
IEEE TRANSACTIONS ON MOBILE COMPUTING 1

Mobility-Aware Computation Offloading in Edge
Computing using Machine Learning

Erfan Farhangi Maleki, Student member, IEEE, Lena Mashayekhy ID , Senior Member, IEEE,
and Seyed Morteza Nabavinejad ID

Abstract—Cloudlets are resource-rich computing infrastructures of edge computing that are located at physical proximity of users to
provide one-hop, high-bandwidth wireless access to additional computational resources. They enable computation offloading for user
applications, which compensates for the resource limitation of user devices by providing ultra-low latency processing for their
applications. Although the computation capability of user devices is dramatically augmented by offloading, spatio-temporal
uncertainties due to user mobility and changes in application specifications bring the most challenging obstacles in deciding where to
offload to provide minimum latency. In this paper, we focus on these challenges by designing efficient offloading approaches that take
into account these uncertainties and dynamics in order to minimize the turnaround time of the applications, which is constituted by
offloading latency, migration delay, and execution time. We first formulate this NP-hard problem as an integer programming model to
obtain optimal offloading decisions. We tackle its intractability by designing two novel offloading approaches, called S-OAMC and
G-OAMC, that fully assign applications to cloudlets by considering their expected future locations and specifications predicted by Matrix
Completion, a machine learning method. S-OAMC is a sampling-based approximation dynamic programming approach that enhances
scalability and obtains near-optimal solutions. G-OAMC is a fast greedy-based approach for finding low-turnaround time offloading
decisions. We conduct extensive experiments to assess the performance of our proposed approaches. The results show that S-OAMC
and G-OAMC lead to near-optimal turnaround time in a reasonable time, and they both obtain low migration rates.

Index Terms—Edge Computing, Computation Offloading, Mobility, Sampling, Dynamic Programming

F

1 INTRODUCTION

THE number of mobile devices is expected to increase
to 16.8 billion in 2023 [1]. These smart devices contin-

uously generate unprecedented amounts of online data re-
quiring data analysis to capture value. However, restrictions
of mobile devices by weight, size, battery life, and heat dis-
sipation impose a severe constraint on their computational
resources such as processor speed, memory size, and disk
capacity. Resource limitation is not just a temporary con-
straint but a fundamental limitation due to the convenience
of mobility of these devices, and it hinders execution of
many applications that have the potential to augment hu-
man cognition such as speech recognition, natural language
processing, and augmented reality [2].

Edge computing (EC) is a promising distributed com-
puting paradigm allowing computation to be performed
at the edge of the network, where data is generated [3],
[4]. Computation offloading in EC is the process of en-
hancing the capacity of mobile devices by migrating their
computing tasks to EC [5]. As a result, data processing can
be maintained closer to these devices to provide realtime
and location-aware services, while reducing traffic to the
cloud. Despite the advantages of computation offloading
to EC in improving response time, battery life, and data
safety and privacy [3], spatio-temporal uncertainties bring

• E. Farhangi Maleki and L. Mashayekhy are with the Department of
Computer and Information Sciences, University of Delaware, Newark,
DE, USA 19716

• S.M. Nabavinejad is with the School of Computer Science, Institute for
Research in Fundamental Sciences (IPM), Tehran, Iran 19395
Email: erfanf@udel.edu, mlena@udel.edu, nabavinejad@ipm.ir

the most challenging obstacles in providing these benefits,
while users move.

The distribution of computing resources throughout EC
is accomplished by having many small-sized heterogeneous
clusters of servers referred to as “cloudlets” or “micro data
centers” in the vicinity of mobile devices at the edge of the
network [6]. Cloudlets help to mitigate the overload of mo-
bile devices by accepting offloaded computation. However,
due to the mobility of mobile users and dynamic changes
(e.g., load of cloudlets), a primarily assigned cloudlet to
a device might not be optimal over time. Therefore, the
migration of computation between cloudlets is perceived as
a necessary solution to resolve this concern. However, such
frequent migration incurs additional data movement over
the network and results in degraded performance, increased
latency, and turnaround time of the offloaded applications.

In this paper, we address this problem by designing two
efficient mobility-aware computation offloading approaches
in order to minimize the turnaround time of mobile appli-
cations over their lifetime. Our proposed approaches utilize
matrix completion, a suitable machine learning approach, to
predict unsteady specifications of mobile applications in or-
der to obtain smart offloading assignments that require less
migration of computation in the future, and consequently,
lead to low turnaround time. We first formulate an optimal
integer programming (IP) model for this problem. Since
the problem is NP-hard and intractable, we then design
two efficient online offloading approaches, called S-OAMC
and G-OAMC, to solve the problem in a reasonable time
to obtain close to optimal turnaround time. S-OAMC is
a sampling-based dynamic programming solution, and G-

https://orcid.org/0000-0002-5096-9333
https://orcid.org/0000-0002-5123-6318

IEEE TRANSACTIONS ON MOBILE COMPUTING 2

OAMC is a greedy-based solution. The main contributions
of this paper include the following:
• The feasibility of migration between cloudlets is consid-

ered as a technique for mobility management for EC.
• A machine learning-based method, named Matrix

Completion, is designed to predict the specifications
of mobile applications in the future (e.g., locations,
bandwidth, processing speed requirements) to improve
offloading decisions.

• Two novel computation offloading approaches, S-
OAMC and G-OAMC, are proposed to minimize the
turnaround time of the mobile applications, while re-
ducing the number of migrations.

• S-OAMC is a sampling-based approximation dynamic
programming algorithm that achieves higher scalability
than DP-based solutions. S-OAMC achieves better load
balancing for cloudlets by distributing the computation
among them, and it guarantees near-optimal solutions.
G-OAMC is a practical greedy-based approach that en-
sures quick convergence speed with reasonable results.

• We evaluate the performance of the proposed ap-
proaches showing that they are able to find near-
optimal turnaround time with low migration rates.

The rest of the paper is organized as follows. In the next
section, we provide an overview of existing work in this
domain. We then formulate our problem in Section 3. We
describe our proposed approaches, S-OAMC in Section 4
and G-OAMC in Section 5. In Section 6, we evaluate the
properties of our proposed approaches by extensive ex-
periments. Finally, we summarize our results and present
possible directions for future research.

2 RELATED WORK

This paper summarizes the most relevant studies in the
literature based on their research directions in EC.

Minimizng Latency. A group of studies has focused on
the latency minimization in EC. Liu et al. [7] proposed
an efficient one-dimensional search algorithm to find an
optimal stochastic computation offloading policy. A system
called LAVEA [8] is built on top of an EC platform to offload
computation between users and edge nodes (cloudlets) to
provide low-latency video analytics. Sharghivand et al. [9]
proposed efficient QoS-aware, two-sided matching solu-
tions to match cloudlets to user applications. They also
determined dynamic pricing of the edge services based on
preferences and incentives of cloudlets and users. Yang et
al. [10] studied the joint computation partitioning and re-
source allocation problem for service deployment of latency-
sensitive applications in EC. They proposed a heuristic
approach that finds when a violation on any of the resource
constraints happens and adjusts the user’s partitioning to
avoid the violation. This searching and adjustment proce-
dure is done until the initial partitioning converges to a
feasible solution. Ma et al. [11] designed a game theoretic
solution for offloading tasks among a swarm of Unmanned
Aerial Vehicles (UAVs) acting as aerial capacitated cloudlets
pooling their computational resources to execute tasks of-
floaded from mobile devices in their coverage. UAVs’ goal
is to reduce their energy consumption while guaranteeing
QoS for users. Li et al. [12] proposed a task offloading with

Study Tu
rn

ar
ou

nd
Ti

m
e

La
te

nc
y

M
ob

il
it

y
H

et
.C

lo
ud

le
ts

H
et

.D
ev

ic
es

C
ap

ac
it

y
C

on
st

.
R

ea
l

D
at

as
et

A
pp

ro
xi

m
at

io
n

Sa
m

pl
in

g
M

ul
ti

-U
se

r
Pr

ed
ic

ti
on

Liu et al. [7] X X X
Yi et al. [8] X X X X X

Sharghivand et al. [9] X X X X X
Yang et al. [10] X X X X

Ma et al. [11] X X X X X
Li et al. [12] X X X X X X X

Wang et al. [13] X X X X X
Ma et al. [14] X X X X X

Bahreini et al. [15] X X
Wang et al. [16] X X X X X X X

Bittencourt et al. [17] X X X X X
Zhang et al. [18] X X X X

Ouyang et al. [19] X X X X X X

Our Study X X X X X X X X X X X

TABLE 1: Comparison with existing research

a probabilistic QoS guarantee. They formulated the prob-
lem as a mixed integer non-Linear programming problem
with the statistical latency constraint, and they proposed
an approach using convex optimization theory and Gibbs
sampling method to solve the problem. Wang et al. [13]
proposed a collaborative task offloading approach based
on Hungarian algorithm to allocate subtasks to cloudlets
in order to minimize energy consumption while satisfying
task’s latency. Ma and Mashayekhy [14] proposed a truthful
mechanism for computation offloading that assigns a proper
pair of wireless access point and cloudlet along with a
service price for joining users satisfying their QoS.

Mobility. Mobility is a significant challenge in EC, and a
few studies take into account user mobility while offloading.
Bahreini et al. [15] proposed an offline integer programming
model and an online heuristic algorithm for component
placement of one application to multiple cloudlets consider-
ing the dynamic distances between the user and cloudlets.
Wang et al. [16] proposed a Markov decision process (MDP)
to formulate the real-time (live) migration of an edge appli-
cation (service) of a single user considering the distances be-
tween the user and the cloudlets before a possible migration.
Bittencourt et al. [17] considered multiple application classes
and proposed resource management policies to allocate
resources between cloudlets and cloud to handle variable
demand due to users mobility. Zhang et al. [18] proposed
a deep reinforcement learning approach to migrate tasks
according to users’ mobility. However, their approach only
considers one user moving from one place to another, and
also it does not include any guarantee on learning time and
running time. Ouyang et al. [19] studied the requirement
of migrating services dynamically among multiple edge
servers due to user mobility in order to maintain satisfactory
user experience. However, service migration is modeled in
terms of cost instead of a delay, which leads to modeling
the problem to optimize the long-term performance under
the predefined long-term cost budget constraint for the
migration. They proposed two heuristic methods based on
the Markov approximation and best response updates.

IEEE TRANSACTIONS ON MOBILE COMPUTING 3

Our work investigates how to make smart computation
offloading decisions to reduce the turnaround time of ap-
plications considering user mobility and application spec-
ification changes. It exploits an efficient machine learning
method to predict application specifications and user mo-
bility in the future. It introduces a sampling-based approx-
imation offloading approach and a greedy-based approach
to find offloading decisions with smallest turnaround times
in scalable and timely manner. Table 1 further presents a
detailed comparison of our work with the existing state-of-
art studies based on several criteria.

3 SYSTEM MODEL

We first describe the system model consisting of a set of mo-
bile applications and a set of cloudlets. We assume a set of n
mobile applications requires offloading and is represented
by U = {u1,u2,...,un}. We consider a set of m cloudlets C
= {c1,c2,...,cm} is available to offer edge services to users.
Computation offloading happens over a time period that
can be viewed as a sequence of time slots 1, . . . , T .

Each application ui ∈ U at time t has the following
specifications: uti = (xti, y

t
i , md

t
i, id

t
i, ω

t
i , p

t
i, b

t
i), where xti

and yti indicate the location of the mobile application ui ∈ U
at time t; mdti indicates the code and the metadata of the
application ui that is either offloaded directly from the
device or migrated from a cloudlet at time t; idti is the size
of the intermediate data that is sent to a cloudlet in the
middle of ui’s execution at time t; ωti is the computation
requirement of ui in terms of number of instructions (or
cycles) needed at time t; pti represents the processing speed
requirement of ui at time t; and bti indicates the bandwidth
requirement of ui at time t. For simplicity of formulation,
we consider id1

i = md1
i and only use mdti when a migration

happens (i.e., t ≥ 2).
Each cloudlet cj ∈ C has the following specifications: cj

= (xj , yj , ρj , βj), where xj and yj indicate the location of
the cloudlet; ρj represents the total processing speed of the
cloudlet, and βj is its total bandwidth.

Our objective is to minimize the overall turnaround time
of computation offloading. The turnaround time includes
offloading time, migration time, and computation time.
Offloading and migration time are captured as a latency
of communicating with a cloudlet to send the application’s
code and data (from the application or another cloudlet).
Computation time is execution time of completing the ap-
plication on a cloudlet. We define latency as follows:

l =
d

θ
+
s

β
, (1)

where d represents the distance, θ is the propagation
speed, s denotes the data size, and β represents the band-
width. The first part of the formula computes the propaga-
tion time, and the second part computes the transmission
time. We use the notation f td(ui, cj) to show the distance be-
tween application ui and cloudlet cj . We use the Euclidean
metric to calculate the distance between coordinates in the
Cartesian coordinate system:

f td(ui, cj) =
√

(xti − xj)2 + (yti − yj)2.

Similarly, fd(cj , ck) is used for showing the distance be-
tween a pair of cloudlets.

The computation offloading problem is to find an opti-
mal assignment of all mobile applications in U to existing
cloudlets in C minimizing the turnaround time of all ap-
plications satisfying all constraints. To optimally model this
problem, we first define the decision variables µtij and αtijk
as follows:
• µtij = 1 signifies that application ui ∈ U is assigned

to cloudlet cj ∈ C at time t, and
• αtijk = 1 signifies that application ui migrates from

cloudlet cj to cloudlet ck at time t.
We formulate the computation offloading problem as an

integer program (IP) as follows:

Minimize
n∑
i=1

m∑
j=1

T∑
t=1

(
f td(ui, cj)

θ
+
idti
bti

+
ωti
pti

)µtij+

n∑
i=1

m∑
j=1

m∑
k=1

T∑
t=2

(
fd(cj , ck)

θ
+
mdti
bti

)αtijk (2)

Subject to:

m∑
j=1

µtij = 1 ∀ui ∈ U, t ∈ T (3)

n∑
i=1

ptiµ
t
ij ≤ ρj ∀cj ∈ C, t ∈ T (4)

n∑
i=1

btiµ
t
ij ≤ βj ∀cj ∈ C, t ∈ T (5)

αtijk ≥ µt−1
ij + µtik − 1 ∀ui ∈ U, cj , ck ∈ C, t ∈ T (6)

µtij ∈ {0, 1} ∀ui ∈ U, cj ∈ C, t ∈ T (7)

αtijk ∈ {0, 1} ∀ui ∈ U, cj , ck ∈ C, t ∈ T (8)

The objective function (Eq. (2)) minimizes the total
turnaround time for all applications. The first term calcu-
lates both the offloading time (latency) and the compu-
tation time, and the second term calculates the migration
time. If a migration happens, previous states (metadata)
of the application along with its code will be transferred
to the new cloudlet. Constraints (3) guarantee that each
application is assigned to exactly one cloudlet at each time
slot. Constraints (4) and (5) ensure that the total requested
processing speed and bandwidth of the assigned applica-
tions to a cloudlet do not exceed the available processing
speed and bandwidth of that cloudlet at each time slot.
Constraints (6) ensure that αtijk is one if µtik and µt−1

ij

are one, which means application ui ∈ U migrates from
cloudlet cj ∈ C to cloudlet ck ∈ C at time t; otherwise, it
is zero. Constraints (7) and (8) guarantee that the decision
variables are binary.

Our proposed IP finds the optimal assignment of the
applications to cloudlets minimizing the turnaround time
(offloading, computation, and migration) considering full
knowledge of future user mobility and application speci-
fications. In addition, as this problem is an instance of the
generalized assignment problem (GAP) [20], it is NP-hard.

IEEE TRANSACTIONS ON MOBILE COMPUTING 4

Predict the
Future

Specifications
of Each

Application

U 1

U 2

U 3

U 4

t+1 t+2 t+3t-2 t-1 t PREDICT

Specifications of each App (x, y, …)

Estimate the
Cost of Apps
on Cloudlets

Past Time Slots Future Time Slots
Cost of U 1
Cost of U 2
Cost of U 3
Cost of U 4

Cloudlet 1

Cost of U 1
Cost of U 2
Cost of U 3
Cost of U 4

Cloudlet 2

Offload
Computation

of Apps on
Cloudlets

ASSIGN Cloudlet 1

U 1 U 4

Cloudlet 2

U 2 U 3

Fig. 1: Mobility-Aware Computation Offloading

We tackle these issues by designing efficient and scalable
algorithms to find such assignments in a reasonable time.
We propose two mobility-aware computation offloading
approaches, S-OAMC and G-OAMC, presented in Sections 4
and 5, respectively. Fig. 1 illustrates the workflow of these
approaches: First, future specifications of mobile applica-
tions are predicted based on the history of past time slots
by calling PREDICT function that uses a machine learning
method. Second, using the specifications of current and
predicted future time slots, the expected offloading cost
of applications to cloudlets is estimated. Third, ASSIGN
function determines a smart decision on offloading based
on the cost values.

4 SAMPLING-BASED OFFLOADING TO CLOUDLETS

We design a Sampling-based algorithm for Online Assign-
ment of Mobile Applications to Cloudlets, called S-OAMC,
which uses prediction to make the best offloading decisions.
The pseudo code of our proposed algorithm is presented
in Algorithm 1. S-OAMC assigns every application to a
cloudlet at each time slot such that it leads to a reasonable
total turnaround time in the lifetime of the applications.

S-OAMC receives ε, η, window size w, and discount
factor γ as inputs (line 1), where ε ∈ [0, 1] and η are control
parameters used in DP-APC, w indicates the number of
future specifications taken into account for the offloading
decisions, and γ ∈ [0, 1] is to indicate the impact for different
future time slots.

S-OAMC uses set Û ti to maintain the specifications’ his-
tory of application ui from the first time slot to current time
slot t, i.e., Û ti =

⋃t
δ=1 u

δ
i , where uδi denotes the specification

of application ui at time slot δ. This set is initially an empty
set (line 2). In addition, R̂ti maintains the history of cloudlet
assignments of application ui to current time slot t, which
is initially empty (line 3). For example, R̂ti = j means
application ui is assigned to cloudlet cj at time t. These sets
serve as the history of specifications and assignments. Note
that for simplicity, we use notations with hat operator (e.g.,
Û) to show the history and bar operator (e.g., Ū) to show
the predicted values.

S-OAMC intends to minimize the total turnaround time
by minimizing the number of migrations required in the
lifetime of the applications considering their next w spec-
ifications (that include user mobility too). These future
specifications are used to ensure the determined offloading
assignments for the next w time slots lead to minimum
total turnaround time. Therefore, S-OAMC uses predicted
specifications of all applications ui ∈ U in next w time slots

based on specification histories (Û ti ,∀ ui) that have been
collected to make the best offloading decisions. In doing so,
S-OAMC first updates Û ti by adding previous specification
histories and the new specification uti at time t to include
the most recent specification of application ui (line 6). Then,
it checks whether the current time slot is a multiple of w
(line 7). This is to ensure that offloading decisions are carried
out every w time slots (i.e., obtained assignments are valid
for the next w time slots).

S-OAMC calls PREDICT function, described in subsec-
tion 4.1, to obtain the predicted specifications of the ap-
plications in next w time slots (line 8). Then, S-OAMC
computes the expected cost (i.e., the expected turnaround
time considering the discount factor) of offloading each
application for the next w time-slot period (lines 9-15). The
value of vtij represents this cost (i.e., assigning application ui
to cloudlet cj at time slot t for the next w period), and it is
initially set to infinity, where V ti =

⋃m
j=1 v

t
i,j (line 9). This

value is only updated if a cloudlet is nearby the user or in
the area of the user. The expected cost covers offloading and
computation time (lines 11-12) and migration time (line 15).
The offloading and computation time is the summation of
offloading and computation time at the current time slot
(line 11) and next w time slots (line 12). Since predicted
values in different time slots should not have the same
impacts on the offloading decision, the impact of further
time slots is decreased by using γ. Therefore, more weight is
given to the closest time slots, and less weight is given to the
furthest time slots. For example, the weight of the first future
time slot is γ1 while the weight of the last future time slot
is γw. In additional, S-OAMC checks whether cloudlet cj
is different from the currently assigned cloudlet (at time
slot t − 1) for the application ui to add the migration cost
(lines 13-15); otherwise, there is no migration cost.

When the current time slot is a multiple of w (line 16),
based on the calculated expected costs and predicted fu-
ture specifications, S-OAMC finds the assignment of ap-
plications to cloudlets to minimize the total turnaround
time. In doing so, it calls ASSIGN function (line 18),
presented in Algorithm 2, with V t, U t, and C as input
parameters, where V t is a matrix corresponding to all
cost vti,j , i.e., V t =

⋃n
i=1

⋃m
j=1 v

t
i,j , U t is a matrix corre-

sponding to all specifications uti, i.e., U t =
⋃n
i=1 u

t
i, and C

is a matrix corresponding to all cloudlet specifications cj ,
i.e., C =

⋃m
j=1 cj . ASSIGN returns St, a set of offloading

decisions, that determines the assignment of applications to
cloudlets. For example, given 2 cloudlets and 2 applications
U = {u1, u2}, St = ({}, {u1, u2}) indicates no application

IEEE TRANSACTIONS ON MOBILE COMPUTING 5

Algorithm 1 Online Assignment of Mobile applications to
Cloudlets (S-OAMC)

1: Input: ε, η, w: window size, γ : discount factor
2: Û0

i = ∅, ∀ ui ∈ U
3: R̂0

i = ∅, ∀ ui ∈ U
4: for all t ∈ T do
5: for all ui ∈ U do
6: Û ti = Û t−1

i ∪ uti
7: if t mod w = 0 then
8: {ūit+1, .., ūi

t+w} =PREDICT(Û ti , t, w)

9: V ti ←∞
10: for all cj ∈ C adjacent to ui do
11: vtij = f

t
d(ui,cj)
θ +

idti
bti

+
ωti
pti

12: vtij+=
∑w
τ=1 γ

τ (
ft+τd (ūi,cj)

θ +
¯idi
t+τ

b̄i
t+τ + ω̄i

t+τ

p̄it+τ
)

13: if t ≥ 2 and j 6= R̂t−1
i then

14: k = R̂t−1
i

15: vtij+= f
t
d(cj ,ck)
θ +

mdti
bti

16: if t mod w = 0 then
17: do
18: St = ASSIGN(V t, U t, C)
19: R̂t ← St

20: Update V t, U t, C
21: while ∃ R̂ti ∈ R̂t which is not assigned
22: else
23: for all ui ∈ U do
24: R̂ti = R̂t−1

i

25: Return:
⋃T
t=1 R̂

t

is assigned to cloudlet 1, while both applications u1 and u2

are assigned to cloudlet 2.
S-OAMC converts St to R̂t, where R̂t is a set corre-

sponding to all R̂ti (i.e., R̂t =
⋃n
i=1 R̂

t
i) to maintain the

assigned cloudlets to all applications (line 19). S-OAMC
then removes the specifications of the assigned applications
from U t and also updates the specifications of the cloudlets
to reflect their available resources (ρ and β). Similarly, it
updates the cost matrix (V t) by eliminating the rows in
the matrix that refer to the assigned applications (line 20).
This procedure (lines 17-21) is repeated until there is no
unassigned application.

If the current time slot is not a multiple of w, all appli-
cations remain assigned to their current cloudlets (lines 22-
24). Finally, S-OAMC returns the offloading assignments in
all time slots (line 25). More details about PREDICT and
ASSIGN functions will be given in the next subsections.

4.1 Forecasting Method for Mobility-Aware Offloading
We use matrix completion method in PREDICT function of
S-OAMC to predict the future specifications of the applica-
tions over the course of time. More specifically, PREDICT
uses matrix completion to obtain the predicted specifica-
tions of application ui for the next w time slots. The speci-
fication of the applications composed of x, y, md, id, ω, p,
and b. For each specification of the application (e.g., b), we

construct a separate matrix, where the rows of the matrix
are the applications and the columns are the time slots.

Matrix completion method [21], [22] is an ML approach
to predict the missing entries of a partially observed matrix.
To recover the missing entries of a matrix, matrix completion
uses Singular Value Decomposition (SVD) to find similarity
between rows and columns and reduce the dimensions of
the matrix. For example, recommendation systems use SVD
to extract similarities between users and items [23]. This is
a robust approach to missing entries and imposes relaxed
sparsity constraints to provide accuracy guarantees [24].

We also need additional information about a matrix such
as its rank. A matrix has rank r if its rows or columns span
an r-dimensional space. This rank represents the number of
similarity concepts identified by SVD.

Feeding SVD with a matrix of rank r, we will have a
factorization of the form U × Σ × V T , where U and V
are the left and right singular vectors matrices represent-
ing the strength of the row-to-concept similarity and the
concept-to-column similarity, respectively, and Σ represents
the matrix of singular values (similarity concepts are repre-
sented by σi). For example, for the bandwidth requests of
applications, matrix B with n1 rows for applications and n2

columns for time slots is formed. Therefore,

B = U ×Σ× V T ,

where

Un1×r =

u11 . . . u1r

u21 . . . u2r

...
. . .

...
un11 . . . un1r

 ,V n2×r =

v11 . . . v1r

v21 . . . v2r

...
. . .

...
vn21 . . . vn2r

 ,
and

Σr×r =

σ1 . . . 0
...

. . .
...

0 . . . σr

 .
Having matrices U , Σ, and V , we apply PQ-

reconstruction method [25], [26] to obtain matrix X that
predicts the missing values of the matrix (i.e., matrix X
is an approximate of matrix B). Estimating the missing
values in matrix X can be done via different approaches
such as convex optimization [21], gradient descent [27], and
alternating least squares minimization [28]. In matrix X ,
for the observed entries of matrix B, we have: Xij = Bij
and rank X is minimized. We use convex optimization by
TFOCS (Templates for First-Order Conic Solvers) [29] tool
to estimate matrix X . Figure 2 shows the overall flow of the
proposed approach.

To create a matrix for each specification, we first se-
lect several representative applications that can present the
patterns of each specification over past time slots. These
applications build our training data to help the matrix
completion method learn the patterns of the applications.
For new applications that S-OAMC needs to predict their
specifications, they are inserted at the end of each matrix
in the form of new rows. For these applications, S-OAMC
knows their specifications over previous time slots until
current time slot t. Note that our approach for using matrix
completion is different from the proposed ones in [30] that

IEEE TRANSACTIONS ON MOBILE COMPUTING 6

110

121

111

81

122

84

94

85

72

89

156

187

156

140

162

240

285

244

203

224

217

256

219

179

209

122

158

119

90

138

118 92 179 280 251150

U 2

U 3

U 4

U 5

U 6

U 1

Training Using Specifications of Some
Representative Applications

110

121

111

81

122

84

94

85

72

89

156

187

156

140

162

240

285

244

203

224

217

256

219

179

209

122

158

119

90

138

118 92 179 280 251150

U 2

U 3

U 4

U 5

U 6

U 1

132 196110New App

Applying Matrix
Completion

110

121

111

81

122

84

94

85

72

89

156

187

156

140

162

240

285

244

203

224

217

256

219

179

209

122

158

119

90

138

118 92 179 280 251150

U 2

U 3

U 4

U 5

U 6

U 1

98 79132 215196110New App

Predicted Values of Specification of New App in
Future Time Slots by Matrix Completion

Specification of New App from Previous Time Slots

t-4 tt-3 t-2 t-1t-5 t-4 tt-3 t-2 t-1t-5 t-4 tt-3 t-2 t-1t-5

t-1 t + 3t t + 1 t + 2t-2 t-1 t + 3t t + 1 t + 2t-2

Fig. 2: Flow of Matrix Completion for Predicting the Specification of a Mobile Application

considered only one application. In [30], the future values
for that application are predicted based on its own previous
data using SVD and a neural network. However, in our
approach, we use the past data of other representative
applications. Their future specifications (i.e., t + 1 to t + w)
are the missing values in each matrix. Matrix completion
method predicts these values and returns them to S-OAMC
to be used in ASSIGN function.

PREDICT function with (Û ti , t, w) as input parameters
uses this approach and returns

⋃w
h=1 ūi

t+h, where ūit+h =
(x̄it+h, ȳit+h, m̄di

t+h, ¯idi
t+h, ω̄it+h, p̄it+h, b̄i

t+h).

4.2 Sampling-based Assignment

S-OAMC calls ASSIGN function, presented in Algorithm 2,
to find the offloading assignment of the applications to
the cloudlets. This function needs to solve an instance
of the Generalized Assignment Problem (GAP), which is
a well-known NP-hard problem. Approximate algorithms
have been proposed to solve GAP, however, they mostly
require exponential preprocessing time and complicated
rounding techniques [31]–[33]. ASSIGN uses our sampling-
based local-ratio approximation technique to provide near-
optimal solutions and a faster running time by tackling
the slow execution of dynamic programming due to curse
of dimensionality [34]. It receives the cost functions (V t),
specifications of the applications (U t), and specifications of
the cloudlets (C), and it returns S as a set of offloading
assignments.

ASSIGN is an iterative approach, where each iteration
starts with a new cloudlet (i.e., cj) and uses two matrices Gt

and N t with an initial size of n × m (n is the number of
applications and m is the number of cloudlets) to determine
the elements of the cost function for the next iteration (i.e.,
cloudlet cj+1). Similarly, V t is initially an n × m matrix.
The dimension of these matrices is dynamically changed by
removing the reviewed cloudlets.

ASSIGN calls function DP-APC, presented in Algo-
rithm 3, to obtain a set S̃j of assigned applications to
cloudlet cj (line 3). Then, it fills the elements of matrix Gt by
the values related to cloudlet cj and the applications in S̃j ,
and it sets all other elements to zero (lines 4-9). ASSIGN
then computes the values of matrix N t by subtracting Gt

from V t (line 10). Finally, it removes the column of the
current cloudlet from N t and sets the modified matrix to V t

(line 11). Subsequently, it performs this procedure iteratively
for each cloudlet.

A set of assigned applications to each cloudlet is deter-
mined (S̃j for cloudlet cj). However, ASSIGN performs a
procedure to ensure that no application can be assigned
to two or more cloudlets (lines 13-15). In doing so, Sj
determines the applications exclusively assigned to cj by
excluding the common applications (that are already as-
signed to other cloudlets). It is equivalent to S̃j \

⋃m
k=j+1 Sk.

Finally, ASSIGN returns the application assignments S to all
cloudlets (line 16).

DP-APC function, presented in Algorithm 3, is a
sampling-based approximation Dynamic Programming ap-
proach to find the Assignment Per single Cloudlet. DP-APC
is given the cost values (V tj) associated with cloudlet cj ,
the specifications of the applications (U t), and the specifi-
cation of cloudlet cj (including ρj and βj representing its
processing speed and total bandwidth, respectively). Note
that all cost values and specifications are positive. DP-APC
has ε and η as input parameters, where ε indicates the
accuracy of results, runtime, and size of the rounding, and η
indicates the size of the sampling. DP-APC uses sampling to
reduce the number of applications that is possible to assign
to the cloudlet. The goal of DP-APC is to find a subset of
applications I ⊆ U t such that these applications exploit the
available capacity of cloudlet cj as much as possible, while
it also leads to a minimum expected cost (turnaround time).

Algorithm 2 ASSIGN(V t, U t, C)

1: Initialize matrix Gt and N t

2: for all cj ∈ C do
3: S̃j = DP-APC(V tj , U t, cj)
4: for all ui ∈ U do
5: for all unreviewed ck ∈ C do
6: if (ui ∈ S̃j) or (ck = cj) then
7: gtik = vtij
8: else
9: gtik = 0

10: N t = V t −Gt

11: V t ← N t without column of cj
12: cj ’s status is changed to reviewed
13: Sm = S̃m
14: for j = m− 1 to 1 do
15: Sj = S̃j \

⋃m
k=j+1 Sk

16: Return: S =
⋃m
j=1 Sj

IEEE TRANSACTIONS ON MOBILE COMPUTING 7

Algorithm 3 DP-APC(V tj , U t, cj)

1: Input: ε, η
2: Ŭ ← sort all applications in ascending order of vtij
3: Ü ← select η number ui ∈ Ŭ with vtij 6=∞
4: M ← maxui∈Ü v

t
ij

5: for all ui ∈ Ü do
6: v̈tij ← M + 1− vtij
7: M̈ ← maxui∈Ü v̈

t
ij

8: λ← εM̈/|Ü |
9: for all ui ∈ Ü do

10: if λ > 1 then
11: rtij ← bv̈tij/λc
12: else
13: rtij ← v̈tij
14: r∗ ← maxui∈Ü r

t
ij

15: for all k = 1 to |Ü | · r∗ do
16: A[k].p = A[k].b =∞
17: A[0].p = A[0].b = 0

18: for i = 1 to |Ü | do
19: for k = (i− 1) · r∗ down to 0 do
20: A[k + rij].b = min(A[k + rij].b, A[k].b+ bti)

21: A[k + rij].p = min(A[k + rij].p, A[k].p+ pti)

22: k̃ ← arg max
k∈{1,...,|Ü |·r∗}

A[k].p ≤ ρj and A[k].b ≤ βj

23: Find a subset I ⊆ Ü such that
∑
i∈I p

t
i = A[k̃].p,∑

i∈I b
t
i = A[k̃].b

24: Return: I

DP-APC sorts all applications in ascending order of vtij
(line 2) and further reduces the complexity of dynamic
programming by only considering a maximum of η sorted
applications in the area of the cloudlet, which have non-
infinity values of vtij (line 3). The size of the sampling
is η and only if the number of applications with non-
infinity values of vtij is less than η, the size of sampling is
equal to the number of non-infinity values. DP-APC uses a
rounding down approach for solving the assignment prob-
lem approximately for each cloudlet. It first computes the
maximum value associated with cloudlet cj excluding appli-
cations with infinity values and assigns this maximum value
toM (line 4). DP-APC then calculates benefit values v̈tij from
the cost values vtij by subtracting each from M + 1 (lines 5-
6). By using the benefit values, the problem becomes a
maximization problem. DP-APC then finds the maximum
benefit value of applications in Ü , that is M̈ (line 7). Then,
it computes λ based on M̈ , |Ü |, and ε, where ε determines
the accuracy of results and size of the rounding (line 8). DP-
APC then converts each benefit value v̈tij to the multiple of λ
only if λ > 1 (lines 9-13). DP-APC uses these new rounded
benefit values rtij to find subset I of applications in Ü that
satisfies the constraints of cloudlet cj and has maximum
benefit (minimum expected turnaround time).

DP-APC assigns the maximum rounded value of rtij
to r∗ (line 14). Note that r∗ is bounded to |Ü |/ε. Then, it
uses a dynamic programming array A with |Ü | · r∗ + 1

Algorithm 4 Greedy Online Assignment of Mobile applica-
tions to Cloudlets (G-OAMC)

1: Input: w: window size
2: Û0

i = ∅, ∀ ui ∈ U
3: R̂0

i = ∅, ∀ ui ∈ U
4: for all t ∈ T do
5: for all ui ∈ U do
6: Û ti = Û t−1

i ∪ uti
7: if t mod w = 0 then
8: {ūit+1, . . . , ūi

t+w} = PREDICT (Û ti , t, w)

9: bmax
i = maximum in {b̄i

t+1
, . . . , b̄i

t+w}
10: pmax

i = maximum in {p̄it+1, . . . , p̄i
t+w}

11: for all cj ∈ C do
12: vtij = f

t
d(ui,cj)
θ +

idti
bti

+
ωti
pti

13: vtij+=
∑w
τ=1 γ

τ (
ft+τd (ūi,cj)

θ +
¯idi
t+τ

b̄i
t+τ + ω̄i

t+τ

p̄it+τ
)

14: if t ≥ 2 and j 6= R̂t−1
i then

15: k = R̂t−1
i

16: vtij+= f
t
d(cj ,ck)
θ +

mdti
bti

17: if t mod w = 0 then
18: for all cj ∈ C do
19: Ŭj = Sort applications in ascending order of

vtij
pmax
i
ρj

+
bmax
i
βj

20: for all ui ∈ Ŭj do
21: if pmax

i ≤ ρj and bmax
i ≤ βj and ui is not

assigned then
22: R̂ti = j
23: Update cj
24: else
25: for all ui ∈ U do
26: R̂ti = R̂t−1

i

27: Return:
⋃T
t=1 R̂

t

cells, where each cell A[k] (k ∈ {0, . . . , |Ü | · r∗}) has two
values A[k].p and A[k].b computed iteratively. The former is
the minimum processing speed to achieve a rounded benefit
value of k, and the latter is the minimum bandwidth to
achieve that. Initially, A[k].p and A[k].b are set to infinity
for all k ≥ 1, and A[0].p and A[0].b are initialized to 0
(lines 15-17). For the remaining cells, DP-APC checks to
include or not include a new application i in the optimal
subset (lines 18-21).

Finally, DP-APC finds k̃, the maximum value of k such
that it satisfies the capacity constraints of cloudlet cj (line 22)
and builds subset I based on that (line 23).

5 GREEDY OFFLOADING TO CLOUDLETS

In this section, we propose another approach for Online
Assignment of Mobile Applications to Cloudlets using a
Greedy approach, called G-OAMC. G-OAMC, contrarily to
S-OAMC, does not need to call a computationally-intensive
dynamic programming approach, and it has the advantage
of a quicker convergence speed over S-OAMC. However,

IEEE TRANSACTIONS ON MOBILE COMPUTING 8

it cannot guarantee near-optimal results of DP-based ap-
proaches (OAMC [35] and S-OAMC). G-OAMC reduces the
number of used cloudlets by attempting to assign more
applications to the already used cloudlets. The pseudo-code
of G-OAMC is presented in Algorithm 4.

G-OAMC, similar to S-OAMC, receives window size w
and uses Û ti and R̂ti as described in Algorithm 1 (lines 1-
3). Function PREDICT determines predicted specifications
of the applications in the next w time slots (line 8).

G-OAMC finds the maximum amount of processing
speed, pmax

i , and bandwidth, bmax
i , required by applica-

tion ui in the next w time slots (lines 9-10). These maximum
values will be used to guarantee that the new assigned
cloudlet to each application has enough capacity to satisfy
the application requirements during its execution on that
cloudlet. They will also be used in our density metric
to prioritize applications with higher expected demands.
Similar to S-OAMC, G-OAMC computes the expected cost
of assigning application ui to cloudlet cj at time slot t, rep-
resented by vtij , where it covers offloading and computation
time (lines 12-13) and migration time (line 16).

The decision about the assignment is determined ev-
ery w time slots, and it is valid for that duration (line 17).
G-OAMC sorts applications in ascending order according to
a density metric defined as follows (line 19):

vtij
pmax
i

ρj
+

bmax
i

βj

, (9)

where applications with smaller cost (vtij) and more re-
quired resources (pmax

i and bmax
i) have higher priorities

to be assigned to cloudlet cj ∈ C . G-OAMC checks the
availability of available resources in cloudlet cj for all the
unassigned applications in the sorted list Ŭj . If there exists
enough capacity, the application is assigned to cloudlet cj .
Subsequently, G-OAMC updates the capacity of the as-
signed cloudlet to reflect the available resources in that
cloudlet (lines 20-23). However, if the current time slot is
not a multiple of w, all applications are retained assigned
to their current cloudlets (lines 24-26). Finally, G-OAMC
returns the final assignments.

6 EXPERIMENTAL EVALUATION

We conduct a set of experiments to evaluate the effectiveness
of our proposed computation offloading approaches when
users are mobile. In this section, we describe the experimen-
tal setup and analyze the experimental results.

6.1 Experimental Setup
We compare the performance of S-OAMC and G-OAMC
with the following approaches to assess their efficiency.
• IP: We use our IP model, presented in equations (2-

8), as a benchmark. This IP is implemented using IBM
ILOG Concert Technology API for C++ [36] to provide
optimal solutions when possible.

• Best Fit Decreasing (BFD): This approach first sorts the
applications in decreasing order of required resources
including processing speed and bandwidth. Then, each
application is offloaded to the nearest cloudlet whose
capacity is sufficient.

TABLE 2: Experiment Scenarios

Exp. # application # cloudlets # T # w

1 60 12 20 5
2 90 15 20 5
3 120 20 20 5
4 150 25 20 5
5 210 35 20 5

• Online Assignment of Mobile applications to Cloudlets
(OAMC): This approach [35] is an earlier version of S-
OAMC, but it is not a sampling-based approximation
method, and it does not use ML for prediction.

• Sampling-based Online Assignment of Mobile applica-
tions to Cloudlets Without using Prediction (S-OAMC-
WP): This approach uses an idea similar to S-OAMC;
however, the concept of prediction is not incorporated
in S-OAMC-WP.

The algorithms are implemented in C++, and the experi-
ments are conducted on a desktop PC with 2.67 GHz Intel
Core i5-480M with 4GB RAM.

For mobile applications, to determine the coordinates of
users’ locations at each time slot, we use three different
datasets with several mobility patterns, including driving,
walking, and riding on subway trains, trolleys, and buses,
to evaluate the performance of our proposed methods over
different mobility patterns. The datasets are: 1) DACT [37],
which contains about 13 hours of driving records; 2) The
Disney World (Orlando) traces [38], which includes mainly
walking and occasionally riding trolleys obtained from vol-
unteers in Disney World, Florida; and 3) The New York
City traces [38], where obtained from volunteers living in
Manhattan or its vicinity that their means of travel include
riding subway trains, buses, and walking. Each dataset con-
stitutes one third of the total coordinates of the applications.
Since each represents different geographical locations, we
project coordinates of Disney World (Orlando) and The New
York City traces to the same geographic area as DACT for
consistency. Some coordinates were in Geodetic Coordinate
system and were converted to the Cartesian to achieve better
prediction accuracy.

We model the processing speed of applications using Mi-
crosoft Azure VM workload [39], where the CPU utilization
traces of VMs are available across multiple time slots. We
then scale these values appropriately for the computation
requirements of the applications at each time slot (ωti).

As for bandwidth requirements of applications (bti), we
use bandwidth traces measurements in 4G networks along
several city routes [40]. The measurement guarantees ap-
propriate download speeds through a 100Mbps Ethernet
connection. We scale these trace values for bandwidth re-
quirements of applications in edge computing. We also
generate the code and the metadata of the applications at
each time slot (mdti) based on the bandwidth values.

To model intermediate data of applications at each time
slot (idti), we use GWA-T-12 trace [41] that contains the
performance metrics of 1750 VMs of a mid-size datacenter
managed by Bitbrains, which is a service provider. We use
the Memory usage specification of the trace as idti.

For cloudlets, each is located randomly within all posi-

IEEE TRANSACTIONS ON MOBILE COMPUTING 9

 0

 5

 10

 15

 20

 25

 30

Exp.1 Exp.2 Exp.3 Exp.4 Exp.5

A
v
g

.
T

u
rn

a
ro

u
n

d
 T

im
e

 (
s
e

c
)

Experiments

IP
G-OAMC

S-OAMC
OAMC

S-OAMC-WP
BFD

(a) Turnaround Time

 0

 2

 4

 6

 8

 10

 12

 14

 16

Exp.1 Exp.2 Exp.3 Exp.4 Exp.5

A
v
g

.
O

ff
lo

a
d

in
g

 T
im

e
 (

s
e

c
)

Experiments

IP
G-OAMC

S-OAMC
OAMC

S-OAMC-WP
BFD

(b) Offloading Time

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Exp.1 Exp.2 Exp.3 Exp.4 Exp.5

A
v
g

.
M

ig
ra

ti
o

n
 T

im
e

 (
s
e

c
)

Experiments

IP
G-OAMC

S-OAMC
OAMC

S-OAMC-WP
BFD

(c) Migration Time

Fig. 3: Performance Analysis - Turnaround Time Components (*IP was not able to determine any solution for Exp. 3-5 in
feasible time, and thus, there are no bars in the plots for those cases)

 0

 0.2

 0.4

 0.6

 0.8

 1

Exp.1 Exp.2 Exp.3 Exp.4 Exp.5

A
v
g

.
P

ro
c
e

s
s
in

g
 S

p
e

e
d

 U
ti
liz

a
ti
o

n

Experiments

IP
G-OAMC

S-OAMC
OAMC

S-OAMC-WP
BFD

(a) Processing Speed Utilization

 0

 0.2

 0.4

 0.6

 0.8

 1

Exp.1 Exp.2 Exp.3 Exp.4 Exp.5

A
v
g

.
B

a
n

d
w

id
th

 U
ti
liz

a
ti
o

n

Experiments

IP
G-OAMC

S-OAMC
OAMC

S-OAMC-WP
BFD

(b) Bandwidth Utilization

 0

 0.2

 0.4

 0.6

 0.8

 1

Exp.1 Exp.2 Exp.3 Exp.4 Exp.5

A
c
ti
v
e

 C
lo

u
d

le
t

R
a

te

Experiments

IP
G-OAMC

S-OAMC
OAMC

S-OAMC-WP
BFD

(c) Active Cloudlet Rate

Fig. 4: System Utilization (*IP was not able to determine any solution for Exp. 3-5 in feasible time, and thus, there are no bars in
the plots for those cases)

tions of the mobile applications. We use uniform distribu-
tion to obtain the coordinates of their locations. We assume
each cloudlet has a total processing speed equivalent to the
cumulative processing speed of U(1,20) number of VMs,
where each VM possesses U(25000, 50000) MHz processing
speed and has U(5000, 10000) Mbps bandwidth.

We consider five scenarios for the experiments. Table 2
summarizes these scenarios. The values of γ and θ are set
to 0.3 and 3 × 108, respectively. We set the value of ε to 0.9
and η to 10 in all experiments, unless otherwise noted.

For matrix completion, we consider 20 applications as
the training set. These applications are in addition to the
number of applications in each experiment shown in Table 2.
For these applications, we have their past specifications data
over 20 time slots that are used to predict the specifications
of other similar applications in the experiment. In Sec-
tion 6.3, we evaluate the accuracy of matrix completion, and
we consider the applications in each experiment as the test
set to compare the predicted values by matrix completion
against their real values and measure the accuracy of matrix
completion accordingly.

6.2 Comparative Analysis
We use several metrics such as turnaround, offloading time,
migration time, migration rate, runtime, and mobility pat-
terns to compare our proposed approaches S-OAMC and G-
OAMC with IP, BFD, OAMC, and S-OAMC-WP. Since the
problem is NP-hard, solving the IP optimally is intractable.
We set 60 minutes as a maximum feasible time to get the IP

results by the solver [36]. However, the solver cannot reach
optimal results within 60 minutes for most cases.

Comparative Analysis on Turnaround Time. Our op-
timization criterion is to minimize the turnaround time
of mobile applications. The average turnaround time of
applications per time slot is presented in Fig. 3a, which is
measured in seconds. The results show that S-OAMC, G-
OAMC, and OAMC obtain turnaround time close to the
optimal results obtained by IP, and much lower than those
of S-OAMC-WP and BFD in all the experiments. Since S-
OAMC-WP and BFD are not prediction-based methods,
they have the worst turnaround time for the applications.
BFD obtains slightly better results compare to S-OAMC-
WP due to its assignment strategy to the nearest cloudlet,
which leads to lower number of migrations in consecutive
time slots. The results obtained by S-OAMC, G-OAMC, and
OAMC are very close. Note that IP cannot solve the problem
for experiments 3, 4, and 5, which shows intractability of the
problem and the scalability issue of IP. We now investigate
each component of the turnaround time to better analyze
the performance of each approach.

Comparative Analysis on Offloading Time and Compu-
tation Time. Fig. 3b shows the average offloading time of
applications per time slot. The results do not show a notable
difference in offloading time among all the approaches for
each experiment. This is due to the fact that the offloading
time depends on id, b, θ, and f td, where id and b are
specifications of the applications and do not depend on the

IEEE TRANSACTIONS ON MOBILE COMPUTING 10

 0

 0.2

 0.4

 0.6

 0.8

 1

Exp.1 Exp.2 Exp.3 Exp.4 Exp.5

M
ig

ra
ti
o

n
 R

a
te

Experiments

IP
G-OAMC

S-OAMC
OAMC

S-OAMC-WP
BFD

(a) Migration Rate

1

10

10
2

10
3

10
4

10
5

10
6

Exp.1 Exp.2 Exp.3 Exp.4 Exp.5

R
u

n
ti
m

e
 (

m
ill

is
e

c
)

Experiments

IP
G-OAMC

S-OAMC
OAMC

S-OAMC-WP
BFD

(b) Runtime

 0

 0.2

 0.4

 0.6

 0.8

 1

IP G-OAMC S-OAMC OAMC S-OAMC-WP BFD

M
ig

ra
ti
o

n
 R

a
te

Methods

DACT Disney World New York City

(c) Mobility Pattern

Fig. 5: Performance Analysis (*IP was not able to determine any solution for Exp. 3-5 in feasible time, and thus, there are no bars
in the plots for those cases)

type of approaches, while θ is a constant value. Therefore,
the difference in the offloading time comes only from f td, the
distances of applications and cloudlets. Since all approaches
choose nearby cloudlets, their impacts on the offloading
time is not significant. The difference in the specifications
and distances in each experiment leads to different offload-
ing time for the experiments.

Similarly, the computation time depends on parame-
ters ω and p. Since these parameters belong to application
specifications, the computation time results are the same for
all approaches when using any of the approaches.

Despite the same computation time and offloading time
obtained by the approaches, the assignments obtained by
them are different. Therefore, we present the utilization of
processing speed, bandwidth, and active cloudlets per time
slot in Figs. 4a, 4b, and 4c, respectively. The utilizations
are obtained based on the ratio of utilized capacity (e.g.,
allocated processing speed) to the full capacity for each
cloudlet. The active cloudlet ratio shows the ratio of non-
idle cloudlets to all cloudlets at each time slot. These results
show that the selection of the applications for the assign-
ment to cloudlets is different. G-OAMC has the lowest active
cloudlet rate because it tries to put more applications in the
current cloudlet if possible, otherwise it chooses the next
cloudlet. Therefore, a lower number of cloudlets become
active. OAMC has a high active cloudlet rate compared
to S-OAMC. This is due to the fact that OAMC does not
restrict the application set by sampling, and thus more
cloudlets become active. OAMC, S-OAMC, and S-OAMC-
WP achieve close utilization for processing speed and band-
width because they utilize similar dynamic programming
approaches. The slight differences arise from sampling and
prediction.

Comparative Analysis on Migration Time. Fig. 3c
shows the average migration time of applications per time
slot. Since IP provides the optimal solution in terms of
turnaround time, it has the minimum migration time too
considering that offloading time and computation time are
almost the same in all approaches. G-OAMC and S-OAMC
obtain migration time very close to that of IP. G-OAMC
chooses a cloudlet and assigns applications until it reaches
the cloudlet capacity, and thus, it uses fewer cloudlets.
Therefore, it requires the least number of migration, and
consequently, it obtains low migration time compared to

other non-optimal approaches. OAMC results in higher
migration time than S-OAMC since S-OAMC uses sampling
in DP-APC. Sampling uses sorting of the applications based
on the expected cost of assignment (vtij) to select a collection
of potential applications to be assigned to a cloudlet. This
empowers S-OAMC to obtain better assignments that lead
to lower migration time than OAMC.

S-OAMC-WP performs the worst among all approaches
since it does not utilize prediction, and it determines the
best cloudlet for offloading at each time slot, irrespective
of future dynamics. BFD is a greedy approach, and similar
to S-OAMC-WP, does not consider uncertainties in future
demands, while it assigns applications to their near cloudlet,
which leads to less migration requirement in consecutive
time slots. As a result, it achieves a better migration time
than S-OAMC-WP.

Comparative Analysis on Migration Rate. We compare the
migration rate of the applications per time slot obtained by
each method. The results are presented in Fig. 5a and show
that IP obtains lower migration rates, even though mini-
mizing the migration rate is not a direct objective of our IP.
However, we believe that approaches with lower migration
rates will result in closer to optimal turnaround time due
to the decrease in their migration time. G-OAMC and S-
OAMC lead to comparable low migration rates compared
to the results of IP and lower migration rates compared to
other approaches. OAMC obtains a slightly higher migra-
tion rate than S-OAMC since it does not utilize sampling. As
expected, S-OAMC-WP and BFD obtain significantly higher
migration rates as they are not prediction-based approaches.

Comparative Analysis on Runtime. Fig. 5b shows the run-
time of the approaches on a logarithmic scale. The runtime
is measured in milliseconds, and shows the average time
needed to find a solution using an approach. This is to
evaluate the time complexity of the approaches and their
scalability. The results show that BFD performs the fastest
compared to other approaches since it is a trivial algorithm
with a lower time complexity than others. IP fulfills its time
limit in Experiments 1, 2, and obtains the worst running
time as we expect due to the intractability of our NP-hard
problem. G-OAMC is a greedy approach, and it is the fastest
approach after BFD.

S-OAMC obtains a polynomially scalable running time,
and it finds the results in less than 100 milliseconds. Com-

IEEE TRANSACTIONS ON MOBILE COMPUTING 11

0

20

40

60

80

5 10 15
Number of Past Known Time Slots

E
st

im
at

io
n

E
rr

or
 (

%
)

U 1
U 2

U 3
U 4

U 5
U 6

U 7
U 8

U 9
U 10

bandwidth (b)

0

20

40

60

80

5 10 15
Number of Past Known Time Slots

E
st

im
at

io
n

E
rr

or
 (

%
)

size of intermediate data (id)

0

20

40

60

80

5 10 15
Number of Past Known Time Slots

E
st

im
at

io
n

E
rr

or
 (

%
)

metadata (md)

0

20

40

60

80

5 10 15
Number of Past Known Time Slots

E
st

im
at

io
n

E
rr

or
 (

%
)

processing speed (p)

Fig. 6: Accuracy of Matrix Completion

pared to OAMC, it has more than one order of magnitude
time reduction (except for Experiment 1). OAMC achieves
the highest running time after IP. The runtime of OAMC
is about 5500 milliseconds for Experiment 5. This shows
the impact of our sampling approach in S-OAMC. The
runtime of S-OAMC-WP is about 600 milliseconds for the
largest experiment (Experiment 5) since it does not use any
predictions, and it has to find assignments at each time slot.

Comparative Analysis on Mobility Patterns. We now
evaluate the migration rates for different mobility patterns
in our datasets, DACT, Disney World, and New York City.
We analyze the results of all approaches for each dataset in
Experiment 1. As shown in Fig. 5c, migration rates differ in
each dataset and across different approaches. This is due to
the fact that each approach obtains a unique assignment,
while the mobility pattern of users in each time slot is
different. Even though IP obtains the minimum overall
migration rate for Experiment 1 (Fig 5a), it results in a
higher migration rate for DACT dataset than its closest
rival, G-OAMC. This is due to the fact that DACT dataset
stores the driving records, and users move much faster with
significant changes in their locations. Therefore, IP mini-
mizes the turnaround time, while uses more migration in
DACT, compared to G-OAMC. IP obtains a fewer migration
rates for both Disney World and New York City datasets as
walking is the users’ main means of travel. As expected, S-
OAMC-WP and BFD obtain the worst results for all datasets.

6.3 Precision Analysis

We now show the performance of our prediction method
and its accuracy in estimating various specifications. In the
experiments, we change the number of past known time
slots from one to 19 in increments of one. This helps us
to evaluate the impact of history (previous known time
slots) on the estimation accuracy of matrix completion. Since
we cannot show the results for all the applications and
all the specifications due to lack of space, we present the
results for a few selected ones. In Fig. 6, the results for
ten representative applications over four specifications are
shown. As can be seen, when the number of past known
time slots is low, the accuracy of matrix completion is also
low. However, with the increase in the number of known
time slots, we see significant improvement in the estimation

accuracy. Moreover, the amount of accuracy changes from
specification to specification. It indicates the direct impact
of specifications’ patterns on the performance of the matrix
completion.

6.4 Sensitivity Analysis
In this section, we present sensitivity analysis with respect
to window size (w), sample size (η), and ε to show their
impacts on the results. In each analysis, we fix the other
parameters to study the changes caused by a single param-
eter and analyze how sensitive the approaches are to such a
change.

Sensitivity Analysis on ε. In DP-APC, ε is the parameter
that determines the accuracy of results and size of the
rounding. We conduct two sensitivity analysis on ε for
runtime and migration time considering 210 mobile appli-
cations, 35 cloudlets, η = 50, and T = 20. The results are
presented in Fig. 7a and 7b, respectively. Note that only DP-
based approaches are sensitive to the value of ε. We only
show the results of IP, BFD, and G-OAMC to present their
obtained values.

Fig. 7a shows as ε increases, the runtime decreases.
This is due to the fact that as ε increases, the value of λ
increases in DP-APC, leading to a decrease in the maximum
rounded value (r∗) and, consequently, reducing the size of
the dynamic programming array A. Therefore, the runtime
decreases for all DP-based approaches (S-OAMC, OAMC,
and S-OAMC-WP). However, changing the value of ε does
not have a visible impact on migration time. This is due
to the fact that the migration rate is not directly correlated
with the value of ε. Therefore, choosing a higher value of ε
is preferable since it leads to a lower running time without
increasing the migration time.

Sensitivity Analysis on Sample Size (η). For this exper-
iment, we consider 210 mobile applications, 35 cloudlets,
ε = 0.9, and T = 20. We perform sensitivity analysis on η
for runtime and migration time and present the results in
Fig. 7c and 7d, respectively. Only S-OAMC and S-OAMC-
WP react to this sample size change, and we present the
fixed results of other approaches too.

Fig. 7c shows as the sample size η increases, the runtime
of both S-OAMC and S-OAMC-WP increases. By increasing
the sample size, the size of the dynamic programming
array A becomes larger in DP-APC. This leads to an in-
crease in runtime of these approaches. As shown in Fig. 7d,
increasing the sample size means the collection of potential
applications that can be assigned to the cloudlet grows,
and therefore, more cloudlets are active. With a higher
number of active cloudlets, migration rate and migration
time increase, consequently.

Sensitivity Analysis on Window Size (w). Finally, we con-
duct sensitivity analysis on the window size for turnaround
time and migration rate considering 60 mobile applica-
tions, 12 cloudlets, and T = 20, ε = 0.9, and η = 10. The
results are presented in Fig. 7e and 7f, respectively.

Fig. 7e shows that with an increase in the window size,
the turnaround time obtained by S-OAMC, G-OAMC, and
OAMC is decreased. This is due to the fact that: first, using
higher value of w, these approaches have more information

IEEE TRANSACTIONS ON MOBILE COMPUTING 12

1

10

10
2

10
3

10
4

10
5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
u

n
ti
m

e
 (

m
ill

is
e

c
)

Epsilon

IP
S-OAMC

G-OAMC
OAMC

S-OAMC-WP
BFD

(a) ε on Runtime

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
v
g

.
M

ig
ra

ti
o

n
 T

im
e

 (
s
e

c
)

Epsilon

IP
S-OAMC

G-OAMC
OAMC

S-OAMC-WP
BFD

(b) ε on Migration Time

1

10

10
2

10
3

10
4

10 20 30 40 50

R
u

n
ti
m

e
 (

m
ill

is
e

c
)

Sample Size

IP
S-OAMC

G-OAMC
OAMC

S-OAMC-WP
BFD

(c) Sample Size on Runtime

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

10 20 30 40 50

A
v
g

.
M

ig
ra

ti
o

n
 T

im
e

 (
s
e

c
)

Sample Size

IP
S-OAMC

G-OAMC
OAMC

S-OAMC-WP
BFD

(d) Sample Size on Migration Time

 22

 22.5

 23

 23.5

 24

 24.5

 25

 25.5

 26

w=1 w=2 w=3 w=4 w=5

A
v
g

.
T

u
rn

a
ro

u
n

d
 T

im
e

 (
s
e

c
)

Window Size

IP
S-OAMC

G-OAMC
OAMC

S-OAMC-WP
BFD

(e) Window Size on Turnaround Time

 0

 0.2

 0.4

 0.6

 0.8

 1

w=1 w=2 w=3 w=4 w=5

M
ig

ra
ti
o

n
 R

a
te

Window Size

IP
S-OAMC

G-OAMC
OAMC

S-OAMC-WP
BFD

(f) Window Size on Migration Rate

Fig. 7: Sensitivity Analysis

about future time slots, and thus, they can make better
offloading decisions, which lead to reduced turnaround
time; second, the applications require less migration rate
using higher value of w, and consequently, less migration
time. These results are shown in 7f. The results of IP, BFD,
and S-OAMC-WP do not change as they do not use the
concept of w.

To sum up, the results show that our proposed ap-
proaches S-OAMC and G-OAMC are efficient in finding of-
floading decisions fast and close to the optimal turnaround
time. They also obtain lower migration rates than OAMC,
S-OAMC-WP, and BFD.

7 CONCLUSION

Computation offloading to cloudlets augments the capabil-
ities of mobile devices and ensures lower-latency services.
However, a decision on computation offloading concerning
uncertainties such as user mobility and dynamic changes is
significantly challenging. In this paper, we addressed this
challenge by proposing two novel computation offloading
approaches; a sampling-based dynamic programming solu-
tion called S-OAMC; and a fast greedy-based solution called
G-OAMC. Both approaches utilize machine learning-based
predictions generated by the matrix completion method to
obtain smart decisions on offloading in order to minimize
the turnaround time of the offloaded applications. Experi-
mental evaluations show that our proposed approaches find
near-optimal turnaround time in a reasonable time, while
they are highly scalable. Moreover, they reduce the number
of migrations significantly compared to other non-optimal
approaches. For future work, we plan to investigate the
energy utilization of devices and cloudlets and propose effi-
cient energy-aware offloading methods while guaranteeing
low turnaround time.

ACKNOWLEDGMENTS

This research was supported in part by NSF grant CNS-
1755913.

REFERENCES

[1] Statista, “Forecast number of mobile devices worldwide from 2019
to 2023.” Available: https://www.statista.com/statistics/245501/
multiple-mobile-device-ownership-worldwide/, 2020. Accessed:
2020-03-02.

[2] M. Satyanarayanan, V. Bahl, R. Caceres, and N. Davies, “The
case for vm-based cloudlets in mobile computing,” IEEE pervasive
Computing, 2009.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
Vision and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5,
pp. 637–646, 2016.

[4] J. L. D. Neto, S.-Y. Yu, D. F. Macedo, J. M. S. Nogueira, R. Langar,
and S. Secci, “ULOOF: A user level online offloading framework
for mobile edge computing,” IEEE Transactions on Mobile Comput-
ing, vol. 17, no. 11, pp. 2660–2674, 2018.

[5] M. Chen, S. Guo, K. Liu, X. Liao, and B. Xiao, “Robust computation
offloading and resource scheduling in cloudlet-based mobile cloud
computing,” IEEE Transactions on Mobile Computing, vol. 20, no. 05,
pp. 2025–2040, 2021.

[6] D. Bhatta and L. Mashayekhy, “Generalized cost-aware cloudlet
placement for vehicular edge computing systems,” in Proc. of the
11th IEEE Intl. Conf. on Cloud Computing Technology and Science,
pp. 159–166, 2019.

[7] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal com-
putation task scheduling for mobile-edge computing systems,” in
Proc. of the IEEE Intl. Symp. on Info. Theory, pp. 1451–1455, 2016.

[8] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “Lavea:
Latency-aware video analytics on edge computing platform,” in
Proc. of the 2nd ACM/IEEE Symp. on Edge Computing, pp. 1–13, 2017.

[9] N. Sharghivand, F. Derakhshan, L. Mashayekhy, and L. Moham-
madkhanli, “An edge computing matching framework with guar-
anteed quality of service,” IEEE Transactions on Cloud Computing
(TCC), 2020 (in press), pp. 1–14, 2020.

[10] L. Yang, B. Liu, J. Cao, Y. Sahni, and Z. Wang, “Joint compu-
tation partitioning and resource allocation for latency sensitive
applications in mobile edge clouds,” IEEE Transactions on Services
Computing, 2019.

https://www.statista.com/statistics/245501/multiple-mobile-device-ownership-worldwide/
https://www.statista.com/statistics/245501/multiple-mobile-device-ownership-worldwide/

IEEE TRANSACTIONS ON MOBILE COMPUTING 13

[11] W. Ma, X. Liu, and L. Mashayekhy, “A strategic game for task
offloading among capacitated uav-mounted cloudlets,” in Proc. of
the IEEE Intl. Congress on Internet of Things, pp. 61–68, 2019.

[12] Q. Li, S. Wang, A. Zhou, X. Ma, A. X. Liu, et al., “Qos driven task
offloading with statistical guarantee in mobile edge computing,”
IEEE Transactions on Mobile Computing, 2020.

[13] J. Wang, W. Wu, Z. Liao, A. K. Sangaiah, and R. S. Sherratt, “An
energy-efficient off-loading scheme for low latency in collabora-
tive edge computing,” IEEE Access, vol. 7, pp. 149182–149190, 2019.

[14] W. Ma and L. Mashayekhy, “Truthful computation offloading
mechanisms for edge computing,” in Proc. of the 6th IEEE Inter-
national Conference on Edge Computing and Scalable Cloud (EdgeCom
2020), pp. 199–206, 2020.

[15] T. Bahreini and D. Grosu, “Efficient placement of multi-component
applications in edge computing systems,” in Proc. of the 2nd
ACM/IEEE Symp. on Edge Computing, pp. 1–11, 2017.

[16] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung,
“Dynamic service migration in mobile edge computing based on
markov decision process,” IEEE/ACM Transactions on Networking,
vol. 27, no. 3, pp. 1272–1288, 2019.

[17] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and
M. Parashar, “Mobility-aware application scheduling in fog com-
puting,” IEEE Cloud Computing, vol. 4, no. 2, pp. 26–35, 2017.

[18] C. Zhang and Z. Zheng, “Task migration for mobile edge comput-
ing using deep reinforcement learning,” Future Generation Com-
puter Systems, vol. 96, pp. 111–118, 2019.

[19] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge:
Mobility-aware dynamic service placement for mobile edge com-
puting,” IEEE Journal on Selected Areas in Communications, vol. 36,
no. 10, pp. 2333–2345, 2018.

[20] L. Özbakir, A. Baykasoğlu, and P. Tapkan, “Bees algorithm for
generalized assignment problem,” Applied Mathematics and Com-
putation, vol. 215, no. 11, pp. 3782–3795, 2010.

[21] E. Candes and B. Recht, “Exact matrix completion via convex
optimization,” Communications of the ACM, vol. 55, no. 6, pp. 111–
119, 2012.

[22] T. Hastie, R. Mazumder, J. D. Lee, and R. Zadeh, “Matrix com-
pletion and low-rank SVD via fast alternating least squares,” The
Journal of Machine Learning Research, vol. 16, no. 1, pp. 3367–3402,
2015.

[23] R. M. Bell, Y. Koren, and C. Volinsky, “The bellkor 2008 solution to
the netflix prize,” Statistics Research Department at AT&T Research,
2008.

[24] S. M. Nabavinejad, L. Mashayekhy, and S. Reda, “ApproxDNN:
Incentivizing DNN approximation in cloud,” in Proc. of the 20th
IEEE/ACM Intl. Symp. on Cluster, Cloud and Internet Computing (in
press), pp. 639–648, 2020.

[25] L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proc. of the Intl. Conf. on Computational Statistics,
pp. 177–186, Springer, 2010.

[26] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining:
Practical machine learning tools and techniques. Morgan Kaufmann,
2016.

[27] R. H. Keshavan, S. Oh, and A. Montanari, “Matrix completion
from a few entries,” in Proc. of the IEEE Intl. Symp. on Information
Theory, pp. 324–328, 2009.

[28] P. Jain, P. Netrapalli, and S. Sanghavi, “Low-rank matrix comple-
tion using alternating minimization,” in Proc. of the ACM Symp. on
Theory of computing, pp. 665–674, 2013.

[29] S. R. Becker, E. J. Candès, and M. C. Grant, “Templates for con-
vex cone problems with applications to sparse signal recovery,”
Mathematical programming computation, vol. 3, no. 3, p. 165, 2011.

[30] P. Kanjilal and S. Palit, “Modelling and prediction of time series
using singular value decomposition and neural networks,” Com-
puters & electrical engineering, vol. 21, no. 5, pp. 299–309, 1995.

[31] L. Fleischer, M. X. Goemans, V. S. Mirrokni, and M. Sviridenko,
“Tight approximation algorithms for maximum general assign-
ment problems,” in Proc. of the 17th annual ACM-SIAM Symp. on
Discrete Algorithm, pp. 611–620, 2006.

[32] U. Feige and J. Vondrak, “Approximation algorithms for allocation
problems: Improving the factor of 1-1/e,” in Proc. of the 47th
Annual IEEE Symp. on Foundations of Computer Science, pp. 667–
676, 2006.

[33] D. P. Williamson and D. B. Shmoys, The design of approximation
algorithms. Cambridge university press, 2011.

[34] W. B. Powell, Approximate Dynamic Programming: Solving the curses
of dimensionality, vol. 703. John Wiley & Sons, 2007.

[35] E. Farhangi Maleki and L. Mashayekhy, “Mobility-aware compu-
tation offloading in edge computing using prediction,” in Proc. of
the 4th IEEE Intl. Conf. on Fog and Edge Computing, pp. 69–74, 2020.

[36] IBM, “Concert Technology version 12.1 C++ API Reference Man-
ual.” Available: ftp://public.dhe.ibm.com/software/websphere/
ilog/docs/optimization/cplex/refcppcplex.pdf, 2009. Accessed:
2019-05-25.

[37] S. Moosavi, B. Omidvar-Tehrani, and R. Ramnath, “Trajectory
annotation by discovering driving patterns,” in Proc. of the 3rd
ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics,
pp. 1–4, 2017.

[38] I. Rhee, M. Shin, S. Hong, K. Lee, S. J. Kim, and S. Chong, “On
the levy-walk nature of human mobility,” IEEE/ACM transactions
on networking, vol. 19, no. 3, pp. 630–643, 2011.

[39] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and
R. Bianchini, “Resource central: Understanding and predicting
workloads for improved resource management in large cloud
platforms,” in Proc. of the 26th Symposium on Operating Systems
Principles, pp. 153–167, 2017.

[40] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R.
Alface, T. Bostoen, and F. De Turck, “HTTP/2-Based Adaptive
Streaming of HEVC Video Over 4G/LTE Networks,” IEEE Com-
munications Letters, vol. 20, no. 11, pp. 2177–2180, 2016.

[41] S. Shen, V. van Beek, and A. Iosup, “Statistical characterization
of business-critical workloads hosted in cloud datacenters,” in
Proc. of the 15th IEEE/ACM Intl. Symp. on Cluster, Cloud and Grid
Computing, pp. 465–474, 2015.

BIOGRAPHIES

Erfan Farhangi Maleki is currently a Ph.D. stu-
dent in the Department of Computer and Infor-
mation Sciences at the University of Delaware.
He received his B.S. degree in computer
engineering-software from Shahid Beheshti Uni-
versity in 2015 and his M.Sc. degree in computer
engineering-software from Isfahan University of
Technology in 2018. His research interests in-
clude edge computing, cloud computing, and
distributed systems. He is a student member of
the IEEE.

Lena Mashayekhy is an assistant professor in
the Department of Computer and Information
Sciences at the University of Delaware. Her re-
search interests include edge/cloud computing,
data-intensive computing, Internet of Things,
and algorithmic game theory. Her doctoral dis-
sertation received the 2016 IEEE TCSC Out-
standing PhD Dissertation Award. She is also a
recipient of the 2017 IEEE TCSC Award for Ex-
cellence in Scalable Computing for Early Career
Researchers. She has published more than forty

peer-reviewed papers in venues such as IEEE Transactions on Parallel
and Distributed Systems and IEEE Transactions on Cloud Computing.
She is a member of the IEEE and ACM.

Seyed Morteza Nabavinejad is a Post-Doctoral
Research Fellow at the School of Computer Sci-
ence, Institute for Research in Fundamental Sci-
ences (IPM), Tehran, Iran. He received the B.Sc.
degree in Computer Engineering from Ferdowsi
University of Mashhad, and the M.Sc. and Ph.D.
degrees from Sharif University of Technology in
2011, 2013, and 2018, respectively. He has pub-
lished several peer-reviewed papers in venues
such as IEEE Transactions on Cloud Computing,
IEEE Transactions on Big Data, CAL, DATE, and

SAC. His research interests include big data processing, cloud comput-
ing, green computing, and approximate computing.

ftp://public.dhe.ibm.com/software/websphere/ilog/docs/optimization/cplex/refcppcplex.pdf
ftp://public.dhe.ibm.com/software/websphere/ilog/docs/optimization/cplex/refcppcplex.pdf

	Introduction
	Related Work
	System Model
	Sampling-based Offloading to Cloudlets
	Forecasting Method for Mobility-Aware Offloading
	Sampling-based Assignment

	Greedy Offloading to Cloudlets
	Experimental Evaluation
	Experimental Setup
	Comparative Analysis
	Precision Analysis
	Sensitivity Analysis

	Conclusion
	References
	Biographies
	Erfan Farhangi Maleki
	Lena Mashayekhy
	Seyed Morteza Nabavinejad

