routine,
MPI Bcast (Line 3). This reduces communication over-
head, whereby each processor p identifies its partition
of support sets to check for the Nash equilibrium condi-
tions in Theorem 1. As a result, excess time does not need
to be spent on transferring partial payoff information
between processors. Candidate solutions (x, y) are also
determined for each support size in parallel using LU
decomposition and back-substitution (Lines 13-16). If a
Nash equilibrium is found by a processor, it is saved
in the output variable p.E (Line 18). At the end of MPI-
SE each processor’s equilibria result is aggregated into E
using an all-to-one gather routine, MPI Gather (Line 20).

6.4 Analysis of Results

We use the execution time and speedup as the metrics
for comparing the performance of GPU-SE, OMP-SE,
and MPI-SE.

6.4.1 GPU-SE vs. OMP-SE

In Figure 4, we plot the average execution time of GPU-
SE and OMP-SE for games of different sizes (given by
the number of actions n). The horizontal axis represents
the number of actions, while the vertical axis represents
the run times in seconds on a log scale.

Algorithm 8 MPI-SE(A, B, P )
1: Input: Player 1 payoff, Player 2 payoff, Number of proces-

sors (A, B, P )
2: Output: Set of equilibria (E)

3: MPI Bcast(A, B)
4: for p = 1, . . . , P − 1 do in parallel
5: Processor p:
6: p.E = ∅
7: q = min(m, n)
8: counter ← 0
9: for k = 1, . . . , q do

10: for each (Mx, Ny), Mx ⊆M, Ny ⊆ N, |Mx| = |Ny | = k do
11: if (counter mod P ) = p then
12: Solve:
13:

∑

i∈Mx
xiBij = v, ∀j ∈ Ny

14:
∑

i∈Mx
xi = 1

15:
∑

j∈Ny
yjAij = u, ∀i ∈Mx

16:
∑

j∈Ny
yj = 1

17: if xi, yj ≥ 0, ∀ i, j and x, y satisfies Theorem 1 then
18: p.E = p.E ∪ (x, y)
19: counter++
20: MPI Gather(p.E)

21: output E

The OMP-SE running on 16 CPUs performs worse
than when it runs on a single CPU for games with
the number of actions less than or equal to 6. This is
due to the overhead induced by the thread generation
and management. By efficiently managing the memory
accesses in GPU-SE, its execution times for games with
smaller actions (n < 10) are almost the same as those
of the various configurations of OMP-SE. For games
with 10 actions (n = 10), which require the processing
of 184,755 support pairs, the GPU-SE algorithm outper-
forms all OMP-SE CPU configurations, where the lowest
average execution time of OMP-SE is 0.148 seconds
using the 16 CPU configuration against the GPU-SE
average execution time of 0.104 seconds. For games with
larger than 10 (n > 10) actions, GPU-SE consistently
outperforms all OMP-SE CPU configurations within our
experiment.

In Figure 5, we plot the average speedup against the
number of actions. The horizontal axis represents the
number of actions, while the vertical axis represents the
speedup on a log scale. Here, the speedup is defined as
the ratio of the OMP-SE parallel execution time over the
GPU-SE execution time. When the ratio is greater than 1,
the GPU-SE algorithm is faster than the corresponding
OMP-SE configurations. Each data point represents the
average speedup for each parallel configuration in five
games having the same number of actions.

For games with 7 through 9 actions, the GPU-SE
speedup ratio is consistently greater than 1 against OMP-
SE with 1 and 2 CPU configurations. When n = 10,
the GPU-SE speedup ratio is greater than 1 for every
OMP-SE CPU configuration with a lowest speedup ratio
of 1.29 against the 8 CPU configuration and a highest
speedup ratio of 5.43 against the single CPU configura-
tion. For n = 16, the GPU-SE algorithm obtains speedups
of 108.98, 63.87, 36.95, 22.06, and 15.36 against the 1, 2,



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2014 12

10-3

10-2

10-1

100

101

102

103

104

 4  6  8  10  12  14  16  18

T
im

e 
(s

ec
on

ds
)

Number of Actions (n)

GPU-SE
OMP-SE (1 CPU)
OMP-SE (2 CPU)
OMP-SE (4 CPU)
OMP-SE (8 CPU)

OMP-SE (16 CPU)

Fig. 4: GPU-SE vs. OMP-SE: Average execution time.

10-1

100

101

102

103

 4  6  8  10  12  14  16  18

S
pe

ed
up

Number of Actions (n)

GPU-SE vs. OMP-SE(1 CPU)
GPU-SE vs. OMP-SE(2 CPU)
GPU-SE vs. OMP-SE(4 CPU)
GPU-SE vs. OMP-SE(8 CPU)

GPU-SE vs. OMP-SE(16 CPU)
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4, 8, and 16 OMP-SE CPU configurations, respectively.
Thus, the GPU-SE is able to obtain a significant reduc-
tion in the execution time compared to OMP-SE when
solving large scale games.

6.4.2 GPU-SE vs. MPI-SE
In Figure 6, we plot the average execution time of GPU-
SE and OMP-SE for games of different sizes, where the
horizontal axis represents the number of actions and the
vertical axis represents the run time in seconds on a
log scale. For our experiments, the larger the number of
CPUs the better the performance of MPI-SE for games
of any size.
The performance of GPU-SE is surpassed by all MPI-

SE CPU configurations for games with less than 8
actions (n < 8). For games with 8 actions (n = 8), the
GPU-SE algorithm outperforms only the single MPI-
SE CPU configuration. For games with more than 12
actions (n ≥ 12), GPU-SE is faster than all MPI-SE CPU
configurations.
In Figure 7, we plot the average speedup against the

number of actions. The horizontal axis again represents
the number of actions, while the vertical axis represents
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the speedup on a log scale. Here, the speedup is the ratio
of the MPI-SE parallel execution time over the GPU-SE
execution time. GPU-SE shows a speedup greater than
1, approximately 1.39, against the single MPI-SE CPU
configuration. For games with 12 actions (n = 12), GPU-
SE obtains a greater speedup against all MPI-SE CPU
configurations. For games with 16 actions (n = 16), the
GPU-SE algorithm obtains speedups of 112.90, 60.81,
35.04, 18.16 and 10.77 against MPI-SE CPU configura-
tions using 1, 2, 4, 8, and 16 processors, respectively.
Thus, the GPU-SE is able to obtain a significant reduc-
tion in the execution time compared to MPI-SE when
solving large scale games.

7 CONCLUSION AND FUTURE WORK

We designed and implemented a GPU-based parallel
support enumeration algorithm for calculating Nash
equilibria in bimatrix games. We designed a new par-
allelization method that exploits the available degree
of parallelism when computing Nash equilibria. We
experimented with multiple games of different sizes and
configurations. Our analysis showed that the proposed
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algorithm, GPU-SE, achieved lower execution times and
significant speedups for large games. The GPU-SE algo-
rithm produced 100 times faster executions versus the
OpenMP and MPI-based versions by taking advantage
of the massively parallel processing platform.
Future work will include the design of GPU-based

algorithms implementing other methods for computing
Nash equilibria such as polynomial homotopy continu-
ation [15] and global Newton [16].
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