
IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 1

A Trust-Aware Mechanism for Cloud Federation
Formation

Lena Mashayekhy, Member, IEEE, Mark M. Nejad, Member, IEEE, and Daniel Grosu, Senior
Member, IEEE

Abstract—Cloud providers can form cloud federations by pooling their resources together to balance their loads, reduce their costs,
and manage demand spikes. However, forming cloud federations is a challenging problem, especially when considering the incentives
of the cloud providers making their own decisions to participate in cloud federations. In this paper, we model the formation of cloud
federations necessary to provide resources to execute Map-heavy/Reduce-heavy programs while considering the trust and reputation
among the participating cloud providers. The objective is to form cloud federations with highly reputable cloud providers that achieve
maximum profit for their participation. This is an NP-hard bicriteria optimization problem. We introduce a coalitional graph game, called
trust-aware cloud federation formation game, to model the cooperation among cloud providers. We design a mechanism for cloud
federation formation that enables the cloud providers with high reputation to organize into federations reducing their costs. Our
proposed mechanism guarantees the highest profits for the participating cloud providers in the federations, and ensures high reliability
of the formed federations in executing the applications. We perform extensive experiments to characterize the properties of the
proposed mechanism. The results show that our proposed mechanism produces Pareto optimal and stable cloud federations that not
only guarantee that the participating cloud providers have high reputation, but also high individual profits.

Index Terms—Cloud federation, Trust, Reputation, Coalitional game theory.

F

1 INTRODUCTION

C LOUDS are large-scale distributed computing systems
offering their services based on the pay-as-you-go

model. Due to attractive cost benefit ratios of cloud services,
outsourcing is of massive interest to enterprises and individ-
uals. A cloud provider provisions low level resources (e.g.,
CPUs, storage, etc.) of its physical machines (PMs) in the
form of virtual machines (VMs) and containers which are
then allocated to jobs. Clouds provide essential resources for
compute- and data-intensive processing required to solve
various challenging problems in science and engineering.
With rapid changes in technologies (e.g., containers and
Cloudlets) and emerging new paradigms for data-intensive
processing (e.g., MapReduce and Spark), cloud providers
are faced with many challenges when managing their re-
sources. Efficient cloud resource management leads to ef-
ficient utilization of resources, faster execution of applica-
tions, and lower payment for cloud users.

Clouds can elastically scale up/down their resources
through virtualization. However, the availability of virtual
resources is limited by the capacities of the cloud providers’
physical resources. To overcome such limitations, cloud
providers can form federations with other cloud providers
to borrow/lend resources according to particular agree-
ments. Forming cloud federations not only allows small-

• L. Mashayekhy is with the Department of Computer and Information
Sciences, University of Delaware, Newark, DE 19716.
M. Nejad is with the Department of Civil and Environmental Engineer-
ing, University of Delaware, Newark, DE 19716.
D. Grosu is with the Department of Computer Science, Wayne State
University, Detroit, MI 48202.
E-mail: mlena@udel.edu, nejad@udel.edu, dgrosu@wayne.edu

medium cloud providers to cooperate and increase their
market shares, but also provides cloud users with more cost-
effective services and flexibility. In addition to managing
demand spikes, cloud providers can also reduce their costs
by forming federations. For example, when the electricity
price is high at one cloud provider, that cloud provider
can schedule jobs onto other cloud providers with lower
electricity charges at that time to reduce its costs. Our
focus is on designing mechanisms for formations of cloud
federations to provide necessary resources for executing
application programs.

Cloud users execute many types of large-scale applica-
tion programs including MapReduce and Spark. A MapRe-
duce program comprises a specific number of map and
reduce jobs executed on clouds. In the map phase, each
map job is allocated to a map slot on a node, and processes
a portion of the input data producing key-value pairs. In
the reduce phase, the key-value pairs with the same key
are then processed by a reduce job allocated to a reduce
slot. The output of the reduce phase is written back to the
distributed file system [1], [2]. A Spark program runs an
independent set of executor processes. Within each Spark
program, multiple jobs (i.e., Spark actions) may be running
concurrently. Each Spark program is divided into stages
such as map and reduce phases. In this study, we consider
applications that are either map-heavy (e.g., Wordcount) or
reduce-heavy (e.g., TeraSort) [3].

We argue that the incentives of cloud providers are the
main driving forces in the formation of cloud federations,
and thus, it is essential to take them into account when
designing cloud federation formation mechanisms. One key
element in the formation of cloud federations in such highly
dynamic environments is the cloud providers’ reliability of

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 2

executing requested programs. If a cloud provider agrees to
provide some resources in a federation, but it fails to deliver
the promised resources, then the application program could
not be executed by that federation. For example, a cloud
provider promises to provide a VM with a specific number
of CPUs and a specific amount of memory, but it actually
provides a VM with fewer CPUs and less memory than
promised, leading to the inability of the federation to com-
plete the execution of the application by its deadline. There-
fore, selecting highly trusted cloud providers to be part of
the cloud federation is necessary to avoid this problem. In
addition, a cloud provider desires to be a member of a cloud
federation to obtain high profit. Therefore, a cloud fed-
eration formation mechanism should consider both profit
and the trust among cloud providers when making cloud
federation formation decisions.

In this paper, we define trust as how likely a cloud
provider is to provide the requested resources (guarantee
SLA) to another cloud provider based on their past di-
rect interactions. If a cloud provider does not have past
interactions with another cloud provider, it may use the
reputation of that cloud provider. We define reputation as
how other cloud providers that have had direct interactions
with both cloud providers evaluate that cloud provider.
Also, we define global reputation of a cloud provider as
how likely the cloud provider is to provide the requested
resources, based on the opinion of all cloud providers.

1.1 Our Contribution
We address the problem of cloud federation formation
considering the trust relationships among cloud providers.
The objective is to maximize the individual profit of the
participating cloud providers in cloud federations and the
overall reputation among the cloud providers. This problem
is a bicriteria optimization problem, and it is NP-hard. We
propose a framework for calculating the global reputation
for each cloud provider considering direct trust and rep-
utation. We then introduce a novel coalitional graph game,
called the trust-aware cloud federation formation game with
preferences, to model the problem in cloud environments.
In addition, we propose a trust-aware cloud federation
formation mechanism, TCFF, to solve this bicriteria opti-
mization problem. Our proposed mechanism considers the
incentives of the cloud providers and allows them to make
their own decisions to participate in cloud federations. In
addition, our proposed mechanism produces Pareto optimal
solutions (i.e., there is no other solution, in our case a cloud
federation, with both a higher payoff and a higher average
reputation), and it converges to a stable cloud federation for
requested applications. The performance of the proposed
trust-aware cloud federation mechanism is analyzed both
theoretically and experimentally. The experimental results
show that the proposed mechanism produces stable cloud
federations that not only guarantee the highest reputation
among participating cloud providers, but also maximize
their individual payoffs.

1.2 Organization
The rest of the paper is organized as follows. In Section 2
we review the related work. In Section 3, we describe the

system model and the trust-aware cloud federation model.
In Section 4, we describe the cloud federation game, the
trust-aware cloud federation formation game, and the pro-
posed mechanism. In Section 5, we evaluate the mechanism
by extensive experiments. In Section 6, we summarize our
results and present possible directions for future research.

2 RELATED WORK

There exists an extensive body of research on resource
allocation and VM placement in clouds focusing on op-
timizing system-wide performance objectives without tak-
ing into account the behavior of both users and cloud
providers and their incentives to participate and contribute
resources. Recently, economic-based cloud resource man-
agement mechanisms have been proposed that take into
account the incentives of cloud users and cloud providers
in VM provisioning, allocation, and pricing [4], [5], [6].
However, these studies focused on systems with a single
cloud provider. The concept of federated clouds, where
cloud providers can dynamically scale-up their resource
capabilities by forming cloud federations, was introduced
and studied by several researchers (e.g., [7], [8]). Goiri et
al. [9] studied the design of cost-effective cloud federations
and proposed mathematical models to help cloud providers
decide when to outsource/insource resources to other cloud
providers. Mashayekhy et al. [10] addressed the problem of
federation formation in clouds and designed a coalitional
game-based mechanism that enables the cloud providers
to dynamically form a cloud federation maximizing their
profit. Samaan [11] proposed an economic model based on
repeated games, to regulate capacity sharing in a cloud fed-
eration, where each provider aims at maximizing its profit.
Bruneo [12] proposed performance evaluation techniques
based on stochastic reward nets for federated clouds to
predict and quantify the cost-benefit of a strategy portfolio
and the corresponding quality of service (QoS) experienced
by users. However, none of the above mentioned studies
considered the design of trust-aware mechanisms for cloud
federation formation. Our framework is more suitable for
modeling the cloud federation formation problem, since
trust plays a key role in delivering the desired service level
agreement.

Scheduling MapReduce jobs with different objectives
has attracted a great deal of attention. For scheduling
multiple MapReduce jobs [1], Hadoop originally employed
a FIFO scheduler. By default, Spark’s scheduler [13] also
runs jobs in FIFO fashion. Zaharia et al. [14] proposed a
robust scheduling algorithm, Longest Approximate Time to
End (LATE), for the problem of speculative execution in
MapReduce, which uses estimated finish times. Chang et
al. [15] proposed MapReduce scheduling algorithms based
on solving a linear program relaxation to minimize the over-
all MapReduce completion times. Zhan et al. [16] proposed a
cooperative resource provisioning solution for MapReduce
jobs using statistical multiplexing. However, the above-
mentioned studies either focus on single cloud provider or
did not consider the underlying trust relations among cloud
providers.

Several studies have focused on measuring reputation in
different domains by using graphs in which the weight asso-

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 3

ciated with each edge represents the value of trust. Hang et
al. [17] used trust propagation to find the reputation. Guha et
al. [18] proposed a trust transitivity model based on the
number of participants on a path. Agrawal et al. [19] used
the network flow to find the reputation. Another approach
to design reputation systems is to use graph centrality
measures [20], where the centrality of a node determines
its reputation. Trust is one major concern in grid [21], [22]
and cloud [23], [24] environments. Several studies focused
on considering the user’s trust in cloud services (i.e., the
trust between a user and a cloud provider) [25], [26], while
our work considers the effects of the trust among cloud
providers when forming a cloud federation. Ko et al. [23]
proposed TrustCloud to address accountability in the cloud
environment by technical and policy-based approaches.
Messina et al. [27] proposed models to measure the trust and
reliability of cloud services. Premarathne et al. [28] proposed
a cloud-based utility service for user identity management
based on trust establishment between the cloud service
provider and the identity providers. Mashayekhy et al. [29]
proposed a data protection framework when outsourcing
VMs to a cloud federation. In this paper, we take into
consideration both profit and reputation when deciding the
formation of cloud federations.

3 CLOUD FEDERATION FRAMEWORK

In this section, we describe the system model and the trust-
aware cloud federation model.

3.1 System Model

We consider a system model in which a set of m
cloud providers, I = {C1, C2, . . . , Cm}, are willing to put
their resources together to form federations. Each cloud
provider C ∈ I contributes a maximum number RC of VM
instances of a given type to a federation. Users submit their
requests in order to execute their large-scale application
programs on clouds. An application program J consists of
a set of n independent jobs {J1, J2, . . . , Jn}, and it needs
to be completed by a given deadline d. Each application
requests VM instances of the same type and a job is assigned
to each VM instance (which is usually the case in practice).
The cloud providers cooperate to execute J . These cloud
providers are autonomous entities driven by incentives and
are self-interested. In game-theoretic sense, they are rational
agents (i.e., utility maximizers). Each job J is characterized
by its execution time at cloud provider C given by the
execution time function e : J × I → R+. Once a job is
assigned for execution to a given cloud provider, it is neither
preempted nor migrated. A cloud provider C ∈ I incurs cost
for executing a job J ∈ J . We characterize cloud providers’
cost by the following cost function, c : J × I → R+. In
addition, we consider that a user is willing to pay a price P
for the service if the program is executed to completion
by deadline d. If the program execution time exceeds the
deadline d, the user will pay 0.

To make sure that a subset of cloud providers F ⊆ I ,
or a cloud federation, is able to execute the program J , we
need to find an assignment of all jobs J ∈ J to the cloud
providers C ∈ F in such a way that the job assignment

satisfies all constraints. The job assignment problem finds
an assignment of the n jobs of the application to a subset
of cloud providers F ⊆ I . We define the following decision
variables:

xJC =

{
1 if job J is assigned to cloud provider C ∈ F ,
0 otherwise.

(1)

We formulate the job assignment problem as an Integer
Program (IP), called IP-ASSIGN, as follows:

Minimize C(J ,F) =
∑
J∈J

∑
C∈F

c(J, C)xJC , (2)

Subject to:∑
J∈J

∑
C∈F

c(J, C)xJC ≤ P, (3)∑
J∈J

xJC ≤ RC , (∀C ∈ F), (4)∑
J∈J

xJC ≥ 1, (∀C ∈ F), (5)∑
C∈F

xJC = 1, (∀J ∈ J), (6)

e(J, C)xJC ≤ d, (∀C ∈ F ,∀J ∈ J), (7)
xJC ∈ {0, 1}, (∀C ∈ F and ∀J ∈ J). (8)

The objective function (2) is to minimize the execution
cost of the application program J on F . Constraint (3)
ensures that the execution cost of the program J on F
does not exceed the payment. Constraints (4) ensure that
the assigned jobs to each cloud provider does not exceed
the cloud provider’s capacity. Constraints (5) ensure that
each cloud provider C ∈ F is assigned at least one job.
Constraints (6) ensure that each job is assigned to exactly
one cloud provider. Constraints (7) guarantee that the exe-
cution of the assigned jobs to each cloud provider does not
exceed the deadline. Constraints (8) specify that the decision
variables are binary.

3.2 Trust-Aware Cloud Federation Model

We model the trust relationship among cloud providers as
a weighted directed graph (I, E), called the trust graph,
where I is a set of cloud providers representing the nodes,
and E is a set of edges. The nodes in the trust graph do
not have self-loops (i.e., there is no edge (Ci, Ci) ∈ E).
The weight τ(Ci, Cj) associated with edge (Ci, Cj) represents
the amount of trust that Ci assigns to Cj , showing the
strength of the trust relationship from Ci to Cj , based on
their past interactions (i.e., it does not depend on other
cloud providers’ trust on Cj). The weight can take any value
within the interval [0, V], where V is chosen by the designer
of the system and corresponds to the highest trust. Trust
can be an asymmetric relationship. In cases that two cloud
providers did not have any interactions in the past (i.e.,
τ(Ci, Cj) = 0), they can rely on opinions of the other cloud
providers.

A cloud provider rates another cloud provider based
on its direct trust which can be used for local ratings. In
doing so, the value of direct trust is normalized between 0

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 4

2

C2C1

C3C4

2

5 5

3

3

Fig. 1: An example of a trust graph.

and 1 so that each cloud provider assigns a single rating (so-
called local trust value or normalized trust) to another cloud
provider. We define w(Ci, Cj) ∈ [0, 1] to be the normalized
trust that Ci assigns to Cj . Each cloud provider Ci computes
the normalized trust value w(Ci, Cj) by dividing the local
trust τ(Ci, Cj) by the sum of the local trust values assigned
to all its neighbor cloud providers as follows:

w(Ci, Cj) =
τ(Ci, Cj)∑

Ck∈N (Ci) τ(Ci, Ck)
(9)

where, N (Ci) = {Cj |∃(Ci, Cj) ∈ E} is the set of Ci’s
neighbors. In addition, for each cloud provider Ci ∈ I , we
have: ∑

Cj∈I,Ci 6=Cj

w(Ci, Cj) = 1. (10)

Note that a normalized trust is not used to rank neighbors of
different cloud providers or across all providers. We denote
by W , the matrix of normalized trust of the graph (I, E),
where its elements, w(Ci, Cj), represent the normalized trust
values.

In Fig. 1 we give an example of a trust graph with
four cloud providers I = {C1, C2, C3, C4}. As an example,
τ(C2, C3) is 5, which is the amount of trust that C2 assigns
to C3. Then, the normalized trust computed using equa-
tion (9) is w(C2, C3) = 0.71.

To form a cloud federation, Ci should be able to select a
cloud provider Cj based not only on its local trust w(Ci, Cj),
but also on the trust the other cloud providers have on Cj .
In doing so, we consider the reputation of cloud providers
in the federation formation rather than their local trust,
considering all the paths that ends with that node and
the quality of the paths. We need to define a metric that
characterizes cloud providers’ reputations, where the metric
measures how likely a cloud provider is to provide the
requested resources based on all other cloud providers’
opinions.

To determine the global reputation of each cloud provider
within a given set I of cloud providers, we use the following
procedure, called Cloud-REP, which is based on the power
method [30]. We denote by ρqCi→Cj the trust Ci assigns to Cj
based on the opinion of the qth neighboring cloud providers
(e.g., for q = 1 we consider neighbors of Ci, for q = 2
we consider neighbors of neighbors, and so on). Cloud-REP
starts by determining ρ0Ci→Cj , the local trust Ci assigns to Cj ,
as follows:

ρ0Ci→Cj = w(Ci, Cj) (11)

To find the reputation between cloud providers Ci and Cj ,
Ci uses its neighbors opinions about Cj by weighting their
opinions using the trust Ci places on them. As a result, we
calculate ρ1Ci→Cj as follows:

ρ1Ci→Cj =
∑
Ck∈I

w(Ck, Cj) · ρ0Ci→Ck (12)

The intuition behind equation (12) is that it aggregates the
local trust values of all cloud providers and computes the
reputation of cloud providers using the transitive property
of the trust. As a result, Cloud-REP facilitates trust propaga-
tion and trust aggregation. In trust propagation, the transi-
tivity of trust is considered, and in the trust aggregation, the
trust transitivity of different paths is aggregated. Cloud-REP
continues this procedure by considering the neighbors of
neighbors, and so on, which improves the accuracy of trust
propagation. As a result, ρqCi→Cj is calculated as follows:

ρqCi→Cj =
∑
Ck∈I

w(Ck, Cj) · ρq−1Ci→Ck (13)

Let ρρρqCi denote the vector that contains all the reputation
scores that Ci assigns to the other cloud providers using qth

neighboring cloud providers. In other words, the length
of a path from Ci to other cloud providers in the trust
graph (I, E) is q. Using the matrix notation, equation (13)
for all cloud providers Ci ∈ I , can be written as follows:

ρρρqCi = WT · ρρρq−1Ci (14)

If q is large, Ci will assign a reputation score to each cloud
provider considering the opinion of all cloud providers.
Note that if all other cloud providers do the same to find the
reputation scores of all cloud providers, they will find the
same reputation scores as in ρρρqCi . As a result, ρρρqCi converges
to the global reputation of the cloud providers (i.e., the
global reputation vector ρρρ). This vector is the left principal
eigenvector of W , that is, it satisfies:

λρρρ = WTρρρ (15)

where λ is the eigenvalue of W . As a result, the Cloud-REP
procedure determines the global reputation of each cloud
provider. By using this method, we convert the trust values
between each pair of cloud providers into a global reputa-
tion for each cloud provider. The i-th component ρi of the
eigenvector ρρρ, then, gives the global reputation score of Ci.
For simplicity, we use the notation ρCi to represent ρi of the
eigenvector ρρρ. Using this method, a cloud provider has high
reputation to the extent that the cloud provider is connected
to other cloud providers who have high reputation [31].
Here, the eigenvector ρρρ determines the centrality of the cloud
providers based on their reputation.

We also define the average global reputation for a set of
cloud providers I as follows:

ρ̄(I) =
1

|I|
∑
Ci∈I

ρCi (16)

The average reputation will be used in the next sections
as a metric to characterize the aggregate reputation of the
members of a cloud federation.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 5

4 TRUST-AWARE CLOUD FEDERATION FORMA-
TION GAME AND MECHANISM

In this section, we formulate the trust-aware cloud fed-
eration formation as a coalitional game, and we describe
our proposed trust-aware mechanism for cloud federation
formation.

4.1 Cloud Federation Game
We now introduce the cloud federation game as a coali-
tional game. Coalitional game theory studies the interac-
tions between groups of decision-makers (i.e., players). In
coalitional games, players can cooperate and form alliances,
while ultimately trying to maximize utility. We define a cloud
federation game as a coalitional game with transferable utility
as follows:
Definition 1 (cloud federation game). A cloud federation

game is a pair (I, v), where I is the set of cloud
providers (i.e., players in the game) and v is the char-
acteristic function of the game. The characteristic function
is defined on a federation F ⊆ I , such that v : F → R+

and v(∅) = 0.

We define a federation (or a coalition) as a subset of cloud
providers (i.e., F ⊆ I) working together to provide a
service. If all the cloud providers form a federation, we call
it the grand federation.

A federation has a value which is equal to the profit
obtained by its members working as a group. Such a value
is determined by the characteristic function v(F). We define
the characteristic function of a federation F for our pro-
posed cloud federation game (I, v) as follows:

v(F) =

{
0 if |F| = 0 or IP is not feasible,
P − C(J ,F) if |F| > 0 and IP is feasible

(17)

In this function, |F| is the cardinality ofF , P is the user pay-
ment to execute the program J , C(J ,F) is the execution
cost of the program on the federation F , and P − C(J ,F)
is the obtained profit by the federation.

A cloud federation game should satisfy two main prop-
erties, fairness and stability. The profit obtained by a fed-
eration should be fairly divided among the participating
cloud providers. A federation should be stable, that is, the
participating cloud providers should not have incentives to
leave the federation. In the following, we explain these two
properties of the proposed game in more details.

A federation F would have to divide its value v(F)
among its members if the federation was formed. Tradition-
ally, the Shapley value [32] would be employed to determine
the individual payoff (or share), but computing the Shapley
value is NP-complete [33] which requires iterating over ev-
ery partition of a coalition. Another rule for payoff division
is equal sharing of the profit among members. Equal sharing
provides a tractable way to determine the shares and has
been extensively used as a payoff division rule in other
systems where tractability is critical (e.g., [34]). Following
these studies, equal sharing is considered as a fair profit
division rule among cloud providers in a federation. This is
motivated by the fact that each cloud provider in the cloud
federation plays a critical role in executing a subset of jobs

of the application in order for the cloud federation to be
able to execute the whole application. The execution of the
application depends on delivering the promised resources
by cloud providers in the cloud federation. As a result, it
is in cloud providers’ interest to equally share the profit for
executing the application. In addition, this method provides
a tractable way to divide the profit. We define the individual
payoff of cloud provider C in federation F , denoted by
ψC(F), as follows:

ψC(F) =
P − C(J ,F)

|F|
. (18)

Therefore, the payoff divisions of the grand feder-
ation is represented by the payoff vector ψ(I) =
(ψC1(I), · · · , ψCm(I)).

We analyze the stability of the grand federation using
the most popular solution concept of a coalitional game,
called the core. The core is the set of payoff vectors that
make it favorable for the cloud providers to form the grand
federation. The existence of a payoff vector in the core guar-
antees that the grand federation is stable with respect to any
deviation by any group of cloud providers. The core of the
cloud federation game (I, v) can be empty. This is due to the
fact that cloud providers incur costs to form a federation to
execute a program, thus, they prefer to participate in smaller
coalitions instead of the grand coalition. In such a case, the
grand federation does not form, leading to the formation
of independent and disjoint federations. Partitioning the set
of cloud providers into disjoint sets is called cloud federation
formation which is a coalitional game in partition form.

Definition 2 (federation structure). A federation structure
FS = {F1,F2, . . . ,Fh} is a partitioning of I such
that each cloud provider is a member of exactly one
federation, i.e., Fi ∩ Fj = ∅ for all i and j, where i 6= j
and

⋃
Fi∈FS Fi = I .

We denote by Π the set of all federation structures. In
the next subsection, we introduce the trust-aware cloud
federation formation game, where the focus is on how to
form independent and disjoint federations considering trust
relationship among cloud providers.

4.2 Trust-Aware Cloud Federation Formation Game

The formation of a federation depends on not only the value
of the federation, but also the trust relations among cloud
providers which are members of the federation. Therefore, a
cloud provider prefers to join a federation with higher value
which is composed of cloud provider members that have
higher reputation scores. The reputation of cloud providers
in a federation means how much reputation each cloud
provider has, based on the opinions of all cloud providers
in that federation.

We define a trust-aware cloud federation game as a coali-
tional graph game as follows:

Definition 3 (trust-aware cloud federation game). A trust-
aware cloud federation formation game is a 3-tuple
(I, E, v), where I is the set of cloud providers (i.e.,
players in the game), G = (I, E) is a graph representing
the trust relationship among the cloud providers, and v
is the characteristic function of the game.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 6

Cloud providers in the game are identified with nodes in a
graph G. The trust among cloud providers in a federation F
influences the cloud federation formation.

The proposed game (I, E, v) captures two competing is-
sues: cloud providers want to minimize the costs they incur
in forming a federation by working with high-reputation
cloud providers, but at the same time they want this fed-
eration to provide them with a high profit. As a result, the
objective is to find a federation F∗ such that its members
have the highest average global reputation (as defined in
Section 3.2) and the federation provides the maximum indi-
vidual profit for its members.

We investigate the federation structures in the trust-
aware cloud federation game when the grand federation
does not form, i.e., the grand federation is not stable. To
be able to model the federation structures, we need to
augment the trust-aware cloud federation game presented
in Definition 3 with a preference relation over federations,
and define a trust-aware cloud federation formation game with
preferences as follows:
Definition 4 (trust-aware cloud federation formation game

with preferences). A trust-aware cloud federation forma-
tion game is a 4-tuple (I, E, v,�), where I is the set
of cloud providers, G = (I, E) is the trust graph, v is
the characteristic function, � is the federation preference
relation defined over a set of graph partitions ΠGC for
cloud provider C, and ΠGC is the set of sub-graphs in G
containing cloud provider C.

Our proposed game includes a partitioning of the trust
graph G = (I, E) into disjoint sub-graphs. We define a sub-
graph S = (F , E) of G = (I, E), where F is the set of cloud
providers in the federation, and E is a set of trust edges
among cloud providers in F . We denote by WF , the matrix
containing the trust values of the cloud providers in F . We
define reputation scores of the cloud providers in a feder-
ation F using the sub-graph S . We define a graph-based
federation structure GFS = {S1,S2, . . . ,Sh} as partitioning
of G into sub-graphs S1(F1, E1), S2(F2, E2), ..., Sh(Fh, Eh)
such that each cloud provider is a member of exactly one
federation represented by a sub-graph. We denote by ΠG

the set of all graph-based federation structures.
In order to compare federations, we define the federation

preference relation �C for each C. This allows C to compare
two federations in ΠGC and to indicate its preference to be
a part of one of them. A �C B implies that C prefers
to be a member of federation A than to be a member of
federation B, or at least it prefers both federations equally.
In addition, A �C B indicates that C strictly prefers to be a
member of A than a member of B.

Each cloud provider prefers to maximize its profit, thus,
participating in a low profit federation with high profit
shares is more preferred than participating in a high profit
federation with low profit shares. As a result, a cloud
provider prefers a federation that provides the highest in-
dividual profit among all possible federations. In addition,
a cloud provider prefers a federation which members have
the highest average reputation. The average reputation for
cloud providers in F is defined as follows:

ρ̄(F) =
1

|F|
∑
Ci∈F

ρCi (19)

where ρCi is the reputation score of Ci as computed by the
Cloud-REP procedure presented in Section 3.2. As a result,
we define the federation preference relation �C as follows:

Definition 5 (federation preference relation). For all F ,F ′ ⊆
I and C ∈ F ,F ′, we have:

F �C F ′ if [ψC(F) ≥ ψC(F ′) and ρ̄(F) ≥ ρ̄(F ′)] (20)

The main intuition behind the federation preference rela-
tion �C is to allow a cloud provider to choose to join a
federation that gives higher profit and has higher aver-
age reputation. Using this preference relation, every cloud
provider can evaluate its preferences over the set of possible
federations that the cloud provider can be a member of.
Therefore, in order to determine its preferred federation F ,
each cloud provider C solves a bicriteria optimization prob-
lem as follows: {

max(F) ψC(F), and
max(F) ρ̄(F).

(21)

This is a bicriteria optimization problem in which the cloud
provider’s goal is to maximize both the obtained profit share
and the average global trust within a federation. Since the
job assignment problem (i.e., equations (2)-(8)) is NP-hard
for m ≥ 2 [35], the bicriteria problem in equation (21) is also
NP-hard.

To solve this bicriteria optimization problem, we will
asses the optimality of the solutions using the concept
of Pareto optimality. Pareto optimality refers to the set of
solutions of the bicriteria problem that are not dominated
by other solutions in both criteria. In our problem, the two
criteria are the individual payoff and the average reputation.
Thus, a solution F yielding an individual payoff of ψ and
an average reputation of ρ̄ is Pareto optimal if there is no
other solution F ′ with both a higher payoff ψ′ and a higher
average reputation ρ̄′ (i.e., ψ′ ≥ ψ and ρ̄′ ≥ ρ̄). The Pareto
optimal solutions are not unique and they form a set of
Pareto optimal solutions. In the next section, we will show
that our proposed mechanism obtains one such solution
from the set of Pareto optimal solutions.

We are interested in characterizing the solution. In order
to do this, we formally define the rationality and stability
concepts that we use in this paper.

Definition 6 (Individual rationality). A game satisfies the
individual rationality if for any formed federation F and
all its members C ∈ F , we have ψC(F) ≥ 0.

In other words, each cloud provider does not suffer any loss
by participating in the game.

We define individual stability as follows:

Definition 7 (Individual stability). A federation F is indi-
vidually stable if there is no member C ∈ F such that
F \ {C} �C′ F for all C′ ∈ F .

In other words, a federation F is individually stable if no
cloud provider C ∈ F can leave the federation F without
making at least one cloud provider C′ ∈ F unhappy.

In the next subsection, we present our proposed mech-
anism for forming trust-aware cloud federations, and we
investigate its properties.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 7

Algorithm 1 Trust-Aware Cloud Federation Formation Mech-
anism (TCFF)

1: Input: J , I, and G
2: L = ∅ \\ initial set of federations
3: F = I \\ initial cloud federation
4: S = G \\ the trust graph
5: repeat
6: flag← TRUE
7: Solve IP-ASSIGN for J on federation F
8: if FEASIBLE then
9: L ← L ∪ F

10: flag← FALSE
11: end if
12: ρρρ = Cloud-REP(S(F , E))
13: Find a cloud provider C with the lowest reputation in ρρρ
14: F = F \ C
15: Update S
16: until flag
17: Find F∗ = argmaxF∈L {v(F)/|F|} \\ final federation
18: Assign and execute program J on federation F∗
19: for all C ∈ F∗ do
20: ψC(F∗) = v(F∗)

|F∗| \\ final payoffs
21: end for

4.3 Trust-Aware Cloud Federation Formation Mecha-
nism (TCFF)

The proposed trust-aware cloud federation formation mech-
anism (TCFF) is given in Algorithm 1. TCFF has three input
parameters: the set of jobs of the application program J ,
the set of cloud providers I , and their trust graph G. The
mechanism uses L to keep a set of feasible federations, and
it is initialized with the empty set. TCFF initializes F with
the grand federation, that is, all cloud providers form a fed-
eration initially. It also initializes S with the trust graph G. In
every iteration (lines 5-16), TCFF solves IP-ASSIGN using a
branch-and-bound method to find an optimal assignment
for the application program J on federation F . If IP-
ASSIGN finds a feasible assignment of all jobs J ∈ J
to F satisfying the constraints, TCFF adds federation F
to L. Then, TCFF calculates the reputation values of all
cloud providers in the sub-graph S(F , E) using the method
described in Section 4 by calling Cloud-REP(S) function pre-
sented in Algorithm 2. TCFF selects a cloud provider C with
the lowest reputation in sub-graph S(F , E) using the output
of Cloud-REP function, ρρρ. Then, the mechanism removes C
from the federation and the sub-graph (by removing all
edges with direct trust to C). If more than one cloud provider
have the same lowest reputation, TCFF chooses one of them
randomly to be removed from the federation. Note that the
mechanism uses greedy choice in each step by removing
the cloud provider with the lowest reputation from the fed-
eration. In every iteration, TCFF recalculates the reputation
scores for all remaining cloud providers in the federation. It
is worth noting that this recalculation step is necessary since
the reputation of the federation members should be based
on their opinion about the participating cloud providers in
the federation. The opinion of the cloud providers with the
lowest reputation should not affect the value of the reputa-
tion of the other cloud providers. This recalculation affects
cloud providers’ reputations in the entire federation. As a
result, the mechanism considers only the opinions of the
participating cloud providers when calculating the global

Algorithm 2 Cloud-REP(S(F , E))

1: Input: Trust graph: S(F , E)
2: WF = the normalized trust matrix of S(F , E)
3: for all C ∈ F do
4: ρ0C ← 1

|F|
5: end for
6: repeat
7: ρρρq+1 ←WT

F ρρρ
q

8: δ ← ||ρρρq+1 − ρρρq||
9: until δ < ε

10: return ρρρq+1

reputation, that is, the opinions of cloud providers outside
the federation do not have any effect on the reputation of
the federation’s members.

These iterations continue until TCFF finds a federation
that could not execute the program. Finally, TCFF chooses
a federation F∗ from L that yields the highest individual
payoff for its members, meaning that it maximizes the
payoff that an individual cloud provider can receive. The
program is executed by the federation F∗, a trusted subset
of I . This federation contains members with high reputation
and yields the highest individual payoff for them.

Cloud-REP function, given in Algorithm 2, receives the
subgraph S as an input parameter and finds its normalized
trust matrix of WF . Cloud-REP function starts by assigning
the same reputation score to all cloud providers in the fed-
eration F . Then, it recomputes the reputation scores of each
cloud provider C as the weighted sum of the scores of all
cloud providers in C’s neighborhood. Cloud-REP function
repeats these steps (lines 6-9) until the average relative error
between ρρρq+1 and ρρρq is smaller than a given threshold ε. In
other word, ρρρq does not change significantly any more, and
it represents the global reputation of the cloud providers in
F . Finally, Cloud-REP function returns the eigenvector that
represents the reputation of cloud providers in F .

We now investigate the properties of our proposed
mechanism. We are interested in characterizing the rational-
ity, stability, and Pareto optimality of the federation obtained
by TCFF.

Theorem 1. TCFF produces federations satisfying the indi-
vidual rationality.

Proof: TCFF selects the final federation from a set L
by finding a federation F∗ with the maximum individual
payoff v(F∗)/|F∗|. For all cloud providers in F∗, we must
have: ψC(F∗) ≥ 0. Note that set L contains feasible solu-
tions to the IP-ASSIGN. As a result, we have v(F∗) ≥ 0,
and thus, for all C ∈ F∗, ψC(F∗) = v(F∗)

|F∗| ≥ 0. This proves
the individual rationality property.

Theorem 2. TCFF produces cloud federations that are indi-
vidually stable.

Proof: To prove that TCFF forms an individually
stable federation, we consider two cases that show that
by removing a cloud provider from the formed federation,
at least one of the participating cloud providers in the
federation becomes unhappy.

i) Cloud provider C has the lowest reputation among all
cloud providers in the federation F . Note that TCFF has
already checked this case when finalizing the federation F .

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 8

TABLE 1: The program settings.

cost time
J1 J2 J3 J4 J1 J2 J3 J4

C1 3 4 6 4 3 6 9 6
C2 4 6 9 6 2 4 6 4
C3 8 10 20 10 1.5 3 4.5 3
C4 6 9 15 9 1 2 3 2

As a result, there are two possibilities, either the cloud
federation is not feasible, or the individual profit of cloud
providers in F \ C is not as much as the individual profit of
cloud providers in F . As a result, removing C from the final
federation F makes other cloud providers in F unhappy.

ii) Cloud provider C does not have the lowest reputation
among all cloud providers in the federation F . In this case,
removing C decreases the total reputation of cloud providers
participating in F , which makes these cloud providers
unhappy.

As a result, the formed federation is individually stable.

We now investigate another important characteristic of
the solution produced by TCFF, the optimality of the cloud
federation in terms of both profit and reputation. We prove
that the formed federation by TCFF is a Pareto optimal solu-
tion for the trust-aware cloud federation formation problem.

Theorem 3. TCFF produces a Pareto optimal solution to the
trust-aware cloud federation formation problem.

Proof: We note that the set L (in Algorithm 1) contains
the feasible federations formed by TCFF. To prove the Pareto
optimality (defined in Section 4.1) of the solution, we need
to show that the final federation F ∈ L obtained by TCFF
is not dominated by any other federation in both individual
payoff and average reputation. We consider that the indi-
vidual payoff of cloud providers in the final federation F
is ψ, and their average reputation is ρ̄.

The highest reputable cloud providers are always in the
formed federation F . This is due to the fact that in each
iteration, TCFF removes a cloud provider with the lowest
reputation. As a result, the cloud providers outside the
federation F are not able to form a federation with higher
average reputation than ρ̄. That means, there is no federa-
tion F ′ 6∈ L, where ρ̄′ ≥ ρ̄. However, there may be other
federations F ′ ∈ L that have higher average reputation.
Those federations do not have a higher individual payoff
than ψ. This is due to the fact that TCFF selects F which has
the highest individual payoff among all federations in L. As
a result, the federation formed by TCFF is a Pareto optimal
solution.

4.4 Example: TCFF Execution

To show how TCFF mechanism works, we consider an
example with four cloud providers, each with a capacity of 5
VMs, where their trust graph is shown in Fig. 1. We assume
that a user submits a four-job program J = {J1, J2, J3, J4}
with a deadline d = 10 seconds and a payment P = 50. In
Table 1, we give the cost of executing each job on each cloud
provider, and the execution time of each job on each cloud

TABLE 2: The average reputation for each federation.

F v(F)
|F| Average reputation

{C1, C2, C3, C4} 5.5 0.445435
{C2, C3, C4} 6.33 0.57723
{C2, C3} 8.5 0.707107
{C3} 0 1

provider. As an example, C1 needs 6 seconds to execute J2,
incurring a cost of 4 units. The normalized trust matrix is:

W =

0 1 0 0

0.29 0 0.71 0
0 0.63 0 0.37
0 0 1 0

Using the Cloud-REP procedure described in Algo-

rithm 2 the global reputations of cloud providers are
ρC1 = 0.178174, ρC2 = 0.62361, ρC3 = 0.712697 and
ρC4 = 0.267261. The individual payoff, v(F)

|F| , and the av-
erage reputation are given in Table 2. If all cloud providers
form a grand federation to execute the program, J1, J2, J3,
and J4 are assigned to C4, C2, C1, and C3, respectively. The
value of the grand federation is v(I) = 50 − 28 = 22. The
individual payoff of each cloud provider is 5.5, and the aver-
age global reputation is ρ̄(I) = 0.4454. Based on the eigen-
vector values, C1 has the lowest reputation among all cloud
providers and it is removed from the grand federation.
Federation {C2, C3, C4} based on opinion of all its members
finds the reputation values ρC2 = 0.36076, ρC3 = 1.15446
and ρC4 = 0.216461. In this federation, the individual value
of the participating cloud providers is 6.33. In this step, C4
is removed from the federation since it has the lowest
reputation value in the federation. Then, TCFF calculates the
reputation of C2 and C3 in federation {C2, C3}. In this step,
ρC2 = ρC3 = 0.707107. One of them is selected randomly
to be removed. Cloud provider C3 could not execute the
entire program, and as a result, its value is zero. Among
these cloud federations, {C2, C3} is selected to execute the
program since it provides the highest individual payoff, 8.5,
for C2 and C3. The average reputation of cloud federations
shows that this federation also has the highest average
reputation.

5 EXPERIMENTAL RESULTS

We perform a set of experiments to investigate the effec-
tiveness of the proposed trust-based federation formation
mechanism in producing stable cloud federations.

5.1 Experimental Setup

For our experiments, we consider that 16 cloud providers
are participating, each with a capacity of 8192 VM instances.
Similar sizes for the cloud federation were considered
in [36], [37]. We consider six different application program
sizes ranging from 256 to 8192 jobs. The execution time
of jobs were generated from uniform distributions having
the average execution time extracted from performing ex-
tensive job profiling on a Hadoop cluster of 64 processors
for the TeraSort (a Reduce-heavy program) program from

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 9

the HiBench benchmark workloads [38]. HiBench is a com-
prehensive benchmark suite for Hadoop provided by Intel
to characterize the performance of MapReduce-based data
analysis running in clouds and data centers. The cluster is
composed of four Intel nodes, and it has a total of 80GB
memory, 64 processors, 4TB of storage, and network speed
of 1Gbps. We ran and profiled several TeraSort programs,
and for each program, we collected their start time and
finish time.

We consider a cost model for the cloud providers such
that the cost functions of any two cloud providers are not
related to each other. However, the cost of executing a job
on a cloud provider is related to the amount of resources
it requires. Meaning that, for any cloud provider C and
two jobs Jj and Jq , if Jj requires more resources, then
c(Jj , C) > c(Jq, C). As a result, a job with fewer required
resources has the cheapest cost on all cloud providers. We
generated the cost matrices based on the method described
by Braun et al. [39]. We first generated a baseline vector of
size 16, where each element is a random uniform number
within [1, φb], where φb is the baseline value. We then gener-
ated the rows of the cost matrix based on the baseline vector.
Each element j in row i of the matrix, c(i, j), was generated
by the element i of the baseline vector multiplied by a
uniform random number within [1, φr], a row multiplier.
We set the maximum value for φb and φr as 100 and 10,
respectively. The choice of the deadline and payment is at
the latitude of the users, we selected the values of deadlines
and payments specifically to obtain feasible solutions in our
experiments.

To analyze the performance of our proposed mechanism,
we use two different types of random graph models for the
trust graph: the Erdös-Rényi model [40], and the Barabási-
Albert model [41]. These are the two major types of random
graphs models that can be used to generate a wide range of
graph topologies. Considering this wide range of topologies
in our experiments allows us to investigate how the under-
lying trust graph affects the formation of federations. An
Erdös-Rényi graph (m, p) is a m-node graph constructed
by connecting nodes randomly, where p ∈ [0, 1] is the
probability of having an edge for any pair of nodes in the
graph independent from every other edge. Based on p, the
graph can be sparse or complete. In Erdös-Rényi model, all
graphs with m nodes and e edges have equal probability.
In our experiments, we set m = 16 as the number of
cloud providers, and p = 0.1. A Barabási-Albert graph is
a random scale-free graph that uses power-law (or scale-
free) degree distributions. In such graphs, a node with a
high degree is more likely to be connected with a new
node. A Barabási-Albert graph has two parameters (m,n),
where m is the number of nodes and n is the number of
edges to attach from a new node to existing nodes. In our
experiments, m = 16 is the number of cloud providers,
and n = 1. The weights representing the direct trust as-
signed to the edges of the graphs were drawn from the
uniform distribution on the interval [0, 10]. We use the ILOG
Concert Technology APIs in C++ to solve IP-ASSIGN by
CPLEX solver provided by IBM ILOG CPLEX Optimization
Studio for Academics Initiative.

5.2 Analysis of Results

We compare the performance of our proposed trust-aware
cloud federation formation mechanism (TCFF) with that of
two other mechanisms: Profit-Aware Cloud Federation For-
mation (PCFF) and Random Cloud Federation Formation
(RCFF).

The PCFF mechanism has the same structure as TCFF.
However, PCFF removes a cloud provider from a federation
without considering its reputation score. Meaning that, in
each iteration a cloud provider is removed randomly from
a federation. PCFF selects a federation with the highest
individual payoff for its participating cloud providers. As
a result, PCFF can be considered as a mechanism that solves
the single-objective problem of maximizing the individual
profit. Note that the comparison of TCFF with PCFF shows
the importance of selecting the lowest reputation cloud
providers for removal from the considered federations. We
consider PCFF as one of the baseline algorithms to investi-
gate and quantify the effect of neglecting trust when making
a federation formation decision.

The RCFF mechanism chooses cloud providers ran-
domly to form a federation. However, if the federation is
not capable of running the job, the mechanism searches for
another federation, until it finds a feasible federation. RCFF
does not have any preference over the two objectives. How-
ever, it shows the formation of a random feasible federation.
All mechanisms use the branch-and-bound method to solve
the job assignment problem, IP-ASSIGN, in finding an as-
signment of the jobs to cloud providers in a federation. This
allows us to focus on the federation formation and not on
the choice of job assignment algorithms. We consider RCFF
to investigate how well the proposed mechanism behaves
against a mechanism which does not have preferences over
the two objectives.

We performed a series of ten experiments for each case,
and we represented the average of the obtained results. We
present the results obtained by the mechanisms in terms of
individual profit, size of the final federation, and trust of the
participating cloud providers. We analyze the performance
of the mechanisms for each of the two types of random
graph models considered for the underlying trust graph,
the Erdös-Rényi model and the Barabási-Albert model. In
addition, we present several case studies to investigate
the properties of our proposed mechanism, TCFF, in more
details.

5.2.1 Erdös-Rényi Type Trust Graph

We first analyze the performance of TCFF, PCFF, and RCFF
while considering the Erdös-Rényi trust graph among the
cloud providers. Fig. 2 shows the normalized individual
cloud provider’s payoffs in the final federations obtained
by the three mechanisms as a function of the number of
jobs that are part of the program. Here, the payoffs are nor-
malized relative to the highest individual payoff obtained
by using TCFF. The results show that on average TCFF and
PCFF mechanisms lead to almost the same amount of payoff
for the cloud providers participating in the final federation.
This is due to the fact that both TCFF and PCFF mechanisms
select a federation that yields the highest individual payoff
for the cloud providers as the final federation to execute

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 10

 0

 0.2

 0.4

 0.6

 0.8

 1

256 512 1024 2048 4096 8192

N
o

rm
a

liz
e

d
 i
n

d
iv

id
u

a
l
p

a
y
o

ff

Number of jobs

TCFF
PCFF
RCFF

Fig. 2: Cloud provider’s individual payoff (Erdös-Rényi
type trust graph).

 0

 2

 4

 6

 8

 10

 12

 14

 16

256 512 1024 2048 4096 8192

N
u

m
b

e
r

o
f

c
lo

u
d

 p
ro

v
id

e
rs

 i
n

 t
h

e
 f

e
d

e
ra

ti
o

n

Number of jobs

TCFF
PCFF
RCFF

Fig. 3: Size of final federation (Erdös-Rényi type trust
graph).

the application program. In addition, the results show that
RCFF finds the lowest individual payoff for the cloud
providers participating in the final federation among all the
mechanisms in all the cases.

The number of participating cloud providers in the final
federations obtained by TCFF, PCFF, and RCFF is shown in
Fig. 3. The results show that the more the number of jobs,
the more cloud providers participate in the final federation
obtained by TCFF. This is due to the fact that more cloud
providers need to pool their computing resources to form a
federation in order to execute a larger program. In addition,
the results show that the formed federations by TCFF do
not necessarily have smaller sizes than those obtained by
PCFF. However, RCFF always finds larger federations than
those obtained by TCFF and PCFF. This is due to the fact
that RCFF only guarantees finding a feasible federation.

Fig. 4 shows the average global reputation of the cloud
providers in the final federation obtained by TCFF, PCFF,
and RCFF. In this figure, we show as a horizontal line, the
average global reputation in the grand federation. The ob-
tained results show that TCFF forms federations composed
of more reputable cloud providers. The average global
reputation of the cloud providers in the final federations
obtained by TCFF is significantly higher than the average
reputation of the cloud providers in the federations obtained
by PCFF, RCFF, and the grand federation, in all cases. Fur-
thermore, by considering the individual payoff in Fig. 2 and
the results of this figure, TCFF not only forms federations
with the highest average reputation, but also with high
individual payoff for their members. The results show the
significance of the selection of cloud providers by our pro-

 0

 0.2

 0.4

 0.6

 0.8

 1

256 512 1024 2048 4096 8192A
v
e

ra
g

e
 g

lo
b

a
l
re

p
u

ta
ti
o

n
 o

f
fe

d
e

ra
ti
o

n
’s

 m
e

m
b

e
rs

Number of jobs

TCFF
PCFF
RCFF

Grand Federation

Fig. 4: Cloud provider’s average reputation (Erdös-Rényi
type trust graph).

 0

 5

 10

 15

 20

 25

 30

 35

 40

256 512 1024 2048 4096 8192

E
x
e

c
u

ti
o

n
 t

im
e

 (
S

e
c
o

n
d

s
)

Number of jobs

TCFF
PCFF
RCFF

Fig. 5: Execution time of the mechanims (Erdös-Rényi type
trust graph).

posed mechanism, TCFF, which considers reputation. PCFF
is a greedy mechanism that maximizes only the individual
payoff without considering the reputation. As a result, PCFF
obtains cloud federations with lower average reputation
cloud providers than the ones obtained by TCFF.

In Fig. 5, we show the execution time of the three
mechanisms, TCFF, PCFF, and RCFF, in computing the final
federations. All mechanisms are very fast in finding the
final federations. RCFF is the fastest since it only checks
the feasibility of randomly formed federations. Note that
the execution time of TCFF is reasonable given that the
application program would require several hours to execute.
The execution times for programs with 4096 and 8192 jobs
are higher since finding job assignments for those programs
takes more time.

5.2.2 Barabási-Albert Type Trust Graph

We analyze the performance of TCFF, PCFF, and RCFF
while considering the Barabási-Albert trust graph among
the cloud providers. Fig. 6 shows the normalized individual
cloud provider’s payoffs in the final federations obtained
by the three mechanisms as a function of the number of
jobs. The results show that TCFF selects the final federation
yielding the highest individual profit for its participating
cloud providers. In addition, RCFF finds the lowest individ-
ual profit among all the mechanisms.

The sizes of the final federations obtained by TCFF,
PCFF, and RCFF are shown in Fig. 7 One of the TCFF’s
objective is to maximize the individual profit of the partici-
pating cloud providers. As a result, it favors the formation
of smaller federations. Furthermore, RCFF finds larger fed-

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 11

 0

 0.2

 0.4

 0.6

 0.8

 1

256 512 1024 2048 4096 8192

N
o

rm
a

liz
e

d
 i
n

d
iv

id
u

a
l
p

a
y
o

ff

Number of jobs

TCFF
PCFF
RCFF

Fig. 6: Cloud provider’s individual payoff (Barabási-Albert
type trust graph).

 0

 2

 4

 6

 8

 10

 12

 14

 16

256 512 1024 2048 4096 8192

N
u

m
b

e
r

o
f

c
lo

u
d

 p
ro

v
id

e
rs

 i
n

 t
h

e
 f

e
d

e
ra

ti
o

n

Number of jobs

TCFF
PCFF
RCFF

Fig. 7: Size of final federation (Barabási-Albert type trust
graph).

erations to guarantee that the federation is able to execute
the program.

Fig. 8 shows the average global reputation of the cloud
providers participating in the final federations produced
by TCFF, PCFF, and RCFF. In addition, we show as a
horizontal line, the average global reputation in the grand
federation. The obtained results show that TCFF forms
federations composed of more reputable cloud providers.
The average global reputation of the cloud providers in the
final federations obtained by TCFF is significantly higher in
all cases than the average reputation of the cloud providers
in the federations obtained by PCFF, RCFF, and the grand
federation.

Fig. 9 shows the execution time of TCFF, PCFF, and RCFF
in computing the final federations. All mechanisms are very
fast in finding the final federations.

Comparing the results for the two types of trust graphs,
we can observe that TCFF obtains a higher individual payoff
and a slightly higher average global reputation for the
Barabási-Albert type trust graph, than the ones obtained for
the Erdös-Rényi type trust graph. This happens because the
scale-free graph is more robust to the removal of a cloud
provider. Thus, the trust relationships are not affected as
much by the removal of a cloud provider and TCFF can still
form federations with high individual payoff for the cloud
providers. For both types of trust graphs, TCFF obtains
the highest individual payoff and average global reputation
among all the mechanisms in all cases.

 0

 0.2

 0.4

 0.6

 0.8

 1

256 512 1024 2048 4096 8192A
v
e

ra
g

e
 g

lo
b

a
l
re

p
u

ta
ti
o

n
 o

f
fe

d
e

ra
ti
o

n
’s

 m
e

m
b

e
rs

Number of jobs

TCFF
PCFF
RCFF

Grand Federation

Fig. 8: Cloud provider’s average reputation (Barabási-Albert
type trust graph).

 0

 5

 10

 15

 20

 25

 30

 35

 40

256 512 1024 2048 4096 8192

E
x
e

c
u

ti
o

n
 t

im
e

 (
S

e
c
o

n
d

s
)

Number of jobs

TCFF
PCFF
RCFF

Fig. 9: Execution time of the mechanims (Barabási-Albert
type trust graph).

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10

N
o
rm

a
liz

e
d
 i
n
d
iv

id
u
a
l
p
a
y
o
ff

Instances for a program with 512 jobs

TCFF
L-MAX

Fig. 10: Cloud provider individual payoffs obtained by
TCFF

5.2.3 Case Studies

To analyze the properties of TCFF in more details, we
provide the results of several case studies. First, we consider
all the programs with 512 jobs and analyze the operation
of TCFF. Second, we choose two programs out of all the
programs with 512 jobs and discuss the operation of the
mechanisms in more details for each of them. We consider
the Erdös-Rényi type trust graph for all these case studies.

We now investigate the Pareto optimality of the results
obtained by TCFF. Fig. 10 shows the normalized individual
payoff of the cloud providers participating in the final feder-
ation produced by TCFF. In addition, we show the normal-
ized individual payoff of cloud providers in the federation
that has the highest product of normalized individual payoff
and average reputation among all federations in the list L
maintained by TCFF (bars denoted by L-MAX in the figure).

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 12

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

16 15 14 13 12 11 10 9 8 7 6 5 4

 0

 0.2

 0.4

 0.6

 0.8

 1

N
o
rm

a
liz

e
d
 i
n
d
iv

id
u
a
l
p
a
y
o
ff

A
v
e
ra

g
e
 r

e
p
u
ta

ti
o
n

Size of the federation

Normalized individual payoff (NIP)
Average of global reputation (AGR)

NIP x AGR

Fig. 11: Program A: Results of TCFF iterations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

16 15 14 13 12 11 10 9 8 7 6 5 4 3

 0

 0.2

 0.4

 0.6

 0.8

 1

N
o
rm

a
liz

e
d
 i
n
d
iv

id
u
a
l
p
a
y
o
ff

A
v
e
ra

g
e
 r

e
p
u
ta

ti
o
n

Size of the federation

Normalized individual payoff (NIP)
Average of global reputation (AGR)

NIP x AGR

Fig. 12: Program B: Results of TCFF iterations

In doing so, we find a federation in L that has the highest
product of normalized individual payoff and average rep-
utation, and we present its normalized individual payoff.
This figure shows that in most cases, TCFF not only finds
the federation with the highest individual payoff, but also
the obtained federation has the highest average reputation
score leading to a Pareto optimal federation.

Figs. 11-15 show how TCFF, PCFF, and RCFF mecha-
nisms perform for two specific programsA andB consisting
of 512 jobs. Figs. 11-14 show the results of each iteration
of the TCFF and PCFF mechanisms, while Fig. 15 shows
only the results for the final federation obtained by RCFF
(the final federation is the only feasible solution explored
by RCFF). In these figures, the left vertical axis represents
the normalized individual payoff of the participating cloud
providers, while the right vertical axis represents the aver-
age global reputation.

We can also investigate the Pareto optimality of the
obtained federations from Fig. 11 and Fig. 12. Both figures
show that the federation formed by all 16 cloud providers
leads to low individual payoffs for them (left vertical axis)
and also to the lowest average global reputation (right
vertical axis). The results show that by removing a cloud
provider with the lowest reputation score (and thus reduc-
ing the size of a federation), the average global reputation
values increase. Fig. 11 shows that in the case of program A,
a federation with 4 cloud providers is the final federation
formed by TCFF that provides the highest normalized in-
dividual payoff and the highest average global reputation
of 0.4. Fig. 12 shows that in the case of program B, a
federation with 5 cloud providers is the final federation
formed by TCFF that provides the highest normalized in-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

16 15 14 13 12 11 10 9 8 7 6 5 4

 0

 0.2

 0.4

 0.6

 0.8

 1

N
o
rm

a
liz

e
d
 i
n
d
iv

id
u
a
l
p
a
y
o
ff

A
v
e
ra

g
e
 r

e
p
u
ta

ti
o
n

Size of the federation

Normalized individual payoff (NIP)
Average of global reputation (AGR)

NIP x AGR

Fig. 13: Program A: Results of PCFF iterations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

 0

 0.2

 0.4

 0.6

 0.8

 1

N
o
rm

a
liz

e
d
 i
n
d
iv

id
u
a
l
p
a
y
o
ff

A
v
e
ra

g
e
 r

e
p
u
ta

ti
o
n

Size of the federation

Normalized individual payoff (NIP)
Average of global reputation (AGR)

NIP x AGR

Fig. 14: Program B: Results of PCFF iterations

dividual payoff and an average global reputation of 0.37. It
is worth noting that the final federation (shown in Fig. 12)
does not have the highest average global reputation, but it
gives the highest product of normalized individual payoff
and average global reputation. In addition, the results show
that the normalized individual payoff of the cloud providers
decreases when the federation size reduces from 5 to 4. This
is due to the fact that in each iteration, TCFF removes a
cloud provider with the lowest reputation. A cloud provider
with the lowest reputation may have a lower cost compared
to other cloud providers in the federation. As a result,
removing such a cloud provider increases the total cost of
the program execution which in turn leads to decrease in
the normalized individual payoff of the remaining cloud
providers.

The formation of federations obtained by PCFF for the
same programs A and B is shown in Fig. 13 and Fig. 14,
respectively. Both figures show that the average global rep-
utation changes in all iterations, but it does not increase.
This is due to the fact that cloud providers are removed
randomly. PCFF for program A selects a federation with 4
cloud providers as the final federation with normalized indi-
vidual payoff of 0.96 and average global reputation of 0.14.
PCFF for program B selects a federation with 3 cloud
provider as the final federation with normalized individual
payoff of 0.77 and average global reputation of 0.18. The
results show that selecting a federation with the highest
normalized individual payoff does not provide the high-
est product of normalized individual payoff and average
global reputation. The objective of PCFF is to maximize the
individual payoff without considering the reputation of the
cloud providers. As shown in Fig 13 and Fig. 14, the average

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 13

 0

 0.2

 0.4

 0.6

 0.8

 1

Program A Program B

 0

 0.2

 0.4

 0.6

 0.8

 1

In
d
iv

id
u
a
l
p
a
y
o
ff

A
v
e
ra

g
e
 r

e
p
u
ta

ti
o
n

Normalized individual payoff (NIP)
Average of global reputation (AGR)

NIP x AGR

Fig. 15: Program A and B: Results of RCFF

global reputation does not exhibit any trend as the size of
the federation decreases. The key observation is that no fed-
eration obtained by PCFF has both the average reputation
and the individual payoff higher than those obtained by the
federation selected by TCFF.

Fig. 15 shows the individual payoff and the average
reputation for the federation determined by RCFF consid-
ering the same programs, A and B. For program A, RCFF
selects a federation with 13 cloud providers as the final
federation with normalized individual payoff of 0.49 and
average global reputation of 0.20. Note that the individual
payoffs are normalized for each application irrespectively.
For program B, RCFF selects a federation with 13 cloud
providers as the final federation with normalized individual
payoff of 0.50 and average global reputation of 0.20. The
federations obtained by RCFF, for both programs, do not
have both higher average reputation and higher individual
payoff than those selected by TCFF.

From the above results, we conclude that our proposed
trust-aware cloud federation formation mechanism, TCFF, is
able to form stable and Pareto optimal federations guaran-
teeing highest profit and reliability while ensuring service
level agreement.

6 CONCLUSION

We proposed a novel mechanism for cloud federation for-
mation considering the trust relationships among cloud
providers when making decisions. Trust relationships are
key factors influencing the formation of cloud federations.
In some cases, a cloud provider agrees to provide some
resources, but it fails to deliver the promised resources to
a federation. As a result, the application program could not
be executed by that federation. In our proposed mechanism,
TCFF, cloud providers cooperate to form federations with
high reputation cloud providers in order to execute large-
scale Map-heavy/Reduce-heavy programs. We proposed a
trust-aware cloud federation formation game to model the
problem, and we derived our cloud federation formation
mechanism, TCFF, to solve this bicriteria optimization prob-
lem. We performed extensive experiments to investigate
the properties of TCFF. Experimental results showed that
the formed federation obtained by TCFF maximizes the
reputation of its participating cloud providers. Moreover,
the formed federation produced by TCFF has the highest
individual payoffs for its participating cloud providers in

most of the times. Our proposed mechanism determines
a stable federation with Pareto optimal solutions in terms
of reputation and individual payoff. The execution time
of TCFF is reasonable given that large-scale applications
programs would require several hours to execute, mak-
ing the mechanism suitable for deployment on clouds.
We believe that this research will encourage cloud service
providers to adopt trust-based federation formation mech-
anisms and use them to pool their resources together in
order to execute large-scale application programs. Like any
other new technology, reaching the critical mass so that
enough number of providers participate in the mechanism
can be one challenge. This can be overcame by the incentives
derived from using the mechanism. Moreover, currently
cloud providers do not offer VMs that are compatible with
the VMs offered by other cloud providers, not allowing
the users to change cloud providers smoothly. Creating
standardized services among all providers that are willing
to provide federated resources is also another challenge. In
future work, we would like to study data privacy in cloud
federation formation by designing new matching techniques
to avoid co-locating VMs that could potentially be prone to
information leakage. Furthermore, we plan to design cloud
federation formation mechanisms that take into account the
geographical distribution of cloud providers when making
federation formation decisions.

ACKNOWLEDGMENT

This research was supported in part by NSF grant CNS-
1755913.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data process-
ing on large clusters,” in Proc. of the 6th USENIX Symposium on
Operating System Design and Implementation, 2004, pp. 137–150.

[2] L. Mashayekhy, M. Nejad, D. Grosu, Q. Zhang, and W. Shi,
“Energy-aware scheduling of mapreduce jobs for big data applica-
tions,” IEEE Transactions on Parallel and Distributed Systems, vol. 26,
no. 10, pp. 2720–2733, 2015.

[3] Y. Wang, J. Tan, W. Yu, L. Zhang, X. Meng, and X. Li, “Preemptive
reducetask scheduling for fair and fast job completion,” in Proc. of
the 10th Intl. Conf. on Autonomic Computing, 2013, pp. 279–289.

[4] L. Mashayekhy, M. Nejad, and D. Grosu, “A PTAS mechanism
for provisioning and allocation of heterogeneous cloud resources,”
IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 9,
pp. 2386–2399, 2015.

[5] L. Mashayekhy, M. M. Nejad, and D. Grosu, “Physical machine
resource management in clouds: A mechanism design approach,”
IEEE Trans. on Cloud Computing, vol. 3, no. 3, pp. 247–260, 2015.

[6] L. Mashayekhy, M. M. Nejad, D. Grosu, and A. V. Vasilakos, “An
online mechanism for resource allocation and pricing in clouds,”
IEEE Transactions on Computers, vol. 65, no. 4, pp. 1172–1184, 2016.

[7] B. Rochwerger, D. Breitgand, E. Levy, A. Galis et al., “The reservoir
model and architecture for open federated cloud computing,” IBM
Journal of Research and Development, vol. 53, no. 4, pp. 4–1, 2009.

[8] T. Kurze, M. Klems, D. Bermbach, A. Lenk, S. Tai, and M. Kunze,
“Cloud federation,” in Proc. of the 2nd Intl. Conf. on on Cloud
Computing, Grids, and Virtualization, 2011, pp. 32–38.

[9] I. Goiri, J. Guitart, and J. Torres, “Characterizing cloud federation
for enhancing providers’ profit,” in Proc. IEEE Intl. Conf. on Cloud
Computing, 2010, pp. 123–130.

[10] L. Mashayekhy, M. M. Nejad, and D. Grosu, “Cloud federations
in the sky: Formation game and mechanism,” IEEE Transactions on
Cloud Computing, vol. 3, no. 1, pp. 14–27, 2015.

[11] N. Samaan, “A novel economic sharing model in a federation of
selfish cloud providers,” IEEE Trans. Parallel Distrib. Syst., vol. 25,
no. 1, pp. 12–21, 2014.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 14

[12] D. Bruneo, “A stochastic model to investigate data center perfor-
mance and QoS in IaaS cloud computing systems,” IEEE Trans.
Parallel Distrib. Syst., vol. 25, no. 3, pp. 560–569, 2014.

[13] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Sto-
ica, “Spark: cluster computing with working sets,” in Proc. of the
2nd USENIX Conf. on Hot Topics in Cloud Computing, 2010, pp. 1–10.

[14] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
“Improving mapreduce performance in heterogeneous environ-
ments,” in Proc. of the 8th USENIX Conf. on Operating Systems
Design and Implementation, 2008, pp. 29–42.

[15] H. Chang, M. S. Kodialam, R. R. Kompella, T. V. Lakshman,
M. Lee, and S. Mukherjee, “Scheduling in mapreduce-like systems
for fast completion time,” in Proc. of the 30th IEEE International
Conference on Computer Communications, 2011, pp. 3074–3082.

[16] J. Zhan, L. Wang, X. Li, W. Shi, C. Weng, W. Zhang, and X. Zang,
“Cost-aware cooperative resource provisioning for heterogeneous
workloads in data centers,” IEEE Transactions on Computers, vol. 62,
no. 11, pp. 2155–2168, 2013.

[17] C. Hang, Y. Wang, and M. Singh, “Operators for propagating trust
and their evaluation in social networks,” in Proc. 8th Int. Conf.
Autonomous Agents and Multiagent Syst. Vol. 2, 2009, pp. 1025–1032.

[18] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins, “Propagation
of trust and distrust,” in Proc. of the 13th Intl. Conf. on World Wide
Web, 2004, pp. 403–412.

[19] D. Agrawal, H. Chivers, J. Clark, C. Jutla, and J. McDermid, “A
proposal for trust management in coalition environments,” IBM
Thomas J. Watson Research Center, Yorktown Heights, NY, 2008.

[20] K. Avrachenkov, D. Nemirovsky, and K. Pham, “A survey on
distributed approaches to graph based reputation measures,” in
Proc. of the 2nd Intl. Conf. on Performance Evaluation Methodologies
and Tools, 2007, p. 82.

[21] M. Rahman, R. Ranjan, and R. Buyya, “Reputation-based depend-
able scheduling of workflow applications in peer-to-peer grids,”
Computer Networks, vol. 54, no. 18, pp. 3341–3359, 2010.

[22] L. Mashayekhy and D. Grosu, “A reputation-based mechanism
for dynamic virtual organization formation in grids,” in Proc. 41st
IEEE Intl. Conf. on Parallel Processing, 2012, pp. 108–117.

[23] R. K. Ko, P. Jagadpramana, M. Mowbray, S. Pearson, M. Kirchberg,
Q. Liang, and B. S. Lee, “Trustcloud: A framework for account-
ability and trust in cloud computing,” in Proc. of the IEEE World
Congress on Services, 2011, pp. 584–588.

[24] M. M. Hassan, M. Abdullah-Al-Wadud, A. Almogren, S. Rahman,
A. Alelaiwi, A. Alamri, M. Hamid et al., “QoS and trust-aware
coalition formation game in data-intensive cloud federations,”
Concurrency and Computation: Practice and Experience, 2015.

[25] R. Shaikh and M. Sasikumar, “Trust model for measuring security
strength of cloud computing service,” Procedia Computer Science,
vol. 45, pp. 380–389, 2015.

[26] K. Gokulnath and R. Uthariaraj, “Game theory based trust model
for cloud environment,” The Scientific World Journal, vol. 2015,
2015.

[27] F. Messina, G. Pappalardo, D. Rosaci, C. Santoro, and G. M. Sarné,
“A trust model for competitive cloud federations,” in Proc. of the
8th IEEE Intl. Conf. on Complex, Intelligent and Software Intensive
Systems, 2014, pp. 469–474.

[28] U. Premarathne, I. Khalil, Z. Tari, and A. Zomaya, “Cloud-
based utility service framework fortrust negotiations using feder-
ated identitymanagement,” IEEE Transactions on Cloud Computing,
vol. PP, no. 99, 2015.

[29] L. Mashayekhy, M. M. Nejad, and D. Grosu, “A framework for
data protection in cloud federations,” in Proc. of the 43rd Interna-
tional Conference on Parallel Processing, 2014, pp. 283–290.

[30] G. Golub and C. Van Loan, Matrix computations. Johns Hopkins
Univ. Press, 1996, vol. 3.

[31] P. Bonacich, “Some unique properties of eigenvector centrality,”
Social Networks, vol. 29, no. 4, pp. 555–564, 2007.

[32] L. S. Shapley, “Cores of convex games,” International Journal of
Game Theory, vol. 1, no. 1, pp. 11–26, 1971.

[33] V. Conitzer and T. Sandholm, “Computing shapley values, manip-
ulating value division schemes, and checking core membership
in multi-issue domains,” in Proc. of the 19th National Conference on
Artifical Intelligence, 2004, pp. 219–225.

[34] T. Javidi, “Cooperative and non-cooperative resource sharing in
networks: A delay perspective,” IEEE Transactions on Automatic
Control, vol. 53, no. 9, pp. 2134–2142, 2008.

[35] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness.

[36] J. Xu and B. Palanisamy, “Cost-aware resource management for
federated clouds using resource sharing contracts,” in Proc. of the
IEEE 10th Intl. Conf. on Cloud Computing, 2017, pp. 238–245.

[37] T. Gouasmi, W. Louati, and A. H. Kacem, “Geo-distributed bigdata
processing for maximizing profit in federated clouds environ-
ment,” in Proc. of the IEEE 26th Euromicro International Conference on
Parallel, Distributed and Network-based Processing, 2018, pp. 85–92.

[38] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The HiBench
benchmark suite: Characterization of the MapReduce-based data
analysis,” in Proc. of the IEEE 26th Conf. on Data Engineering
Workshops, 2010, pp. 41–51.

[39] T. Braun, H. Siegel, N. Beck, L. Boloni, M. Maheswaran et al.,
“A comparison of eleven static heuristics for mapping a class
of independent tasks onto heterogeneous distributed computing
systems,” J. of Parallel and Distributed Computing, vol. 61, no. 6, pp.
810–837, 2001.

[40] P. Erdös and A. Rényi, “On random graphs, I,” Publicationes
Mathematicae (Debrecen), vol. 6, pp. 290–297, 1959.

[41] A.-L. Barabási and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

BIOGRAPHIES

Lena Mashayekhy is an assistant professor in
the Department of Computer and Information
Sciences at the University of Delaware. She re-
ceived her PhD degree in computer science from
Wayne State University in 2015. Her research in-
terests include edge and cloud computing, data-
intensive computing, distributed systems and
parallel algorithms, algorithmic game theory, and
electric vehicles. Her doctoral dissertation re-
ceived the 2016 IEEE TCSC Outstanding PhD
Dissertation Award. She is also a recipient of the

2017 IEEE TCSC Award for Excellence in Scalable Computing for Early
Career Researchers. She has published more than thirty peer-reviewed
papers in venues such as IEEE Transactions on Cloud Computing
and IEEE Transactions on Parallel and Distributed Systems. She is a
member of the IEEE, ACM, and INFORMS.

Mark M. Nejad is an assistant professor in the
Department of Civil and Environmental Engi-
neering at the University of Delaware. His re-
search interests include network optimization
and control, cloud computing, game theory, and
connected vehicles. He received the 2016 Insti-
tute of Industrial and Systems Engineers (IISE)
Pritsker Best Doctoral Dissertation Award. He
has published more than thirty peer-reviewed
papers in venues such as IEEE Transactions
on Cloud Computing and IEEE Transactions on

Computers. He is a member of the IEEE, IISE, and INFORMS.

Daniel Grosu received the Diploma in engineer-
ing (automatic control and industrial informatics)
from the Technical University of Iaşi, Romania, in
1994 and the MSc and PhD degrees in computer
science from the University of Texas at San An-
tonio in 2002 and 2003, respectively. Currently,
he is an associate professor in the Department
of Computer Science, Wayne State University,
Detroit. His research interests include parallel
and distributed computing, approximation algo-
rithms, computer security, and topics at the bor-

der of computer science, game theory and economics. He has published
more than one hundred peer-reviewed papers in the above areas. He
has served on the program and steering committees of several interna-
tional meetings in parallel and distributed computing such as ICDCS,
CLOUD, ICPP and NetEcon. He is a senior member of the ACM, the
IEEE, and the IEEE Computer Society.

