
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX 1

Energy-aware Scheduling of MapReduce Jobs
for Big Data Applications

Lena Mashayekhy, Student Member, IEEE, Mahyar Movahed Nejad, Student Member, IEEE,
Daniel Grosu, Senior Member, IEEE, Quan Zhang, Student Member, IEEE, Weisong Shi, Senior

Member, IEEE

Abstract—The majority of large-scale data intensive applications executed by data centers are based on MapReduce or its open-
source implementation, Hadoop. Such applications are executed on large clusters requiring large amounts of energy, making the
energy costs a considerable fraction of the data center’s overall costs. Therefore minimizing the energy consumption when executing
each MapReduce job is a critical concern for data centers. In this paper, we propose a framework for improving the energy efficiency of
MapReduce applications, while satisfying the service level agreement (SLA). We first model the problem of energy-aware scheduling
of a single MapReduce job as an Integer Program. We then propose two heuristic algorithms, called Energy-aware MapReduce
Scheduling Algorithms (EMRSA-I and EMRSA-II), that find the assignments of map and reduce tasks to the machine slots in order to
minimize the energy consumed when executing the application. We perform extensive experiments on a Hadoop cluster to determine
the energy consumption and execution time for several workloads from the HiBench benchmark suite including TeraSort, PageRank,
and K-means Clustering, and then use this data in an extensive simulation study to analyze the performance of the proposed algorithms.
The results show that EMRSA-I and EMRSA-II are able to find near optimal job schedules consuming approximately 40% less energy
on average than the schedules obtained by a common practice scheduler that minimizes the makespan.

Index Terms—MapReduce; big data; minimizing energy consumption; scheduling.

✦

1 INTRODUCTION

S EVERAL businesses and organizations are faced with
an ever-growing need for analyzing the unprece-

dented amounts of available data. Such need challenges
existing methods, and requires novel approaches and
technologies in order to cope with the complexities
of big data processing. One of the major challenges
of processing data intensive applications is minimizing
their energy costs. Electricity used in US data centers
in 2010 accounted for about 2% of total electricity used
nationwide [1]. In addition, the energy consumed by the
data centers is growing at over 15% annually, and the
energy costs make up about 42% of the data centers’
operating costs [2]. Considering that server costs are
consistently falling, it should be no surprise that in the
near future a big percentage of the data centers’ costs
will be energy costs. Therefore, it is critical for the data
centers to minimize their energy consumption when
offering services to customers.
Big data applications run on large clusters within

data centers, where their energy costs make energy effi-
ciency of executing such applications a critical concern.
MapReduce [3] and its open-source implementation,
Hadoop [4], have emerged as the leading computing
platforms for big data analytics. For scheduling multiple

• L. Mashayekhy, M. M. Nejad, D. Grosu, Q. Zhang, and W. Shi are with
the Department of Computer Science, Wayne State University, Detroit,
MI, 48202.
E-mail: mlena@wayne.edu, mahyar@wayne.edu, dgrosu@wayne.edu,
fd7710@wayne.edu, weisong@wayne.edu

MapReduce jobs, Hadoop originally employed a FIFO
scheduler. To overcome the issues with the waiting time
in FIFO, Hadoop then employed the Fair Scheduler [5].
These two schedulers, however, do not consider improv-
ing the energy efficiency when executing MapReduce
applications. Improving energy efficiency of MapReduce
applications leads to a significant reduction of the overall
cost of data centers. In this paper, we design MapReduce
scheduling algorithms that improve the energy efficiency
of running each individual application, while satisfy-
ing the service level agreement (SLA). Our proposed
scheduling algorithms can be easily incorporated and
deployed within the existing Hadoop systems.
In most of the cases, processing big data involves run-

ning production jobs periodically. For example, Facebook
processes terabytes of data for spam detection daily. Such
production jobs allow data centers to use job profiling
techniques in order to get information about the resource
consumption for each job. Job profiling extracts critical
performance characteristics of map and reduce tasks
for each underlying application. Data centers can use
the knowledge of extracted job profiles to pre-compute
new estimates of jobs’ map and reduce stage durations,
and then construct an optimized schedule for future
executions. Furthermore, the energy consumption of
each task on a machine can be profiled using automatic
power-meter tools such as PDU Power Strip [6], which
is currently a standard practice in data centers. Many
researchers studied different profiling techniques [7], [8],
and several MapReduce scheduling studies rely on such
techniques [9], [10]. Our proposed algorithms schedule



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX 2

MapReduce production jobs having as the primary ob-
jective the minimization of energy consumption.
Most of the existing research on MapReduce schedul-

ing focused on improving the makespan (i.e., minimiz-
ing the time between the arrival and the completion
time of an application) of the MapReduce job’s execution
(e.g., [11], [12], [13], [14]). However, makespan minimiza-
tion is not necessarily the best strategy for data centers.
Data centers are obligated to deliver the services by their
specified deadlines, and it is not in their best interests
to execute the services as fast as they can in order to
minimize the makespan. This strategy fails to incorpo-
rate significant optimization opportunities available for
data centers to reduce their energy costs. The majority
of production MapReduce workloads consists of a large
number of jobs that do not require fast execution. By
taking into account the energy consumed by the map
and reduce tasks when making scheduling decisions, the
data centers can utilize their resources efficiently and
reduce the energy consumption. Our proposed energy-
aware scheduling algorithms capture such opportunities
and significantly reduce the MapReduce energy costs,
while satisfying the SLA.

1.1 Our Contribution

To the best of our knowledge this is the first study
that designs algorithms for detailed task placement of a
MapReduce job to machines with the primary focus
on minimizing the energy consumption. Our proposed
algorithms can be incorporated into higher level energy
management policies in data centers. We first model
the problem of scheduling MapReduce tasks for energy
efficiency as an integer program. In the absence of
computationally tractable optimal algorithms for solving
this problem, we design two heuristic algorithms, called
EMRSA-I and EMRSA-II, where EMRSA is an acronym
for Energy-aware MapReduce Scheduling Algorithm.
EMRSA-I and EMRSA-II provide very fast solutions
making them suitable for deployment in real produc-
tion MapReduce clusters. The time complexity of the
proposed algorithms is polynomial in the number of
map and reduce slots, the number of map tasks, and
the number of reduce tasks. We perform experiments on
a Hadoop cluster to determine the energy consumption
of several MapReduce benchmark applications such as
TeraSort, Page Rank, and K-means Clustering. We use
this data in an extensive simulation study to characterize
the performance of the proposed algorithms. We show
that the current practice scheduling methods, such as
makespan minimization, produce schedules having en-
ergy consumption that is far from optimal. We compare
the performance of EMRSA-I and EMRSA-II against the
optimal solution for cases in which the optimal solution
can be obtained in reasonable amount of time. The
results show that EMRSA-I and EMRSA-II are capable of
finding close to optimal solutions very fast. Due to the
intractability of the problem, when the optimal results

are not available, we show that the energy consumption
for the schedules obtained by the proposed algorithms
is very close to the lower bound solution obtained by
the linear programming (LP) relaxation of the integer
program.

1.2 Related Work

We summarize the related work from three perspectives:
resource allocation and scheduling in data centers and
clouds, MapReduce scheduling with different objectives,
and energy savings in data centers.
Resource allocation and scheduling in data centers and

clouds. Hacker and Mahadik [15] proposed scheduling
polices for virtual high performance computing clusters.
They presented a resource prediction model for each
policy to estimate the resources needed within a cloud,
the queue wait time for requests, and the size of the
pool of spare resources needed. Palanisamy et al. [16]
proposed a new MapReduce cloud service model for
production jobs. Their method creates cluster configura-
tions for the jobs using MapReduce profiling and lever-
ages deadline-awareness, allowing the cloud provider
to optimize its global resource allocation and reduce
the cost of resource provisioning. Ekanayake et al. [17]
proposed a programming model and an architecture
to enhance MapReduce runtime that supports iterative
MapReduce computations efficiently. They showed how
their proposed model can be extended to more classes
of applications for MapReduce. Tian and Chen [18]
proposed a cost function that models the relationship
between the amount of input data, Map and Reduce
slots, and the complexity of the Reduce function for
the MapReduce job. Their proposed cost function can
be used to minimize the cost with a time deadline or
minimize the time under certain budget. Zhan et al. [19]
proposed a cooperative resource provisioning solution
using statistical multiplexing to save the server cost.
Song et al. [20] proposed a two-tiered on-demand re-
source allocation mechanism consisting of the local and
global resource allocation. In our previous studies [21],
[22], [23], we proposed mechanisms for resource pro-
visioning, allocation, and pricing in clouds considering
several heterogeneous resources. However, none of the
above mentioned studies consider the energy saving
objectives.

MapReduce scheduling with different objectives. Za-
haria et al. [24] studied the problem of speculative
execution in MapReduce. They proposed a simple robust
scheduling algorithm, Longest Approximate Time to End
(LATE), which uses estimated finish times to specula-
tively execute the tasks that hurt the response time the
most. Sandholm and Lai [25] designed a system for allo-
cating resources in shared data and compute clusters that
improves MapReduce job scheduling. Their approach is
based on isolating MapReduce clusters in VMs with a
continuously adjustable performance. Wang et al. [26]
proposed a task scheduling technique for MapReduce



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX 3

that improves the system throughput in job-intensive
environments without considering the energy consump-
tion. Ren et al. [27] proposed a job scheduling algorithm
to optimize the completion time of small MapReduce
jobs. Their approach extends job priorities to guarantee
the rapid response for small jobs. Chang et al. [12]
proposed various online and offline algorithms for the
MapReduce scheduling problem to minimize the overall
job completion times. Their algorithms are based on
solving a linear program (LP) relaxation. Moseley et
al. [11] proposed a dynamic program for minimizing the
makespan when all MapReduce jobs arrive at the same
time. They modeled the problem as a two-stage flow
shop problem, and proved that the dynamic program
yields a PTAS if there is a fixed number of job-types.
Pastorelli et al. [28] proposed a size-based approach to
scheduling jobs in Hadoop to guarantee fairness and
near-optimal system response times. Their scheduler
requires a priori job size information, and thus, it builds
such knowledge by estimating the sizes during job ex-
ecution. Wolf et al. [29] proposed a flexible scheduling
allocation scheme, called Flex, to optimize a variety of
standard scheduling metrics such as response time and
makespan, while ensuring the same minimum job slot
guarantees as in the case of Fair scheduler. Sandholm
and Lai [30] proposed a dynamic priority parallel task
scheduler for Hadoop that prioritizes jobs and users and
gives users the tool to optimize and customize their
allocations to fit the importance and requirements of
their jobs such as deadline and budget. Verma et al. [8]
proposed a job scheduler for MapReduce environments
that allocates the resources to production jobs. Their
method can profile a job that runs routinely and then
uses its profile in the designed MapReduce model to
estimate the amount of resources required for meeting
the deadline. Verma et al. [9] proposed a job scheduler
that minimizes the makespan for MapReduce production
jobs with no dependencies by utilizing the characteristics
and properties of the jobs in a given workload. Nan-
duri et al. [31] proposed a heuristic scheduling algorithm
to maintain a resource balance on a cluster, thereby
reducing the overall runtime of the MapReduce jobs.
Their job selection and assignment algorithms select
the job that is best suitable on a particular node while
avoiding node overloads. Ibrahim et al. [32] proposed
a scheduling algorithm for map tasks to improve the
overall performance of the MapReduce computation.
Their approach leads to a higher locality in the execution
of map tasks and to a more balanced intermediate data
distribution. Kurazumi et al. [33] proposed dynamic
processing slot scheduling for I/O intensive MapReduce
jobs that use efficiently the CPU resources with low
utilization caused by I/O wait related to task execu-
tion. However, these studies did not consider energy
efficiency as their objectives.

Energy savings in data centers. Kaushik et al. [34]
proposed an approach to partition the servers in a
Hadoop cluster into hot and cold zones based on their

performance, cost, and power characteristics, where hot
zone servers are always powered on and cold zone
servers are mostly idling. Cardosa et al. [35] proposed
a spatio-temporal tradeoff that includes efficient spatial
placement of tasks on nodes and temporal placement
of nodes with tasks having similar runtimes in order
to maximize utilization. Leverich and Kozyrakis [36]
proposed a method for energy management of MapRe-
duce jobs by selectively powering down nodes with low
utilization. Their method uses a cover set strategy that
exploits the replication to keep at least one copy of a
data-block. As a result, in low utilization periods some
of the nodes that are not in the cover set can be powered
down. Chen et al. [37] proposed a method for reducing
the energy consumption of MapReduce jobs without
relying on replication. Their approach divides the jobs
into time-sensitive and less time-sensitive jobs, where
the former are assigned to a small pool of dedicated
nodes, and the latter can run on the rest of the cluster.
Maheshwari et al. [38] proposed an algorithm that dy-
namically reconfigures clusters by scaling up and down
the number of nodes based on the cluster utilization.
Lang and Patel [39] proposed a framework for energy
management in MapReduce clusters by powering down
all nodes in the cluster during a low utilization period.
Wirtz and Ge [40] conducted an experimental study on
the MapReduce efficiency. They analyzed the effects of
changing the number of concurrent worker nodes, and
the effects of adjusting the processor frequency based
on workloads. Goiri et al. [41] proposed a MapReduce
framework for a data center powered by renewable
sources of energy such as solar or wind, and by the
electrical grid for backups. Their proposed framework
schedules jobs to maximize the green energy consump-
tion by delaying many background computations within
the jobs’ bounded time. Salehi et al. [42] proposed an
adaptive energy management policy employing a fuzzy
reasoning engine to determine if the resources for a
request have to be allocated through switching on re-
sources, preemption, consolidation, or a combination of
these. Shen and Wang [43] formulated several stochastic
optimization models to investigate the trade-off between
energy footprints and quality of service in cloud comput-
ing services. In their models, decisions include workload
scheduling and switching servers on/off based on loads.
While the above frameworks can be used as data center-
level energy minimization strategies, our focus is on
minimizing the energy consumption by scheduling jobs,
which can be considered as a cluster-level strategy in
data centers. In addition, none of the above frameworks
and systems exploit the job profiling information when
making the decisions for task placement on the nodes to
increase the energy efficiency of executing MapReduce
jobs. Our proposed algorithms consider the significant
energy consumption differences of different task place-
ments on machines, and find an energy efficient assign-
ment of tasks to machines.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX 4

1.3 Organization

The rest of the paper is organized as follows. In Sec-
tion 2, we describe the problem of scheduling MapRe-
duce jobs for energy efficiency. In Section 3, we present
our proposed algorithms. In Section 4, we evaluate the
algorithms by extensive experiments. In Section 5, we
summarize our results and present possible directions
for future research.

2 ENERGY-AWARE MAPREDUCE SCHEDUL-
ING PROBLEM

A MapReduce job comprising a specific number of map
and reduce tasks is executed on a cluster composed of
multiple machines. The job’s computation consists of
a map phase followed by a reduce phase. In the map
phase, each map task is allocated to a map slot on
a machine, and processes a portion of the input data
producing key-value pairs. In the reduce phase, the key-
value pairs with the same key are then processed by
a reduce task allocated to a reduce slot. As a result,
the reduce phase of the job cannot begin until the map
phase ends. At the end, the output of the reduce phase
is written back to the distributed file system. In Hadoop,
job scheduling is performed by a master node running a
job tracker process, which distributes jobs to a number
of worker nodes in the cluster. Each worker runs a task
tracker process, and it is configured with a fixed number
of map and reduce slots. The task tracker periodically
sends heartbeats to the job tracker to report the number
of free slots and the progress of the running tasks.

We consider a big data application consisting of a set
of M map and R reduce tasks that needs to be completed
by deadline D. Tasks in each set can be run in parallel,
but no reduce task can be started until all map tasks for
the application are completed. Let M and R be the set
of map and reduce tasks of the application, and A and B
the set of slots on heterogeneous machines available for
executing the map and the reduce tasks, respectively.
The number of slots for each machine is decided by the
system administrators when the Hadoop cluster is setup
and each slot can handle only one map or reduce task
at a time. Since we consider a heterogeneous cluster, the
execution speed of a task on different slots from different
machines may not be the same. Also, the energy required
to execute a task on different slots may not be the
same. We denote by eij the difference between energy
consumption of slot j ∈ {A,B} when executing task
i ∈ {M,R} and its idle energy consumption. In addition,
we denote by pij the processing times of task i ∈ {M,R}
when executed on slot j ∈ {A,B}. We assume that
the processing time of the tasks are known. In doing
so, we use the knowledge of extracted job profiles to
pre-compute the processing time of map and reduce
tasks, along with their energy consumption. We define
an indicator variable δti, ∀t, i ∈ M∪R, characterizing the

dependencies of the map and reduce tasks as follows:

δti =

{

1 if task i should be assigned after task t

0 otherwise

(1)

We formulate the Energy-aware MapReduce Schedul-
ing problem as an Integer Program (called EMRS-IP), as
follows:

Minimize
∑

j∈A

∑

i∈M

eijXij +
∑

j∈B

∑

i∈R

∑

t∈M∪R

δtieijYij (2)

Subject to:
∑

j∈A

Xij = 1,∀i ∈ M (3)

∑

j∈B

∑

t∈M∪R

δtiYij = 1,∀i ∈ R (4)

∑

i∈M

pijXij +
∑

i∈R

∑

t∈M∪R

δtipij′Yij′ ≤ D,

∀j ∈ A,∀j′ ∈ B (5)

Xij = {0, 1},∀i ∈ M, ∀j ∈ A (6)

Yij = {0, 1},∀i ∈ R, ∀j ∈ B (7)

where the decision variables Xij and Yij are defined as
follows:

Xij =

{

1 if map task i is assigned to slot j

0 otherwise
(8)

Yij =

{

1 if reduce task i is assigned to slot j

0 otherwise
(9)

The objective function is to minimize the energy
consumed when executing the MapReduce application
considering the dependencies of reduce tasks on the
map tasks. Constraints (3) ensure that each map task is
assigned to a slot for execution. Constraints (4) ensure
that each reduce task is assigned to a slot. Constraints (5)
ensure that processing time of the application does not
exceed its deadline. Constraints (6) and (7) represent
the integrality requirements for the decision variables.
The solution to EMRS-IP consists of X and Ŷ , where
Ŷij =

∑

t∈M∪R
δtiYij , i ∈ R, and j ∈ B.

Note that based on constraints (5), the scheduler
can assign all reduce tasks after finishing all map
tasks without exceeding the deadline. This is due to
the fact that these constraints can be interpreted as
max∀j∈A

∑

i∈M
pijXij + max∀j′∈B

∑

i∈R
pij′Yij′ ≤ D. As

a result, all reduce tasks can be assigned after time
max∀j∈A

∑

i∈M
pijXij . In addition, the scheduler can

assign multiple map tasks to a machine, as well as
multiple reduce tasks. This is due to the fact that in
bigdata applications the number of tasks is greater than
the number of machines available in a cluster. The focus
of this study is the detailed placement of map and reduce
tasks of a job in order to reduce energy consumption.
While it is important to consider data placement in an



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX 5

integrated framework for energy savings in data centers,
data placement is beyond the scope of this paper.
At the high level the problem we consider may appear

as composed of two independent scheduling problems,
one for the map tasks and one for the reduce tasks. This
would be the case if the deadline for the map phase
would be known. But since the deadline for map tasks
is not known from the beginning, we cannot just simply
divide the problem into two scheduling subproblems
and solve them independently. Our proposed algorithms
determine the map deadline as the tasks are allocated
and schedule the map and reduce tasks to reduce the
energy consumption of executing the job.

3 ENERGY-AWARE MAPREDUCE SCHEDUL-
ING ALGORITHMS

We design two heuristic algorithms called EMRSA-I
and EMRSA-II for solving the energy-aware MapReduce
scheduling problem. Our proposed algorithms, EMRSA-
I and EMRSA-II, take the energy efficiency differences
of different machines into account and determine a
detailed task placement of a MapReduce job into slots
while satisfying the user specified deadline. The two
algorithms are presented as a single generic algorithm
called EMRSA-X, in Algorithm 1.
The design of these algorithms require a metric that

characterizes the energy consumption of each machine
and induces an order relation among the machines. We
define such a metric, called energy consumption rate of
a slot j. EMRSA-I and EMRSA-II use different energy
consumption rate metrics as follows:
1) EMRSA-I uses energy consumption rate metrics

based on the minimum ratio of energy consumption and
processing time of tasks when executed on slot j, as
follows:

ecrm
j = min

∀i∈M

eij

pij

,∀j ∈ A (10)

ecrr
j = min

∀i∈R

eij

pij

,∀j ∈ B (11)

where ecrm
j and ecrr

j represent the energy consumption
rate of map slot j and reduce slot j, respectively.
2) EMRSA-II uses energy consumption rate metrics

based on the average ratio of energy consumption and
processing time of tasks when executed on slot j, as
follows:

ecrm
j =

∑

∀i∈M

eij

pij

M
,∀j ∈ A (12)

ecrr
j =

∑

∀i∈R

eij

pij

R
,∀j ∈ B (13)

The ordering induced by these metrics on the set of slots
determines the order in which the slots are assigned to
tasks, that is, a lower ecrm

j means that slot j has a higher
priority to have a map task assigned to it. Similarly, a

Algorithm 1 EMRSA-X

1: Create an empty priority queue Qm

2: Create an empty priority queue Qr

3: for all j ∈ A do
4: ecrm

j = min∀i∈M

eij

pij
, for EMRSA-I; or

ecrm
j =

∑

∀i∈M

eij

pij

M
, for EMRSA-II

5: Qm.enqueue(j, ecrm
j )

6: for all j ∈ B do
7: ecrr

j = min∀i∈R

eij

pij
, for EMRSA-I; or

ecrr
j =

∑

∀i∈R

eij

pij

R
, for EMRSA-II

8: Qr .enqueue(j, ecrr
j )

9: Dm ←∞; Dr ←∞
10: while Qm is not empty and Qr is not empty do
11: jm = Qm.extractMin()
12: jr = Qr .extractMin()

13: f =

∑

∀i∈M
pijm

∑

∀i∈R
pijr

14: T m: sorted unassigned map tasks i ∈M based on pijm

15: T r : sorted unassigned reduce tasks i ∈ R based on pijr

16: if T m = ∅ and T r = ∅ then break
17: ASSIGN-LARGE()
18: ASSIGN-SMALL()
19: if Dm =∞ then
20: Dm = D − pr

21: Dr = pr

22: if T m 6= ∅ or T r 6= ∅ then
23: No feasible schedule
24: return
25: Output: X, Y

lower ecrr
j means that slot j has a higher priority to have

a reduce task assigned to it.
In addition, EMRSA-X uses the ratio of map and re-

duce processing times, denoted by f , in order to balance
the assignment of map and reduce tasks. The ratio f is
defined as follows:

f =

∑

∀i∈M
pijm

∑

∀i∈R
pijr

(14)

This ratio is used in the task assignment process in each
iteration of EMRSA-X. As we already mentioned, we
use job profiling of production jobs to estimate the pro-
cessing time of map and reduce tasks. This information,
extracted from job profiling (i.e., the values of pijm and
pijr ) is used by EMRSA-X to compute the ratio f .
A key challenge when designing the algorithms is

that the user only specifies the deadline for the job and
there is no information on the deadline for completing
the map phase. However, since the reduce tasks are
dependent on the map tasks, the algorithms have to
determine a reasonable deadline for the map tasks with
respect to the availability of the map slots in the cluster
in order to utilize its resources efficiently. Our proposed
algorithms find the assignments of map tasks to the map
slots satisfying the determined map deadline, and then
find the assignments of reduce tasks to the reduce slots
satisfying the deadline D, where all the reduce tasks start
after the map deadline.
First, EMRSA-X determines the assignment of large

tasks in terms of their processing time, and the map



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX 6

Algorithm 2 ASSIGN-LARGE()

1: im = argmaxt∈T m ptjm

2: ir = argmaxt∈T r ptjr

3: pm = 0; pr = 0
4: if pimjm + pirjr ≤ D and pimjm ≤ Dm and pirjr ≤ Dr

then
5: T m = T m \ {im}
6: T r = T r \ {ir}
7: pm = pimjm

8: pr = pirjr

9: Ximjm = 1
10: Yirjr = 1
11: do
12: im = argmaxt∈T m ptjm

13: ir = argmaxt∈T r ptjr

14: if f > 1 then

15: while
pm

+pimjm

pr < f and pm + pr + pimjm ≤ D

and pm + pimjm ≤ Dm and T m 6= ∅ do
16: T m = T m \ {im}
17: pm = pm + pimjm

18: Ximjm = 1
19: im = argmaxt∈T m ptjm

20: Balance the assignment of reduce tasks (repeat
lines 15-19 for reduce tasks).

21: else
22: The code for f < 1 is similar to lines 15-20 and is

not presented here.
23: while pm+pr+pimjm +pirjr ≤ D and pm+pimjm ≤ Dm

and pr + pirjr ≤ Dr and (T m 6= ∅ or T r 6= ∅)

deadline according to such tasks. The reason that
EMRSA-X gives priority to large tasks is due to the hard
deadline constraint, and the fact that there may not be
many choices for large task placement configurations to
avoid exceeding the deadline constraint. Then, EMRSA-
X tries to close the optimality gap by filling with smaller
tasks the leftover time of each slot based on the deadline.
This leads to better utilization of each machine in the
cluster.
EMRSA-X is given in Algorithm 1. EMRSA-X builds

two priority queues Qm and Qr to keep the order of the
map and reduce slots based on their energy consumption
rates (lines 1-8). Then, it initializes the deadlines for
map tasks, Dm, and reduce tasks, Dr, to infinity. In
each iteration of the while loop, the algorithm chooses
the slots with the lowest energy consumption rates (i.e.,
jm and jr) from the priority queues, and finds the
task placement on the selected slots. For these slots,
the ratio of processing time of map tasks to that of
the reduce tasks, denoted by f , is calculated (line 13).
Then, EMRSA-X sorts the unassigned map and reduce
tasks, if there is any, based on their processing time
on the selected slots (lines 14-15). Then, it determines
the assignments of large tasks based on the metric f

by calling ASSIGN-LARGE() (given in Algorithm 2).
Then, it finds the assignments of small tasks by calling
ASSIGN-SMALL() (given in Algorithm 3) if there is any
unallocated processing time on a slot. EMRSA-X assigns
a new task to a slot whenever the slot becomes available.
At the end of the first iteration, the algorithm sets the
map and reduce deadlines based on the allocated tasks

Algorithm 3 ASSIGN-SMALL()

1: {Assign small map tasks}
2: i = argmint∈T m ptjm

3: while pm + pr + pijm ≤ D and pm + pijm ≤ Dm and
T m 6= ∅ do

4: T m = T m \ {i}
5: pm = pm + pijm

6: Xijm = 1
7: i = argmint∈T m ptjm

8: {Assign small reduce tasks}
9: i = argmint∈T r ptjr

10: while pm +pr +pijr ≤ D and pm +pijm ≤ Dr and T r 6= ∅
do

11: T r = T r \ {i}
12: pr = pr + pijr

13: Yijr = 1
14: i = argmint∈T r ptjr

(lines 19-21).

We now describe the two procedures, ASSIGN-
LARGE() and ASSIGN-SMALL() into more details.
ASSIGN-LARGE() is given in Algorithm 2. ASSIGN-
LARGE() selects the longest map task im and reduce
task ir from the sorted sets T m and T r, respectively
(lines 1-2). Then it checks the feasibility of allocating
map task im to slot jm and reduce task ir to slot jr by
checking the total processing time of the tasks against
the deadline D (line 4). If the assignment of map task im

and reduce task ir is feasible, the algorithm continues to
select tasks from T m and T r, and updates the variables
accordingly (lines 5-23). To keep the assignments of the
tasks in alignment with the ratio of processing time f , the
procedure balances the assignment. In doing so, if f > 1
(i.e., the load of processing time of map tasks is greater
than that of reduce tasks) and the ratio of the current
assignment is less than f , then the algorithm assigns
more map tasks to balance the allocated processing
time close to f (lines 15-20). If the ratio of the current
assignment is greater than f , the procedure assigns more
reduce tasks to balance the allocated processing time
(lines 22).

After allocating the map and reduce tasks with the
largest processing time, EMRSA-X assigns small map
and reduce tasks while satisfying the deadline by call-
ing ASSIGN-SMALL() (given in Algorithm 3). ASSIGN-
SMALL() selects the smallest map task i, and based on
the already assigned tasks and the remaining processing
time of the slot, it decides if allocating task i is feasible
or not (line 3). Then, it selects the smallest reduce task i,
and checks the feasibility of its assignment (line 10).

The time complexity of EMRSA-X is O(A(M +log A)+
B(R + log B) + min(A,B)(M log M + R log R)), where A,
B, M , and R are the number of map slots, the number
of reduce slots, the number of map tasks, and the
number of reduce tasks, respectively. The first two terms
correspond to the running time of the two for loops in
lines 4-5 and 6-8, while the third term corresponds to the
running time of the while loop in lines 10-21.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX 7

TABLE 1: Example: Map tasks.

Map tasks

Processing time Energy consumption

a1 a2 a3 a1 a2 a3

Tasks
tm
1

8 4 2 8 12 12

tm
2

3 2 1 3 4 3

TABLE 2: Example: Reduce tasks.

Reduce tasks

Processing time Energy consumption

b1 b2 b1 b2

Tasks
tr
1

2 3 6 3

tr
2

2 2 6 4

3.1 Example

We now describe how EMRSA-II algorithm works by
considering an example. We consider a job with 2 map
tasks {tm

1
, tm

2
} and 2 reduce tasks {tr

1
, tr

2
} with a deadline

of 12, and a data center with 3 map slots {a1, a2, a3} and
2 reduce slots {b1, b2}. The processing time and energy
consumption of the map and reduce tasks are presented
in Table 1 and Table 2, respectively. For example, task tm

1

has 8 units of processing time and 8 units of energy
consumption if it runs on map slot a1 (i.e., p11 = 8
and e11 = 8). Then, we have ecrm = {1, 2.5, 4.5} and
ecrr = {3, 1.5} for the map and reduce slots. EMRSA-
II determines Qm = {a1, a2, a3} and Qr = {b2, b1}
(Algorithm 1, lines 1-8). Based on the priority queues,
Qm and Qr, the first map slot to take into account
is a1, and the first reduce slot is b2. For these slots, the
longest tasks are tm

1
and tr

1
, respectively (i.e., X11 = 1

and Y12 = 1). Based on the deadline, the algorithm
cannot assign more tasks to these slots. Therefore, the
deadlines for the map and reduce tasks are Dm = 8
and Dr = 12 − 8 = 4, respectively. That means, map
tasks can be assigned to the other slots with the deadline
of 8, and the reduce tasks can be assigned to the other
slots from time 8 by the deadline of 12. The map tasks
assignment is as follows. So far we have X11 = 1, the
algorithm chooses the second map slot in Qm, and finds
the longest task that has not been assigned to any slot
yet. That means tm

2
is assigned to a2 (i.e., X22 = 1). For

the reduce tasks assignment, we already have Y12 = 1.
The algorithm chooses the second reduce slot in Qr, and
finds the longest task that has not been assigned to any
slot yet. That means tr

2
is assigned to b1 (i.e., Y21 = 1).

This solution leads to a total energy consumption of 21
units, while satisfying the deadline constraint.

However, the solution that minimizes the makespan
will select X13 = 1 and X22 = 1 to obtain a map
makespan of 2 units, and will select Y11 = 1 and Y22 = 1
to obtain a reduce makespan of 2 units. This solution
leads to a total makespan of 4 units with a total energy
consumption of 26. Both approaches obtain schedules
that meet the deadline. However, our proposed algo-
rithm reduces the energy consumption by 19%. Note that

the makespan for our approach is 11.

4 EXPERIMENTAL RESULTS

We perform extensive experiments in order to investigate
the properties of the proposed algorithms, EMRSA-I and
EMRSA-II. We compare the performance of EMRSA-I
and EMRSA-II with that of OPT, where OPT obtains
the optimal solution minimizing the energy consump-
tion. OPT is obtained by optimally solving the EMRS-IP
problem (Equations (2) to (7)). Since OPT cannot find the
optimal solutions in several cases due to the intractabil-
ity of the problem, we present the results of the linear
programming (LP) relaxation of EMRS-IP by changing
the binary decision variables into continuous decision
variables (constraints (6) and (7)). The LP relaxation of
EMRS-IP, called EMRS-LP, transforms an NP-hard opti-
mization problem (EMRS-IP) into a related problem that
is solvable in polynomial time. EMRS-LP gives a lower
bound on the optimal solution of EMRS-IP by allowing
partial assignments of each task to machines. Therefore,
OPTEMRS−LP ≤ OPTEMRS−IP , where OPTEMRS−LP

is the optimal solution to EMRS-LP, and OPTEMRS−IP

is the optimal solution to EMRS-IP.
However, such partial assignment of each task (ob-

tained by solving the relaxation of EMRS-IP) is not a so-
lution for the problem and cannot be used in practice. We
only use the solution of the EMRS-LP (the relaxation of
EMRS-IP) as a lower bound for EMRS-IP and compare it
with the solutions obtained by the other algorithms. We
denote by L-BOUND the algorithm that solves EMRS-LP
and produces the lower bound on the solutions.
In addition, we present the results of minimizing the

makespan, MSPAN, to show how far the current practice
in MapReduce scheduling is from the optimal solutions
that consider energy savings objectives. MSPAN is ob-
tained by optimally solving the IP corresponding to
the MapReduce makespan minimization problem (the
same constraints as in ERMSA-IP, but the objective
is makespan minimization). Since MSPAN cannot find
the optimal solutions in several cases due to the in-
tractability of the problem, we implemented a greedy
algorithm for makespan minimization, called G-MSPAN.
G-MSPAN schedules the tasks on the machines such
that the processing time of all machines are balanced.
It assigns longer tasks to faster machines to keep the
balance.
To analyze the performance of EMRSA-I and EMRSA-

II, we present two classes of experiments, small-scale
and large-scale. In the small-scale experiments, we com-
pare the performance of EMRSA-I, EMRSA-II, OPT,
and MSPAN for small MapReduce jobs. For large jobs,
however, we cannot obtain the optimal results for OPT
and MSPAN even after 24 hours, thus, we compare the
performance of EMRSA-I, EMRSA-II, L-BOUND, and G-
MSPAN.
EMRSA-I, EMRSA-II, OPT, L-BOUND, MSPAN, and

G-MSPAN algorithms are implemented in C++. OPT,



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX 8

TABLE 3: Selected HiBench workloads.

Category Workload

Micro Benchmarks TeraSort

Web Search Page Rank

Machine Learning K-means Clustering

TABLE 4: Terasort Workloads for the small scale experi-
ments.

Workload Map tasks Reduce tasks

(48M, 48R) 48 48

(48M, 64R) 48 64

(64M, 48R) 64 48

(64M, 64R) 64 64

MSPAN, and L-BOUND are implemented using APIs
provided by IBM ILOG CPLEX Optimization Studio
Multiplatform Multilingual eAssembly [44]. In this sec-
tion, we describe the experimental setup and analyze the
experimental results.

4.1 Experimental Setup

We performed extensive experiments on a Hadoop clus-
ter of 64 processors and measured the energy and exe-
cution time for several MapReduce HiBench benchmark
workloads [45]. HiBench is a comprehensive benchmark
suite for Hadoop provided by Intel to characterize the
performance of MapReduce based data analysis running
in data centers. HiBench contains ten workloads, classi-
fied into four categories: Micro Benchmarks, Web Search,
Machine Learning, and Analytical Query. We select three
workloads, TeraSort, Page Rank, and K-means Cluster-
ing, from different categories as shown in Table 3. The
cluster is composed of four Intel nodes, with one node
as a master. Two of the nodes have 24GB memory, 16
2.4GHz Intel processors, and a 1TB Hard Drive. The
other two nodes have 16GB memory, 16 2.4GHz Intel
processors, and a 1TB Hard Drive. The cluster has a
total of 80GB memory, 64 processors, 4TB of storage, and
network speed of 1Gbps. We set one map slot and one
reduce slot per processor. Energy measurements were
taken using Wattsup? PRO ES.Net Power meter. The
input voltage is 100-250 Volts at 60 HZ and the max
wattage is 1800 Watts. The measurement accuracy is +/-
1.5% and the selected interval of time between records
is one second.
We run and profiled several TeraSort, Page Rank,

and K-means Clustering workloads from the HiBench
benchmark set. Each workload contains both map and
reduce tasks. For each workload, we collect its start time,
finish time, the consumed power and other performance
metrics. We used 240 workloads for job profiling. We
run only one job at a time, and collect the energy
measurements and execution times. Since the reduce
tasks execute only after the execution of all map tasks is
completed, we do not have overlaps between the map
and reduce tasks. Based on the collected job profiles,

 0

 20

 40

 60

 80

 100

 120

 140

Node 1

Node 2

Node 3

E
ne

rg
y 

co
ns

um
pt

io
n 

(J
)

Nodes

Map
Reduce

Fig. 1: Energy needs of tasks for the actual and simulated
architectures

we generated four small MapReduce jobs that we use
in the small-scale experiments with the deadline of 250
seconds, and twenty four large MapReduce jobs, that
we use in the large-scale experiments with the deadline
of 1500 seconds. Since for production jobs the choice of
the deadline is at the latitude of the users, we select the
deadlines specifically to obtain feasible schedules. The
execution time and the energy consumption of the map
and reduce tasks composing these jobs were generated
from uniform distributions having as the averages the
average energy consumption and the average execution
time of the map and reduce tasks extracted from the
jobs profiled in our experiments. Fig. 1 shows the en-
ergy needs of map and reduce tasks for the actual and
simulated architecture. The energy consumption range
of each node is shown as a filled box, where the bottom
and the top of the box represent the minimum and
the maximum energy consumption, respectively. For the
simulated architecture, the energy consumption of each
node is generated within a range whose boundaries
are represented in the figure as horizontal lines. The
simulation experiments are conducted on AMD 2.93GHz
hexa-core dual-processor systems with 90GB of RAM
which are part of the Wayne State Grid System.

4.2 Analysis of Results

4.2.1 Small-scale experiments
We analyze the performance of EMRSA-I, EMRSA-II,
OPT, and MSPAN for four small MapReduce TeraSort
jobs with 10,737,418 records, where the number of map
tasks and reduce tasks are presented in Table 4. For
example, the smallest job represented by (48M, 48R) has
48 map tasks and 48 reduce tasks. Fig. 2a presents the
energy consumption of the jobs scheduled by the four
algorithms we consider. The results show that EMRSA-
I and EMRSA-II obtain the assignments of map and
reduce tasks with energy consumption close to the op-
timal solution, obtained by OPT. OPT, EMRSA-I, and
EMRSA-II are able to schedule the tasks with an average
of 41.0%, 38.9%, and 39.2% less energy consumption
than that of MSPAN, respectively. For example, the total
energy consumptions for workload (48M, 48R) obtained
by EMRSA-I, EMRSA-II, OPT, and MSPAN are 5356,



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX 9

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

(48M
, 48R)

(48M
, 64R)

(64M
, 48R)

(64M
, 64R)

E
ne

rg
y 

co
ns

um
pt

io
n 

(J
)

Number of Map tasks and Reduce tasks

EMRSA-I
EMRSA-II

OPT
MSPAN

(a)

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

(48M
, 48R)

(48M
, 64R)

(64M
, 48R)

(64M
, 64R)

E
xe

cu
tio

n 
tim

e 
(S

ec
on

ds
)

Number of Map tasks and Reduce tasks

EMRSA-I
EMRSA-II

OPT
MSPAN

(b)

Fig. 2: EMRSA-I and EMRSA-II performance on TeraSort (small-scale experiments): (a) Energy consumption; (b)
Execution time.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

(48M
, 48R)

(48M
, 64R)

(64M
, 48R)

(64M
, 64R)

E
ne

rg
y 

co
ns

um
pt

io
n 

of
 M

ap
 ta

sk
s 

(J
)

Number of Map tasks and Reduce tasks

EMRSA-I
EMRSA-II

OPT
MSPAN

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

(48M
, 48R)

(48M
, 64R)

(64M
, 48R)

(64M
, 64R)

E
ne

rg
y 

co
ns

um
pt

io
n 

of
 R

ed
uc

e 
ta

sk
s 

(J
)

Number of Map tasks and Reduce tasks

EMRSA-I
EMRSA-II

OPT
MSPAN

(b)

Fig. 3: TeraSort energy consumption (small-scale experiments): (a) Map tasks; (b) Reduce tasks.

5396, 5233, and 8687 J, respectively. While it is desirable
to use OPT as a scheduler to reduce cost, the slow
execution of OPT makes it prohibitive to use in practice.
In addition, it is practically impossible to use OPT when
it comes to scheduling big data jobs due to its prohibitive
runtime. EMRSA-I and EMRSA-II are very fast and prac-
tical alternatives for scheduling big data jobs, leading
to 39% reduction in energy consumption. However, the
energy consumption obtained by MSPAN is far from the
optimal solution, making it not suitable for scheduling
MapReduce jobs with the goal of minimizing the energy
consumption.

Fig. 2b presents the execution time of the algorithms.
The results show that EMRSA-I and EMRSA-II find the
assignments in significantly less amount of time than
OPT and MSPAN. As shown in this figure, EMRSA-I
and EMRSA-II obtain the solution in a time that is six
orders of magnitude less than that of OPT. For example,
the execution times of EMRSA-I, EMRSA-II, OPT, and
MSPAN for the workload (48M, 48R) are 0.001, 0.001,
673.7, and 839.3 seconds, respectively.

In Fig. 3, we present the energy consumption of map
and reduce tasks in more details. When the number of
reduce tasks is greater than the number of map tasks
(e.g., workload (48M, 64R)), EMRSA-I and EMRSA-II
capture more optimization opportunities for energy sav-
ing available for reduce tasks. In more detail, the energy

consumptions of map tasks for workload (48M, 64R)
obtained by EMRSA-I, EMRSA-II, OPT, and MSPAN
are 3130, 3090, 2897, and 4751 J, respectively, while
the energy consumptions of reduce tasks for workload
(48M, 64R) are 3547, 3527, 3448, and 5972 J, respectively.
However, when the workload has more map tasks than
reduce tasks (e.g., workload (64M, 48R)), EMRSA-I and
EMRSA-II save more energy for map tasks. The energy
consumption for the map tasks of workload (64M, 48R)
obtained by employing EMRSA-X (shown in Fig. 3a)
is closer to the optimal than the energy consumption
for the reduce tasks (shown in Fig. 3b) for the same
workload. This is due to the fact that for this workload,
the load of the map tasks is greater than that of the
reduce tasks, that is f > 1. For workload (48M, 64R),
where f < 1, EMRSA-X leads to an energy consumption
closer to the optimal for the reduce tasks. This shows the
effect of ratio f on the energy consumption.

4.2.2 Large-scale experiments

We analyze the performance of EMRSA-I, EMRSA-II, L-
BOUND, and G-MSPAN, for three types of benchmarks
(TeraSort, Page Rank, and K-means Clustering) consid-
ering eight large MapReduce jobs for each, where the
number of map tasks and reduce tasks are given in
Table 5.
(i) Terasort: Fig. 4a shows the energy consumption of



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX 10

 0

 50000

 100000

 150000

 200000

(128M
, 128R)

(128M
, 256R)

(128M
, 512R)

(256M
, 128R)

(256M
, 256R)

(256M
, 512R)

(512M
, 128R)

(512M
, 512R)

E
ne

rg
y 

co
ns

um
pt

io
n 

(J
)

Number of Map tasks and Reduce tasks

EMRSA-I
EMRSA-II
L-BOUND
G-MSPAN

(a)

 0.0001

 0.001

 0.01

 0.1

 1

 10

(128M
, 128R)

(128M
, 256R)

(128M
, 512R)

(256M
, 128R)

(256M
, 256R)

(256M
, 512R)

(512M
, 128R)

(512M
, 512R)

E
xe

cu
tio

n 
tim

e 
(S

ec
on

ds
)

Number of Map tasks and Reduce tasks

EMRSA-I
EMRSA-II
L-BOUND
G-MSPAN

(b)

Fig. 4: EMRSA-I and EMRSA-II performance on TeraSort (large-scale experiments): (a) Energy consumption; (b)
Execution time.

 0

 20000

 40000

 60000

 80000

 100000

 120000

(128M
, 128R)

(128M
, 256R)

(128M
, 512R)

(256M
, 128R)

(256M
, 256R)

(256M
, 512R)

(512M
, 128R)

(512M
, 512R)

E
ne

rg
y 

co
ns

um
pt

io
n 

of
 M

ap
 ta

sk
s 

(J
)

Number of Map tasks and Reduce tasks

EMRSA-I
EMRSA-II
L-BOUND
G-MSPAN

(a)

 0

 20000

 40000

 60000

 80000

 100000

 120000

(128M
, 128R)

(128M
, 256R)

(128M
, 512R)

(256M
, 128R)

(256M
, 256R)

(256M
, 512R)

(512M
, 128R)

(512M
, 512R)

E
ne

rg
y 

co
ns

um
pt

io
n 

of
 R

ed
uc

e 
ta

sk
s 

(J
)

Number of Map tasks and Reduce tasks

EMRSA-I
EMRSA-II
L-BOUND
G-MSPAN

(b)

Fig. 5: TeraSort energy consumption (large-scale experiments): (a) Map tasks; (b) Reduce tasks.

TABLE 5: Workloads for the large scale experiments.

Workload Map tasks Reduce tasks

(128M, 128R) 128 128

(128M, 256R) 128 256

(128M, 512R) 128 512

(256M, 128R) 256 128

(256M, 256R) 256 256

(256M, 512R) 256 512

(512M, 128R) 512 128

(512M, 512R) 512 512

EMRSA-I, EMRSA-II, L-BOUND, and G-MSPAN. This
figure shows that the energy consumption obtained by
EMRSA-I and EMRSA-II is very close to the lower
bound for all cases, which in turn implies that EMRSA-I
and EMRSA-II solutions are even closer to the optimal
solutions. This shows the near-optimality of solutions
obtained by EMRSA-I and EMRSA-II. In some cases
EMRSA-I obtains better results. However, the results
show that EMRSA-I and EMRSA-II are able to find
schedules requiring an average of 35.6% and 35.8% less
energy than that of those obtained by G-MSPAN, respec-
tively. Such reduction in energy consumption can be a
great incentive for data centers to incorporate EMRSA-I
and EMRSA-II for scheduling MapReduce jobs to reduce
their costs. Note that the amount of energy savings

obtained by EMRSA-I and EMRSA-II in the large-scale
experiments is compared with that obtained by the G-
MSPAN. However, in the small-scale experiments, we
presented the amount of energy savings of EMRSA-
I and EMRSA-II compared to the optimal makespan
minimization algorithm. As the total number of map
and reduce tasks increases (from 256 to 1024), the to-
tal amount of energy consumption of the workloads
increases. In addition, this figure shows the sensitivity
analysis on the number of tasks. By fixing the number of
map tasks while increasing the number of reduce tasks,
we observe an increase in the total energy consumption.
For example, this behavior is shown for the first three
workloads, where the number of map tasks is 128, and
the number of reduce tasks is from 128 to 512.

Fig. 4b shows the execution time of the algorithms.
EMRSA-I, EMRSA-II, and G-MSPAN find the results in
less than a second for all selected MapReduce jobs. Note
that the lower bound results are obtained by solving
the LP relaxation, not the EMRSA-IP. The execution
time of L-BOUND presenting the LP relaxation results
is polynomial. In addition, with the increase in the total
number of map and reduce tasks, the execution time of
L-BOUND increases. For example, the execution time
of L-BOUND increases from workload (128M, 128R)
to (128M, 512R). However, it decreases from workload
(128M, 512R) to (256M,128R). The execution time of



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX 11

 0

 50000

 100000

 150000

 200000

(128M
, 128R)

(128M
, 256R)

(128M
, 512R)

(256M
, 128R)

(256M
, 256R)

(256M
, 512R)

(512M
, 128R)

(512M
, 512R)

E
ne

rg
y 

co
ns

um
pt

io
n 

(J
)

Number of Map tasks and Reduce tasks

EMRSA-I
EMRSA-II
L-BOUND
G-MSPAN

(a)

 0.0001

 0.001

 0.01

 0.1

 1

 10

(128M
, 128R)

(128M
, 256R)

(128M
, 512R)

(256M
, 128R)

(256M
, 256R)

(256M
, 512R)

(512M
, 128R)

(512M
, 512R)

E
xe

cu
tio

n 
tim

e 
(S

ec
on

ds
)

Number of Map tasks and Reduce tasks

EMRSA-I
EMRSA-II
L-BOUND
G-MSPAN

(b)

Fig. 6: EMRSA-I and EMRSA-II performance on Page Rank (large-scale experiments): (a) Energy consumption; (b)
Execution time.

 0

 20000

 40000

 60000

 80000

 100000

 120000

(128M
, 128R)

(128M
, 256R)

(128M
, 512R)

(256M
, 128R)

(256M
, 256R)

(256M
, 512R)

(512M
, 128R)

(512M
, 512R)

E
ne

rg
y 

co
ns

um
pt

io
n 

of
 M

ap
 ta

sk
s 

(J
)

Number of Map tasks and Reduce tasks

EMRSA-I
EMRSA-II
L-BOUND
G-MSPAN

(a)

 0

 20000

 40000

 60000

 80000

 100000

 120000

(128M
, 128R)

(128M
, 256R)

(128M
, 512R)

(256M
, 128R)

(256M
, 256R)

(256M
, 512R)

(512M
, 128R)

(512M
, 512R)

E
ne

rg
y 

co
ns

um
pt

io
n 

of
 R

ed
uc

e 
ta

sk
s 

(J
)

Number of Map tasks and Reduce tasks

EMRSA-I
EMRSA-II
L-BOUND
G-MSPAN

(b)

Fig. 7: Page Rank energy consumption (large-scale experiments): (a) Map tasks; (b) Reduce tasks.

EMRSA-I and EMRSA-II follows the same behavior.

In Fig. 5, we present the energy consumption of map
and reduce tasks separately in more detail. The results
show that for both map and reduce tasks, the solutions
obtained by EMRSA-I and EMRSA-II are very close to
the lower bounds. In addition, we perform sensitivity
analysis with respect to the number of map and reduce
tasks. Fig. 5 shows how the energy consumption of
map and reduce tasks changes by fixing the number
of map tasks (e.g., to 128), and changing the number
of reduce tasks (e.g., from 128 to 512). For example,
for workloads (128M, 128R), (128M, 256R), and (128M,
512R), Fig. 5a shows that these workloads have almost
the same energy consumption for their map tasks, which
is expected as the number of map tasks are the same.
However, Fig. 5b shows an exponential increase in the
energy consumption of the reduce tasks for these work-
loads which is expected as the number of reduce tasks
increases exponentially. For the sensitivity analysis of
energy consumption with respect to number of reduce
tasks, we analyze workloads (128M, 128R), (256M, 128R),
and (512M, 128R). Fig. 5b shows that these workloads
have almost the same energy consumption for their
reduce tasks since the number of reduce tasks are the
same. However, Fig. 5a shows that by increasing the
number of map tasks, the energy consumption of the
map tasks for these workload increases.

(ii) Page Rank: Fig. 6a shows the energy consump-
tion of EMRSA-I, EMRSA-II, L-BOUND, and G-MSPAN.
This figure shows that the obtained results by EMRSA-
I and EMRSA-II are very close to the lower bounds
obtained by L-BOUND. The results show that EMRSA-I
and EMRSA-II are able to find schedules requiring an
average of 35.3% and 35.5% less energy than that of
those obtained by G-MSPAN, respectively. The sensitiv-
ity analysis with respect to the number of tasks shows
that by increasing the total number of map and reduce
tasks, the energy consumption increases. For example,
the total energy consumptions of (256M, 128R) obtained
by EMRSA-I, EMRSA-II, the L-BOUND, and G-MSPAN
are 26,064, 26,364, 25,642.7, and 45,845 J, respectively,
while the total energy consumptions of (256M, 512R)
are 68,388, 67,888, 65,832.3, and 100,426 J, respectively.
For jobs with the same number of map tasks and the
same number of reduce tasks, the energy consumption
of Page Rank is similar to TeraSort energy consumption
as shown in Fig. 4a.

Fig. 6b shows the execution time of the algorithms.
EMRSA-I, EMRSA-II, and G-MSPAN find the solutions
very fast. With the increase in the total number of map
and reduce tasks, the execution time of all algorithms
increases. For example, the execution time of L-BOUND
for workload (512M, 128R) increases from 1.43 to 3.22
seconds for workload (512M, 512R). In addition, the



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX 12

 0

 50000

 100000

 150000

 200000

(128M
, 128R)

(128M
, 256R)

(128M
, 512R)

(256M
, 128R)

(256M
, 256R)

(256M
, 512R)

(512M
, 128R)

(512M
, 512R)

E
ne

rg
y 

co
ns

um
pt

io
n 

(J
)

Number of Map tasks and Reduce tasks

EMRSA-I
EMRSA-II
L-BOUND
G-MSPAN

(a)

 0.0001

 0.001

 0.01

 0.1

 1

 10

(128M
, 128R)

(128M
, 256R)

(128M
, 512R)

(256M
, 128R)

(256M
, 256R)

(256M
, 512R)

(512M
, 128R)

(512M
, 512R)

E
xe

cu
tio

n 
tim

e 
(S

ec
on

ds
)

Number of Map tasks and Reduce tasks

EMRSA-I
EMRSA-II
L-BOUND
G-MSPAN

(b)

Fig. 8: EMRSA-I and EMRSA-II performance on K-means Clustering (large-scale experiments): (a) Energy consump-
tion; (b) Execution time.

 0

 20000

 40000

 60000

 80000

 100000

 120000

(128M
, 128R)

(128M
, 256R)

(128M
, 512R)

(256M
, 128R)

(256M
, 256R)

(256M
, 512R)

(512M
, 128R)

(512M
, 512R)

E
ne

rg
y 

co
ns

um
pt

io
n 

of
 M

ap
 ta

sk
s 

(J
)

Number of Map tasks and Reduce tasks

EMRSA-I
EMRSA-II
L-BOUND
G-MSPAN

(a)

 0

 20000

 40000

 60000

 80000

 100000

 120000

(128M
, 128R)

(128M
, 256R)

(128M
, 512R)

(256M
, 128R)

(256M
, 256R)

(256M
, 512R)

(512M
, 128R)

(512M
, 512R)

E
ne

rg
y 

co
ns

um
pt

io
n 

of
 R

ed
uc

e 
ta

sk
s 

(J
)

Number of Map tasks and Reduce tasks

EMRSA-I
EMRSA-II
L-BOUND
G-MSPAN

(b)

Fig. 9: K-means Clustering energy consumption (large-scale experiments): (a) Map tasks; (b) Reduce tasks.

execution time of EMRSA-I and EMRSA-II for workload
(512M, 128R) increases from 0.004 to 0.006 seconds for
workload (512M, 512R).

Fig. 7 shows the energy consumption of map and
reduce tasks separately in more detail, and it is similar
to the results for TeraSort workloads. This figure shows
the sensitivity analysis with respect to number of map
and reduce tasks.

(iii) K-means Clustering: Fig. 8a shows the energy con-
sumption of EMRSA-I, EMRSA-II, L-BOUND, and G-
MSPAN. The results show that the obtained solutions
by EMRSA-I and EMRSA-II are very close to the lower
bounds obtained by L-BOUND. This figure shows that
EMRSA-I and EMRSA-II are able to save an average
of 30.9% and 31.4% energy compared to G-MSPAN, re-
spectively. This figure also shows the sensitivity analysis
on the total number of tasks, along with the detailed
sensitivity analysis on the number of map and reduce
separately. It confirms the above mentioned sensitivity
analysis results for TeraSort and Page Rank. However,
for similar workloads (i.e., having the same number of
map tasks and the same number of reduce tasks) the
energy consumption of K-means Clustering is almost
twice the energy consumption of Page Rank and Tera-
Sort. This shows that K-means Clustering tasks are more
computationally complex than TeraSort and Page Rank,
leading to consuming more energy.

In Fig. 8b, we present the execution time of the al-
gorithms. The results show that EMRSA-I, EMRSA-II,
and G-MSPAN find the solutions very fast. In Fig. 9, we
present the energy consumption of map and reduce tasks
separately in more details. The results show that for both
map and reduce tasks, the obtained results by EMRSA-I
and EMRSA-II are very close to the lower bounds. In
addition, this figure shows the sensitivity analysis with
respect to the number of map and reduce tasks.

From all the above results, we conclude that EMRSA-
I and EMRSA-II obtain MapReduce job schedules with
significantly lower energy consumption, and require
small execution times, making them suitable candidates
for scheduling big data applications in data centers.
In addition, the schedules obtained by EMRSA-I and
EMRSA-II provide energy savings close to the optimal.
The results show that makespan minimization is not
necessarily the best strategy to consider when scheduling
MapReduce jobs for energy efficiency in data centers.
This is due to the fact that data centers are obligated
to deliver the requested services according to the SLA,
where such agreement may provide significant optimiza-
tion opportunities to reduce energy costs. Such reduction
in energy costs is a great incentive for data centers to
adopt our proposed scheduling algorithms.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX 13

5 CONCLUSION

Due to the increasing need for big data processing and
the widespread adoption of MapReduce and its open
source implementation Hadoop for such processing, im-
proving MapReduce performance with energy saving
objectives can have a significant impact in reducing
energy consumption in data centers. In this paper, we
show that there are significant optimization opportu-
nities within the MapReduce framework in terms of
reducing energy consumption. We proposed two energy-
aware MapReduce scheduling algorithms, EMRSA-I and
EMRSA-II, that schedule the individual tasks of a
MapReduce job for energy efficiency while meeting the
application deadline. Both proposed algorithms provide
very fast solutions making them suitable for execution
in real-time settings. We performed experiments on a
Hadoop cluster to determine the energy consumption
of several MapReduce benchmark applications such as
TeraSort, Page Rank, and K-means Clustering. We then
used this data in an extensive simulation study to an-
alyze the performance of EMRSA-I and EMRSA-II. The
results showed that the proposed algorithms are capable
of obtaining near optimal solutions leading to significant
energy savings. In the future, we plan to design and im-
plement a distributed scheduler for multiple MapReduce
jobs with the primary focus on energy consumption.

ACKNOWLEDGMENTS

This paper is a revised and extended version of [46]
presented at the the 3rd IEEE International Congress on
Big Data (BigData 2014). This research was supported,
in part, by NSF grants DGE-0654014 and CNS-1116787.

REFERENCES

[1] J. Koomey, “Growth in data center electricity use 2005 to 2010,”
Oakland, CA: Analytics Press. August, vol. 1, 2011.

[2] J. Hamilton, “Cooperative expendable micro-slice servers (cems):
low cost, low power servers for internet-scale services,” in Proc.
of the Conf. on Innovative Data Systems Research, 2009.

[3] J. Dean and S. Ghemawat, “Mapreduce: Simplified data process-
ing on large clusters,” in Proc. of the 6th USENIX Symposium on
Operating System Design and Implementation, 2004, pp. 137–150.

[4] Hadoop. [Online]. Available: http://hadoop.apache.org/

[5] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Job scheduling for multi-user mapreduce clusters,”
UC Berkeley, Tech. Rep. UCB/EECS-2009-55, April 2009.

[6] Apc. [Online]. Available: http://www.apc.com/

[7] J. Polo, C. Castillo, D. Carrera, Y. Becerra, I. Whalley, M. Steinder,
J. Torres, and E. Ayguadé, “Resource-aware adaptive scheduling
for mapreduce clusters,” in Proc. of the 12th ACM/IFIP/USENIX
International Middleware Conference, 2011, pp. 187–207.

[8] A. Verma, L. Cherkasova, and R. H. Campbell, “Aria: automatic
resource inference and allocation for mapreduce environments,”
in Proc. 8th ACM Int’l Conf. on Autonomic Comp., 2011, pp. 235–244.

[9] ——, “Two sides of a coin: Optimizing the schedule of mapreduce
jobs to minimize their makespan and improve cluster perfor-
mance,” in Proc. 20th IEEE Int’l Symp. Modeling, Analysis and
Simulation of Computer and Telecom. Syst., 2012, pp. 11–18.

[10] B. Palanisamy, A. Singh, L. Liu, and B. Jain, “Purlieus: locality-
aware resource allocation for mapreduce in a cloud,” in Proc. Conf.
High Performance Comp., Networking, Storage and Analysis, 2011.

[11] B. Moseley, A. Dasgupta, R. Kumar, and T. Sarlós, “On scheduling
in map-reduce and flow-shops,” in Proc. 23rd Annual ACM Symp.
on Parallelism in Algorithms and Architectures, 2011, pp. 289–298.

[12] H. Chang, M. S. Kodialam, R. R. Kompella, T. V. Lakshman,
M. Lee, and S. Mukherjee, “Scheduling in mapreduce-like systems
for fast completion time,” in Proc. of the 30th IEEE International
Conference on Computer Communications, 2011, pp. 3074–3082.

[13] F. Chen, M. S. Kodialam, and T. V. Lakshman, “Joint scheduling
of processing and shuffle phases in mapreduce systems,” in Proc.
of the IEEE INFOCOM, 2012, pp. 1143–1151.

[14] Y. Zheng, N. B. Shroff, and P. Sinha, “A new analytical technique
for designing provably efficient mapreduce schedulers,” in Proc.
of the IEEE INFOCOM, 2013, pp. 1600–1608.

[15] T. J. Hacker and K. Mahadik, “Flexible resource allocation for
reliable virtual cluster computing systems,” in Proc. ACM Conf.
High Perf. Comp., Networking, Storage and Analysis, 2011, p. 48.

[16] B. Palanisamy, A. Singh, and L. Liu, “Cost-effective resource
provisioning for mapreduce in a cloud,” IEEE Transactions on
Parallel and Distributed Systems (forthcoming), 2014.

[17] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu,
and G. Fox, “Twister: a runtime for iterative mapreduce,” in Proc.
19th ACM Int’l Symp. High Performance Distr. Comp., 2010, pp. 810–
818.

[18] F. Tian and K. Chen, “Towards optimal resource provisioning for
running mapreduce programs in public clouds,” in Proc. IEEE Int’l
Conf. on Cloud Computing, 2011, pp. 155–162.

[19] J. Zhan, L. Wang, X. Li, W. Shi, C. Weng, W. Zhang, and X. Zang,
“Cost-aware cooperative resource provisioning for heterogeneous
workloads in data centers,” IEEE Transactions on Computers,
vol. 62, no. 11, pp. 2155–2168, 2013.

[20] Y. Song, Y. Sun, and W. Shi, “A two-tiered on-demand resource al-
location mechanism for vm-based data centers,” IEEE Transactions
on Services Computing, vol. 6, no. 1, pp. 116–129, 2013.

[21] M. Nejad, L. Mashayekhy, and D. Grosu, “Truthful greedy mech-
anisms for dynamic virtual machine provisioning and allocation
in clouds,” IEEE Transactions on Parallel and Distributed Systems
(forthcoming), 2014.

[22] L. Mashayekhy, M. Nejad, and D. Grosu, “Cloud federations in
the sky: Formation game and mechanism,” IEEE Transactions on
Cloud Computing (forthcoming), 2014.

[23] L. Mashayekhy, M. Nejad, D. Grosu, and A. V. Vasilakos,
“Incentive-compatible online mechanisms for resource provision-
ing and allocation in clouds,” in Proc. of the 7th IEEE Intl. Conf.
on Cloud Computing, 2014.

[24] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
“Improving mapreduce performance in heterogeneous environ-
ments,” in Proc. of the 8th USENIX conference on Operating systems
design and implementation, 2008, pp. 29–42.

[25] T. Sandholm and K. Lai, “Mapreduce optimization using regu-
lated dynamic prioritization,” in Proc. 11th ACM Int’l Conf. on
Measurement and Modeling of Computer Syst., 2009, pp. 299–310.

[26] X. Wang, D. Shen, G. Yu, T. Nie, and Y. Kou, “A throughput
driven task scheduler for improving mapreduce performance in
job-intensive environments,” in Proc. of the 2nd IEEE International
Congress on Big Data, 2013, pp. 211–218.

[27] Z. Ren, X. Xu, M. Zhou, J. Wan, and W. Shi, “Workload analysis,
implications and optimization on a production hadoop cluster: A
case study on taobao,” IEEE Transactions on Services Computing,
vol. 7, no. 2, pp. 307–321, 2014.

[28] M. Pastorelli, A. Barbuzzi, D. Carra, M. Dell’Amico, and
P. Michiardi, “Hfsp: size-based scheduling for hadoop,” in Proc.
of IEEE International Conference on Big Data, 2013, pp. 51–59.

[29] J. Wolf, D. Rajan, K. Hildrum, R. Khandekar, V. Kumar,
S. Parekh, K.-L. Wu, and A. Balmin, “Flex: A slot allocation
scheduling optimizer for mapreduce workloads,” in Proc. of the
ACM/IFIP/USENIX 11th Int’l Conf. on Middleware, 2010, pp. 1–20.

[30] T. Sandholm and K. Lai, “Dynamic proportional share schedul-
ing in hadoop,” in Job scheduling strategies for parallel processing.
Springer, 2010, pp. 110–131.

[31] R. Nanduri, N. Maheshwari, A. Reddyraja, and V. Varma, “Job
aware scheduling algorithm for mapreduce framework,” in Proc.
of the IEEE 3rd International Conference on Cloud Computing Tech-



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX 14

nology and Science, 2011, pp. 724–729.

[32] S. Ibrahim, H. Jin, L. Lu, B. He, G. Antoniu, and S. Wu, “Maestro:
Replica-aware map scheduling for mapreduce,” in Proc. 12th
IEEE/ACM Int’l Symp. on Cluster, Cloud and Grid Comp., 2012, pp.
435–442.

[33] S. Kurazumi, T. Tsumura, S. Saito, and H. Matsuo, “Dynamic
processing slots scheduling for i/o intensive jobs of hadoop
mapreduce,” in Proc. of the 3rd IEEE International Conference on
Networking and Computing, 2012, pp. 288–292.

[34] R. T. Kaushik, M. Bhandarkar, and K. Nahrstedt, “Evaluation and
analysis of greenhdfs: A self-adaptive, energy-conserving variant
of the hadoop distributed file system,” in Proc. 2nd IEEE Int’l Conf.
on Cloud Computing Technology and Science, 2010, pp. 274–287.

[35] M. Cardosa, A. Singh, H. Pucha, and A. Chandra, “Exploiting
spatio-temporal tradeoffs for energy-aware mapreduce in the
cloud,” IEEE Transactions on Computers, pp. 1737–1751, 2012.

[36] J. Leverich and C. Kozyrakis, “On the energy (in) efficiency of
hadoop clusters,” ACM SIGOPS Operating Systems Review, vol. 44,
no. 1, pp. 61–65, 2010.

[37] Y. Chen, S. Alspaugh, D. Borthakur, and R. Katz, “Energy ef-
ficiency for large-scale mapreduce workloads with significant
interactive analysis,” in Proc. of the 7th ACM European Conf. on
Computer Systems, 2012, pp. 43–56.

[38] N. Maheshwari, R. Nanduri, and V. Varma, “Dynamic energy
efficient data placement and cluster reconfiguration algorithm
for mapreduce framework,” Future Generation Computer Systems,
vol. 28, no. 1, pp. 119–127, 2012.

[39] W. Lang and J. M. Patel, “Energy management for mapreduce
clusters,” Proceedings of the VLDB Endowment, vol. 3, no. 1-2, pp.
129–139, 2010.

[40] T. Wirtz and R. Ge, “Improving mapreduce energy efficiency for
computation intensive workloads,” in Proc. of the IEEE Interna-
tional Green Computing Conference and Workshops, 2011, pp. 1–8.

[41] Í. Goiri, K. Le, T. D. Nguyen, J. Guitart, J. Torres, and R. Bian-
chini, “Greenhadoop: leveraging green energy in data-processing
frameworks,” in Proc. of the 7th ACM European Conf. on Computer
Systems, 2012, pp. 57–70.

[42] M. A. Salehi, P. Radha Krishna, K. S. Deepak, and R. Buyya,
“Preemption-aware energy management in virtualized data cen-
ters,” in Proc. of the 5th IEEE International Conference on Cloud
Computing, 2012, pp. 844–851.

[43] S. Shen and J. Wang, “Stochastic modeling and approaches for
managing energy footprints in cloud computing service,” Service
Science, vol. 6, no. 1, pp. 15–33, 2014.

[44] IBM ILOG CPLEX V12.1 user’s manual. [Online]. Available:
ftp://public.dhe.ibm.com/software/websphere/ilog/docs/op-
timization/cplex/ps usrmancplex.pdf

[45] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The hibench
benchmark suite: Characterization of the mapreduce-based data
analysis,” in Proc. of the IEEE 26th Conf. on Data Engineering
Workshops, 2010, pp. 41–51.

[46] L. Mashayekhy, M. Nejad, D. Grosu, D. Lu, and W. Shi, “Energy-
aware scheduling of mapreduce jobs,” in Proc. of the 3rd IEEE
International Congress on Big Data, 2014.

Lena Mashayekhy received her BSc degree in
computer engineering-software from Iran Uni-
versity of Science and Technology, and her MSc
degree from the University of Isfahan. She is cur-
rently a PhD candidate in computer science at
Wayne State University, Detroit, Michigan. She
has published more than twenty peer-reviewed
papers in venues such as IEEE Transactions on
Parallel and Distributed Systems, IEEE BigData,
IEEE CLOUD, and ICPP. Her research interests
include distributed systems, cloud computing,

big data analytics, game theory and optimization. She is a student
member of the ACM, the IEEE, and the IEEE Computer Society.

Mahyar Movahed Nejad received his BSc de-
gree in mathematics from Iran University of
Science and Technology. He received his MSc
degree in socio-economic systems engineering
from Mazandaran University of Science and
Technology. He is currently a MSc student in
computer science, and a PhD candidate in
industrial and systems engineering at Wayne
State University, Detroit. His research interests
include cloud computing, big data analytics,
game theory, network optimization, and integer

programming. His papers appeared in journals such as IEEE Transac-
tions on Parallel and Distributed Systems. He is a student member of
the IEEE and the INFORMS.

Daniel Grosu received the Diploma in engineer-
ing (automatic control and industrial informatics)
from the Technical University of Iaşi, Romania, in
1994 and the MSc and PhD degrees in computer
science from the University of Texas at San An-
tonio in 2002 and 2003, respectively. Currently,
he is an associate professor in the Department
of Computer Science, Wayne State University,
Detroit. His research interests include parallel
and distributed systems, cloud computing, par-
allel algorithms, resource allocation, computer

security, and topics at the border of computer science, game theory
and economics. He has published more than ninety peer-reviewed
papers in the above areas. He has served on the program and steering
committees of several international meetings in parallel and distributed
computing. He is a senior member of the ACM, the IEEE, and the IEEE
Computer Society.

Quan Zhang received his BSc degree in infor-
mation security from Tongji University, Shang-
hai, China. He is currently a PhD candidate
in computer science at Wayne State University,
Detroit, Michigan. His research interests include
distributed systems, cloud computing, and en-
ergy efficient computing system.

Weisong Shi is a professor of computer science
at Wayne State University, where he leads the
Mobile and Internet Systems Laboratory. He re-
ceived his B. E. from Xidian University in 1995,
and Ph.D. from the Chinese Academy of Sci-
ences in 2000, both in Computer Engineering.
His research interests include computer sys-
tems, sustainable computing, mobile computing,
and smart health. Dr. Shi has published over 140
peer-reviewed journal and conference papers
and has an H-index of 30. He is the chair of

the IEEE CS Technical Committee on the Internet, and serves on
the editorial board of IEEE Internet Computing, Elsevier Sustainable
Computing, Journal of Computer Science and Technology (JCST) and
International Journal of Sensor Networks. He was a recipient of National
Outstanding PhD dissertation award of China (2002) and the NSF
CAREER award (2007), Wayne State University Career Development
Chair award (2009), and the Best Paper award of ICWE04, IEEE
IPDPS05, HPCChina’12 and IEEE IISWC’12. He is a senior member
of the IEEE and ACM, a member of the USENIX.


