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Abstract—A major challenging problem for cloud providers is designing efficient mechanisms for Virtual Machine (VM) provisioning
and allocation. Such mechanisms enable the cloud providers to effectively utilize their available resources and obtain higher profits.
Recently, cloud providers have introduced auction-based models for VM provisioning and allocation which allow users to submit bids
for their requested VMs. We formulate the dynamic VM provisioning and allocation problem for the auction-based model as an integer
program considering multiple types of resources. We then design truthful greedy and optimal mechanisms for the problem such that
the cloud provider provisions VMs based on the requests of the winning users and determines their payments. We show that the
proposed mechanisms are truthful, that is, the users do not have incentives to manipulate the system by lying about their requested
bundles of VM instances and their valuations. We perform extensive experiments using real workload traces in order to investigate
the performance of the proposed mechanisms. Our proposed mechanisms achieve promising results in terms of revenue for the cloud
provider.
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1 INTRODUCTION

THE number of enterprises and individuals that are
outsourcing their workloads to cloud providers has

increased rapidly in recent years. Cloud providers form
a large pool of abstracted, virtualized, and dynamically
scalable resources allocated to users based on a pay-as-
you-go model. These resources are provided as three
different types of services: Infrastructure as a Service
(IaaS), Platform as a Service (PaaS), and Software as a
Service (SaaS). IaaS provides CPUs, storage, networks
and other low level resources, PaaS provides program-
ming interfaces, and SaaS provides already created ap-
plications. In this paper, we focus on IaaS where cloud
providers offer different types of resources in the form of
VM instances. IaaS providers such as Microsoft Azure [1]
and Amazon Elastic Compute Cloud (Amazon EC2) [2]
offer four types of VM instances: small (S), medium (M),
large (L), and extra large (XL).
Cloud providers face many decision problems when

offering IaaS to their customers. One of the major de-
cision problems is how to provision and allocate VM
instances. Cloud providers provision their resources ei-
ther statically or dynamically, and then allocate them in
the form of VM instances to their customers. In the case
of static provisioning, the cloud provider pre-provisions
a set of VM instances without considering the current
demand from the users, while in the case of dynamic
provisioning, the cloud provider provisions the resources
by taking into account the current users’ demand. Due to
the variable load demand, dynamic provisioning leads

• M. M. Nejad, L. Mashayekhy and D. Grosu are with the Department of
Computer Science, Wayne State University, Detroit, MI, 48202.
E-mail: mahyar@wayne.edu, mlena@wayne.edu, dgrosu@wayne.edu

to a more efficient resource utilization and ultimately to
higher revenues for the cloud provider. The aim of this
study is to facilitate dynamic provisioning of multiple
types of resources based on the users’ requests.
To sell the VM instances to users, cloud providers

can employ fixed-price and auction-based models. In the
fixed-price model, the price of each type of VM instance
is fixed and pre-determined by the cloud provider, while
in the auction-based model, each user bids for a subset
of available VM instances (bundle) and an auction mech-
anism decides the price and the allocation. In this study,
we consider the design of mechanisms for auction-based
settings. In the auction-based models, users can obtain
their requested resources at lower prices than in the case
of the fixed-price models. Also, the cloud providers can
increase their profit by allowing users to bid on unuti-
lized capacity. An example of such auction-based mech-
anism is the spot market introduced by Amazon [2].
Such mechanisms are usually executed over short time-
windows (e.g., every hour) to efficiently provision the
unutilized resources of the cloud provider. Our setup
and mechanisms are different from the Amazon spot
market. The Amazon spot market allows requests only
for individual VM instances and not for bundles of VM
instances of different types. In addition, all winning
users in the Amazon spot market pay the same (per unit)
price. In our setting, we allow users to request bundles
of VM instances. We consider a set of users and a set of
items (VM instances), where each user bids for a subset
of items (bundle). Since several VM instances of the same
type are available to users, the problem can be viewed
as a multi-unit combinatorial auction. Each user has a
private value (private type) for her requested bundle. In
our model, the users are single minded, that means each
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user is either assigned her entire requested bundle of VM
instances and she pays for it, or she does not obtain any
bundle and pays nothing. The users are also selfish in
the sense that they want to maximize their own utility.
It may be beneficial for them to manipulate the system
by declaring a false type (i.e., different bundles or bids
from their actual request).
One of the key properties of a provisioning and al-

location mechanism is to give incentives to users so
that they reveal their true valuations for the bundles.
In general, greedy algorithms do not necessarily satisfy
the properties required to achieve truthfulness (also
called incentive-compatibility or strategy-proofness [3])
and they need to be specifically designed to satisfy those
properties. Our goal is to design truthful greedy mech-
anisms that solve the VM provisioning and allocation
problem in the presence of multiple types of resources
(e.g., cores, memory, storage, etc.). The mechanisms al-
locate resources to the users such that the social welfare
(i.e., the sum of users’ valuations for the requested
bundles of VMs) is maximized.

1.1 Our Contribution

We address the problem of VM provisioning and al-
location in clouds in the presence of multiple types
of resources. To the best of our knowledge, this is
the first study proposing truthful mechanisms for VM
provisioning and allocation in clouds that take into
account the heterogeneity and the scarcity of the cloud
resources. We design a truthful optimal mechanism
and a family of truthful greedy mechanisms for VM
provisioning and allocation that give incentives to the
users to reveal their true valuations for their requested
bundles of VM instances. Our proposed mechanisms
consist of determining the VM provisioning and allo-
cation and the payments for each user. Our proposed
greedy mechanisms provide very fast solutions mak-
ing them suitable for execution in short time-window
auctions. In addition, we determine the approximation
ratio of the proposed mechanisms, guaranteeing a bound
for the obtained solutions. We design truthful greedy
mechanisms in spite the fact that greedy algorithms, in
general, do not necessarily satisfy the properties required
to guarantee truthfulness. In doing so, the allocation and
payment determination of the proposed mechanisms
are designed to satisfy the truthfulness property. Our
proposed mechanisms allow dynamic provisioning of
VMs, and do not require pre-provisioning the VMs.
As a result, cloud providers can fulfill dynamic market
demands efficiently. A key property of our proposed
mechanisms is the consideration of multiple types of
resources when provisioning the VMs, which is the case
in real cloud settings. Previous work considered only
one type of resource and did not take into account the
scarcity of each resource type when making the VM in-
stance provisioning an allocation decisions. The novelty
of our proposed mechanisms consists of taking these

into account to improve the allocation decisions. We
perform extensive experiments that show that our pro-
posed greedy mechanisms are able to find near optimal
allocations while satisfying the truthfulness property.

1.2 Related Work

Several researchers investigated various resource allo-
cation problems in clouds by employing game theory.
Wei et al. [4] formulated the resource allocation problem
as a task scheduling problem with QoS constraints.
They proposed a game-theoretic approximated solution.
However, there is an assumption that the cloud provider
knows the execution time of each subtask, which is un-
realistic in cloud environments. Jain et al. [5] designed an
efficient truthful-in-expectation mechanism for resource
allocation in clouds where only one type of resource
was considered. Kong et al. [6] designed a stochastic
mechanism to allocate resources among selfish VMs in
a non-cooperative cloud environment. Wang et al. [7]
showed that system heterogeneity plays an important
role in determining the dynamics of truthful mecha-
nisms. Our proposed mechanisms take into account the
heterogeneity of the systems and that of user requests
when making allocation decisions. Ardagna et al. [8]
modeled the service provisioning problem as a gener-
alized Nash game and proved the existence of equilibria
for such game. In their model, the objective of the SaaS
is to maximize its revenue satisfying the service level
agreement, while the objective of the IaaS is to maxi-
mize the profit by determining the spot instances price.
Di Valerio et al. [9] formulated the service provision-
ing problem as a Stackelberg game, and computed the
equilibrium price and allocation strategy by solving the
associated optimization problem. However, both studies
considered only one type of VM instances, thus, the
problem they solved is a one dimensional provisioning
problem.
Mechanism design theory has been employed in de-

signing truthful allocation mechanisms in several areas.
In particular, there is a large body of work in spec-
trum auctions, where a government or a primary license
holder sells the right to use a specific frequency band in
a specific area via auction-based mechanisms (e.g., [10],
[11], [12], [13]). In these studies, only one type of resource
(i.e., the spectrum) is available for allocation. However,
in this paper, we consider several types of resources
(e.g., core, memory, storage), and thus the mechanisms
proposed in the above studies cannot be used in our con-
text. Zhou et al. [10] proposed a truthful mechanism, that
assumes the existence of k uniform channels that can be
spatially reused (i.e., a channel can be allocated to more
than one user simultaneously). Their greedy mechanism
sorts the bidders in descending order of their bids. Wu
and Vaidya [13] extended the study of Zhou et al. by
proposing a truthful mechanism considering grouping
the users based on their spatial conflicts. Their greedy
mechanism is based on the ordering of the groups’
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bids. However, VM instances cannot be simultaneously
assigned to the users and thus, their mechanism cannot
be used to solve the VM allocation problem. The closest
work to ours in the spectrum allocation area is by
Jia et al. [14] who proposed truthful mechanisms for a
secondary spectrum market. The authors considered K

uniform channels covering a certain region that is par-
titioned into small cells. This problem considers several
cells available which in some sense correspond to several
types of VMs in our study. However, in each cell a fixed
number of uniform channels are available to be sold,
whereas, in our case, each VM instance is composed of
several types of heterogeneous resources. Furthermore,
the mechanism proposed by Jia et al. [14] incorporates a
simple greedy metric for ordering the users that is based
on the ratio of their bids to the number of requested
channels. However, our proposed mechanisms incor-
porate bid density metrics that not only consider the
structure of VMs (i.e., the multiple resources), but also
take into account the scarcity of resources. In addition,
we do not limit the number of available VMs for each
type of VM, and we allow dynamic provisioning of VMs.
The design of truthful mechanisms for resource al-

location in clouds has been investigated by Zaman
and Grosu [15], [16]. They proposed a combinatorial
auction-based mechanism, CA-GREEDY, to allocate VM
instances in clouds [16]. They showed that CA-GREEDY
can efficiently allocate VM instances in clouds generat-
ing higher revenue than the currently used fixed price
mechanisms. However, CA-GREEDY requires that the
VMs are provisioned in advance, that is, it requires
static provisioning. They extended their work to dy-
namic scenarios by proposing a mechanism called CA-
PROVISION [15]. CA-PROVISION selects the set of VM
instances in a dynamic fashion which reflects the market
demand at the time when the mechanism is executed.
However, these mechanisms do not consider several
types of resources. Their proposed mechanisms only
consider computational resources (i.e., cores), which is
only one of the dimensions in our proposed model. In
addition to this, our proposed mechanisms consider the
scarcity of the resources when making provisioning and
allocation decisions.
In Appendix A of the supplemental material we pro-

vide a discussion of additional related work on mecha-
nism design, combinatorial auctions, and other method-
ologies for solving the VM provisioning and allocation
problem.

1.3 Organization

The rest of the paper is organized as follows. In Section 2,
we describe the VM provisioning and allocation problem
in clouds. In Section 3, we introduce the basic concepts
of mechanism design and present the design of an
optimal mechanism for VM provisioning and allocation.
In Section 4, we present the proposed mechanisms and
characterize their properties. In Section 5, we evaluate

TABLE 1: VM instance types offered by Amazon EC2.

Small Medium Large Extralarge
m = 1 m = 2 m = 3 m = 4

CPU 1 2 4 8
Memory (GB) 1.7 3.75 7.5 15
Storage (GB) 160 410 850 1690

the mechanisms by extensive simulation experiments. In
Section 6, we summarize our results and present possible
directions for future research.

2 VM PROVISIONING AND ALLOCATION
PROBLEM

We consider a cloud provider offering R types of re-
sources, R = {1, . . . , R}, to users in the form of VM in-
stances. These types of resources include cores, memory,
storage, etc. The cloud provider has restricted capacity,
Cr, on each resource r ∈ R available for allocation. The
cloud provider offers these resources in the form of M

types of VMs, VM = {1, . . . ,M}, where each VM of
type m ∈ VM provides a specific amount of each type
of resource r ∈ R. The amount of resources of type r that
one VM instance of type m provides is denoted by wmr.
As an example, in Table 1, we present the four types
of VM instances offered by Amazon EC2 at the time of
writing this paper. If we consider that CPU represents
the type 1 resource, memory, the type 2 resource, and
storage, the type 3 resource, we can characterize, for
example, the Large instance (m = 3) by: w11 = 4,
w12 = 7.5 GB, and w13 = 850 GB.
We consider a set U of N users requesting a set of

VM instances. User i, i = 1, . . . , N , requests a bundle
Si =< ki1, ki2, . . . , kiM > of M types of VM instances,
where kim is the number of requested VM instances of
type m ∈ VM. In addition, she specifies a bid bi for
her requested bundle Si. User i values her requested
bundle Si at vi(Si), where vi(Si) is called the valuation
of user i for bundle Si. The valuation represents the
maximum price a user is willing to pay for using the
requested bundle for a unit of time. Each user can submit
her request as a vector specifying the number of VM
instances, and her bid. For example, (< 1, 3, 4, 2 >, $20)
represents a user requesting 1 small VM instance, 3
medium VM instances, 4 large VM instances, and 2 extra
large VM instances, and her bid is $20. We denote by V

the social welfare, which is defined as the sum of users’
valuations:

V =
∑

i∈U

vi(Si) · xi (1)

where xi, i = 1, . . . , N , are decision variables defined as
follows: xi = 1, if bundle Si is allocated to user i; and
xi = 0, otherwise.
To design incentive-compatible mechanisms, we con-

sider the standard mechanism design objective, that is,
maximizing the social welfare [3]. Maximizing social
welfare can help a cloud provider increase its revenue
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by allocating the VMs to the users who value them the
most.
We formulate the problem of VM provisioning and

allocation in clouds (VMPAC) as an Integer Program
(called VMPAC-IP) as follows:

Maximize V (2)

Subject to:
∑

i∈U

∑

m∈VM

kimwmrxi ≤ Cr, ∀r ∈ R (3)

xi = {0, 1},∀i ∈ U (4)

The solution to this problem is a vector x =
(x1, x2, . . . , xN ) maximizing the social welfare. Con-
straints (3) ensure that the allocation of each resource
type does not exceed the available capacity of that re-
source. Constraints (4) represent the integrality require-
ments for the decision variables. These constraints force
the cloud provider to provision the whole bundle of VM
instances and to allocate bundles to the selected users.
The VMPAC problem is equivalent to the multidimen-
sional knapsack problem (MKP) [17], where the knap-
sack constraints are the resource capacity constraints
and the bundles are the items. The objective is to select
a subset of items for the multidimensional knapsack
maximizing the total value. As a result, the VMPAC
problem is strongly NP-hard.

3 MECHANISM DESIGN FRAMEWORK

In this section, we first present the basic concepts of
mechanism design and then propose an optimal mecha-
nism that solves VMPAC.

3.1 Preliminaries

A mechanism M = (A,P) consists of an allocation
function A = (A1, . . . ,AN ) and a payment rule P =
(P1, . . . ,PN ). The allocation function determines which
users receive their requested bundles, and the payment
rule determines the amount that each user must pay.
In our model, there are N users in U , and the type

of a user i is denoted by θi = (Si, bi). We denote by
θ = (θ1, . . . , θN ), the vector of types of all users, and
by θ−i, the vector of all types except user i’s type (i.e.,
θ−i = (θ1, . . . , θi−1, θi+1, . . . , θN )). The allocation and
payments depend on the users type declarations. The
allocation function finds a subset A(θ) ⊆ U of winning
users, where Ai is the allocated bundle of VMs to user i.
The users are assumed to be single-minded. That means,

user i desires only the requested bundle of VM in-
stances, Si, and derives a value of bi if she gets the
requested bundle or any superset of it, and zero value,
otherwise. Thus, the valuation function for user i is as
follows:

vi(Ai) =

{

bi if Si ⊆ Ai

0 otherwise
(5)

The bundle of VM instances requested by a single-
minded user consists of the minimum amount of re-
sources that the user needs in order to run her job.

User i has a quasi-linear utility function ui(θ) =
vi(Ai(θ)) − Pi(θ), where Pi(θ) is the payment for user
i that the mechanism calculates based on the payment
rule P . Each user’s type is private knowledge. The users
may declare different types from their true types. We
denote by θ̂i = (Ŝi, b̂i) user i’s declared type. Note that
θi = (Si, bi) is user i’s true type. The goal of a user is to
maximize her utility, and she may manipulate the mech-
anism by lying about her true type to increase her utility.
In our case, since the type of a user is a pair of bundle
and value, the user can lie about the value by reporting
a higher value in the hope to increase the likelihood of
obtaining her requested bundle. These manipulations by
the users will lead to inefficient allocation of resources
and ultimately will reduce the revenue obtained by the
cloud provider. We want to prevent such manipulations
by designing truthful mechanisms for solving VMPAC.
A mechanism is truthful if all users have incentives to
reveal their true types.

Definition 1 (Truthfulness): A mechanism M is truthful
(also called strategy-proof or incentive compatible [3]) if
for every user i, for every type declaration of the other
users θ̂−i, a true type declaration θi and any other decla-
ration θ̂i of user i, we have that ui(θi, θ̂−i) ≥ ui(θ̂i, θ̂−i).

In other words, a mechanism is truthful if truthful
reporting is a dominant strategy for the users, that is,
the users maximize their utilities by truthful reporting
independently of what the other users are reporting. To
obtain a truthful mechanism the allocation function A
must be monotone and the payment rule must be based
on the critical value [18].

To define monotonicity, we need to introduce a
preference relation � on the set of types as follows:
θ̂′i � θ̂i if b̂′i ≥ b̂i and Ŝi =< k̂i1, k̂i2, . . . , k̂iM >,
Ŝ′

i =< k̂′
i1, k̂

′
i2, . . . , k̂

′
iM > such that

∑

m∈VM k̂′
imwmr ≤

∑

m∈VM k̂imwmr,∀r ∈ R. That means type θ̂′i is more

preferred than θ̂i if user i requests fewer resources of
each type in her current bundle and/or submits a higher
bid.

Definition 2 (Monotonicity): An allocation function A is
monotone if it allocates the resources to user i with θ̂i as
her declared type, then it also allocates the resources to
user i with θ̂′i, where θ̂′i � θ̂i.

Any winning user who receives her requested bundle
by declaring a type θ̂i is still wining if she requests a
smaller bundle and submits a higher bid.

Definition 3 (Critical value): Let A be a monotone allo-
cation function, then for every θi, there exist a unique
value vc

i , called critical value, such that ∀θ̂i � (Si, v
c
i ), θ̂i

is a winning declaration, and ∀θ̂i ≺ (Si, v
c
i ), θ̂i is a losing

declaration.

The mechanism M works as follows. It first receives
the declared types (bundles and bids) from each par-
ticipating user, and then, based on the received types
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Algorithm 1 VCG-VMPAC Mechanism

1: Input: C = (C1, . . . , CR); vector of resource capacities
2: {Collect user requests (types).}
3: for all i ∈ U do
4: Collect user type θ̂i = (Ŝi, b̂i) from user i
5: {Allocation.}
6: (V ∗, x∗) = Solve IP-VMPAC(θ̂,C)
7: Provisions and allocates VM instances according to x∗.
8: {Payment.}
9: for all i ∈ U do
10: (V ′∗, x′∗) = Solve IP-VMPAC(θ̂−i,C)
11: sum1 = sum2 = 0
12: for all j ∈ U , j 6= i do
13: sum1 = sum1 + b̂jx′∗

j

14: sum2 = sum2 + b̂jx∗
j

15: Pi = sum1 − sum2

16: Output: V ∗, x∗, P = (P1,P2, . . . ,PN )

determines the allocation using the allocation function
A and the payments using the payment rule P . The
payment rule P is based on the critical value and is
defined as follows:

Pi(θ̂) =

{

vc
i if i wins

0 otherwise
(6)

where vc
i is the critical value of user i.

In the next subsection, we design a Vickrey-Clarke-
Groves (VCG)-based optimal mechanism that solves the
VMPAC problem.

3.2 Truthful Optimal Mechanism

We introduce a VCG-based truthful optimal mechanism
that solves the VMPAC problem. A VCG-based mech-
anism requires an optimal allocation algorithm imple-
menting the allocation function A [3]. A VCG mecha-
nism [3] is defined as follows.
Definition 4: A mechanism M = (A,P) is a Vickrey-

Clarke-Groves (VCG) mechanism if A maximizes the
social welfare, and

Pi(θ̂) =
∑

j∈A(θ̂
−i)

b̂j −
∑

j∈A(θ̂),j 6=i

b̂j , (7)

where
∑

j∈A(θ̂
−i)

b̂j is the optimal social welfare that
would have been obtained had user i not participated,
and

∑

j∈A(θ̂),j 6=i
b̂j is the sum of all users valuations

except user i’s.
We define the VCG-based mechanism that solves the

VMPAC problem as follows:
Definition 5: The VCG-VMPAC mechanism consists of

the optimal allocation algorithm that solves IP-VMPAC
and the payment function defined by the VCG payment
rule given in equation (7).
The VCG-VMPAC mechanism is given in Algorithm 1.

The mechanism is run periodically by the cloud provider.
VCG-VMPAC has one input parameter, the vector of
resource capacities C = (C1, . . . , CR), and three output
parameters: V ∗, the optimal social welfare, x∗, the opti-
mal allocation of VM instances to the users, and P the
payments. The mechanism collects the requests from the

Algorithm 2 G-VMPAC-X Mechanism

1: {Collect user requests (types)}
2: for all i ∈ U do
3: Collect user type θ̂i = (Ŝi, b̂i) from user i
4: {Allocation}
5: (V ∗, x∗) = G-VMPAC-X-ALLOC(θ̂,C)
6: Provisions and allocates VM instances according to x∗.
7: {Payment}
8: P =PAY(θ̂,C,x)

users, expressed as types (lines 2-4), and determines the
optimal allocation by solving the IP-VMPAC (line 6).
Once the optimal allocation is determined the mecha-
nism provisions the required number and types of VM
instances and determines the payments. The users are
then charged the amount determined by the mechanism
(lines 9-15). The VCG payment of a user i is calculated by
solving the IP-VMPAC to find the allocation and welfare
obtained without user i’s participation (line 10). Based
on the optimal allocation to the users with and without
user i’s participation, the mechanism finds the payment
for user i, where sum1 is the sum of all values without
user i’s participation in the mechanism, and sum2 is
the sum of all except user i’s value in the optimal case
(lines 11-15).
Being a VCG-based mechanism, VCG-VMPAC is

truthful [3], and it determines the optimal allocation.
However, the VMPAC is strongly NP-hard, and thus, the
execution time of VCG-VMPAC becomes prohibitive for
large instances of VMPAC. To be able to solve VMPAC in
reasonable time, we resort to greedy mechanisms, which
we design in the next section.

4 TRUTHFUL GREEDY MECHANISMS

In this section, we present the proposed truthful greedy
mechanisms and then investigate their properties.

4.1 G-VMPAC-X Truthful Greedy Mechanisms

The VMPAC problem is strongly NP-hard and there is no
Fully Polynomial Time Approximation Scheme (FPTAS)
for solving it, unless P = NP [17]. Thus, one solution
to solve VMPAC is to design heuristic approximation
algorithms. In general, approximation algorithms do not
necessarily satisfy the properties required to achieve
truthfulness, and thus, they need to be specifically de-
signed for truthfulness. Our goal is to design truth-
ful greedy approximation mechanisms that solve the
VMPAC problem.
We propose a family of truthful greedy mechanisms,

called G-VMPAC-X. The G-VMPAC-X family is given
in Algorithm 2. A mechanism from this family is exe-
cuted periodically by the cloud provider. The mechanism
collects the requests from the users expressed as types
(lines 1-3) and determines the allocation by calling the
allocation algorithm (lines 4-5). The allocation algorithm
can be any version of the G-VMPAC-X-ALLOC allo-
cation algorithms that we present later in this section.
Once the allocation is determined, the mechanism pro-
visions the required number and types of VM instances
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Algorithm 3 G-VMPAC-X-ALLOC Allocation algorithms

1: Input: θ̂ = (θ̂1, . . . , θ̂N ); vector of types (bundle, bid)
2: Input: C = (C1, . . . , CR); vector of resource capacities
3: V = 0
4: x← 0

5: Ĉ = C

6: for all r ∈ R do
7: fr ← 1, for G-VMPAC-I-ALLOC; or

fr ←
1

Cr
for G-VMPAC-II-ALLOC; or

fr ←

∑

N

i=1
âir−Cr

∑

N

i=1
âir

, for G-VMPAC-III-ALLOC

8: for all i ∈ U do

9: di = b̂i
√

∑

R

r=1
fr âir

10: Sort U in decreasing order of di

11: for all i ∈ U do
12: flag ← TRUE
13: for all r ∈ R do
14: C̃r = Ĉr −

∑

m∈VM
kimwmr

15: if C̃r < 0 then
16: flag ← FALSE
17: break;
18: if flag then
19: V = V + b̂i

20: xi = 1
21: Ĉ = C̃

22: Output: V , x

(line 6). Then, the mechanism determines the payments
by calling the PAY function (lines 7-8). The users are then
charged the amount determined by the mechanism.
The general form of the allocation algorithm (called

G-VMPAC-X-ALLOC) of this family of mechanisms is
given in Algorithm 3. G-VMPAC-X-ALLOC has two
input parameters: the vector of users declared types θ̂,
and the vector of resource capacities C = (C1, . . . , CR);
and two output parameters: V , the total social welfare
and x, the allocation of VM instances to the users. The
algorithm orders the users (lines 6-10) according to a
general density metric defined as:

di =
b̂i

√

∑R

r=1 frâir

,∀i ∈ U (8)

where âir =
∑

m∈VM k̂imwmr is the amount of each
resource of type r requested by user i, and fr is the
relevance factor characterizing the scarcity of resources of
type r. A higher fr means a higher scarcity of resource r,
thus, a lower density. That means, a user that requests
more resources of a scarce type is less likely to receive
her requested bundle. G-VMPAC-X-ALLOC algorithm
allocates the VM instances to users in decreasing order
of their densities.
The choice of relevance factors, fr, defines the mem-

bers of the G-VMPAC-X family of allocation algorithms.
We consider three choices for fr, and obtain three al-
location algorithms, G-VMPAC-I-ALLOC, G-VMPAC-II-
ALLOC, and G-VMPAC-III-ALLOC, as follows:
1) G-VMPAC-I-ALLOC: obtained when fr = 1,

∀r ∈ R. This is a direct generalization of the one-
dimensional case considered by Lehmann et al. [19]. This
generalization does not take into account the scarcity of
different resources and may not work well in situations

Algorithm 4 PAY: Payment Function

1: Input: θ̂ = (θ̂1, . . . , θ̂N ); vector of types (bundle, bid)
2: Input: C; vector of resource capacities
3: Input: x∗; winning users
4: for all i ∈ U , where U is sorted in decreasing order of di do
5: Pi = 0
6: if x∗

i
then

7: l = −1
8: (V ′∗, x′∗) = G-VMPAC-X-ALLOC (θ̂ \ θ̂i,C)
9: for all j ∈ U , dj < di in decreasing order of dj do
10: if x∗

j
= 0 and x′∗

j
then

11: l = j
12: break;
13: if l then

14: Pi = dl

√

∑R

r=1
fr âir

15: else
16: Pi = 0
17: Output: P = (P1,P2, . . . ,PN )

in which the VM instances are highly heterogeneous in
terms of the resources provided.

2) G-VMPAC-II-ALLOC: obtained when fr = 1
Cr

,
∀r ∈ R. This addresses the scarcity issues in G-VMPAC-
I, by scaling the values of fr with the inverse of capacity
Cr for each resource r.

3) G-VMPAC-III-ALLOC: obtained when fr =
∑

N

i=1
âir−Cr

∑

N

i=1
âir

, ∀r ∈ R. This relevance factor considers the

relative scarcity of resources. As a result, resources with
higher demands have a higher fr and thus, contribute
more to decreasing the density. Users requesting more
highly demanded resources have lower densities and are
less likely to receive their requested bundles.

Once the users are sorted according to their density
values (line 10), the algorithm determines the alloca-
tion x (lines 11-22). In doing so, the algorithm checks the
feasibility of allocating the requested bundle of each user
(lines 12-17). If the allocation is feasible, the algorithm
updates V and xi (lines 19-20). The time complexity of
the algorithms is O(N(RM + log N)).

The PAY function is given in Algorithm 4. The PAY
function has three input parameters, the vector of users
declared types (θ̂), the vector of resource capacities C,
and the optimal allocation x

∗. It has one output parame-
ter: P , the payment vector for the users. PAY determines
the payments of users sorted according to the density
metric (lines 4-16). For each user i, PAY sets her initial
payment to 0 (line 5). If user i is among the winning
users, PAY updates her payment (lines 7-16), otherwise
the payment remains 0. The payments are based on
the critical values of the winning users. In doing so,
PAY calls the allocation algorithm, G-VMPAC-X-ALLOC
without considering the participation of user i (line 8).
Then, PAY tries to find user j such that she wins in
the absence of user i, and she does not win in the
presence of user i (lines 9-10). If PAY finds such a user,
it stores her index l (lines 11-12), otherwise user i pays 0
(line 16). The payment of winning user i is calculated by
multiplying

∑R

r=1 âir with the highest density among the
losing users, user l, who would win if i would not be a
winner (line 14).
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TABLE 2: Statistics of workload logs.

Logfile Avg
jobs
per
hour

Range
of CPU

Range of
memory
(MB)

Range of
Storage

(MB)

Available
CPUs

Memory
Capacity
(MB)

Storage
Capacity
(MB)

Avg CPU
per job

Avg mem-
ory per job
(MB)

Avg
storage
per job
(MB)

GWA-T-1 DAS-2 81 [1-128] [1-4,295] [10-51,070] 247 760 2,500 4.37 46.96 43.95
GWA-T-3 NorduGrid 34 1 [1-2,147] [10-1,053,072] 24 14,000 640,000 1 595.6 93,888.77
GWA-T-4 AuverGrid 33 1 [1.7-3,668] [10-259,316] 7 8,800 640,000 1 374.3653 27,805.86
GWA-T-10 SHARCNET 147 [1-3000] [1-32,021] [10-2,087,029] 85 9,700 4,000 2.9 94.49 39.43
METACENTRUM-2009-2 42 [1-60] [1-61,538] [10-2,592,130] 44 9,700 178,000 1.55 325.14 21,189.11
PIK-IPLEX-2009-1 36 [1-2560] [1-29,360] [10-4,815,007] 88 89,000 470,000 12.15 3,528.22 18,716.06

4.2 G-VMPAC-X Mechanisms Properties

In this subsection, we show that the G-VMPAC-X mech-
anisms are truthful and determine their approximation
ratio. We show first that the allocation algorithms are
monotone, and thus, satisfy the first requirement for
truthfulness.
Theorem 1: The G-VMPAC-X-ALLOC allocation algo-

rithms are monotone.
We provide the proof of this theorem in Appendix B of
the supplemental material.
In the following, we show that the payment algorithm

is based on the critical value, and thus, satisfies the
second requirement for truthfulness.
Theorem 2: The payment algorithm, PAY, implements

the critical value payment.
We provide the proof of this theorem in Appendix C of
the supplemental material.
We now show that the proposed mechanisms are

truthful.
Theorem 3: The proposed mechanisms in the G-

VMPAC-X family are truthful.
Proof: The allocation algorithms in the G-VMPAC-

X family are monotone (Theorem 1) and the payment
(implemented by PAY) is the critical value payment (The-
orem 2), therefore, according to [18], the mechanisms in
the G-VMPAC-X family are truthful.

In Appendix D of the supplemental material, we an-
alyze the effect of untruthful reporting on the utility of
the users participating in the G-VMPAC-II mechanism
by considering an example.
In the following, we determine the approximation

ratio of the greedy mechanisms in the G-VMPAC-X
family.
Theorem 4: The approximation ratio of the mecha-

nisms in the G-VMPAC-X family is
√

NRCmax, where
Cmax = maxr∈R Cr.
We provide the proof of this theorem in Appendix E of
the supplemental material.
In our previous work [20], we proposed two greedy

mechanisms having an approximation ratio of RCmax.
In this paper, our proposed mechanisms obtain a better
approximation ratio than that of [20] for many instances
of the VMPAC problems that are of practical interest.
This is due to the fact that in many actual instances of
the VMPAC problem RCmax > N , since the number
of requests is less than the total maximum capacity of
the resources. Note that the obtained bound is for the
extreme worst case scenario in which for G-VMPAC-I,

we assume
∑R

r=1 âir = 1. For example, this corresponds
to a request of 1MB of storage, which is not realistic in
practice. For practical scenarios, we expect the solution
to be much closer to the optimal, as validated by the
experimental results presented in the next section. The
approximation ratio becomes constant under the realistic
assumption that the size of the requests are within
a given range. This is the case for the current cloud
providers, which offer a bounded number of VM in-
stances for each request (e.g., Microsoft Azure currently
offers a maximum of 20 VM instances to each user). In
Appendix F of the supplemental material, we explain in
details why the approximation ratio is constant for these
practical cases.

5 EXPERIMENTAL RESULTS

We perform extensive experiments with real workload
data in order to investigate the properties of the pro-
posed mechanisms in the G-VMPAC-X family, and the
VCG-VMPAC mechanism (optimal). We also compare
our proposed mechanisms with CA-PROVISION [15].
Since CA-PROVISION considers only the computational
resource, in our experiments CA-PROVISION does not
use the amount of other requested resources such as
memory and storage when making allocation decisions.
For the VCG-VMPAC mechanism, we use the CPLEX
solver to solve the VMPAC problem optimally. The
CPLEX 12 solver is provided by IBM ILOG CPLEX
Optimization Studio for Academics Initiative [21].
All five mechanisms were executed 59,636 times with

a total of 3,514,150 user requests. The auctions are gen-
erated using six workload logs from the Grid Workloads
Archive [22] and the Parallel Workloads Archive [23]. We
present statistics of the logs in Table 2. The mechanisms
are implemented in C++ and the experiments are con-
ducted on Intel 2.93GHz Quad Proc Hexa Core nodes
with 90GB RAM which are part of the Wayne State Grid
System. In this section, we describe the experimental
setup and analyze the experimental results.

5.1 Experimental Setup

Because real users request data have not been publicly
released by cloud providers yet, for our experiments,
we rely on well studied and standardized workloads
from both the Grid Workloads Archive [22] and the
Parallel Workloads Archive [23]. From the Grid Work-
loads Archive, we selected four out of six available logs.
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Fig. 1: G-VMPAC-X performance: (a) Social welfare; (b) Revenue; (c) Execution time. (*VCG-VMPAC was not able to
determine the allocation for GWA-T-1 DAS-2, GWA-T-10 SHARCNET, METACENTRUM-2009-2, and PIK-IPLEX-2009-1 in feasible time, and
thus, there are no bars in the plots in Figs. 1 to 7 for those cases)

These logs are: 1) DAS-2 traces from a research grid at
the Advanced School for Computing and Imaging in
Netherlands; 2) NorduGrid traces from the NorduGrid
system; 3) AuverGrid traces from the AuverGrid sys-
tem; 4) SHARCNET traces from SHARCNET clusters
installed at several academic institutions in Ontario,
Canada. From the Parallel Workloads Archive, we se-
lected two logs that were recorded most recently. These
logs are: 5) MetaCentrum from the national grid of the
Czech republic; 6) IBM iDataPlex Cluster log from the
Potsdam Institute for Climate Impact Research (PIK) in
Germany. The logs are selected based on the availability
of recorded both CPU and memory requests/usage.
Table 3 provides a brief description of the selected work-
loads. The table contains the names of the log files, the
durations the logs were recorded, and the total number
of submitted jobs. In our experiments, each job in a log
represents a user request. In addition, each hour of a log
represents one auction.

We consider each log as a series of auctions, where
the users can submit their requests over time to a cloud
provider. We setup the auctions to run every hour just
to follow the standard practice in Amazon EC2. Partic-
ipants of each auction include the new users and those
users who are not served and their deadline has not been
exceeded. The new arriving users are indicated based on
the submission time of their requests.

To generate the user requests for the experiments, we
extract the data from six fields of the log files as follows:
(1) JobID: the jobs identifier; (2) SubmitTime: the job
submission time; (3) RunTime: the time the job needs
to complete its execution; (4) ReqNProcs: the requested
number of processors; (5) Used Memory: the average
used memory per processor; (6) AverageCPUTimeUsed:
the average CPU time over all allocated processors. Since
the amount of storage usage was not recorded in the
workloads, to generate the requested storage, we use the
value of this field. In each log, we remove the jobs with
missing values in these fields.

For each job in a log, we generate a user request. Since
the logs provide data on resource usage, we consider
these as values for the requested air, the amount of each

TABLE 3: Workload logs.

Logfile Duration
(hours)

Jobs

GWA-T-1 DAS-2 13,534 1,099,803
GWA-T-3 NorduGrid 8,127 276,144
GWA-T-4 AuverGrid 8,298 274,455
GWA-T-10 SHARCNET 6,909 1,018,355
METACENTRUM-2009-2 2,402 102,538
PIK-IPLEX-2009-1 20,366 742,855

resource of type r requested by user i, where i is a job in
a log and r is a resource type. As a result, a user request
contains the requested number of CPUs, the amount of
memory and the amount of storage. To generate bids
for users, we generate a random number bi for each
user i between 1 and 10. We also generate a deadline
for each job request which is between 3 to 6 times the
job’s runtime. The deadline is when a user stops bidding
for her requested bundle irrespective of her allocation.

5.2 Analysis of Results

We compare the performance of G-VMPAC-X, VCG-
VMPAC and CA-PROVISION for different workloads.
For each workload, we compute the execution time and
the average social welfare, revenue, and utilization of the
resources per hour for each mechanisms.
We present the results for all the selected logs. As for

VCG-VMPAC (optimal), it is only able to complete the
experiments for two of the logs: GWA-T-3 NorduGrid
and GWA-T-4 AuverGrid. VCG-VMPAC takes 2,623.54
seconds for GWA-T-4 AuverGrid and 132,678.31 seconds
for GWA-T-3 NorduGrid. For the rest of the logs, VCG-
VMPAC is not able to solve the VMPAC problem for
the selected workloads within 48 hours. VCG-VMPAC
is unable to solve these problems due to exceeding the
memory capacity (90 GB) of the machines we used to
run the experiments. This is the reason that we do
not present the results of the optimal VCG-VMPAC
mechanism for all the logs in Figs. 1-3. This shows that
the optimal mechanism is not suitable for solving large
scale VMPAC problems, and thus, we need to resort
to heuristic mechanisms. Because of this limitation with
VCG-VMPAC, we compare VCG-VMPAC with the rest
of the mechanisms in Appendix G of the supplemental
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material considering only 500 hours of the logs to show
the performance of all mechanisms.
First, we analyze the performance of the mechanisms

in terms of social welfare. Fig. 1a shows the average
social welfare per hour for the selected logs. All mech-
anisms obtain the highest social welfare per hour for
GWA-T-1 DAS-2 because of the combination of several
factors such as capacities, number of request per hour,
and the percentage of users served.
CA-PROVISION performs slightly better on PIK-

IPLEX-2009-1 than on the rest of the logs. This is due to
the fact that in this log the CPU is the scarcest resource
compared to the other resources, and this mechanism
only relies on one dimension (the computational re-
source). As a result, using this mechanism users who
request fewer CPUs with relatively high bid get higher
priorities than others. Therefore, this mechanism selects
the users who are more likely to be in the optimal
solution, and thus, it achieves higher social welfare
in this case. This is not the case for the other logs
where CPU is not the only scarce resource. Since CA-
PROVISION considers only CPU compared to other
methods that consider all the resource types, it has the
lowest performance in general.
The performance of G-VMPAC-I is susceptible to the

relative magnitude of the amount of the requested re-
sources. Therefore, if the requested resources are highly
heterogeneous (say 10,000 MB of storage vs. a few
number of CPUs), a resource that has a higher rela-
tive magnitude than the others becomes dominant in
determining the density metric by G-VMPAC-I. As a
result, that resource has the most impact on the perfor-
mance of G-VMPAC-I. If such resource is scarce, then
G-VMPAC-I obtains the best performance. In GWA-T-3
NorduGrid, where storage has a high relative magnitude
and is scarce, G-VMPAC-I performs better than other
mechanisms.
In most cases, G-VMPAC-II which uses the inverse

of the capacity as a weighting factor, achieves a higher
social welfare than the rest of the mechanisms. This is
due to the fact that G-VMPAC-II considers the impact of
all resources in order to calculate the density metric for
each user.
The results show that for GWA-T-4 AuverGrid, G-

VMPAC-III achieves a social welfare that is the highest.
This is due to the fact that the total amount of requested
resource,

∑N

i=1 âir, is relatively close to the capacity of
that resource, Cr in this log. In such case, G-VMPAC-
III considers the impact of all resources in order to
calculate the density metric for each user. However,
when the sum of the requested resources are very high
in comparison with the available capacity, G-VMPAC-III
performs very close to G-VMPAC-I. This is due to the

fact that fr =

∑

N

i=1
âir−Cr

∑

N

i=1
âir

approaches 1, which is the

case for G-VMPAC-I.
Fig. 1b shows the average revenue per hour achieved

by the cloud provider when using the five mechanisms.
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Fig. 2: G-VMPAC-X performance: Users served.
(*see Fig. 1 note on VCG-VMPAC)

Even though, all the mechanisms try to maximize the
social welfare, they also obtain high revenue for the
cloud provider. G-VMPAC-II achieves the highest rev-
enue among all the greedy mechanisms for all work-
loads.
Fig. 1c shows the execution times of the mechanisms

on a logarithmic scale. As we expected from the time
complexity of the mechanisms, the execution times of G-
VMPAC-X and CA-PROVISION are in the same order of
magnitude for each of the logs. The optimal mechanism,
VCG-VMPAC, could not find the solutions even after 48
hours for four out of six logs. This is due to the fact
that the problem gets more complex for higher number
of requests, number of auction hours, and available
capacity. VCG-VMPAC is able to solve VMPAC for the
full GWA-T-4 AuverGrid log since the available capacity
of CPU in each auction is very low. As a result, the
feasible solution area becomes strictly limited, and the
CPLEX solver can find the optimal solutions faster than
for the rest of the logs.
Fig. 2 shows the percentage of served users for each

of the five mechanisms. Note that VCG-VMPAC does
not serve a higher number of users than the other
mechanisms. This is due to the fact that the optimal
mechanism finds the most valuable subset of users in
order to maximize the social welfare.
Figs. 3a to 3c show the utilization of cores, memory

and storage, respectively. Note that a higher utilization
does not show the effectiveness of the mechanisms.
The objective of all the mechanisms is maximizing the
social welfare not the utilization of the resources. The
memory and storage utilization in the case of CA-
PROVISION are higher than those of the other mech-
anisms. CA-PROVISION chooses users who value CPUs
the most without considering their requested memory
and storage. These users are more likely to requests
higher amounts of memory and storage which results
in a higher memory and storage utilization for CA-
PROVISION.
From all the above results, we conclude that G-

VMPAC-II finds near-optimal solutions to the VMPAC
problem and requires small execution times. The small
execution time of our proposed G-VMPAC-X mecha-
nisms makes them good candidates for deployment on
the current cloud computing systems.
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Fig. 3: G-VMPAC-X resource utilization: (a) Cores; (b) Memory; (c) Storage. (*see Fig. 1 note on VCG-VMPAC)

6 CONCLUSION

We addressed the problem of dynamic VM provisioning
and allocation in clouds by designing truthful mecha-
nisms that give incentives to the users to reveal their true
valuations for their requested bundles of VM instances.
The proposed truthful optimal and greedy mechanisms
for solving the VMPAC problem consider the presence of
resources of multiple types. We determined the approx-
imation ratio of the proposed greedy mechanisms and
investigated their properties by performing extensive ex-
periments. The results showed that the proposed greedy
mechanisms determine near optimal solutions while ef-
fectively capturing the dynamic market demand, provi-
sioning the computing resources to match the demand,
and generating high revenue. In addition, the execution
time of the proposed greedy mechanisms is very small.
As a recommendation, G-VMPAC-II is the best choice for
the cloud providers since it yields the highest revenue
among the proposed greedy mechanisms. We plan to
implement a prototype allocation system in an exper-
imental cloud computing system to further investigate
the performance of our proposed mechanisms.
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