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Abstract—Executing large scale application programs in grids requires resources from several Grid Service Providers (GSPs). These
providers form Virtual Organizations (VOs) by pooling their resources together to provide the required capabilities to execute the
application. We model the VO formation in grids using concepts from coalitional game theory and design a mechanism for VO formation.
The mechanism enables the GSPs to organize into VOs reducing the cost of execution and guaranteeing maximum profit for the GSPs.
Furthermore, the mechanism guarantees that the VOs are stable, that is, the GSPs do not have incentives to break away from the
current VO and join some other VO. We perform extensive simulation experiments using real workload traces to characterize the
properties of the proposed mechanism. The results show that the mechanism produces VOs that are stable yielding high revenue for
the participating GSPs.
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1 INTRODUCTION

G RID computing systems enable efficient collabora-
tion among researchers and provide essential sup-

port for conducting cutting-edge science and engineer-
ing research. These systems are composed of geograph-
ically distributed resources (computers, storage etc.)
owned by autonomous organizations. Resource manage-
ment in such open distributed environments is a very
complex problem which if solved leads to efficient uti-
lization of resources and faster execution of applications.
The existent grid resource management systems [1], [2],
[3] do not explicitly address the formation and manage-
ment of Virtual Organizations (VO) [4]. We argue that
incentives are the main driving forces in the formation of
VOs in grids, and thus, it is imperative to take them into
account when designing VO formation mechanisms. To
provide better performance and increase the efficiency
it is essential to develop mechanisms for VO formation
that take into account the behavior of the participants
and provide incentives to contribute resources.

A VO is “a collection of geographically distributed
functionally and/or culturally diverse entities that are
linked by electronic forms of communication and rely
on lateral, dynamic relationships for coordination” [5].
While this definition covers a wide range of VOs, this
paper focuses on more specific types of VOs, those that
emerge in the existing grids. The VOs we are focusing
on are alliances among various organizations that col-
laborate and pool their resources to execute large scale
applications [4]. More specifically, we will consider VOs
that form dynamically and are short-lived, that is, they

• L. Mashayekhy and D. Grosu are with the Department of Computer
Science, Wayne State University, Detroit, MI, 48202.
E-mail: mlena@wayne.edu, dgrosu@wayne.edu

are formed in order to execute a given task and once the
task is completed they are dismantled.
The life-cycle of a VO can be divided into four

phases: identification, formation, operation, and disso-
lution. During the initiation phase the possible partners
and the VO’s objectives are identified. In the formation
phase, the potential partners negotiate the exact terms,
the goal, and the duration of collaboration. Once the
VO is formed it enters the operation phase in which
the members of the VO collaborate in solving a specific
task. Once the VO completes the task, it dissolves. This
paper focuses on designing mechanisms for the second
phase, the formation of VOs. We model the VO forma-
tion as a coalitional game where GSPs decide to form
VOs in such a way that each GSP maximizes its own
profit, the difference between revenue and costs. The VO
formation phase can be further divided into three sub-
phases: coalitional structure generation, solving the task
allocation problem of each coalition, and dividing the
value among the members of the coalition. In the first
sub-phase, the set of GSPs is partitioned into disjoint
VOs. In the second sub-phase, the task assignment that
maximizes the profit of the participating GSPs in each
VO is determined. In the third sub-phase, the profit
obtained by the VO is divided among the members of the
VO. A GSP will choose to participate in a VO if its profit
is not negative. The VOs provide the composite resource
needed to execute applications. A VO is traditionally
conceived for the sharing of resources, but it can also
represent a business model [4]. In this work, a VO
is a coalition of GSPs who desire to maximize their
individual profits and are largely indifferent about the
global welfare. We design a VO formation mechanism
based on concepts from coalitional game theory [6]. The
model that we consider consists of a set of GSPs and
a grid user that submits a program and a specification



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX 2

consisting of a deadline and payment. A subset of GSPs
will form a VO in order to execute the program before
its deadline. The objective of each GSP is to form a VO
that yields the highest individual profit.
In Appendix A of the supplemental material we pro-

vide an extensive review of the related work.

1.1 Our Contribution

We address the problem of VO formation in grids by de-
signing a mechanism that allows the GSPs to make their
own decisions to participate in VOs. In this mechanism,
coalitions of GSPs decide to merge and split in order to
form a VO that maximizes the individual payoffs of the
participating GSPs. The mechanism produces a stable
VO structure, that is, none of the GSPs has incentives
to merge to another VO or split from a VO to form
another VO. We propose the use of a selfish split rule
in order to find the optimal VO in the VO structure. The
mechanism determines the mapping of the tasks to each
of the VOs that minimizes the cost of execution by using
a branch-and-bound method. As a result, in each step
of the mechanism the mapping provides the maximum
individual payoffs for the participating GSPs that make
the decisions to further merge and split. We analyze the
properties of our proposed VO formation mechanism
and perform extensive simulation experiments using real
workload traces from the Parallel Workloads Archive [7].
The results show that the proposed mechanism deter-
mines a stable VO that maximizes the individual payoffs
of the participating GSPs.

1.2 Organization

The rest of the paper is organized as follows. In Section 2,
we describe the VO formation problem and the system
model we consider. In Section 3, we describe the game
theoretic framework used to design the proposed VO
formation mechanism, present the proposed mechanism,
and characterize its properties. In Section 4, we evaluate
the mechanism by extensive simulation experiments. In
Section 5, we summarize our results and present possible
directions for future research.

2 VO FORMATION AS A COALITIONAL GAME

In this section, we model the VO formation in grids as
a coalitional game. We first describe the system model
which considers that a user wants to execute a large-
scale application program T consisting of n independent
tasks {T1, T2, . . . , Tn} on the available set of grid service
providers (GSPs) by a given deadline d. Application
programs consisting of several independent tasks are
representative for a wide range of problems in science
and engineering [8], [9]. Each task T ∈ T composing
the application program is characterized by its workload
w(T ), which can be defined as the amount of floating-
point operations required to execute the task. Executing
the application program T requires a large number of

resources which cannot be provided by a single GSP.
Thus, several GSPs pool their resources together to exe-
cute the application. We consider that a set of m GSPs,
G = {G1, G2, . . . , Gm}, are available and are willing
to provide resources for executing programs. Here, we
assume that the GSPs are driven by incentives in the
sense that they will execute a task only if they make
some profit out of it. More specifically, the GSPs are
assumed to be self-interested and welfare-maximizing
entities. Each service provider G ∈ G owns several
computational resources which are abstracted as a single
machine with speed s(G). The speed s(G) gives the
number of floating-point operations per second that can
be executed by GSP G. Therefore, the execution time of
task T at GSP G is given by the execution time function

t : T × G → R
+, where t(T,G) = w(T )

s(G) . This corresponds
to the execution time function used in the scheduling on
related parallel machines model [10]. Another possibility
would be to consider the function that corresponds
to the scheduling on unrelated machines model, that

is t(T,G) = w(T )
s(T,G) , where the speed of executing a

task s depends on both the task and the machine on
which it is executed. Our proposed coalitional game
and VO formation mechanism works with both types
of functions, since the task mapping problem described
in the next section is defined in terms of t(T,G) and
not in terms of workloads and speeds. Thus, without
loss of generality, in the rest of the paper, we use the
execution time function corresponding to the scheduling
on related machines model. We also assume that once a
task is assigned to a GSP, the task is neither preempted
nor migrated.

A GSP incurs cost for executing a task. The cost in-
curred by GSP G ∈ G when executing task T ∈ T is given
by c(T,G), where c : T × G → R

+ is the cost function.
Furthermore, we assume that a GSP has zero fixed costs
and its variable costs are given by the function c. A
user is willing to pay a price P less than her available
budget B if the program is executed to completion by
deadline d. If the program execution exceeds d, the user
is not willing to pay any amount that is, P = 0.

Since a single GSP does not have the required re-
sources for executing a program, GSPs form VOs in
order to have the necessary resources to execute the pro-
gram and more importantly, to maximize their profits.
The profit is simply defined as the difference between
the payment received by a GSP and its execution costs.
If the profit is negative (i.e., a loss), the GSP will choose
not to participate.

We model the VO formation problem as a coalitional
game. A coalitional game [11] is defined by the pair
(G, v), where G is the set of players and v is a real-
valued function called the characteristic function, defined
on S ⊆ G such that v : S → R

+ and v(∅) = 0. In our
model, the players are the GSPs that form VOs which
are coalitions of GSPs. In this work, we use the terms
VO and coalition interchangeably.
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Each subset S ⊆ G is a coalition. If all the players form
a coalition, it is called the grand coalition. A coalition
has a value given by the characteristic function v(S)
representing the profit obtained when the members of
a coalition work as a group. For each coalition of GSPs
S ⊆ G, there exists a mapping πS : T → S, which assigns
task T ∈ T to service provider G ∈ S. To maximize the
profit obtained by a VO, we need to find an optimal
mapping of all the tasks on the members of VO in such
a way that the mapping minimizes the execution cost.
We call this task assignment problem the MIN-COST-
ASSIGN problem.
MIN-COST-ASSIGN finds a mapping of n tasks to k

GSPs in VO S, where k = |S|. The goal is to minimize
the cost of execution. We consider the following decision
variables:

σS(T,G) =

{

1 if πS(T ) = G,

0 if πS(T ) 6= G.
(1)

We formulate the MIN-COST-ASSIGN problem as an
Integer Program (IP) as follows:

Minimize C(T , S) =
∑

T∈T

∑

G∈S

σS(T,G)c(T,G), (2)

Subject to:
∑

T∈T

σS(T,G)t(T,G) ≤ d, (∀G ∈ S), (3)

∑

G∈S

σS(T,G) = 1, (∀T ∈ T ), (4)

∑

T∈T

σS(T,G) ≥ 1, (∀G ∈ S), (5)

σS(T,G) ∈ {0, 1}, (∀G ∈ S and ∀T ∈ T ). (6)

The objective function (2) represents the costs incurred
for executing the program T on S under the mapping.
Constraints (3) ensure that each GSP can execute its
assigned tasks by the deadline. Constraints (4) guarantee
that each task T ∈ T is assigned to exactly one GSP.
Constraints (5) ensure that each GSP G ∈ S is assigned
at least one task. Constraints (6) represent the integrality
requirements for the decision variables.
We define the following characteristic function for our

proposed VO formation game:

v(S) =

{

0 if |S| = 0 or IP is not feasible,

P − C(T , S) if |S| > 0 and IP is feasible,
(7)

where |S| is the cardinality of S. Note that v(S) can be
negative if C(T , S) > P . That means GSPs in S incur
cost.
The objective of each GSP is to determine the member-

ship in a coalition that gives the highest share of profit.
There are different ways to divide the profit v(S) earned
by coalition S among its members. Traditionally, the
Shapley value [12] would be employed, but computing the

Shapley value requires iterating over every partition of
a coalition, an exponential time endeavor. Another rule
for payoff division is equal sharing of the profit among
members. Equal sharing provides a tractable way to
determine the shares and has been successfully used as
a payoff division rule in other systems where tractability
is critical (e.g., [13]). For this reason we adopt here the
equal sharing of the profit as the payoff division rule.
Due to their welfare-maximizing behavior, the GSPs

prefer to form a low profit coalition if their profit di-
visions are higher than those obtained by participating
in a high profit coalition. Therefore, a service provider
G determines its preferred coalition S, where G ∈ S by
solving:

max
(S)

P − C(T , S)

|S|
(8)

The GSPs’ goal is to maximize their own profit by
solving the optimization problem given in equation (8).
Therefore, minimizing the cost C(T , S) by solving the
MIN-COST-ASSIGN problem maximizes the profit P −
C(T , S) earned by a VO. A VO obtains profit and then
the profit is divided among participating GSPs. As a
result, a GSP prefers a VO that provides the highest
profit among all possible VOs.
The payoff or the share of GSP G part of coalition

S, denoted by xG(S) is given by xG(S) = v(S)
|S| . Thus,

the payoff vector x(G) = (xG1
(G), · · · , xGm

(G)) gives
the payoff divisions of the grand coalition. A solution
concept for coalitional games is a payoff vector that
divides the payoff among the players in some fair way.
The primary concern for any coalitional game is stability
(i.e., players do not have incentives to break away from
a given coalition). One of the solution concepts used to
asses the stability of coalitions is the core. In order to
define the core we need to introduce first the concept of
imputation.
Definition 1 (Imputation): An imputation is a payoff

vector such that xG(G) ≥ v(G), for all GSPs G ∈ G, and
∑

G∈G xG(G) = v(G).
The first condition says that by forming the grand

coalition the profit obtained by each member G partic-
ipating in the grand coalition is not less than the one
obtained when acting alone. The second condition says
that the entire profit of the grand coalition should be
divided among its members.
Definition 2 (Core): The core is a set of imputations

such that
∑

G∈S xG(G) ≥ v(S),∀S ⊆ G, i.e., for all
coalitions, the payoff of any coalition is not greater than
the sum of the payoffs of its members in the grand
coalition.
The core contains payoff vectors that make the players

want to form the grand coalition. The existence of a
payoff vector in the core shows that the grand coalition
is stable. Therefore, a payoff division is in the core if no
player has an incentive to leave the grand coalition to
join another coalition in order to obtain higher profit.
The core of the VO formation game can be empty. If the
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TABLE 1: The program settings.

cost speed time
T1 T2 s T1 T2

G1 3 4 8 3 4.5
G2 3 4 6 4 6
G3 4 5 12 2 3

deadline d = 5 payment P = 10

TABLE 2: The mappings for each coalition.

S Mapping v(S)
{G1} NOT FEASIBLE 0
{G2} NOT FEASIBLE 0
{G3} T1, T2 → G3 1
{G1, G2} T2 → G1; T1 → G2 3
{G1, G3} T1 → G1; T2 → G3 2
{G2, G3} T1 → G2; T2 → G3 2
{G1, G2, G3} T2 → G1; T1 → G2 3

grand coalition does not form, independent and disjoint
coalitions would form.

To show that the core of the proposed VO forma-
tion game can be empty we consider an example with
three GSPs G = {G1, G2, G3} and a two-task program
T = {T1, T2}, where T1 and T2 workloads are 24 and 36
million floating-point operations, respectively. In Table 1,
we give the cost of executing each task on each GSP, the
speed of each GSP, and the execution time of each task
on each GSP. As an example, G1 incurs 3 units of cost to
execute T1 and 4 units of cost to execute T2. The speed
of G1 is 8 MFLOPS (Mega floating-point operations per
second). Based on the definition of the time function, the
execution time of task T1 and T2 are 3 and 4.5 seconds,
respectively.

If G1, G2 and G3 execute the entire program separately,
then the program completes in 7.5, 10 and 5 units of
time, respectively. We assume that the user has specified
a deadline d = 5 and a payment P = 10. Please note that
{G1, G2, G3} is not feasible based on constraint (5) which
requires that each GSP be assigned at least one task. In
this example, we relax constraint (5) to show that even
if the grand coalition is considered feasible the core of
the game is empty. The mapping and the values v(S) are
given in Table 2. Since xG1

(G) + xG2
(G) ≥ v({G1, G2}),

xG3
(G) ≥ v(G3), and xG1

(G) + xG2
(G) + xG3

(G) =
v({G1, G2, G3}) are not satisfied, there is no payoff vector
in the core, and thus, the core of the game is empty. More
than this, since we are using equal sharing, the profit of
G1 and G2 in coalition {G1, G2} is 1.5 while the profit
of each GSP in the grand coalition is 1. Thus, {G1, G2}
have an incentive to deviate from the grand coalition,
and G3 cannot be a member of the coalition. As a result,
{G1, G2} will execute the program.

In this paper, we assume that if a GSP does not execute
a task it receives a payoff of 0. If there are some GSPs that
do not participate in executing any task of the program,

they are not considered members of the VO executing
the application.

3 VO FORMATION MECHANISM

In this section, we introduce few concepts from coali-
tional game theory needed to describe the proposed
mechanism and then present the mechanism.

3.1 Coalition Formation Framework

Coalition formation theory investigates the coalitional
structures in games where the grand coalition does not
form. Coalition formation [14] is the partitioning of the
players into disjoint sets. A coalition structure CS =
{S1, S2, . . . , Sh} forms a partition of the set of GSPs
G such that each player is a member of exactly one
coalition, i.e., Si ∩ Sj = ∅ for all i and j, where i 6= j

and
⋃

Si∈CS Si = G. The problem of finding the optimal
coalition structure is NP-complete [15]. Enumerating all
coalition structures to find the optimal coalition structure
is not feasible since the possible number of coalition
structures is Bm, the m-th Bell number [16] which gives
the number of partitions of a set of size m, where
m = |G|.
In the VO formation game defined in the previous sec-

tion only one of the coalitions in the coalition structure is
selected to execute the application program. The selected
coalition is the one that yields the highest individual
payoff for all of its members. The coalitions that cannot
complete the program within the deadline will not be
considered since the payoff for such coalitions is zero.
The following concepts are used in the design of the

VO formation mechanism.
Definition 3 (Collection): A collection in the grand coali-

tion G, is defined as the set C = {S1, · · · , Sk} of mutually
disjoint coalitions. If ∪k

j=1Sj = G, the collection C is
called a partition of G.
Definition 4 (Comparison): A collection comparison ⊲ is

defined to compare two collections A and B that are
partitions of the same subset S ⊆ G. A⊲B implies that the
way A partitions S is preferred to the way B partitions S.

In the proposed VO formation game, a welfare-
maximizing GSP will determine its coalition by consid-
ering the profit it earns and not the coalition value.
Thus, comparison relations among collections are de-
fined based on the GSPs’ individual payoffs. These com-
parison relations correspond to the merge and split rules
which will be defined later in this section. We consider
two collections Ŝ = {∪k

j=1Sj} and {S1, · · · , Sk} from the
same subset. We define two comparison relations, the
merge comparison ⊲m and the split comparison ⊲s, based
on the individual payoffs as follows:

Ŝ ⊲m{S1, · · · , Sk} ⇐⇒ {∀j ∈ {1, . . . , k}, ∀Gi ∈ Ŝ ∩ Sj ;

xi(Ŝ) ≥ xi(Sj) and ∃j ∈ {1, . . . , k},

∃Gr ∈ Sj ; xr(Ŝ) > xr(Sj)}
(9)
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{S1, · · · , Sk} ⊲sŜ ⇐⇒ {∃j ∈ {1, . . . , k}, ∀Gi ∈ Ŝ ∩ Sj ;

xi(Sj) ≥ xi(Ŝ) and

∃Gr ∈ Sj ; xr(Sj) > xr(Ŝ)}
(10)

Equation (9) implies that collection Ŝ composed of only
one coalition {∪k

j=1Sj} is preferred over {S1, · · · , Sk},
if at least one player Gr is able to improve its payoff
without decreasing other players’ payoffs. Note that, the
merge comparison is a standard Pareto-dominance rela-
tion. Equation (10) implies that collection {S1, · · · , Sk}
is preferred over Ŝ, if at least one coalition Sj is able to
keep the payoffs of its members while at least one of its
members, Gr, is able to improve its payoff regardless of
the effect on the other players outside of Sj .
Using the defined comparison relations, we propose a

VO formation mechanism involving two types of rules
as follows [14]:

Merge Rule: Merge any set of coalitions {S1, · · · , Sk},
where {∪k

j=1Sj}⊲m{S1, · · · , Sk}.

Split Rule: Split any coalition Ŝ = {∪k
j=1Sj}, where

{S1, · · · , Sk}⊲s{∪
k
j=1Sj}.

Coalitions decide to merge only if at least one GSP is
able to strictly improve its individual payoff through the
merge rule without decreasing the other GSPs’ payoffs.
Therefore, the merge rule is an agreement among the
GSPs to operate together if it is beneficial for them.
As we mentioned before, one of the formed coalitions,

the final coalition, executes the program, thus, the for-
mation of the rest of the coalitions is not important. The
reason for this is that the rest of the GSPs which are
not in the final coalition can participate again in another
coalition formation process for executing another appli-
cation program. Therefore, a coalition decides to split
only if there is at least one sub-coalition that strictly
improves the individual payoffs of its constituent GSPs.
Under the split rule, the individual payoffs of the other
sub-coalitions may decrease. The split rule can be seen
as the implementation of a selfish decision by a coalition,
which does not take into account the effect of the split
on the other coalitions.
Two coalitions Si and Sj decide to merge based on

the merge comparison defined by (9) where all of GSPs
in Si ∪ Sj are able to keep or improve their individual
payoffs. A GSP individual payoff is computed based
on (8) while satisfying the deadline constraint. As a
result, the merge occurs if the following two inequalities
are satisfied where at least one of them must be strict.

P − C(T , Si ∪ Sj)

|Si ∪ Sj |
≥

P − C(T , Si)

|Si|
(11)

P − C(T , Si ∪ Sj)

|Si ∪ Sj |
≥

P − C(T , Sj)

|Sj |
(12)

Since |Si ∪ Sj | > |Si| and |Si ∪ Sj | > |Sj |, in or-
der for a GSP in Si to keep or improve its payoff,
P − C(T , Si ∪ Sj) ≥ P − C(T , Si), and it should be the
same for a GSP in Sj . Thus, C(T , Si ∪ Sj) ≤ C(T , Si)

and C(T , Si∪Sj) ≤ C(T , Sj). That means that coalitions
can only merge when the cost of the formed coalition by
merge is less than their cost.

For the split rule, a coalition Ŝ decides to split into
two coalitions Si and Sj based on the split comparison
defined by (10), where all GSPs in Si, Sj , or both are
able to keep or improve their individual payoffs. Thus,
Ŝ splits if at least one of the following inequalities is
satisfied.

P − C(T , Ŝ)

|Ŝ|
<

P − C(T , Si)

|Si|
(13)

P − C(T , Ŝ)

|Ŝ|
<

P − C(T , Sj)

|Sj |
(14)

That means that the individual payoff of each GSP in at
least one of the splitted coalitions, Si or Sj , should be
higher than its individual payoff in Ŝ.

The stability of the resulting coalition structure is char-
acterized using the concept of defection function D [14].

Definition 5 (Defection function): A defection function D

is a function which associates with each partition P of
G a group of collections in G.

A partition P is D-stable if no group of players is
interested in leaving P . Thus, the players can only form
the collections allowed by D. A defection function DP

which allows the formation of all partitions of the grand
coalition was proposed by Apt and Witzel [14]. DP -
stability is defined based on this function. DP allows any
group of players to leave the partition P of G through
merge-and-split rules to create another partition in G.
Therefore, DP -stability means that no coalition has an
incentive to merge or split.

In order to clarify the above concepts, let us con-
sider the example in Section 2 with three GSPs G =
{G1, G2, G3} and a two-task program T = {T1, T2}. G1

and G2 cannot perform the program by acting alone
since the deadline is exceeded, thus they receive zero.
G3 receives 1 by acting alone. Consider that G3 commu-
nicates with G2 in order to merge. Based on the values
in Table 2, {G2, G3} ⊲m {{G2}, {G3}}, since G2 improves
its payoff while G3 keeps its original payoff. Thus, the
merge is optimal. Now, there are two coalitions {G1}
and {G2, G3}. G1 communicates with {G2, G3} in order
to merge and since {G1, G2, G3}⊲m{{G1}, {G2, G3}}, the
merge occurs. In this case, G1 improves its payoff while
G2 and G3 keep their previous payoff. Now, {G1, G2, G3}
tries to split. The only sub-coalition that can split is
{G1, G2} since {{G1, G2}, {G3}} ⊲s {G1, G2, G3}, i.e., G1

and G2 improve their payoffs by splitting. None of G1

and G2 wants to split from coalition {G1, G2}. There are
no coalitions able to merge or split any further. Even
if GSPs use a different order of merging, at the end
of the merge step the grand coalition forms, and then
{G1, G2} splits. As a result, partition {{G1, G2}, {G3}} is
DP -stable.
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3.2 Merge-and-Split VO Formation Mechanism
(MSVOF)

The proposed merge-and-split VO formation mechanism
(MSVOF) is given in Algorithm 1. The mechanism is
executed by a trusted party that also facilitates the
communication among VOs/GSPs. The design of the
mechanism assumes that the players report their true
execution speeds and costs to the trusted party executing
the mechanism. This is needed in order to guarantee
the stability of the VO formed by the mechanism. In
practice, the mechanism will require the verification of
these parameters as part of each GSP’s agreement to
participate in the mechanism. Achieving truthfulness
(i.e., incentivizing agents to report their true costs and
execution times through payments) in this context with-
out such verification procedures, is a difficult task (if not
impossible) that needs significant further research.

MSVOF uses a branch-and-bound method to solve the
MIN-COST-ASSIGN problem for the formed VOs, and
thus, to obtain the mapping of the tasks to GSPs. We will
denote by B&B-MIN-COST-ASSIGN(Si) the function that
implements the branch-and-bound method for solving
the MIN-COST-ASSIGN problem for a VO Si. Branch-
and-bound are methods for solving global optimization
problems [17]. They are commonly used for solving
integer programs by implicit enumeration in which lin-
ear programming relaxations provide the bounds [18].
These methods are based on the observation that a
systematic enumeration of integer solutions has a tree
structure [19]. The main idea in branch-and-bound is to
avoid growing the whole tree as much as possible by
permanently discarding nodes, or any of its descendants,
which will never be either feasible or optimal. A branch-
and-bound method requires two procedures. The first
one is a branching procedure that returns two or more
smaller sets of the problem. The result of this step is
a tree structure (the search tree) whose nodes are the
subsets of the problem. The second one is a bounding
procedure that computes upper and lower bounds for
the objective function within a given subset of the prob-
lem by solving the relaxed linear program. Updating
bounds for active nodes in a tree enables the method to
prune some non-promising branches. We use the branch-
and-bound method but any other mapping algorithms
such as those solving variants of the General Assignment
Problem (GAP) can also be used by the VOs to find the
minimum cost mapping of the tasks on the GSPs.

MSVOF starts with a coalition structure CS consisting
of every singleton Gi ∈ G as a coalition Si in CS
(line 1) and it checks if all tasks can be executed by
the individual GSPs (line 2). Then, v(Si) is computed
based on the allocation. MSVOF uses a matrix visited

to keep track of all pairs of coalitions in CS that are
visited for merging. By using this matrix, all possible
combinations of two coalitions in CS are visited during
the merge process (lines 8-26). The merge process starts
every time by choosing two non-visited coalitions in CS

Algorithm 1 Merge-and-Split VO Formation Mechanism

(MSVOF)

1: CS = {{G1}, · · · , {Gm}}
2: Map program T on each Si ∈ CS
3: repeat
4: stop← True
5: for all Si, Sj ∈ CS, i 6= j do
6: visited[Si][Sj ]← False
7: end for
8: {Merge process starts:}
9: repeat
10: flag ← True
11: Randomly select Si, Sj ∈ CS for which

visited[Si][Sj ] = False, i 6= j
12: visited[Si][Sj ]← True
13: B&B-MIN-COST-ASSIGN(Si ∪ Sj)

{Map program T on Si ∪ Sj}
14: if Si ∪ Sj⊲m{Si, Sj} then
15: Si ← Si ∪ Sj {merge Si and Sj}
16: Sj ← ∅ {Sj is removed from CS}
17: for all Sk ∈ CS, k 6= i do
18: visited[Si][Sk]← False
19: end for
20: end if
21: for all Si, Sj ∈ CS, i 6= j do
22: if not visited[Si][Sj ] then
23: flag ← False
24: end if
25: end for
26: until (|CS| = 1) or (flag = True)
27: {Split process starts:}
28: for all Si ∈ CS where |Si| > 1 do
29: for all partitions {Sj , Sk} of Si,

where Si = Sj ∪ Sk, Sj ∩ Sk = ∅ do
30: B&B-MIN-COST-ASSIGN(Sj)

{Map program T on Sj}
31: B&B-MIN-COST-ASSIGN(Sk)

{Map program T on Sk}
32: if {Sj , Sk}⊲sSi then
33: Si ← Sj {that is CS = CS \ Si}
34: CS = CS

⋃

Sk

35: stop← False
36: Break (one split occurs;

no need to check other splits)
37: end if
38: end for
39: end for
40: until stop = True
41: Find k = arg maxSi∈CS {v(Si)/|Si|}
42: Map and execute program T on VO Sk

randomly, e.g., Si and Sj . B&B-MIN-COST-ASSIGN is
called to find an optimal allocation for the application
program T on Si∪Sj . If Si∪Sj⊲m{Si, Sj}, then coalitions
Si and Sj decide to merge. Therefore, all the members
receive higher profit by merging since equal sharing is
used to divide the profit. Si ∪ Sj is saved in Si, and
Sj is removed from CS. Since Si is changed, it can be
selected in the next merge steps. Thus, visited[Si][Sk] for
all Sk ∈ CS, k 6= i is set to false. The merge process tries
to find another pair of non-visited coalitions suitable
for merging. If all the coalitions are tested and a merge
does not occur, or the grand coalition forms, the merge
process ends.
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The coalition structure CS obtained by the merge
process is then subject to splits. In the split process, all
coalitions that have more than one member are subject
to splitting (lines 27-40). The mechanism tries to split
Si that has more than one member into two disjoint
coalitions Sj and Sk where Sj ∪ Sk = Si. The for loop
in line 29 iterates over all possible partitions in the
co-lexicographical order introduced by Knuth [16]. The
problem of finding all partitions of a set, is modeled as
the problem of partitioning of an integer. Since the split
checks the partitions of a set into two subsets, we use
the partitioning of an integer into two parts, i.e., two
positive integers, where the sum of those is equal to the
integer. For example, to partition a set of four GSPs, we
partition 15 into two integers. The binary representations
of those integers indicates which GSPs are selected in a
subset (e.g., 15 = 4 + 11 which is equivalent to 1111 =
0010 + 1101, that means that the set {G1, G2, G3, G4} is
partitioned into {{G3}, {G1, G2, G4}}). To increase the
speed of the splitting process, we check the subsets with
the largest number of GSPs of these partitions first and
if they are not feasible there is no reason to check their
subsets. This way we reduce the number of partitions
that have to be checked and implicitly the execution time
of the mechanism. B&B-MIN-COST-ASSIGN is called
twice to find an optimal allocation on Sj and an optimal
allocation on Sk for application T . Since the split is a
selfish decision, the splitting occurs even if only one
of the members of coalition Sj or Sk can improve its
individual value. As a result, the coalition with the
higher individual payoff is the decision maker for the
split.
If one or more coalitions split, then the merging

process starts again. To do so, the stop flag is set to
false (line 35). Multiple successive merge-and-split op-
erations are repeated until the mechanism terminates.
That means that there are no choices for merge or split
for all existing coalitions in CS. Let’s consider CSfinal as
the final coalition structure. The mechanism selects one
of the coalitions in the CSfinal that yields the highest
individual payoff for its members (line 41). The selected
coalition will execute the program T .

3.3 MSVOF Properties

We now investigate the properties of MSVOF. We will
first show that MSVOF always terminates and produces
stable VOs, and then investigate its complexity.
Theorem 1: Every partition of G determined by

MSVOF is DP -stable.
We provide the proof of this theorem in Appendix B

of the supplemental material.
Next, we investigate the complexity of MSVOF. The

time complexity of the mechanism is determined by
the number of attempts for merge and split. Each such
attempt involves solving the MIN-COST-ASSIGN prob-
lem using the B&B-MIN-COST-ASSIGN, which requires
exponential time in the number of tasks. As a result, the

complexity of the mechanism is given by the number of
merge and split attempts multiplied by the complexity of
B&B-MIN-COST-ASSIGN. We now analyze the complex-
ity of a single iteration of the main MSVOF loop (lines
3-40). In the worst case scenario, each coalition needs to
make a merge attempt with all the other coalitions in
CS. At the beginning, all GSPs form singleton coalitions,
thus there are m coalitions in CS. In the worst case,
the first merge occurs after m(m−1)

2 attempts, the second

requires (m−1)(m−2)
2 attempts and so on. The total worst

case number of merge attempts is in O(m3). However,
the merge process requires a significantly less number of
attempts since once two coalitions are found for merge
and the merge occurs, it does not always require to
go through all the merge attempts. In the worst case
scenario, splitting a coalition S is O(2|S|) which involves
finding all the possible partitions of size two of the
participating GSPs in that coalition. In practice, this split
operation is restricted to the formed coalitions in CS and
is not performed over all GSPs in G. That means, the
complexity of the split operation depends on the size
of the coalitions in CS and not on the total number m

of GSPs. The coalitions in CS are small sets especially
since we apply selfish split decisions that keep the size
of the coalitions as small as possible. As a result, the
split is reasonable in terms of complexity. In addition,
once a coalition decides to split, the search for further
splits is not needed. The worst case scenario occurs if
the split of VO S is not possible. This is due to checking
all possible partitions into two sub-coalitions of that VO.
To avoid this case, we check if at least one of the two sub-
coalitions of size |S − 1|, and respectively 1, is feasible.
If none of them is feasible, we do not need to check
any other partitions of S. As a result, in some cases that
reduces the number of configurations to be considered
for the split to O(|S|).
The complexity of the MSVOF can be further reduced

by limiting the size of the formed VOs. In Appendix C
of the supplemental material we present a variant of the
mechanism called k-MSVOF that restrict the size of VO’s
to k GSPs, where k is an integer.

4 EXPERIMENTAL RESULTS

We perform a set of simulation experiments in order to
investigate how effective the MSVOF mechanism is in
determining stable VOs.

4.1 Experimental Setup

For our experiments we consider 16 GSPs which is a
reasonable estimation of the number of GSPs in real
grids. The number of GSPs is small since each GSP is
a provider and not a single machine. We use real work-
loads from the Parallel Workloads Archive [7], [20] to
drive our simulation experiments. More specifically, we
use the log from the Atlas cluster at Lawrence Livermore
National Laboratory (LLNL). This log consists of recently
collected traces (from November 2006 to Jun 2007) that
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TABLE 3: Simulation Parameters

Param. Description Value(s)
m Number of GSPs 16
n Number of tasks [8, 8832]
s GSP’s speeds (m × 1 vector) 4.91 ×[16, 128] GFLOPS
w Tasks’ workload (n × 1 vector) [17676, 1682922.14]

GFLOP
t Execution time matrix (m × n) w

s
seconds

c Cost matrix (m × n) [1, φb × φr]
d Deadline [0.3, 2.0] × Runtime×

n/1000 seconds
P Payment [0.2, 0.4]× maxc × n

units
φb Maximum baseline value 100
φr Maximum row multiplier 10
Runtime Runtime of a job from log ≥ 7200 seconds
maxc Maximum amount of cost φb × φr

contain a good range of job sizes, from 8 to 8832. We
used the cleaned log LLNL-Atlas-2006-2.1-cln.swf which
has 43,778 jobs. We selected 21,915 jobs that completed
successfully out of all the jobs in the log. About 13% of
the total completed jobs are large jobs having runtimes
greater than 7200 seconds.
The Atlas cluster [21] contains 1152 nodes, each with 8

processors for a total of 9,216 processors. Each processor
is an AMD dual-core Opteron with a clock speed of 2.4
GHz. The theoretical system peak performance of the
Atlas cluster is 44.24 TFLOPS (Tera FLoating-point OP-
erations per Second). As a result, the peak performance
of each processor is 4.91 GFLOPS.
We selected six different sizes (i.e., number of tasks)

of the application program from the Atlas log, ranging
from 256 to 8192 tasks. For each program, the number
of allocated processors the job uses gives the number
of tasks, while the average CPU time used gives the
average runtime of a task. We used the peak performance
of a processor to convert the runtime to workload for
each task. We generated the values of the other param-
eters based on the extracted data from the Atlas log.
The parameters and their values are listed in Table 3.
The values for deadline and payment were generated in
such a way that there exists a feasible solution in each
experiment.
Each task has a workload expressed in Giga Floating-

point Operations (GFLOP). To generate a workload, we
extract the runtime of a job (in seconds) from the logs,
and multiply that by the performance (GFLOPS) of a
processor in the Atlas system. This number gives the
maximum amount of giga floating-point operations for
a task. We assume that the workload of each task is
within [0.5, 1.0] of the maximum GFLOP of the job. The
workload vector, w, contains the workload of each task
of the application program.
The speed vector s is generated relative to the Atlas

system. Each GSP has a speed chosen within the range
4.91 × [16, 128] GFLOPS. This is due to the fact that each
GSP can have several processors capable of performing
4.91 GFLOPS. The reason that we chose this range is that
the number of processors of the Atlas cluster is 9,216. If
all 16 GSPs have the highest performance of 128× 4.91,

we would have 2048 processors that is 22.2 percent of
the power of the Atlas system. As a result the deadline
is generated at most 16 times larger than the runtime
to make sure there is a feasible solution for the task
allocation.
Based on the speed vector and the workload vector,

the execution time of each task Tj on each GSP Gi is
obtained. The execution time matrix is consistent if GSP
Gi that executes any task Tj faster than GSP Gk, executes
all tasks faster than GSP Gk [22]. The generated time
matrix is consistent due to the fact that for every task
Tj ∈ T , w(Tj) is fixed for all GSPs Gi ∈ G, thus, for
any task Tj if t(Tj , Gi) < t(Tj , Gk) is true, then we have
s(Gi) > s(Gk) which means Gi is faster than Gk. As
a result, t(Tq, Gk) > t(Tq, Gi) is satisfied for all tasks
Tq ∈ T .
Each cost matrix c is generated using the method

described by Braun et al. [22]. First, a baseline vector
of size n is generated where each element is a random
uniform number within [1, φb]. Then, the rows of the cost
matrix are generated based on the baseline vector. Each
element j in row i of the matrix, c(i, j), is obtained by
multiplying the element i of the baseline vector with a
uniform random number within [1, φr], a row multiplier.
Therefore, one row requires m different row multipliers.
As a result, each element in the cost matrix is within the
range [1, φb × φr].
We consider that the costs of GSPs are unrelated to

each other, i.e., if s(Gi) > s(Gk), for any task Tj , either
c(Tj , Gi) ≤ c(Tj , Gk) or c(Tj , Gk) ≤ c(Tj , Gi) is true. This
is due to GSPs policies. However, we consider that the
costs are related to the workload of the tasks, i.e., for
two tasks Tj and Tq where w(Tj) > w(Tq), we have
c(Tj , Gi) > c(Tq, Gi) for all Gi ∈ G. A task with the
smallest workload has the cheapest cost on all GSPs.
We use the CPLEX branch-and-bound solver pro-

vided by IBM ILOG CPLEX Optimization Studio for
Academics Initiative [23] for solving the MIN-COST-
ASSIGN problem. In all experiments we use the default
configuration of CPLEX for generating the bounds for
the branch-and-bound solver.

4.2 Analysis of Results

We compare the performance of our VO formation
mechanism, MSVOF, with that of three other mecha-
nisms: Grand Coalition VO Formation (GVOF), Random
VO Formation (RVOF), and Same-Size VO Formation
(SSVOF). The GVOF mechanism maps the application
program on all GSPs, that is, the grand coalition forms
as a VO to perform the program. The RVOF mechanism
maps all tasks to a random size VO, where GSPs are
randomly selected to be part of that VO. The SSVOF
mechanism maps all tasks to a VO with the same size as
the VO formed by MSVOF. However, in this case, GSPs
are selected randomly to be part of the coalition. All
the mechanisms use the branch-and-bound method for
solving MIN-COST-ASSIGN and finding the mapping of
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Fig. 1: GSPs’ individual payoff
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the tasks to GSPs in a VO. Using the same mapping
algorithm for all four mechanisms allows us to focus on
the VO formation and not on the choice of the mapping
algorithms. We performed a series of ten experiments
in each case, and we represented the average of the
obtained results.

In Fig. 1, we show the performance of MSVOF in
terms of the individual GSP’s payoffs in the final VO
as a function of the number of tasks. The figure shows
that the MSVOF provides the highest individual payoff
for GSPs in the final VO among all four mechanisms.
The significant differences between the MSVOF and the
SSVOF shows the importance of decisions to merge and
split to form the best VO. Both of these mechanisms form
VOs having the same size, but our proposed mechanism
selects the GSPs based on the merge-and-split rules. In
SSVOF, GSPs are selected randomly. Standard deviation
is very high in SSVOF and RVOF since in many cases the
formed VO is unable to execute the program and the par-
ticipating GSPs receive zero. The reason that GVOF does
not have the error bars is that we ran the experiments
for the same number of tasks and GVOF always forms
the grand coalition, and thus, the individual profit is
the same for all experiments. On average, the individual
GSP’s payoff in the case of MSVOF is 2.13, 2.15 and 1.9
times greater than that obtained in the case of RVOF,
GVOF and SSVOF, respectively.
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In Fig. 2, we compare the size of the final VO obtained
by MSVOF and RVOF. We do not represent the sizes
of the VOs obtained by SSVOF and GVOF since they
are fixed to the size determined by MSVOF and the
maximum size, respectively. This figure shows that as
the number of tasks increases the size of the VO obtained
by MSVOF increases. It means that the more tasks, the
more GSPs pool their resources to form a VO in order
to execute the program.

In Fig. 3, we compare the total payoff obtained by
MSVOF with that obtained by the other three mech-
anisms. In all cases GVOF provides the highest total
payoff. These results show that GSPs prefer smaller VOs
(shown in Fig. 2) in order to obtain higher individual
profits. The global welfare does not have an impact on
the formation of VOs. As a result, the VO resulting from
MSVOF may not provide the highest total payoff but it
will provide the highest individual payoff. For example,
for 256 tasks, MSVOF obtains a total payoff of 2351.6 for
the final VO, while RVOF, GVOF and SSVOF obtain a
total payoff of 2456, 3610 and 591.6 for their final VOs
of average size 8.25, 16, and 3.53, respectively.

In Appendix D of the supplemental material, we show
the average total number of merge and split operations
performed.

From the above results, we conclude that the proposed
VO formation mechanism is able to form stable VOs that
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ensure the program is completed before its deadline and
provide the highest individual payoff for the GSPs.
Fig. 4 shows the execution time of MSVOF. These re-

sults were obtained when running MSVOF on a 3.00GHz
Intel quad-core PC with 8GB of memory. The MSVOF’s
execution time is reasonable given that the application
program would require several hours to execute. The
reason for getting higher execution times for 4096 and
8192 tasks is that the VOs explored by the mechanism
are larger in size. As a result, the split operation takes
more time to test the possible cases. The execution times
of the other mechanisms are negligible compared to that
of MSVOF, and thus, we chose not to present them in
the figure.
We investigate the performance of the k-MSVOF

mechanism (the variant of MSVOF that restricts the size
of the VO to k) in Appendix E of the supplemental
material.

5 CONCLUSION

We proposed a novel mechanism for VO formation in
grids. In the proposed mechanism, GSPs cooperate to
form VOs in order to execute application programs. We
modeled the problem as a coalitional game and derived
a centralized VO formation mechanism based on merge-
and-split operations. To find the optimal mapping of
the tasks on the participating GSPs in a VO, we used
a branch-and-bound method. We showed that our pro-
posed mechanism produces stable VOs. We performed
extensive experiments with data extracted from real
workload traces to investigate its properties. Experimen-
tal results showed that the VO obtained by MSVOF max-
imizes the individual payoffs of the participating GSPs.
In addition, most of the time MSVOF determines the
final VO with the smallest number of participating GSPs.
The mechanism’s execution time is reasonable given that
application programs would require several hours to
execute. We believe that this research will encourage grid
service providers to adopt VO formation mechanisms for
allocating their resources in order to execute application
programs.
In future work, we would like to incorporate the trust

relationships among GSPs in our VO formation model
and design new mechanisms for VO formation that take
them into account. In addition, we would like to extend
this research to cloud federation formation, where cloud
providers cooperate in order to provide the resources
requested by users.
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