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Abstract—Cloud providers provision their heterogeneous resources such as CPUs, memory, and storage in the form of Virtual Machine
(VM) instances which are then allocated to the users. One of the major challenges faced by the cloud providers is to allocate and
provision these resources such that their profit is maximized, and the resources are utilized efficiently. Recently, cloud providers have
introduced auction-based models which allow users to submit bids for their requested VMs. We address the problem of autonomic
VM provisioning and allocation for the auction-based model considering multiple types of resources by designing an approximation
mechanism. In addition, the mechanism determines the payment the users have to pay for using the allocated resources. This problem
is computationally intractable, and our proposed mechanism is by far the strongest approximation result that can be achieved for this
problem. We show that the proposed approximation mechanism is a Polynomial-Time Approximation Scheme (PTAS). Furthermore,
our proposed mechanism drives the system into an equilibrium in which the users do not have incentives to manipulate the system by
untruthfully reporting their VM bundle requests and valuations. We perform extensive experiments using real workload traces in order
to investigate the performance of the proposed mechanism.

Index Terms—cloud computing; strategy-proof mechanism; virtual machine provisioning; resource allocation; polynomial time
approximation scheme.
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1 INTRODUCTION

C LOUD computing systems provide a large pool of
abstracted, virtualized, and dynamically scalable

resources to users as Infrastructure as a Service (IaaS).
More specifically, the resources are offered to users as
different types of virtual machine (VM) instances based
on a pay-as-you-go model. For example, Amazon Elastic
Compute Cloud (Amazon EC2) [1] is currently offering
four types of VM instances: Medium (M), Large (L),
Extra large (XL), and 2 Extra large (2XL), charging a fixed
price per hour for each type of VM instance.
The ever-growing complexity of IaaS makes human

administration and management inefficient and, in most
of the cases, unfeasible. Therefore, avoiding direct man-
agement actions in resource allocation, VM provisioning,
VM pricing, and monitoring, requires self-management
and self-optimizing mechanisms. The aim of this paper
is to design such mechanisms that facilitate autonomic
provisioning of cloud resources based on the user de-
mand and the availability of resources. The proposed
mechanisms can be incorporated in system tools for self-
managing the cloud infrastructure [2].
Recently, cloud providers have introduced auction-

based models when offering IaaS, which allow users to
name their own price for their requested VM instances.
Auctions have been proven to be effective market-based
mechanisms for trading cloud services which not only
benefit users by allowing them to obtain their requested
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resources at lower prices, but also allow cloud providers
to utilize more resources and increase their profits. Main-
stream cloud provider powerhouses such as Amazon
have been offering cloud services in an auction market,
the Amazon spot market, for several years. Based on
Amazon’s report [3], many of its users such as Scribd, So-
net, Numerate, Backtype, and Fliptop saved more than
50% using its auction-based cloud market over its fixed-
price market. In addition, a new initiative by Deutsche
Börse Cloud Exchange, will launch in 2014 a vendor-
neutral marketplace for cloud resources. This market will
be a platform for offering, buying and deploying IaaS in
an auction setting [4].
We consider an auction market with a set of users

and a set of heterogeneous VM instances, where each
user can bid for any arbitrary combinations of VMs
(bundle of VMs). Our setup and mechanisms are dif-
ferent from the Amazon spot market. The Amazon
spot market allows requests only for individual VM in-
stances and not for bundles of VM instances of different
types. Therefore, users have to request each VM for
their bundle individually. However, in such an auction-
based setting, there is no guarantee of receiving the
requested VMs all together. In our setting, we allow
users to request bundles of heterogeneous VM instances
such as requesting communication-intensive VMs and
computation-intensive VMs together. In practice, there
are many applications that require such heterogeneous
bundles of VMs. For example, a social game application
composed of three layers: front-end web server, load
balancing, and back-end data storage, requires a bundle
of heterogeneous VMs composed of communication-
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intensive VMs, computation-intensive VMs, and storage-
intensive VMs, respectively [5].
Each user has a private value for her requested bundle.

In our model, each user is interested in a single bundle of
VM instances, and bid only for that bundle. Such a user
obtains the specified value if she is allocated the whole
bundle of VM instances (or any superset of it) and zero
value, if she is allocated any other bundle. The users are
also selfish in the sense that they want to maximize their
own utilities. It may be beneficial for them to manipulate
the system by declaring different bundles or bids from
their actual requests. In an untruthful auction, users may
bid much lower (than their actual valuations) which
not only may hurt other users, but also may indirectly
lead to profit losses for the cloud provider. Thus, unless
strategy-proofness is enforced, maximizing the revenue
may not be effective. In strategy-proof auctions, the
dominating strategy for users is to bid truthfully, thereby
eliminating the fear of market manipulations and the
overhead of strategizing over others. When users report
their true valuations, the cloud provider can allocate
its resources efficiently to users who value them the
most. However, allowing users to bid on bundles of VMs
makes the design of strategy-proof mechanisms more
challenging. This is due to the fact that by allowing bids
on bundles, the dimensionality of the problem increases.
A major problem in such settings is determining the
optimal allocation and protecting against manipulations
by the users. Because finding the optimal allocation is
computationally intractable [6], designing strategy-proof
approximation mechanisms for solving the problem is of
major interest.
In this paper, we design a strategy-proof polyno-

mial time approximation scheme (PTAS) mechanism
that solves the VM instance provisioning and allocation
problem. The goal is to find an allocation of resources to
the users maximizing the social welfare, where the social
welfare is the sum of users’ valuations. We also design an
exponential time strategy-proof optimal mechanism that
will serve as a benchmark for the performance of the
proposed PTAS mechanism. Our proposed PTAS mech-
anism is strategy-proof that is, the users do not have
incentives to lie about their requested bundles of VM
instances and their valuations. The proposed mechanism
is designed to adapt to changing conditions (i.e., users
requests) and to lead the system into an equilibrium in
which users do not have incentives to manipulate the
system by untruthfully reporting their resource requests
and valuations.

1.1 Our Contributions

We address the problem of VM provisioning and allo-
cation in clouds in the presence of multiple types of
heterogeneous resources. First, we design a strategy-
proof optimal mechanism that uses a dynamic program-
ming algorithm to optimally select the winning users.
We then design a strategy-proof approximation mech-
anism in spite the fact that approximation algorithms,

in general, do not necessarily satisfy the properties
required to guarantee strategy-proofness. In doing so,
the allocation and payment determination of the pro-
posed mechanisms are designed to satisfy the strategy-
proofness property. Strategy-proof mechanisms drive the
system into an equilibrium in which the users do not
have incentives to manipulate the system by untruthfully
reporting their VM bundle requests and valuations. We
also show that the proposed approximation mechanism
is a PTAS (Polynomial-Time Approximation Scheme)
which is by far the strongest approximation result that
can be achieved for this problem, unless P = NP .
To the best of our knowledge, this is the first study
proposing a strategy-proof PTAS mechanism for solving
the VM provisioning and allocation problem in clouds.
The proposed mechanism allows dynamic provisioning
of VMs, and does not require pre-provisioning the VMs.
As a result, cloud providers can fulfill dynamic market
demands efficiently. A key property of our proposed
mechanism is the consideration of multiple types of
heterogeneous resources for VMs which is the case in
real cloud settings. We analyze the properties of the pro-
posed mechanism and perform extensive experiments.
The results show that the proposed PTAS mechanism
determines near optimal allocations while satisfying the
strategy-proofness property.

1.2 Related Work

The primary objective of mechanism design is to ob-
tain system wide solutions for problems where multiple
self-interested users with private information interact.
Mechanism design provides a framework for designing
mechanisms that align the system’s incentives with those
of the participants. For a comprehensive introduction to
mechanism design, the reader is referred to [7].
Researchers approached the problem of VM provision-

ing in clouds from different points of view. Wood et al. [8]
proposed an approach for dynamic provisioning of VMs
by defining a unique metric based on the consumption of
the three resources: CPU, network and memory. Ferrer
et al. [9] proposed a toolkit for the cloud service and
infrastructure providers. The toolkit aims to provide a
foundation for a reliable cloud computing industry, by
addressing the whole service life cycle. Casalicchio et
al. [10] proposed a heuristic (hill-climbing) algorithm to
maximize revenue in VM allocation problems satisfy-
ing capacity, availability, SLA, and VM migration con-
straints. Bjorkqvist et al. [11] proposed an opportunistic
service provisioning strategy minimizing the service pro-
visioning costs by provisioning a small number of faster
VMs, while maintaining the target system utilization.
Mashayekhy et al. [12] proposed a federation forma-
tion mechanism for resource provisioning and allocation
in clouds considering several heterogeneous resources.
Xiong et al. [13] considered an economical provisioning,
where VMs are allocated to achieve a balanced resource
allocation and a better overall performance. Sharma et
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TABLE 1: Comparison of auction-based VM allocation
methods.

Reference heterogen- strategy- optimality
eous VMs proofness

[16] x in expectation approx.
[17] X in expectation approx.
[18] x X approx.
[5] X x optimal
[19] X X approx.
this paper X X optimal & PTAS approx.

al. [14] considered minimizing the provisioning cost by
reducing the time to transit to new configurations and
optimizing the selection of virtual server configurations.
Kokkinos et al. [15] proposed an algorithm to minimize
the usage cost of Amazon EC2 instances and to maxi-
mize the utilization. The algorithm collects information
regarding the current instances and then proposes a new
set of instances that could be used for serving the same
load. However, our main focus is on dynamic resource
provisioning that achieves strategy-proofness and leads
the system into an equilibrium. We also propose an
approach for determining the prices of the bundles of
VM instances.

Pricing and modeling of spot instances have been
recently addressed by applying a variety of method-
ologies. Zhao et al. [20] developed two resource rental
planning models, deterministic and stochastic, to mini-
mize the operational cost of cloud applications on spot
instances. Leslie et al. [21] proposed a resource allocation
and job scheduling framework based on checkpointing.
Huang et al. [22] proposed a tool for users to minimize
their expenses of running applications in clouds while
satisfying the deadlines. The tool automatically deter-
mines whether to choose on-demand or spot instances,
and also the number of VMs. However, those studies
have focused on users/SaaS sides to better use spot
instances, while we focus on modeling the problem
from IaaS’ perspective. Toosi et al. [23] proposed pricing
policies for federated clouds that increase utilization and
profit. Lampe et al. [24] formulated the equilibrium price
auction allocation problem for pricing and distribution
of VMs across physical machines as a binary integer
program. Based on this mathematical formulation, they
proposed an optimal solution approach as well as a
fast heuristic approach. However, none of the above-
mentioned studies guarantee strategy-proofness.

Designing mechanisms for auction-based cloud mar-
kets has attracted a great deal of attention. Za-
man and Grosu [16] proposed a truthful-in-expectation
auction-based mechanism to allocate VM instances that
are statically provisioned. However, their mechanism
does not consider heterogeneous VMs. In addition,
truthfulness-in-expectation is a weaker notion of truth-
fulness (strategy-proof-ness). Zhang et al. [18] proposed
a truthful auction-based mechanism for resource allo-
cation in clouds in the presence of only one type of
resources. Zhang et al. [17] proposed a randomized

mechanism for VM allocation in clouds in an auction
market considering heterogeneous VMs. Their proposed
mechanism is truthful in expectation and is based on
a pair of primal and dual LPs. Recently, Fu et al. [5]
modeled the heterogeneous VM provisioning problem
as a coalitional game, and proposed a core-based pricing
method that obtains the optimal solution. Their method
guarantees the optimal social welfare, at the expense of
not obtaining strategy-proofness.
System heterogeneity plays an important role in deter-

mining the dynamics of strategy-proof mechanisms [25].
Our proposed PTAS mechanism takes into account the
heterogeneity of the systems and that of user requests
when making allocation decisions. In our previous
work [19], [26], we proposed a family of strategy-proof
greedy mechanisms for solving the VM instance pro-
visioning and allocation problem considering multiple
types of resources. These existing greedy mechanisms
cannot guarantee near optimal solutions. We also proved
that the approximation ratios of the greedy mechanisms
is

√
NRCmax, where N is the number of users, R is the

number of types of resources, and Cmax is the highest
capacity among all resources’ capacities. We present a
stylized example to show how far the solution obtained
by a greedy mechanism can be from the optimal solution
for the problem. Let us consider a cloud provider with
one type of resource with capacity of 100. We consider
two users submitting their requests, where the first one
bids $2 for 1 unit of the resource, while the second user
bids $100 for 100 units of the resources. All greedy mech-
anisms proposed in [19], choose the first user since it has
the highest bid density with a value of 2, where the bid
density is the ratio of bid and the amount of resources
requested. However, the optimal mechanism chooses the
second user with the value of 100. This leads to $98 loss
in revenue for the cloud provider if it chooses the greedy
mechanism over the optimal mechanism. However, none
of the above-mentioned studies proposed a mechanism
guaranteeing a near optimal solution which is the case
for our PTAS mechanism proposed in this paper. Our
proposed PTAS mechanism is by far the strongest ap-
proximation result that can be achieved for the VM pro-
visioning and allocation problem, unless P = NP . Our
proposed PTAS mechanism represents a big departure
from the existing designs of VM allocation mechanisms
that only provided a constant approximation guarantee.
In Table 1, we summarize the differences between the
existing auction-based VM allocation methods.

1.3 Organization

The rest of the paper is organized as follows. In Section 2,
we describe the VM provisioning and allocation problem
in clouds, and introduce the basic concepts of mecha-
nism design. In Section 3, we present the design of an
optimal mechanism for VM provisioning and allocation.
In Section 4, we present the proposed PTAS mechanism
and characterize its properties. In Section 5, we evaluate
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the proposed mechanism by extensive experiments. In
Section 6, we summarize our results and present possible
directions for future research.

2 PROBLEM STATEMENT AND PRELIMINARIES

We define the problem of VM provisioning and alloca-
tion in clouds (VMPAC) in the presence of multiple types
of resources as follows. We consider a cloud provider
offering a set of M types of VMs, VM = {1, . . . ,M},
to users. Each VM consists of heterogeneous resources
such as cores, memory, storage, etc. There are a set of R
types of resources, R = {1, . . . , R}, where each VM
of type m ∈ VM has a specific amount of resource
of type r denoted by wmr. The cloud provider has
restricted capacity, Cr, on each resource r ∈ R available
for allocation.
Table 2 shows the four types of VM instances of-

fered by Amazon EC2 US West (Northern California)
Region at the time of writing this paper. If we consider
that CPU represents the type 1 resource, memory, the
type 2 resource, and storage, the type 3 resource, we can
characterize, for example, the XLarge instance (m = 3)
by: w31 = 4, w32 = 15 GB, and w33 = 80 GB.

We consider that the cloud provider receives requests
for bundles of VM instances from a set U of N users.
User i ∈ U , i = 1, . . . , N submits a request (Si, bi),
composed of a bundle of VM instances denoted by
Si = 〈ki1, ki2, . . . , kiM 〉, where kim is the number of
requested VM instances of type m ∈ VM, and a bid,
denoted by bi representing the maximum price the user
is willing to pay for using the requested bundle if it
is allocated. User i has a true valuation vi(Si) for her
requested bundle Si. Note, that for user i, vi(Si) = bi is
her true valuation for Si. An example of a user request
is (< 2, 1, 4, 3 >, $10), which means that the user is re-
questing 2 medium VM instances, 1 large VM instance, 4
xlarge VM instances, and 3 2xlarge VM instances, and
her bid is $10. We denote by air =

∑

m∈VM kimwmr, the
total amount of each resource of type r that user i has
requested. Note that air > 0, due to the fact that each
VM instance includes all resources.
The goal of the cloud provider is to allocate VMs

to users who value the VM instances the most, which
can be achieved by maximizing the social welfare. We
denote by V the social welfare, which is defined as the
aggregation of users’ valuations, i.e.,

V =
∑

i∈U

vi(Si)xi (1)

where xi, i ∈ U , are decision variables defined as follows:

xi =

{

1 if bundle Si is allocated to user i,

0 otherwise
(2)

The problem of VM provisioning and allocation in clouds
(VMPAC) is to find a subset of users who value the VM
instances the most, such that the cloud provider fulfills
their requested bundle of VMs along with determining

TABLE 2: VM instance types offered by Amazon EC2 -
US West (Northern California) Region.

Medium Large XLarge 2XLarge
m = 1 m = 2 m = 3 m = 4

CPU 1 2 4 8
Memory (GB) 3.75 7.5 15 30
Storage (GB) 4 32 80 160

their payments. In doing so, the cloud provider first finds
such subset of users and then provisions the requested
VMs for the selected users. Finally, it bills the selected
users based on all the submitted bids. We denote by A
and P , the allocation function and the payment function,
respectively. The allocation function A = (A1, . . . ,AN )
determines which users receive their requested bundles,
and the payment function P = (P1, . . . ,PN ) deter-
mines the amount that each user must pay to the cloud
provider.
The request of a user i is denoted by θi = (Si, bi). We

denote by θ = (θ1, . . . , θN ) the vector of requests of all
N users. User i preferences are characterized by a quasi-
linear utility function defined as the difference between
her valuation and payment, ui(θ) = vi(Ai(θ)) − Pi(θ),
where Ai(θ) is the allocated bundle to user i, and Pi(θ)
is the determined payment for user i. Each user’s bundle
and her valuation is private knowledge. However, users
are selfish, and each user’s goal is to maximize her
utility, thus, she may manipulate the mechanism by
submitting a different request from her true request to
increase her utility. Since the request of a user is a pair
of bundle and value, the user can lie about the value
by submitting a higher bid in the hope to increase the
likelihood of obtaining her requested bundle, or she
can lie about her requested bundle. Such manipulations
will lead to an inefficient allocation of VMs and will
reduce the revenue obtained by the cloud provider if
we do not prevent them by design. As a result, we resort
to designing strategy-proof mechanisms that determine
allocation and payment of users.
To distinguish user i’s truthful request θi = (Si, bi)

from the actual submitted request (that can be untruth-
ful), we denote the actual request by θ̂i = (Ŝi, b̂i). We
denote by θ−i the vector of all requests except user i’s
request (i.e., θ−i = (θ1, . . . , θi−1, θi+1, . . . , θN )). A mecha-
nism composed of an allocation and a payment function
is strategy-proof if all users have incentives to report their
true requests.
Definition 1 (Strategy-proofness): A mechanism consist-

ing of an allocation functionA and a payment function P
is strategy-proof (or truthful) if for every user i with a true
request θi and any other request θ̂i, and for every request
of the other users θ̂−i, it satisfies ui(θi, θ̂−i) ≥ ui(θ̂i, θ̂−i).
The definition implies that a mechanism is strategy-

proof if truthful reporting of requests is a dominant
strategy. As a result, the users maximize their utilities
by truthful reporting of their requests irrespective of the
requests of the other users. To design a strategy-proof
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mechanism the allocation function A must be monotone
and the payment determination function P must be
based on the critical payment [27].
To define monotonicity, we need to introduce a pref-

erence relation � on the set of requests as follows:
θ̂′i � θ̂i if b̂′i ≥ b̂i and Ŝi =< k̂i1, k̂i2, . . . , k̂iM >,
Ŝ′

i =< k̂′
i1, k̂

′
i2, . . . , k̂

′
iM > such that

∑

m∈VM k̂′
imwmr ≤

∑

m∈VM k̂imwmr,∀r ∈ R. That means request θ̂′i is more

preferred than θ̂i if user i requests fewer resources of
each type in her current bundle and/or submits a higher
bid.
Definition 2 (Monotonicity): An allocation function A is

monotone if it allocates the resources to user i with θ̂i as
her declared request, then it also allocates the resources
to user i with θ̂′i, where θ̂′i � θ̂i.
The definition implies that any winning user who

receives her requested bundle by submitting a request θ̂i

will still be a winner if she requests a smaller bundle or
submits a higher bid.
Definition 3 (Critical payment): If A is a monotone al-

location function, for every θi, there exist a unique
value vc

i , called critical payment, such that ∀θ̂i �
(Si, v

c
i ), θ̂i is a winning declaration and otherwise, is a

losing declaration.
A mechanism having the critical payment as a pay-

ment function will charge user i, Pi(θ̂) = vc
i if user i

wins, and Pi(θ̂) = 0 otherwise.
In the design of our PTAS mechanism for solving

VMPAC the allocation function needs to satisfy an addi-
tional property, called bitonicity.
Definition 4 (Bitonicity): A monotone allocation func-

tion A is bitonic if for any user i:

(i) if A allocates the resources to the user i with θ̂i

as her declared request, then vi(A(θ̂′i, θ̂−i)) ≥
vi(A(θ̂i, θ̂−i)), where θ̂′i � θ̂i.
(ii) if A does not allocate the resources to the user i
with θ̂i as her declared request, then vi(A(θ̂′i, θ̂−i)) ≥
vi(A(θ̂i, θ̂−i)), where θ̂i � θ̂′i.

The allocation functionA is bitonic with respect to vi().
This requires that the welfare does not increase with vi()
when user i loses (b̂i < vc

i ), and it does increase with vi()
when user i wins (b̂i > vc

i ). In the next sections, we will
design an optimal and a PTAS mechanism that solve the
VMPAC problem. These mechanisms work as follows.
They first receives the declared requests (bundles and
bids) from each participating user and then based on the
received requests determine the allocation, using their
specific allocation function A, and the payments, using
their specific payment function P .

3 STRATEGY-PROOF OPTIMAL MECHANISM
FOR VM PROVISIONING AND ALLOCATION

In this section, we propose a Vickrey-Clarke-Groves
(VCG)-based optimal mechanism that solves VMPAC. A
VCG mechanism [28], [29], [30] is defined as follows:

Algorithm 1 VCG-VMPAC Mechanism

1: {Collect user requests.}
2: for all i ∈ U do
3: Collect request θ̂i = (Ŝi, b̂i) from user i
4: {Allocation.}
5: (V ∗, x∗) = DP-VMPAC(θ̂,C)
6: Provisions and allocates VM instances according to x

∗.
7: {Payment.}
8: P =VCG-PAY(θ̂,C, V ∗,x∗)

Definition 5 (VCG mechanism): A mechanism is a
Vickrey-Clarke-Groves (VCG) mechanism if

(i) A is an optimal allocation function, and

(ii) Pi(θ̂) =
∑

j∈U\{i}

vj(Aj(θ̂−i)) −
∑

j∈U\{i}

vj(Aj(θ̂)),

where
∑

j∈U\{i} vj(Aj(θ̂−i)) is the optimal social welfare
that would have been obtained had user i not partic-
ipated, and

∑

j∈U\{i} vj(Aj(θ̂)) is the sum of all users
valuations except user i’s.

We define our proposed VCG-based mechanism that
solves the VMPAC problem as follows:

Definition 6: The VCG-VMPAC mechanism consists of
the allocation algorithm DP-VMPAC and the payment
function VCG-PAY defined by the VCG payment func-
tion (given in Definition 5 (ii)).

Our proposed VCG-VMPAC mechanism is given in
Algorithm 1. The mechanism is run periodically by the
cloud provider. It collects the requests from the users,
and it determines the allocation by calling the DP-
VMPAC allocation algorithm. Once the allocation is de-
termined the mechanism provisions the required number
and types of VM instances and determines the payments
by calling the VCG-PAY function. The users are then
charged the amount determined by the mechanism.

In order to design a VCG-based mechanism for
VMPAC, we need to design an algorithm that provides
the optimal solution to VMPAC. The algorithm, called
DP-VMPAC, is based on a dynamic programming ap-
proach, and it is given in Algorithm 2. The DP-VMPAC
algorithm has two input parameters, the vector of users
declared requests (θ̂) and the vector of resource capac-
ities C = (C1, . . . , CR). The algorithm has two output
parameters: V ∗, the optimal social welfare and x

∗, the
optimal allocation of VM instances to the users.

DP-VMPAC starts by determining âir, the amount of
each resource of type r requested by user i (lines 3-6).
We denote by Ai the vector specifying the amount of
all resource types requested by user i. We also denote
by V (j, Ĉ) the optimal welfare for the subproblem that
considers the first j users and the available capacity Ĉ.
The algorithm calculates V (1,C) (lines 8-12). Based on
these values, it calculates V (j, Ĉ), where j = 2, . . . , N
(lines 13-14) according to the following dynamic pro-
gramming recurrence:

V (j, Ĉ) = max{V (j − 1, Ĉ), V (j − 1, Ĉ − Aj) + b̂j} (3)



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX 6

Algorithm 2 DP-VMPAC: Optimal Allocation Algorithm

1: Input: θ̂ = (θ̂1, . . . , θ̂N ); vector of requests (bundle, bid)
2: Input: C = (C1, . . . , CR); vector of resource capacities
3: for all i ∈ U do
4: for all r ∈ R do
5: âir =

∑

m∈VM
k̂imwmr , where k̂im ∈ Ŝi

6: Ai = (âi1, . . . , âiR)
7: Ĉ = C

8: if â1r ≤ Cr, ∀r ∈ R then
9: V (1,C) = b̂1

10: Ĉ = C − A1

11: else
12: V (1,C) = 0
13: for all j = 2, . . . , N do
14: V (j, Ĉ) = max{V (j − 1, Ĉ), V (j − 1, Ĉ − Aj) + b̂j}
15: V ∗ = V (N,C)
16: Find x

∗ by looking backward at V (j, Ĉ)
17: Output: V ∗,x∗

The recurrence considers two cases, not allocating the
bundle to j and allocating it to j. If allocating the
requested bundle of the jth user increases the value
V (j−1, Ĉ), the algorithm allocates the bundle to the jth
user. The maximum between V (j−1, Ĉ) and V (j−1, Ĉ−
Aj)+b̂j gives the optimal value of V (j, Ĉ). Once the final
value V (N,C) is determined, the algorithm finds x

∗, the
optimal allocation of VM instances, by looking backward
at V (j, Ĉ), as follows. If V (N,C) = V (N − 1,C), then
it means that we did not select the N -th user (i.e.,
xN = 0), and thus, we just recursively work backwards
from V (N − 1,C). Otherwise, we select that user (i.e.,
xN = 1), output the N -th request, and recursively work
backwards from V (N − 1,C − AN ).

Theorem 1: The DP-VMPAC algorithm finds the opti-
mal solution to the VMPAC problem.

Proof: To prove that V (N,C) computed by DP-
VMPAC is optimal, we need to show that the subprob-
lem V (j, Ĉ) is optimal for every j and Ĉ, where j is the
number of users (j ≤ N ), and Ĉ is the vector represent-
ing the available capacities of the resources. We consider
two cases, according to the dynamic programming re-
currence given in equation (3). In case one, we assume
that not allocating the bundle to j is in the optimal
solution for the subproblem V (j, Ĉ). Then, according to
equation (3), V ∗(j, Ĉ) = V (j − 1, Ĉ). The proof in this
case is by contradiction. We assume that V ∗(j, Ĉ) is the
optimal solution for the subproblem. As a result, we
need to check if V (j − 1, Ĉ) is optimal. If V (j − 1, Ĉ)
is not optimal, then there would be a better solution
V ′(j − 1, Ĉ) > V (j − 1, Ĉ). Then, using the subproblem
V ′(j − 1, Ĉ), we have: V ∗(j, Ĉ) < V ′(j − 1, Ĉ), which
contradicts the fact that V ∗(j, Ĉ) is the optimal solution.
Therefore, V (j − 1, Ĉ) is optimal.

In case two, we consider that allocating the bun-
dle to j is in the optimal solution for the subprob-
lem V (j, Ĉ). Then, according to equation (3), V ∗(j, Ĉ) =
V (j − 1, Ĉ − Aj) + b̂j . The proof in this case is by
contradiction. We assume that V ∗(j, Ĉ) is the optimal

Algorithm 3 VCG-PAY: Payment Function

1: Input: θ̂ = (θ̂1, . . . , θ̂N ); vector of requests (bundle, bid)
2: Input: C; vector of resource capacities
3: Input: V ∗; optimal welfare
4: Input: x∗; optimal allocation
5: for all i ∈ U do
6: (V ′∗, x′∗) = DP-VMPAC(θ̂−i,C)
7: sum1 = 0
8: sum2 = 0
9: for all j ∈ U , j 6= i do
10: sum1 = sum1 + b̂jx

′∗
j

11: sum2 = sum2 + b̂jx
∗
j

12: Pi = sum1 − sum2

13: Output: P = (P1,P2, . . . ,PN )

solution for the subproblem. As a result, we need to
check if V (j − 1, Ĉ−Aj) is optimal. If V (j − 1, Ĉ−Aj)
is not optimal, then there would be a better solution
V ′(j − 1, Ĉ − Aj) > V (j − 1, Ĉ − Aj). Then, using
the subproblem V ′(j − 1, Ĉ − Aj), and the rest of the
subproblems, V ∗(j, Ĉ) < V ′(j − 1, Ĉ − Aj) + b̂j , which
contradicts the fact that V ∗(j, Ĉ) is the optimal solution.
Therefore, V (j − 1, Ĉ − Aj) is optimal.

We conclude that V ∗(j, Ĉ) = V (j, Ĉ), and that this
property is maintained at all times thereafter.

DP-VMPAC solves VMPAC optimally in
time O(N(Cmax)R), where Cmax = maxr∈R{Cr}.
This is due to the fact that the dynamic programming
builds a (R + 1)-dimensional table, where the first
dimension corresponds to the number of users and
the other R dimensions correspond to the R types of
resources.

The VCG-PAY function is given in Algorithm 3. VCG-
PAY has four input parameters, the vector of users
declared requests (θ̂), the vector of resource capacities C,
the optimal welfare V ∗, and the optimal allocation given
by x

∗. It has one output parameter: P , the payment
vector for the users. VCG-PAY calls DP-VMPAC to find
the allocation and welfare obtained without user i’s
participation (line 6). Based on the optimal allocation to
the users with and without user i’s participation, VCG-
PAY finds the payment for user i, where sum1 is the
sum of all values without user i’s participation in the
mechanism, and sum2 is the sum of all except user i’s
value in the optimal case (lines 7-12).

The VCG-VMPAC mechanism is strategy-proof, and
it determines the optimal allocation. However, its exe-
cution time becomes prohibitive for large instances of
VMPAC. More than this, the problem is strongly NP-
hard (by a trivial reduction from the multidimensional
knapsack problem [31]), and there is no Fully Polynomial
Time Approximation Scheme (FPTAS) for solving it,
unless P = NP . PTAS is by far the strongest approx-
imation result that can be achieved for this problem,
unless P = NP . In the next section, we design such
a PTAS mechanism for VMPAC.
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Algorithm 4 PTAS-VMPAC Mechanism

1: {Collect user requests.}
2: for all i ∈ U do
3: Collect request θ̂i = (Ŝi, b̂i) from user i
4: {Allocation .}
5: (V , x) = PTAS-ALLOC(θ̂,C, q)
6: Provisions and allocates VM instances according to x.
7: {Payment.}
8: P =C-PAY(θ̂,C, q)

4 STRATEGY-PROOF PTAS MECHANISM FOR
VM PROVISIONING AND ALLOCATION

We now introduce our proposed strategy-proof PTAS
mechanism, PTAS-VMPAC. The definition of a PTAS is
as follows:
Definition 7: A maximization problem has a PTAS if

for every instance I and for every ǫ > 0, it finds a
solution S for I in time polynomial in the size of I that
satisfies S(I) ≥ (1 − ǫ)S∗(I), where S∗(I) is the optimal
value of a solution for I .

We define the PTAS-VMPAC mechanism that solves
the VMPAC problem as follows:
Definition 8: The PTAS-VMPACmechanism consists of

the allocation algorithm PTAS-ALLOC and the payment
function C-PAY.
The PTAS-VMPAC mechanism is given in Algo-

rithm 4. The mechanism is run periodically by the cloud
provider. It collects the requests from the users and
determines the allocation by calling the PTAS-ALLOC
algorithm. Once the allocation is determined the mech-
anism provisions the required number and types of VM
instances, and then it determines the payments by calling
the C-PAY function. The users are then charged the
payment determined by the mechanism. PTAS-ALLOC
and C-PAY are presented in the following subsections.
Our proposed mechanisms, VCG-VMPAC and PTAS-

VMPAC, provision the VMs based on the requests of
the users. The mechanisms can handle dynamic changes
of heterogeneous user demands by supporting dynamic
provisioning of cloud resources. As a result, cloud
providers can employ our proposed mechanisms to ful-
fill dynamic market demands efficiently. For example, if
a user releases a large VM, then the cloud provider can
provision the released resources in the form of smaller
VMs if there is a request for them.

4.1 PTAS-ALLOC: Allocation Algorithm of PTAS-
VMPAC

Our proposed PTAS allocation algorithm, called PTAS-
ALLOC, is given in Algorithm 5. PTAS-ALLOC has three
input parameters: the vector of users declared requests θ̂,
the vector of resource capacities C = (C1, . . . , CR), and
an integer q, where q ≤ N . The parameter q controls
how close the solution determined by PTAS-ALLOC is
to the optimal solution. The PTAS-ALLOC algorithm
has two output parameters: V , the total social welfare
and x, the allocation of VM instances to the users. Our

Algorithm 5 PTAS-ALLOC: Allocation algorithm for VMPAC

1: Input: θ̂ = (θ̂1, . . . , θ̂N ); vector of requests (bundle, bid)
2: Input: C = (C1, . . . , CR); vector of resource capacities
3: Input: q;
4: V = −∞
5: for all Û ⊆ U : |Û | ≤ q do
6: x̂ = 0

7: V̂ = 0
8: sumr = 0, ∀r ∈ R
9: for all i ∈ Û do
10: x̂i = 1
11: V̂ = V̂ + b̂i

12: for all r ∈ R do
13: sumr = sumr +

∑

m∈VM
k̂imwmrx̂i

14: if Cr ≥ sumr , ∀r ∈ R then
15: Ũ = U \ Û
16: q̂ = |Û |
17: for all r ∈ R do
18: dr = Cr −

∑

i∈U

∑

m∈VM
k̂imwmrx̂i

19: d = (d1, . . . , dR)
20: for all i ∈ Ũ do
21: for all r ∈ R do
22: âir =

∑

m∈VM
k̂imwmr

23: ãir = ⌈âirN
2/dr⌉dr/N

2

24: Ãi = (ãi1, . . . , ãiR)
25: {DP to find (Ṽ , x̃) for (Ũ ,d):}
26: d̂ = d

27: if dr ≥ ã1r, ∀r ∈ R then
28: V (1,d) = b̂1

29: d̂ = d − Ã1

30: else
31: V (1,d) = 0
32: for all j = 2, . . . , N − q̂ do
33: V (j, d̂) = max{V (j − 1, d̂), V (j − 1, d̂ − Ãj) + b̂j}
34: Ṽ = V (N − q̂,d)
35: Find x̃ by looking backward at V (j,d)
36: if V < (V̂ + Ṽ ) then
37: V = V̂ + Ṽ
38: x = x̂ + x̃

39: Output: V , x

approximation technique is inspired from Briest et al. [32]
who proposed a strategy-proof approximation algorithm
for the generalized assignment problem where all bins
have the same capacity.
The main idea in the design of PTAS-ALLOC, is find-

ing a partial allocation first and then allocating through
dynamic programming the remaining resources based on
the rounded requests of the unallocated users. The par-
tial allocation of fewer users is used as as a “seed” for the
approximate solution and is also allowing us to control
the solution error, ǫ. The more users we consider in the
partial allocation (greater q), the better the error. In the
most extreme case, when q is equal to the total number
of users, the algorithm degenerates into an exhaustive
search, producing the optimal allocation but making the
algorithm computationally infeasible. In addition, as a
consequence of dividing the allocation process into a par-
tial allocation and an allocation of rounded requests of
remaining users, the resulting overall allocation in each
iteration of PTAS-ALLOC is bitonic and monotone. The
algorithm chooses the maximum among the allocations
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obtained in each iteration, and thus, as we will show in
Theorem 2, the allocation produced by PTAS-ALLOC is
monotone.
The PTAS-ALLOC algorithm iterates over all subsets Û

of at most q users (lines 5-38). For each such subset
the algorithm finds a feasible partial allocation x̂ of
at most q users (lines 5-14), determines the amount
of partially allocated resources for each of the r types
of resources (lines 17-19) and rounds the amount of
requested resources by the unallocated users (set Ũ) for
each of the r resources (lines 20-24). Then, it uses a
dynamic programming approach to find an allocation
of bundles based on the rounded requests ãir, and the
remaining unallocated capacities, dr (lines 25-33). The
algorithm determines the maximum welfare and the
corresponding VM instance allocation x obtained over
all iterations (lines 34-38).
We now describe the dynamic programming approach

that finds the optimal allocation for the remaining users
of the remaining capacities using the rounded requests of
users (lines 25-33). In order to formulate the problem as
a dynamic program, we consider the subproblem V (j, d̂)
which includes the first j remaining users with the
available capacity d̂ such that V (j, d̂) is the optimal value
of the subproblem. The algorithm first calculates V (1,d)
(lines 26-31). Based on these values, it calculates V (j, d̂),
where j = 2, . . . , N − q̂ (lines 32-33). The algorithm
compares two cases, not allocating the bundle to j and
allocating it to j. If allocating the requested bundle of
the jth user increases the value V (j−1, d̂), the algorithm
allocates the bundle to the jth user. The maximum
between V (j − 1, d̂) and V (j − 1, d̂ − Ãj) + b̂j gives
the optimal value of V (j, d̂), where Ãj is the vector of
the rounded sizes of requested resources by user j. We
can formulate the dynamic programming recursion as
follows:

V (j, d̂) = max{V (j − 1, d̂), V (j − 1, d̂ − Ãj) + b̂j} (4)

This dynamic programming formulation is the same
as the one proposed for DP-VMPAC algorithm except
that here the available capacity vector Ĉ is replaced by
the vector of remaining unallocated capacities d̂, and
the vector specifying the amount of all resource types
requested by user j, Aj , is replaced by Ãj , the vector
of the rounded sizes of requested resources by user j.
Therefore, from Theorem 1, the dynamic programming
approach finds the optimal solution for the allocation
of the unallocated resources to the remaining users
with rounded requests (corresponding to lines 25-33 of
Algorithm 5).
The dynamic programming builds a table of size (N −

q̂) rows and N2 columns, where (N− q̂) is the number of
users and N2 is the number of possible different sizes for
the resource capacities due to rounding of the sizes. As a
result, the time complexity of the dynamic programming
is O(N(N2)R), where R is the number of resource types.
The algorithm stores V (N − q̂,d) to Ṽ as the optimal

welfare obtained by the dynamic programming for the
selected Ũ , and the corresponding allocation to x̃. Then,
PTAS-ALLOC finds the maximum total social welfare, V
across all iterations on the subsets of at most q users. It
also finds the allocation x by x̂ + x̃ (lines 35-38).
Theorem 2: PTAS-ALLOC is monotone.
Proof: To prove that the PTAS-ALLOC is monotone,

we need to show that each iteration of the main for
loop provides a monotone and bitonic allocation. This
is based on a result from [27] that states that if an
algorithm A consists of applying the maximum operator
among a set of allocation algorithms that are monotone
and bitonic, then algorithm A is monotone. In our case,
the allocation algorithms are basically the iterations of
the main for-loop in PTAS-ALLOC.
We show that one iteration is producing a monotone

allocation by considering two cases. First, we consider
a user i with declared request θ̂i is allocated her re-
quested bundle, and she is in the first q users selected
by the algorithm. If user i declares a request θ̂′i � θ̂i

(a smaller bundle or higher bid), the allocation will not
change. This satisfies the definition of the monotonicity
property, where the winning user is among the first q
users. Second, we consider that a user i with declared
request θ̂i is allocated her requested bundle, and she is
not in the first q users. In this case, if user i declares a
request θ̂′i � θ̂i, her allocation by dynamic programming
will not change. This is due to the fact that she declares
a more profitable request. As a result, user i remains
among winning users which satisfies the monotonicity
property, where the winning user is not among the first q
users. This proves the monotonicity of each iteration.
To prove that PTAS-ALLOC is bitonic in each iteration,

we consider two cases. First, user i is not among the
first q users. If user i is a winning user, then by declaring
a better request (a smaller bundle or higher bid), the
social welfare can only be increased. If user i is not
a winning user, then by declaring a larger bundle or
less bid, the social welfare can not be increased. Second,
user i is among the first q users. Thus, she is a winning
user. If she declares a higher bid, the social welfare
will increase. If she declares a smaller bundle, then the
remaining capacities of each resource will increase. As
a result, the social welfare can only increase. Thus, each
iteration is bitonic.
The monotonicity and bitonicity properties of PTAS-

ALLOC in each iteration, combined with the fact that
the PTAS-ALLOC keeps the allocation that gives the
maximum welfare among these iterations, proves the
overall monotonicity of PTAS-ALLOC.

We now show that our proposed allocation algorithm
is a PTAS, that is, for every fixed ǫ, its running time is
polynomial in the size of the input.
Theorem 3: The PTAS-ALLOC algorithm is a PTAS.
Proof: To prove that the algorithm is PTAS, we need

to show that the solution determined by the algorithm
is in a (1− ǫ) neighborhood of the optimal, and that the
time complexity of the algorithm is polynomial in N .
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We first show that the solution is within (1 − ǫ) of
the optimal solution. Let x

∗ be the optimal allocation
of the requested bundles, and V ∗ be the corresponding
optimal value. Assume that PTAS-ALLOC determines
an allocation x and a value V . Let x̂ be the optimal
allocation when we consider only q users with the
highest declared values in the first step. The second step
of allocation is allocating the remaining resources given
by d to the users who were not selected in the first step.
The rounding procedure for the remaining users, in the
second step, increases the size of the requested bundles
of those users for each resource type. This may lead to
an infeasible allocation of the bundles based on the new
rounded sizes. Based on the rounding, the total increase
in the size of the requested bundles for each resource is
less than dr/N . In order to make the allocation feasible,
we can remove a requested bundle such that it satisfies
the capacity constraints for each resource type while
decreasing the least amount of value from the objective
function. We find those allocated bundles in the second
step where for all resource types their size is larger
than dr/N . Among those, we choose the bundle Ŝi

with the smallest size. Since in the first step, we chose
the q bundles with the highest values, the bundle Ŝi

can be the q + 1 most valuable bundle. Therefore, user i
valuation for this bundle is vi(Ŝi) ≤ 1/(q + 1)V ∗. Re-
moving bundle Ŝi makes the obtained objective function
between (1 − 1/(q + 1))V ∗ and V ∗. Therefore, we have
(1 − ǫ)V ∗ ≤ V ≤ V ∗, where ǫ = 1/(q + 1).
We now show that the time complexity of PTAS-

ALLOC is polynomial in N . The running time depends
on the partial allocation of q users and the dynamic
programming. The time complexity of the dynamic pro-
gramming is O(N(N2)R), where N is the number of
users and N2 is the size of each resource based on
the rounding. The exhaustive search to find a partial
allocation is based on the total number of allocations
of q users which is

∑q

i=1
R

(

N
i

)

≤ qRN q. Thus, the
time complexity of the algorithm is O(qRN2R+q+1). This
proves that the algorithm is PTAS.

4.2 C-PAY: Payment Algorithm of PTAS-VMPAC

The C-PAY function is given in Algorithm 6. The C-PAY
function has four input parameters, the vector of users
declared requests (θ̂), the vector of resource capacities C,
the obtained allocation given by x, and the integer q. It
has one output parameter: P , the payment vector for the
users. The payments are based on the critical payments
of the winning users. The payment of winning user i
is vc

i , where vc
i is the critical payment of user i, if i wins

and zero if i loses. Finding the critical payment is done
by a binary search over values less than the declared
value.
Theorem 4: The payment algorithm, C-PAY, imple-

ments the critical payment.
Proof: To prove that C-PAY determines the critical

payment for the users, we need to show that Pi is the

Algorithm 6 C-PAY: Critical Payment Function

1: Input: θ̂ = (θ̂1, . . . , θ̂N ); vector of requests (bundle, bid)
2: Input: C; vector of resource capacities
3: Input: q;
4: Input: x; winning users
5: for all i ∈ U do
6: Pi = 0
7: if xi then
8: l = 0
9: h = b̂i

10: while (h − l) ≥ 1 do
11: vc

i = (h + l)/2
12: θ̂c

i = (Ŝi, v
c
i )

13: (V ′, x′) = PTAS-ALLOC ((θ̂1, . . . , θ̂c
i
, . . . , θ̂N ),C, q)

14: if x′
i then

15: {user i is winning by declaring vc
i }

16: h = vc
i

17: else
18: l = vc

i

19: Pi = h
20: Output: P = (P1,P2, . . . ,PN )

critical payment for user i, i.e., Pi is the minimum value
that she can declare to obtain her requested bundle of
VMs. The C-PAY algorithm finds the critical payment
when the difference between upper and lower bound is
less than 1 (line 10 of C-PAY algorithm). In addition, the
algorithm always sets the winning value as an upper
bound h, and a losing value as a lower bound, l (line 16
and 18, respectively). We separate the proof into two
parts depending on user i’s declared value b̂′i, as follows:

i) User i declares a value b̂′i greater than Pi, (i.e., b̂′i >
Pi), and the algorithm finds a critical payment of vc′

i . To
prove that Pi is the critical payment for user i, we need
to show that for every other critical payments (e.g., vc′

i ),
the difference between vc′

i and Pi is at most one. We
claim that |vc′

i − Pi| ≤ 1. The proof is by contradiction,
i.e., we assume |vc′

i − Pi| > 1. Therefore, there are two
cases, either vc′

i − Pi > 1, or Pi − vc′

i > 1. In the first
case, user i wins by declaring both vc′

i and Pi, where
vc′

i > Pi. Based on line 16 and line 19 of the C-PAY
algorithm vc′

i is an upper bound on the payment, and
thus, there exists a value l such that vc′

i −l < 1 due to the
convergence and termination of the binary search. Then,
we have l as the lower bound and user i cannot win her
bundle by declaring l based on line 18. As a result, Pi > l,
and thus vc′

i −Pi < 1, which contradicts the assumption.
In the second case, user i wins by declaring both vc′

i

and Pi, where Pi > vc′

i . With the same argument, we
have Pi as an upper bound for the payment, and thus,
Pi−l < 1 to terminate the binary search. Then, we have l
as the lower bound and user i cannot win her bundle by
declaring l. As a result, vc′

i > l, and thus, Pi − vc′

i < 1,
which contradicts the assumption.

ii) User i declares a value b̂′i less than Pi, (i.e., Pi− b̂′i >
1). Since the algorithm converges when Pi − l < 1, there
exists l such that user i cannot win her bundle of VMs
by declaring l. As a result, by declaring b̂′i, user i is not a
winning user, and her payment is zero, thus, satisfying
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TABLE 3: Users’ true requests

User 1 2 3 4 5 6 7 8
ki1 0 1 2 0 2 1 2 3
ki2 0 2 0 0 0 0 0 2
ki3 2 0 2 2 0 0 0 1
ki4 0 0 3 1 2 3 1 1
bi 30 18 95 10 5 15 7 80

TABLE 4: Different scenarios for user 8’s request declaration

Case Ŝ8 b̂8 Scenario Status

I < 3, 2, 1, 1 > $80 b̂8 = b8, Ŝ8 = S8 W

II < 3, 2, 1, 1 > $90 b̂8 > b8, Ŝ8 = S8 W

III < 3, 2, 1, 1 > $70 b̂8 < b8, Ŝ8 = S8 W

IV < 3, 2, 1, 1 > $9 b̂8 < b8, Ŝ8 = S8 L

V < 3, 2, 1, 3 > $80 b̂8 = b8, Ŝ8 > S8 W

VI < 3, 2, 1, 5 > $80 b̂8 = b8, Ŝ8 > S8 L

the properties of the critical payment.
These show that the payment Pi is the minimum

valuation that user i must bid to obtain her requested
bundle. As a result, the payment determined by C-PAY
is the critical payment.

We now show that the proposed mechanism is
strategy-proof.
Theorem 5: The PTAS-VMPAC mechanism is strategy-

proof.
Proof: The allocation algorithm PTAS-ALLOC is

monotone (Theorem 2) and the payment function C-
PAY determines the critical payment (Theorem 4). There-
fore, according to [27], the PTAS-VMPAC mechanism is
strategy-proof.

4.3 Example

We now analyze the effect of untruthful reporting on
the utility of the users participating in the PTAS-VMPAC
mechanism by considering an example. Our goal is to
show that our proposed mechanism, PTAS-VMPAC, is
robust against manipulation by a user. The true requests
of the eight users are shown in Table 3. We consider
the capacities of the two resources as follows: 100 cores,
and 1800 MB of storage. The PTAS-VMPAC (ǫ = 0.33)
allocates resources to user 1, 2, 3, 7 and 8 in the case
where all users declare their true requests. The payments
of the winning users based on C-PAY are 3, 3, 18, 0, and
10, respectively.
We assume that user 8 reports a different request,

θ̂8, from her true request θ8 = (< 3, 2, 1, 1 >, $80),
where S8 =< 3, 2, 1, 1 > and b8 = 80. As shown in
Table 4, we analyze different scenarios, where user 8
submits different requests. In addition, Fig. 1 shows the
payment and utility of the user for all the cases. In Case I,
user 8 submits her true request, that is, θ8 = θ̂8. In this
case, user 8 wins, and receives the requested bundle of
VMs, S8. The mechanism charges her $10 for the bundle,
and her utility is 80-10=70. In case II, user 8 submits a
request with a higher bid b̂8 = 90. In this case, user 8 is
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Fig. 1: PTAS-VMPAC: Effect of untruthful declarations.

still a winner and the mechanism determines the same
payment for her as in case I, leading to a utility of
70. In case III, she submits a request with a lower bid
b̂8 = 70, which is not less than the price determined by
our mechanism (i.e., $10). Thus, user 8 is still winning,
and the mechanism charges her the same amount as
in case I. However, if user 8 submits a request with a
lower bid below the payment, she will not obtain her
requested bundle, leading to zero utility. This is shown
in case IV, where user 8 submits a bid b̂8 = 9. We now
investigate scenarios in which user 8 requests a different
bundle than her true bundle. In case V, she submits a
larger bundle Ŝ8 =< 3, 2, 1, 3 >, where she requests 3
VM instances of type 2XL instead of 1 (the case of her
true request, Case I). In this case, she obtains the bundle
due to available capacities. However, she pays more than
she pays in case I, II, and III. Thus, her utility decreases.
In case VI, she submits a larger bundle Ŝ8 =< 3, 2, 1, 5 >,
where she requests 5 VM instances of type 2XL instead
of 1 VM instance (the case of her true request, Case I).
However, she becomes a loser since the cloud provider
does not have enough resources to fulfill her request. We
showed that if a user submits a request untruthfully, she
can not increase her utility.

5 EXPERIMENTAL RESULTS

We perform extensive experiments with real work-
load data in order to investigate the properties of the
proposed mechanisms, PTAS-VMPAC, and the VCG-
VMPAC. We also compare our proposed mechanisms
with a greedy mechanism proposed in [19], called G-
VMPAC-II. Here, we use a simpler name, G-VMPAC,
to refer to G-VMPAC-II. G-VMPAC allocates the VM in-
stances to users in decreasing order of their density met-
ric (a metric based on the bid of a user and the scarcity
of her requested resources). The auctions are generated
using four workload logs from the Grid Workloads
Archive [33] and the Parallel Workloads Archive [34].
VCG-VMPAC, PTAS-VMPAC, and G-VMPAC mecha-
nisms are implemented in C++ and the experiments are
conducted on Intel 2.93GHz Quad Proc Hexa Core nodes
with 90GB RAM which are part of the Wayne State Grid
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TABLE 5: Statistics of workload logs for the first 100 hours.

Logfile Number
of jobs

Range of
CPU

Range of Stor-
age (MB)

Available
CPUs

Storage Capac-
ity (MB)

GWA-T-3 NorduGrid 843 1 [1-630] 500 3,000
GWA-T-4 AuverGrid 1,524 1 [2-1,168] 500 10,000
METACENTRUM-2009-2 679 [1-32] [1-26,755] 500 12,000
GWA-T-10 SHARCNET 2,938 [1-512] [1-7,812] 10,000 20,000
GWA-T-10 SHARCNET (2) 6,629 [1-150] [1-8,000] 10,000 20,000

System. In this section, we describe the experimental
setup and analyze the experimental results.

5.1 Experimental Setup

In the absence of publicly available users requests data
from cloud providers, we resort to the well studied and
standardized workloads from both the Grid Workloads
Archive and the Parallel Workloads Archive.
We selected three logs from the Grid Workloads

Archive as follows: 1) NorduGrid traces from the Nor-
duGrid system; 2) AuverGrid traces from the AuverGrid
system; 3) SHARCNET traces from SHARCNET clusters
installed at several academic institutions in Ontario,
Canada. We also selected the following log from the
Parallel Workloads Archive. 4) MetaCentrum from the
national grid of the Czech republic. We selected these
logs because of the availability of CPU and memory
requests/usage recorded. We consider each hour of a
log as one auction, where each job corresponds to a user
request. For each log, except GWA-T-10 SHARCNET, we
select 100 hours, while from GWA-T-10 SHARCNET, we
select two 100 hours segments. This selection gives five
100-hour auctions for the experiments, and represents
different input configurations such as available capaci-
ties and number of users. We present the statistics of the
logs for the selected segments in Table 5. The number of
users (jobs) for each log is given in the second column
of Table 5. The total number of users (requests) is 12,613.
We consider each hour of a log as one auction to follow

the standard practice in Amazon EC2. As a result, each
log represents a series of auctions, where users submits
their requests over time to a cloud provider. In each
auction hour, the participants are the new users and the
unserved users whose deadline has not been exceeded.
The following fields from the log files are selected in

order to generate user requests: JobID, SubmitTime, Run-
Time, ReqNProcs, and Used Memory. JobID is the index
of the job. SubmitTime and RunTime give the submission
time of the job, and the time the job needs to complete
its execution, respectively. ReqNProcs and Used Memory
give the requested number of processors and the average
used memory per processor, respectively.
Each job from the logs corresponds to a user request,

where the job’s resource usage represents the resources
requested by the user. Therefore, each user request in-
cludes the requested number of CPUs and the amount of
storage. For the bid of each user, we generate a random
number between 1 and 10. In addition, we consider

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

GW
A-T-3 NorduGrid

GW
A-T-4 AuverGrid

M
ETACENTRUM

-2009-2

GW
A-T-10 SHARCNET

GW
A-T-10 SHARCNET (2)

S
oc

ia
l w

el
fa

re
 p

er
 h

ou
r

Workload file

PTAS-VMPAC ε=0.5
PTAS-VMPAC ε=0.33

VCG-VMPAC
G-VMPAC

Fig. 2: PTAS-VMPAC vs. VCG-VMPAC & G-VMPAC:
Social welfare.

a deadline for each user request which is between 3
to 6 times of RunTime of each job. Users leave the
auctions after their deadline. A user starts bidding for
her requested bundle from the SubmitTime until her
deadline.

5.2 Analysis of Results

We compare the performance of PTAS-VMPAC (for ǫ =
0.5 and ǫ = 0.33), G-VMPAC and VCG-VMPAC for
different workloads in Figs. 2 and 3. The selected ǫ values
correspond to q equal to 1 and 2. For each workload,
we record the execution time, the social welfare, and the
percentage of served users per hour for each mechanism.
Fig. 2 shows the average social welfare per hour

for the logs. The reason that we only choose PTAS-
VMPAC with ǫ = 0.5 and ǫ = 0.33, and did not select
smaller values for ǫ is that for these cases PTAS-VMPAC
obtained optimal results equivalent to the one obtained
by the optimal VCG-VMPAC for all logs. Note that
PTAS-VMPAC guarantees worst case performance, and
it does not necessarily produce non-optimal solutions.
The rounding procedure of PTAS makes the size of the
requests larger than their actual size. For most cases, the
total size of the requests in the optimal solutions is not
equal to the available capacities. That means, there is
extra remaining capacities even in the optimal allocation.
As a result, the rounding of the optimal solution still
fits in the available capacity. Note that such cases occur
irrespective of the amount of aggregated users demands,
which can be much higher than the available capacities.
The optimality of PTAS-VMPAC depends on the total
size of the requests in the optimal solution and the
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Fig. 3: PTAS-VMPAC vs. VCG-VMPAC & G-VMPAC: (a) Execution time; (b) Users served.

available capacities. Our proposed PTAS-VMPAC mech-
anism can find the optimal solution in such cases. In fact,
there should be a specific configuration in the requested
bundles and the available capacities in order to create the
worst case scenario (in terms of performance guarantee
of ǫ) for the PTAS-VMPAC mechanism. Later in this
section, we provide a discussion on the cases where
PTAS-VMPAC cannot achieve optimal social welfare.
Since G-VMPAC considers only the bid densities when
making allocation decisions, it obtains the lowest social
welfare in general, which is far from the optimal social
welfare. For example, for GWA-T-10 SHARCNET (2) the
optimal social welfare is 362.70, while G-VMPAC obtains
a social welfare of 317.05 leading to a 12.58% gap from
the optimal solution obtained by our proposed PTAS-
VMPAC.
Fig. 3a shows the average execution time of PTAS-

VMPAC (ǫ = 0.5 and ǫ = 0.33), VCG-VMPAC, and G-
VMPAC for the logs. In this set of experiments, PTAS-
VMPAC with ǫ = 0.5 not only achieves optimal social
welfare, but it also has the lowest execution time among
all the mechanisms obtaining optimal solutions. For
example, in the case of METACENTRUM-2009-2, the
execution time of PTAS-VMPAC with ǫ = 0.5 is more
than three orders of magnitude greater than that of
VCG-VMPAC. VCG-VMPAC has the highest execution
time in the GWA-T-10 SHARCNET (2) log since it has
the highest available capacity and the highest number
of requests 6,629. Note that the complexity of VCG-
VMPAC depends on the number of requests and the
available capacities. The results show that the execution
time of the PTAS-VMPAC is polynomial in the number
of requests. One key observation is that since PTAS-
VMPAC with ǫ = 0.5 can obtain optimal solutions
very fast, thus it is beneficial for the cloud providers
to use this mechanism rather than PTAS-VMPAC with
other values for ǫ. For example, for the total of 2,938
and 6,629 requests, PTAS-VMPAC with ǫ = 0.5 finds the
optimal solutions in 1.90 and 6.23 seconds, respectively.
G-VMPAC finds the results very fast since it is a greedy
mechanism. However, it cannot guarantee a near optimal
solution, which is the case for our proposed PTAS-
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Fig. 4: PTAS-VMPAC vs. VCG-VMPAC, sensitivity anal-
ysis on execution time with respect to storage capacity

VMPAC mechanism.

Fig. 3b shows the percentage of users that have been
allocated by the mechanisms. Since the PTAS-VMPAC
mechanism achieves the optimal solutions for all logs,
it serves the same percentage of users as VCG-VMPAC.
Note that VCG-VMPAC does not serve a higher number
of users than G-VMPAC. This is due to the fact that the
optimal mechanism finds the most valuable subset of
users in order to maximize the social welfare.

To show that the execution time of PTAS-VMPAC
does not depend on the values of capacity, we perform
sensitivity analysis with respect to storage capacity in
Fig. 4. For this figure, we select the METACENTRUM-
2009-2 log, and choose different storage capacities in
each experiment. Fig. 4 shows that the execution time
of PTAS-VMPAC mechanism does not change by in-
creasing or decreasing the capacity. This is not the case
for VCG-VMPAC where its execution time depends on
the number of requests and the available capacities.
For example, the execution times of VCG-VMPAC for
storage capacity of 8,000 and 24,000 are 2.56 and 14.23
seconds, respectively.

We now investigate the cases where PTAS-VMPAC
cannot achieve optimal social welfare. This happens in
cases where the allocated amount of resources in the op-
timal solution is the same as the amount of available ca-
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Fig. 5: PTAS-VMPAC vs. VCG-VMPAC (special case): (a) Social welfare; (b) Execution time.

pacities. In such cases, the rounding procedure of PTAS-
VMPAC needs extra amount for each request. Therefore,
the optimal solution would not fit in the available ca-
pacities. As a result, at least one of the requests would
not be fulfilled by PTAS-VMPAC, leading to a lower
social welfare. Since in the logs, we do not have such
cases, we designed a special experiment to show such
a scenario. We select one auction of METACENTRUM-
2009-2, and choose the capacities in a way that PTAS-
VMPAC mechanisms do not necessarily find the optimal
solution. Fig. 5a shows the obtained social welfare based
on the selected ǫ, where ǫ is 0.5, 0.33, 0.25 corresponding
to q equal to 1, 2, 3, respectively. We also show the social
welfare in the optimal case obtained by VCG-VMPAC.
The results show that the obtained social welfare is
within ǫ distance of the optimal social welfare. Fig. 5b
shows the execution time of PTAS-VMPAC for the same
selected ǫ, and the execution time of VCG-VMPAC. The
results show that PTAS-VMPAC is able to find a near
optimal social welfare in much shorter time. This is
due to the fact the PTAS-VMPAC is a polynomial time
approximation scheme.
From all the above results, we conclude that PTAS-

VMPAC finds near-optimal solutions to the VMPAC
problem and its execution time only depends on the
number of users and the selected ǫ. These properties
make PTAS-VMPAC a good candidate for deployment
on the current cloud computing systems, where the
capacities of the resources available for allocation are
very large.

6 CONCLUSION

We addressed the problem of dynamic VM provision-
ing, allocation, and payment determination in clouds
considering heterogeneous resources. We proposed a
strategy-proof PTAS mechanism for autonomic resource
allocation in clouds that provides incentives to the users
to reveal their true valuations for the requested bundles
of VM instances. We also designed a strategy-proof
VCG-based mechanism using a dynamic programming
approach. The objectives of the proposed mechanism

are to maximize the social welfare in dynamic resource
provisioning, to achieve strategy-proofness, and to lead
the system into an equilibrium. We investigated the
properties of our proposed PTAS mechanism by per-
forming extensive experiments. The results showed that
the proposed mechanism determines near optimal al-
locations while giving the users incentives to report
their true valuations for the bundles of VM instances.
We plan to implement our mechanism as part of an
integrated solution for the management of resources in
an experimental cloud computing system.
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for utilitarian mechanism design,” SIAM Journal on Computing,
vol. 40, no. 6, pp. 1587–1622, 2011.

[33] GWA. (2013) Grid workloads archive. [Online]. Available:
http://gwa.ewi.tudelft.nl

[34] PWA. (2013) Parallel workloads archive. [Online]. Available:
http://www.cs.h-uji.ac.il/labs/parallel/workload/

[35] L. Mashayekhy, M. M. Nejad, and D. Grosu, “A truthful approxi-
mation mechanism for autonomic virtual machine provisioning
and allocation in clouds,” in Proc. ACM Cloud and Autonomic
Computing Conference, 2013, pp. 1–10.

Lena Mashayekhy received her BSc and MSc
degrees in computer science from Iran Univer-
sity of Science and Technology and the Univer-
sity of Isfahan, respectively. She is currently a
PhD candidate in computer science at Wayne
State University, Detroit, Michigan. She has pub-
lished more than twenty peer-reviewed papers
in venues such as IEEE Transactions on Parallel
and Distributed Systems, IEEE Transactions on
Cloud Computing, IEEE BigData, IEEE CLOUD,
and ICPP. Her research interests include dis-

tributed systems, cloud computing, big data analytics, game theory and
optimization. She is a student member of the ACM, the IEEE, and the
IEEE Computer Society.

Mahyar Movahed Nejad received his BSc de-
gree in mathematics from Iran University of
Science and Technology. He received his MSc
degree in socio-economic systems engineering
from Mazandaran University of Science and
Technology. He is currently a MSc student in
computer science, and a PhD candidate in
industrial and systems engineering at Wayne
State University, Detroit. His research interests
include cloud computing, big data analytics,
game theory, network optimization, and integer

programming. His papers appeared in journals such as IEEE Transac-
tions on Parallel and Distributed Systems. He is a student member of
the IEEE and the INFORMS.

Daniel Grosu received the Diploma in engineer-
ing (automatic control and industrial informatics)
from the Technical University of Iaşi, Romania, in
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