
IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 1

Cloud Federations in the Sky: Formation Game
and Mechanism

Lena Mashayekhy, Student Member, IEEE, Mahyar Movahed Nejad, Student Member, IEEE, and
Daniel Grosu, Senior Member, IEEE

Abstract—The amount of computing resources required by current and future data-intensive applications is expected to increase
dramatically, creating high demands for cloud resources. The cloud providers’ available resources may not be sufficient enough to
cope with such demands. Therefore, the cloud providers need to reshape their business structures and seek to improve their dynamic
resource scaling capabilities. Federated clouds offer a practical platform for addressing this service management issue. We introduce
a cloud federation formation game that considers the cooperation of the cloud providers in offering cloud IaaS services. Based on
the proposed federation formation game, we design a cloud federation formation mechanism that enables the cloud providers to
dynamically form a cloud federation maximizing their profit. In addition, the proposed mechanism produces a stable cloud federation
structure, that is, the participating cloud providers in the federation do not have incentives to break away from the federation. We
analyze the performance of the proposed mechanism by performing extensive experiments. The results of the experiments show that
the cloud federation obtained by our proposed mechanism is stable, yielding high profit for the participating cloud providers.

Index Terms—Cloud federation, virtual machine, game theory.

✦

1 INTRODUCTION

C LOUDS are large-scale distributed computing sys-
tems built around core concepts such as computing

as utility, virtualization of resources, on demand access
to computing resources, and outsourcing computing ser-
vices [1]. These concepts have positioned the clouds
as an attractive platform for businesses enabling them
to outsource some of their IT operations. In fact, the
clouds services market share in the IT business has
rapidly increased, and it is estimated to reach $150 billion
by 2015 [2]. Cloud services are offered as three main
categories: software as a service (SaaS), platform as a
service (PaaS), and infrastructure as a service (IaaS). In
this paper, we focus on IaaS, where cloud providers
offer different types of resources in the form of virtual
machine (VM) instances.
Cloud computing systems’ ability to provide on de-

mand access to always-on computing utilities has at-
tracted many enterprises due to their cost-benefit ra-
tios, leading to rapid growth of the cloud computing
market. Such market, however, presents a host of new
challenges due to the dynamic nature of users’ demands.
The variability of users’ demands increases when it
comes to their requests for data-intensive applications.
The amount of computing resources that data-intensive
applications require can dramatically increase, and cloud
providers’ available resources may not be sufficient
enough to cope with such demands. This emerging
service management problem in cloud computing ne-
cessitates that cloud providers reshape their business

• L. Mashayekhy, M. Nejad, and D. Grosu are with the Department of
Computer Science, Wayne State University, Detroit, MI, 48202.
E-mail: mlena@wayne.edu, mahyar@wayne.edu, dgrosu@wayne.edu

structures and seek to improve their dynamic resource
scaling capabilities. Federated clouds offer a practical
platform for addressing this service management prob-
lem. A cloud provider can dynamically scale-up its
resource capabilities by forming a cloud federation with
other cloud providers. On the other hand, other cloud
providers that have unused capacities can make profit
by participating in a federation. Users’ requests can be
satisfied by federating resources belonging to several
cloud providers [3], [4]. A cloud federation is a collection
of cloud providers that cooperate in order to provide the
resources requested by users. Forming cloud federations
helps achieve greater scalability and performance. If
a cloud provider does not have enough resources to
provide all the requested resources to the customer, it
will reject the requests which leads not only to profit
loses, but also to reputation losses. However, by forming
a federation with other cloud providers, it can provide
part of the requested resources to make some profit. In
addition, the federation may provide the resources at a
lower cost. Employing only one cloud provider may lead
to issues such as lock-in and a single point of failure.
Interoperability among clouds can eliminate the single
point of failure problem [5]. Federating cloud resources
can be a solution for interoperability among multiple
clouds, enabling the formation of a pool of resources
used for providing on demand services.
Virtualization is a major breakthrough enabling cloud

providers to abstract the physical infrastructure, and to
hide the complexity of underlying resources. They create
a pool of virtualized resources which are offered to users
as different types of VM instances. In this paper, we
model the cloud federation formation as a coalitional
game, where cloud providers decide to form a coalition

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 2

(cloud federation) to allocate VMs dynamically, based on
users’ requests. The cloud federation tries to maximize
the total profit obtained by serving the users’ requests.
The model that we consider consists of a set of cloud
providers and a user that submits a request consisting
of a number of different VM instances. A subset of cloud
providers will form a federation in order to provide
the requested VM instances. Based on the proposed
federation formation game we design a cloud federation
formation mechanism.

1.1 Our Contribution

We model the cloud federation formation as a hedonic
game, a type of coalitional game, satisfying fairness and
stability properties. We define the federation preference
relations for the cloud federation formation game and
design a cloud federation formation mechanism which
allows the cloud providers to make their own decisions
to form a federation yielding the highest total profit. In
the proposed mechanism, federations of cloud providers
decide to merge and split in order to form a federation
providing requested resources as a service to the user.
The mechanism also determines the individual profit of
each participating cloud provider in the federation. Each
cloud provider covers its incurred costs, and obtains
a profit based on its market power. The mechanism
provides a stable federation structure, that is, none of
the cloud providers has incentives to merge to another
federation or split from a federation to form another fed-
eration. We analyze the properties of our proposed cloud
federation formation mechanism and perform extensive
experiments to investigate its properties.

1.2 Related Work

The primary requirements for forming federations of
cloud providers are discussed by Rochwerger et al. [6].
In order to support these requirements, Rochwerger et
al. [3] introduced the Reservoir (resources and services
virtualization without boundaries) model which allows
two or more cloud providers to pool their resources to-
gether in order to provide services as a federated cloud.
However, Reservoir does not provide any mechanism
for forming cloud federations. Buyya et al. [7] presented
the vision, challenges, and architectural elements of fed-
erated cloud computing environments. Their proposed
framework supports scaling of applications across mul-
tiple cloud providers. Celesti et al. [8] introduced a cloud
architecture that allows a cloud to build a federation
with other clouds. Their model considers two types of
clouds, home and foreign, where a home cloud is the
cloud that is unable to fulfill its users’ requests and
forwards the requests to foreign clouds. Their model
assumes that the foreign clouds could provide resources.
It does not consider the incentives of the foreign clouds
for providing resources to the home cloud. However,
in our paper we consider the incentives of the cloud

providers for forming federations and provide a mecha-
nism for sharing the profit among the cloud providers in
a federation. Goiri et al. [9] provided models that assist
a cloud provider in making decisions on forming feder-
ations with public clouds in order to maximize its profit.
Their study does not consider the incentives of the other
clouds for providing resources. In addition, they did not
consider different types of VMs and their heterogeneous
resources. However, our work takes into account the
incentives of all the participating cloud providers and
the heterogeneity of VMs and cloud resources. Toosi et
al. [10] proposed several resource provisioning policies
helping the cloud providers increase their resource uti-
lization and profit. They considered a model where
the cloud providers can terminate the VMs, called spot
VMs, whenever the profit for running such VMs is
negative. Van den Bossche et al. [11] proposed a binary
integer program formulation that minimizes the cost of
outsourcing using a mix of public and private clouds.
Their mechanism tries to maximize the utilization of
the private cloud. However, their proposed method can-
not find the solution on hybrid clouds in reasonable
amount of time. Nordal et al. [12] proposed a system for
managing computations in federated clouds. They also
considered the applications’ confidentiality constraints.
Bin et al. [13] proposed a VM placement approach in
a cloud federation considering multiple data privacy
constraints. However, they did not consider the cost of
outsourcing in the objective of their method. Chaisiri et
al. [14] proposed an optimal VM provisioning algorithm
using stochastic programming considering several cloud
providers with the objective of maximizing profit. Bru-
neo [15] proposed performance evaluation techniques
based on stochastic reward nets for federated clouds to
predict and quantify the cost-benefit of a strategy portfo-
lio and the corresponding quality of service experienced
by users. Mihailescu and Teo [16] evaluated the impact
of users’ rationality in a federated cloud. Yang et al. [17]
proposed a business-oriented federated cloud computing
architecture for a specific type of applications, the real-
time online interactive applications, such as multi-player
online computer games. Their model is built on the
concept of computation migration instead of VMs, and
it does not consider the federation formation problem.
Researches approached the cloud resource manage-

ment problem considering different objectives and points
of view. Kesavan et al. [18] proposed a set of low-
overhead management methods for managing the cloud
infrastructure capacity to achieve a scalable capacity
allocation for thousands of machines. Rodriguez and
Buyya [19] proposed a meta-heuristic algorithm based
on Particle Swarm Optimization for VM provisioning
and scheduling strategies on IaaS. The proposed strate-
gies minimize the overall workflow execution cost while
meeting deadline constraints. Their approach considers
dynamic provisioning, the heterogeneity of computing
resources, and the variations in the VMs performance.
Doyle et al. [20] proposed an algorithm that determines

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 3

to which data center the user requests should be routed,
based on the relative priorities of the cloud operator.
Their algorithm reduces the latency, carbon emissions,
and operational costs. Mastroianni et al. [21] proposed an
approach for the consolidation of VMs on two resources,
that minimizes the power consumption while ensuring
a good level of QoS. In their approach, decisions on
the assignment and migration of VMs are driven by
probabilistic processes and are based exclusively on local
information. All these works addressed the resource
management issues within a single cloud and not within
federations of clouds.
Game theory-based resource allocation mechanisms

for single clouds were proposed by Wei et al. [22] and
Jalaparti et al. [23]. Zhang et al. [24] proposed online
auction mechanisms for resource allocation in clouds.
In our previous studies [25], [26], we proposed strategy-
proof mechanisms for VM provisioning and allocation in
clouds in order to maximize the profit. A game theoretic
solution for dynamic resource allocation in a cloud fed-
eration was proposed by Hassan et al. [27]. The authors
defined a price function for a cloud provider that gives
incentives to other clouds to contribute resources and
to form a federation. Mihailescu and Teo [28] proposed
a strategy-proof dynamic pricing scheme for federated
cloud environments. A revenue sharing mechanism for
multiple cloud providers using stochastic linear pro-
gramming games was proposed by Niyato et al. [29].
Their mechanism does not consider the cost that each
cloud provider incurs. As a result, the solution of the
revenue sharing is in the core of the proposed game.
The model considers a fixed cooperation cost for each
cloud provider. A cloud provider decides to join or not
to join the federation based on the cooperation cost.
Mashayekhy and Grosu [30] proposed a mechanism
for solving the virtual organization formation problem
in grids. The mechanism considers the incentives of
the grid service providers while providing the required
capabilities to execute the user’s application. They also
proposed a distributed mechanism for dynamic virtual
organization formation in grids [31]. These mechanisms
cannot be employed in cloud settings because the unique
characteristics of cloud systems bring about new prob-
lems. Clouds necessitate the design of novel mecha-
nisms considering virtualization, VM provisioning, VM
allocation, and profit sharing among cloud providers.
Li et al. [32] investigated profit maximization strategies
in cloud federations, where VMs are sold through auc-
tions. They proposed a truthful double auction-based
mechanism for trading VMs within a federation, where
clouds can buy and sell their resources. Samaan [33]
proposed an economic model based on repeated games,
to regulate capacity sharing in a cloud federation. Cloud
providers’ objective is to sell their unused capacity in the
spot market, but they are uncertain of future workload
fluctuations. Our paper is different from these studies
since we consider the federation formation problem,
where our proposed mechanism determines how cloud

providers should provide the resources to fulfill users’
requests.

1.3 Organization

This paper is organized as follows. In Section 2, we
describe the cloud federation formation problem and
the system model we consider. In Section 3, we de-
scribe the game theoretic framework used to design the
proposed cloud federation formation mechanism. Then,
we present the proposed mechanism and characterize
its properties. In Section 4, we evaluate the mechanism
by extensive simulation experiments. In Section 5, we
summarize our results and present possible directions
for future research.

2 CLOUD FEDERATION FRAMEWORK

In this section, we describe the model of the system and
introduce the problem of maximizing the profit within a
cloud federation. We also introduce a coalitional game,
called the cloud federation game, that serves as a basis
for the development of our proposed cloud federation
formation game and mechanism that will be presented
in Section 3.

2.1 System Model

We first describe the system model consisting of a set
of cloud providers, a broker as a mediator, and several
cloud users. The broker is a trusted third party respon-
sible for handling the federation formation tasks such
as, receiving requests, executing the federation forma-
tion mechanism, receiving the payment from users, and
dividing the profit among participating providers. We
assume that a set of cloud providers I = {C1, C2, . . . , Cm}
is available to provide resources in the form of VM in-
stances to cloud users. The cloud providers offer n types
of VM instances: VM = {VM1, . . . , V Mn}, where each
instance provides a specific number of cores, amount
of memory, and amount of storage. The VM instance
of type VM j (j = 1, . . . , n) is characterized by: (i) the
number of cores, wc

j ; (ii) the amount of memory, wm
j ;

and (iii) the amount of storage provided, ws
j .

Each cloud provider Ci ∈ I has a specific number of
cores, amount of memory, and amount of storage avail-
able to share in a federation. Note that each provider
reserves a specific capacity for its own users, and speci-
fies the available capacity to be shared in the federation
based on its load. We denote by Ni, the number of
available cores of cloud provider Ci, by Mi, the amount
of available memory of cloud provider Ci, and by Si, the
amount of available storage of cloud provider Ci. Each
provider Ci incurs cost when providing resources. For a
cloud provider Ci, we denote by cij , the cost associated
with each VM instance of type VMj , where j = 1, . . . , n.
A user sends a request to a broker, consisting of the

number of VM instances of each type needed. A request
is denoted by R = {r1, . . . , rn}, where rj is the number

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 4

TABLE 1: Notation

I Set of cloud providers {C1, . . . , Cm}
Ni Number of available cores of Ci ∈ I
Mi Amount of available memory of Ci ∈ I
Si Amount of available storage of Ci ∈ I
VM Set of VMs {VM1, . . . , V Mn}
wc

j Number of cores in VM j ∈ VM
wm

j Amount of memory in VM j ∈ VM
ws

j Amount of storage in VM j ∈ VM
pj Price for an instance of type VM j ∈ VM
cij Cost of an instance of type VMj provided by Ci ∈ I
rj Number of requested VM instances of type VMj

R User’s request, R = {r1, . . . , rn}

of requested VM instances of type VMj , j = 1, . . . , n. The
broker bills a user based on the allocated VM instances.
To do so, the broker sets a price pj on each type of
VM instance VMj , where j = 1, . . . , n. The final price
that the user pays for her request is independent of the
cloud provider providing the VM instances. The final
price paid by the user for each of the rj VM instances
of type VMj is rjpj , where pj is a fixed price for an
instance of type VM j . A broker has all the information
about cloud providers such as their available resources
and associated cost, and it is responsible for forming
the federation. Table 1 summarizes the notation used
throughout the paper.
A cloud federation F is a set of cloud providers, i.e.,

F ⊆ I. The objective of a cloud federation F is to
maximize its profit. We formulate the cloud federation
profit maximization problem for a given federation F as
an integer program (IP), called IP-CFPM, as follows:

Maximize
∑

Ci∈F

n
∑

j=1

xij(pj − cij), (1)

Subject to:

n
∑

j=1

wc
jxij ≤ Ni, (∀Ci ∈ F), (2)

n
∑

j=1

wm
j xij ≤Mi, (∀Ci ∈ F), (3)

n
∑

j=1

ws
jxij ≤ Si, (∀Ci ∈ F), (4)

∑

Ci∈F

xij = rj , (∀j = 1, . . . , n), (5)

n
∑

j=1

xij ≥ 1, (∀Ci ∈ F), (6)

xij ≥ 0, and is integer

(∀Ci ∈ F and ∀j = 1, . . . , n), (7)

The decision variables xij represent the number of VM
instances of type VMj provided by cloud provider Ci.
The objective function (1) is the total profit obtained by
the participating cloud providers in the federation F .
The total profit is equal to the revenue received from
the user minus the cost incurred by the cloud providers.
Constraints (2) ensure that the number of cores provided
by a cloud provider participating in the federation is
less than its available number of cores. Constraints (3)
guarantee that the amount of memory provided by a
cloud provider participating in the federation is less
than the amount of its available memory. Constraints (4)
ensure that the amount of storage provided by a cloud
provider participating in the federation is less than the
amount of its available storage. Constraints (5) guarantee
that the number of VM instances assigned to the user
for each type of VM by all cloud providers is exactly the
number of VM instances requested by the user for that
type of VM instance. Constraints (6) ensure that each
cloud provider in the federation contributes at least one
VM instance. These constraints force the cloud providers
to contribute resources to the federation. Constraints (7)
represent the integrality requirements for the decision
variables.

2.2 Cloud Federation Game

In this section, we introduce the cloud federation game, a
coalitional game that allows us to model federations and
investigate the stability of different federation structures.
This game model will be extended in Section 3 into a he-
donic game, called the cloud federation formation game,
that characterizes the process of federation formation
and will serve as the basis for the design of our proposed
federation formation mechanism. The reader is referred
to [34] for preliminaries on coalitional game theory. We
define a cloud federation game (I, v), as a coalitional game
with transferable utility, where each cloud provider in I
is a player in the game, and v is the characteristic function,
defined on F ⊆ I. The characteristic function is the
profit obtained when the cloud providers of federation
F cooperate as a coalition. This function is a real-valued
function such that v : F → R

+ and v(∅) = 0. We consider
each cloud federation F ⊆ I as a coalition. If all the cloud
providers form a federation, i.e., F = I, we call it the
grand federation.
We define the characteristic function for our proposed

cloud federation game as follows:

v(F) =

{

0 if |F| = 0 or IP-CFPM is not feasible,

P if |F| > 0 and IP-CFPM is feasible,
(8)

where |F| is the cardinality of F , and P is the total profit
obtained by the federation (i.e., the value of IP-CFPM
objective function).

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 5

A cloud federation game should satisfy two main
properties, fairness and stability. The profit obtained by
a federation should be fairly divided among the partic-
ipating cloud providers. A federation should be stable,
that is, the participating cloud providers should not have
incentives to leave the federation. In the following, we
explain these two properties of the proposed game in
more details.
The value v(F) of the federation F must be divided

among its participating cloud providers based on a given
rule that satisfies fairness. In this study, we consider a
fair profit division rule based on the market share of
the cloud providers. A cloud provider that contributes
more resources in all the possible federations in which
it participates should receive higher profit regardless
of its resource allocation in the selected federation. We
define, ψCi

(F), the payoff or the share of cloud provider
Ci that is part of federation F . In order to determine
the payoff ψCi

(F), we employ the normalized Banzhaf
value [35]. The Banzhaf value is a division of payoffs for
the grand federation that takes into account the power
of the players. The Banzhaf value of cloud provider Ci

in the cloud federation game (I, v) is defined as follows:

βCi
(I) =

1

2m−1

∑

F⊆I\{Ci}

[v(F ∪ {Ci}) − v(F)]. (9)

The Banzhaf value represents the average marginal con-
tribution of cloud provider Ci over all possible federa-
tions containing Ci. The marginal contribution of Ci in
a federation F is v(F ∪ {Ci}) − v(F), i.e., the difference
between the value of a federation with and without Ci.
The normalized Banzhaf value is defined as

BCi
(I) =

βCi
(I)

∑

Cj∈I βCj
(I)

. (10)

The normalized Banzhaf value gives a fair way of di-
viding the grand federation’s profit among its members.
The profit that each member Ci receives in the grand
federation is calculated as follows:

ψCi
(I) = BCi

(I)v(I). (11)

The payoff vector Ψ(I) = (ψC1
(I), · · · , ψCm

(I)) gives
the payoff division for the grand federation. Computing
the Banzhaf value for a game with a large number of
players is NP-hard [36].
We now define, ψCi

(F), the payoff of cloud provider
Ci participating in federation F , as follows:

ψCi
(F) =

ψCi
(I)

∑

∀Cj∈F ψCj
(I)

v(F). (12)

In our setting, using the Banzhaf value for payoff di-
vision is more reasonable than using the Shapley value.
The Shapley value [37] considers the order of the players
entering the federations, when determining the payoffs.
However, in our case such an order does not affect the
value of the federations. The Banzhaf value assumes that

TABLE 2: The characteristics of available VM instances.

Small Medium Large Extralarge
VM1 VM2 VM3 VM4

wc
j (1.6GHz CPU) 1 2 4 8

wm
j (GB Memory) 1.7 3.75 7.5 15

ws
j (TB Storage) 0.22 0.48 0.98 1.99

pj (price) 0.12 0.24 0.48 0.96

each player is equally likely to join any federation. That
means, each federation will form with equal probability.
We analyze the stability of the grand federation using

a solution concept for coalitional games, called the core.
To define the core, we first need to introduce the concept
of imputation, as follows.
Definition 1 (Imputation): An imputation is a payoff

vector (ψC1
(I), · · · , ψCm

(I)) satisfying:
i) ψCi

(I) ≥ v(Ci), ∀Ci ∈ I, and
ii)

∑

Ci∈I ψCi
(I) = v(I).

Condition (i) guarantees that the profit obtained by
each cloud provider Ci participating in the grand feder-
ation is not less than its profit obtained by acting alone.
Condition (ii) ensures that the entire profit of the grand
federation is divided among all cloud providers.
Definition 2 (Core): The core is a set of imputations

satisfying
∑

Ci∈F ψCi
(I) ≥ v(F),∀F ⊆ I.

That means, the profit of any federation is not greater
than the sum of the payoffs of its participating cloud
providers in the grand federation. The existence of a
payoff vector in the core shows that the grand federation
is stable. As a result, a payoff division is in the core if
there is no incentive for any cloud provider to leave the
grand federation to join another federation. In the case
that the core does not exist (i.e., the grand federation is
not stable), independent and disjoint federations would
form.
In the following we consider an example that shows

that the core of the proposed cloud federation game
can be empty. We consider three cloud providers I =
{C1, C2, C3}, and four types of VM instances VM =
{VM1, V M2, V M3, V M4} representing small, medium,
large, and extra large VM instances, respectively. The
description of the VM instances is provided in Table 2.
The instance types and pricing are similar to the ones
used by Microsoft Azure [38].
We consider that a user requests one VM instance of

type small, one VM instance of type medium, and one
VM instance of type extra large. That is, the request
of the user is R = {1, 1, 0, 1}. In Table 3, we give the
computing and storage capacity of each cloud provider,
the cost and the price of each type of VM instance. For
simplicity, we assume that all cloud providers have the
same specifications. As an example, C1 incurs a cost of
$0.072 to provide one VM of type VM1. The computing,
memory, and storage capacity of C1 is 8 cores, 16 GB, and
2000 GB, respectively. Based on the request, the user pays
$1.32 to the federation, that is $0.12+$0.24+$0.96.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 6

TABLE 3: The cloud providers’ settings.

Ni Mi Si VM cj pj

Ci 8 16 GB 2000 GB

VM1 0.072 0.12
VM2 0.168 0.24
VM3 0.378 0.48
VM4 0.839 0.96

TABLE 4: The value for each federation.

F v(F)
{C1} 0
{C2} 0
{C3} 0
{C1, C2} 0.24
{C1, C3} 0.24
{C2, C3} 0.24
{C1, C2, C3} 0.24

If C1, C2 and C3 provide resources individually, then
none of them can satisfy the user’s request. The val-
ues v(F) for all possible federations are given in Ta-
ble 4. If the sum of the payoffs to individual cloud
providers {C1, C2}, {C1, C3}, and {C2, C3} is less than
0.24 in the grand federation {C1, C2, C3}, then the set
of cloud providers has incentive to deviate from the
grand federation. Since ψC1

(I) + ψC2
(I) ≥ v({C1, C2}),

ψC1
(I) + ψC3

(I) ≥ v({C1, C3}), and ψC2
(I) + ψC3

(I) ≥
v({C2, C3}), are not simultaneously satisfied, there is no
payoff vector in the core, and thus, the core of the
cloud federation game is empty. Therefore, the grand
federation would not form.
Since the grand federation may not be stable, we pro-

pose a cloud federation formation mechanism in order
to find a stable cloud federation. In the next section, we
introduce the cloud federation formation game, where
the focus is on how to form independent and disjoint
federations. The cloud federation formation game will be
the basis for the design of our proposed cloud federation
formation mechanism.

3 CLOUD FEDERATION FORMATION MECHA-
NISM

As we showed in the previous section, the core of the
cloud federation game can be empty. If the grand federa-
tion does not form, independent and disjoint federations
would form. In this section, we introduce the proposed
cloud federation formation game, present the proposed
cloud federation formation mechanism and characterize
its properties.

3.1 Federation Formation Framework

In this section, we investigate the coalitional structures
in the cloud federation game when the grand federation
does not form, i.e., the grand federation is not stable. A
federation structure FS = {F1,F2, . . . ,Fh} is a partition
of the set of cloud providers I such that each provider is

a member of exactly one federation, i.e., Fi ∩ Fj = ∅ for
all i and j, where i 6= j and

⋃

Fi∈CF Fi = I. We denote by
Π the set of all federation structures. The total number of
federation structures is Bm, where Bm is the m-th Bell
number [39], and m = |I|. Thus, finding the optimal
federation structure via exhaustive search through all
federation structures is not feasible.
The coalition formation [40] investigates the partition-

ing of the players into disjoint sets. In general, the prob-
lem of finding the optimal coalition structure in coalition
formation is NP-complete [41]. Note that, only one of
the federations in the federation structure is selected
to provide the resources requested by the user. The
remaining cloud providers may form other federations to
service other requests of users. As a result, the formation
of other federations with cloud providers outside of the
selected federation does not affect the decision of the
cloud providers participating in the selected federation.
To be able to model the cloud federation formation

process, we augment the cloud federation game pre-
sented in subsection 2.2 with a preference relation over
federations. The newly obtained game, called the cloud
federation formation game, is a hedonic game [42], that is,
a special type of coalitional game that considers players’
preferences over coalitions. In hedonic games, players
have preferences over coalitions. In the following, we
present the definition of a hedonic game.
Definition 3 (Hedonic game): A hedonic game is a tu-

ple (I,�), where I is the set of players in the game, �i

is a reflexive, complete, and transitive preference relation
defined on Πi for player i, and Πi is the set of subsets
in I containing player i.
Each player knows whether it prefers to be in com-

pany of some players rather than others. If A �i B,
player i prefers coalition B at most as much as coali-
tion A. As in the case of the cloud federation game, the
core does not exist for the cloud federation formation
game.
Definition 4 (Cloud federation formation game): A cloud

federation formation game is a pair (I,�), where �i is a
reflexive, complete, and transitive binary relation on Πi,
and Πi is the set of federations in I containing Ci.

We define the federation preference relation �i for each
Ci. This allows Ci to compare two federations and to
indicate its preference to be a part of one of them. A �i B

implies that Ci prefers to be a member of federation
A than to be a member of federation B, or at least it
prefers both federations equally. In addition, A ≻i B

indicates that Ci strictly prefers to be a member of A
than a member of B.
To model the cloud federation formation as a hedonic

game, we need to define the federation preference rela-
tion over all pairs of federations in Πi. For all Ci ∈ I and
for all F ,F ′ ∈ Πi, we define �i as

F �i F
′ ⇐⇒ v(F) ≥ v(F ′). (13)

That means a cloud provider prefers the federation that
gives the higher profit. Using this preference relation,

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 7

every cloud provider can evaluate its preferences over
the set of possible federations that the cloud provider can
be a member of. Therefore, the objective of each cloud
provider is to determine the membership in a federation
that gives the highest profit.
Next, we define two comparison relations based on the

preference relation �i. These comparison relations will
be used in the design of our proposed cloud federation
formation mechanism. The two comparison relations,
called merge comparison ≫m and split comparison ≫s, will
allow us to decide if a federation is more preferred than
other federations.
The merge comparison ≫m is defined as follows:

{F ∪ F ′} ≫m {F ,F ′} ⇐⇒
{∀Ci ∈ F ; {F ∪ F ′} ≻i F and
∀Cj ∈ F ′; {F ∪ F ′} ≻j F ′}

(14)

Equation (14) implies that federation {F ∪ F ′} is pre-
ferred over two disjoint federations {F ,F ′}, if the profit
obtained by federation {F ∪F ′} is greater than the profit
obtained by the providers in F , and it is greater than
the profit obtained by the providers in F ′. As a result,
all providers are able to improve the total profit.
The split comparison ≫s is defined as follows:

{F ,F ′} ≫s {F ∪ F ′} ⇐⇒
{∃Ci ∈ F ;F �i {F ∪ F ′} or
∃Cj ∈ F ′;F ′ �j {F ∪ F ′}}

(15)

Equation (15) implies that {F ,F ′} is preferred over {F ∪
F ′}, if at least one federation is able to keep the same
amount of profit or to increase the profit of its members.
Such a split preference is irrespective of the other cloud
providers’ preferences outside of that federation.
The two comparison relations defined above induce

two rules [40] that will be used in the design of our
proposed cloud federation formation mechanism:

Merge Rule: For any pair of federations F and F ′:
{F ∪ F ′}≫m{F ,F ′} ⇒ Merge F and F ′.

Split Rule: For any federation {F ∪ F ′}:
{F ,F ′}≫s{F ∪ F ′} ⇒ Split {F ∪ F ′}.

The merge rule implies that two federations join to
form a larger federation if operating all of their cloud
providers together strictly improves the total profit. The
split rule implies that a federation splits only if there
exists one sub-federation that obtains at least the same
total profit with its constituent cloud providers. A split
happens irrespective of the effect on the profit of the
other sub-federations, i.e., their profit may decrease.
Note that only one of the federations in the federation
structure is selected to provide the resources requested
by the user. Therefore, the goal of the cloud providers
is to find a federation with maximum profit. This feder-
ation is obtained through an iterative application of the
merge and the split rules.
As we mentioned before, computing the Banzhaf value

for a game is NP-hard. However, through the iterative
application of merge and split rules some of the possible

federations are checked and their values are calculated.
Based on those values, we define the estimated Banzhaf
value of Ci as follows:

ECi
(I) =

1

λ

∑

F⊆I\{Ci}
F∈V
F∪Ci∈V

[v(F ∪ {Ci}) − v(F)]. (16)

where V is the set of all checked federations (i.e., federa-
tions that were already produced during the merge and
split iterations), and λ is the total number of checked
federations containing Ci. That means, λ = 2m−1 − α,
where α is the number of non-checked federations. The
estimated Banzhaf value is based only on the value of
federations that are checked during the merge and split
process. The normalized estimated Banzhaf value is defined
as follows:

ECi
(I) =

ECi
(I)

∑

Cj∈I ECj
(I)

. (17)

The profit that each member Ci receives in the grand
federation is calculated as follows:

ψCi
(I) = ECi

(I)v(I). (18)

The payoff vector Ψ(I) = (ψC1
(I), · · · , ψCm

(I)) gives
the payoff divisions of the grand federation. We define
ψCi

(F), the payoff of cloud provider Ci ∈ F , as follows:

ψCi
(F) =

ψCi
(I)

∑

∀Cj∈F ψCj
(I)

v(F). (19)

During the merge-and-split we estimate the Banzhaf
value for each provider based only on the federations
that were already explored. The profit obtained by
the federation is divided among participating cloud
providers in proportion to their power in the federation.
We define a new concept of stability similar to the

stability of a coalition structure defined in the context of
the hedonic games [42]. The difference from the stability
concept in hedonic games is that we consider only one
federation instead of a federation structure. This is due
to the fact that only one federation of cloud providers
is needed to form in order to fulfill a user request. As
a result, our proposed stability notion is defined on the
participating cloud providers in the obtained federation
by the proposed mechanism. We define the individual
federation stability as follows.
Definition 5 (Individual federation stability): A

federation F is individually federation stable if there
is no member Ci ∈ F such that F \ {Ci} �j F for all
j ∈ F .
In other words, a federation F is individually federation
stable if there is no cloud provider Ci ∈ F that can leave
F without making at least one cloud provider Cj ∈ F
unhappy.
In the next section, we introduce our proposed cloud

federation formation mechanism and prove that it pro-
duces individually stable federations.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 8

Algorithm 1 Cloud Federation Formation Mechanism

(CFFM)

1: Input: Request R
2: V = ∅
3: FS = {{C1}, · · · , {Cm}}
4: for all Fi ∈ FS do
5: v(Fi) = Solve IP-CFPM(Fi)
6: V = V ∪ Fi

7: repeat
8: MergeFederations();
9: SplitFederation();
10: until No split happens
11: Find Fk = arg maxFi∈FS {v(Fi)}
12: for all Ci ∈ Fk do
13: Calculate ψCi

(Fk) based on V
14: Fk allocates and provides the requested VM instances.

Algorithm 2 MergeFederations()

1: repeat
2: Select two non-checked federations Fi,Fj ∈ FS
3: v(Fi ∪ Fj) = Solve IP-CFPM(Fi ∪ Fj)
4: V = V ∪ {Fi ∪ Fj}
5: if Fi ∪ Fj≫m{Fi,Fj} then
6: Fi ← Fi ∪ Fj

7: Fj ← ∅ {Fj is removed from FS}
8: until No merge happens

3.2 Cloud Federation Formation Mechanism (CFFM)

The proposed cloud federation formation mechanism
(CFFM), presented in Algorithm 1, relies on the merge
and split rules defined in the previous section. The
mechanism is executed by a broker.
CFFM receives a user request as input (line 1). CFFM

uses V to store all checked federations during the merge-
and-split process. The algorithm sets V to the empty set
(line 2). First, an initial federation structure FS in which
every individual cloud provider Ci ∈ I is a federation
Fi, is formed (line 3). Then, CFFM solves IP-CFPM to
find v(Fi) for each federation Fi (line 5). Note that if
IP-CFPM is not feasible for a federation, i.e., IP does not
have a solution, the value of the federation is zero. All
singleton federations are added to V (line 6).
CFFM iteratively calls MergeFederations() and

SplitFederation() functions (lines 7-10). CFFM exits from
the merge-and-split process when there is no possibility
for a further merge or a further split. Then, CFFM finds
a federation, Fk, with the highest total profit among
all federations in the final federation structure (line 11).
CFFM calculates the normalized estimated Banzhaf
value as the individual profit for each participating
cloud provider in Fk based on its marginal contributions
in the set of checked federations, V (lines 12-13). The
selected federation, Fk, provides the requested VM
instances to the user (line 14).
The MergeFederations() procedure is presented in Al-

gorithm 2. This procedure checks all merge possibilities
of any pair of federations in the federation structure.
First, MergeFederations() randomly selects two non-
checked federations in FS, e.g., Fi and Fj (line 2). Then,

Algorithm 3 SplitFederation()

1: for all Fi ∈ FS where |Fi| > 1 do
2: for all partitions {Fj ,Fk} of Fi,

where Fi = Fj ∪ Fk,Fj ∩ Fk = ∅ do
3: v(Fj) = Solve IP-CFPM(Fj)
4: v(Fk) = Solve IP-CFPM(Fk)
5: V = V ∪ Fj

6: V = V ∪ Fk

7: if {Fj ,Fk}≫sFi then
8: Fi ← Fj

9: FS = FS ∪ Fk

10: break

it solves IP-CFPM to find the value of a new federation
{Fi ∪ Fj}, and adds the new federation to the set V
(lines 3-4). If merge is more preferred, then federations
Fi and Fj are merged. The new federation is saved in
Fi, and Fj is removed from FS (lines 5-7). Note that
the members of Fi have changed, and thus, Fi can be
selected again for the merge. The MergeFederations()
procedure tries to find another pair of non-checked fed-
erations in the federation structure by repeating the pro-
cedure. The MergeFederations() procedure terminates if
all pairs of federations are checked and a merge does
not happen, or the grand federation forms.

The SplitFederation() procedure is presented in Algo-
rithm 3. This procedure checks all split possibilities of
any federation with more than one member in the fed-
eration structure. The SplitFederation() procedure tries to
split a federation, e.g., Fi, into two disjoint federations
Fj and Fk, where Fj ∪ Fk = Fi. Then, it solves IP-
CFPM twice to find the value of Fj and Fk (lines 3-4).
In addition, it adds the two federations into the set V
since their values are calculated (lines 5-6). If the split
is more preferred, then one of the splited federations,
Fj , is saved in Fi, and the other splited federation,
Fk, is added to the federation structure (lines 7-10).
Since the federation structure has changed after the split
happened, CFFM executes another iteration of merge-
and-split. Note that if none of the existing federations
splits then CFFM terminates. This is due to the fact that
the existing federations already have been checked for
the merge in the MergeFederations() procedure. If only
the MergeFederations() procedure is applied without
applying the SplitFederation() procedure, then the mech-
anism converges very fast, but the obtained solution
would be far from the optimal, since it does not allow
the formation of smaller intermediate federations that
can later on lead to better federations. However, by ap-
plying the SplitFederation() procedure, the mechanism
iteratively improves the solution until it finds one that
is closer to the optimal.

For a given user request, only one federation will form.
When another request arrives and the cloud providers
participating in some already formed federations have
resources available, they can participate again along with
other cloud providers to form a federation in order to
serve the request. If a cloud provider does not have

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 9

any resources available, it waits until the federation
that it belongs to dissolves, and then participates again
in the federation formation mechanism to serve future
requests.

3.3 CFFM Properties

In this section, we show that CFFM converges to a
stable federation structure and analyze CFFM’s time
complexity. First, we prove that the proposed CFFM
converges to a final federation structure.
Theorem 1: CFFM converges to a federation structure

composed of disjoint federations of cloud providers.
Proof: Based on the proposed preference relation

≫m, the resulting federation after each merge is more
preferred than previous federations. This is also true for
the resulting federations after each split using the pro-
posed preference relation ≫s. As a result, if a federation
structure is created during the merge-and-split iterations,
the mechanism cannot create that federation structure
again by any further merge-and-split iterations. This is
due to the fact that by any merge-and-split iteration, the
mechanism finds more preferred federations. In addi-
tion, the total number of federation structures is finite.
Therefore, the merge-and-split iterations terminate, and
the final federation structure cannot be subject to any
further merge and split. As a result, CFFM always
converges.
Since CFFM converges to a final federation structure,

there is no possibility for further merge and split. There-
fore, the final federation structure cannot be subject to
any further change, that is, none of the federations in
the federation structure can merge to another federation
(or split into sub-federations) to form another federation
structure.
Now, we prove that the final federation satisfies the

individual stability property.
Theorem 2: CFFM produces an individually stable fed-

eration.
Proof: A federation F is individually federation sta-

ble if there is no cloud provider Ci ∈ F that can leave
F without making at least one cloud provider Cj ∈ F
unhappy. In the split procedure, CFFM checks if any
cloud provider in a federation wants to leave its current
federation by checking all the possibilities for split. If
it finds such a cloud provider, CFFM applies the split
rule. As a result, no cloud provider that is part of the
final federation has incentive to leave the federation.

Solving the federation formation problem optimally
has the same complexity as performing an exhaustive
search on all the possible partitions of the set of cloud
providers. However, since CFFM is using the merge
and split procedures, it does not perform an exhaustive
search on the set of partitions. The time complexity of
CFFM is determined by the number of merge and split
operations and the size of the sub-partitions. In the worst
case scenario, each federation needs to make a merge
attempt with all the other federations in FS. In the initial

TABLE 5: Cost

Amazon
EC2
Regions

U
S
E
ast

(N
.
V
irg

in
ia)

U
S
W
est

(O
reg

o
n
)

U
S
W
est

(N
o
rth

ern
C
alifo

rn
ia)

E
U

(Irelan
d
)

S
o
u
th

A
m
erica

(S
ao

P
au

lo
)

A
sia

P
acifi

c
(S
in
g
ap

o
re)

A
sia

P
acifi

c
(S
y
d
n
ey

)

A
sia

P
acifi

c
(T
o
k
y
o
)

Cloud
Provider

C1 C2 C3 C4 C5 C6 C7 C8

V M1

(Small)

$0.03 $0.045 $0.048 $0.033 $0.055 $0.04 $0.058 $0.044

V M2

(Medium)

$0.06 $0.091 $0.096 $0.065 $0.111 $0.08 $0.115 $0.088

V M3

(Large)

$0.12 $0.182 $0.192 $0.130 $0.222 $0.16 $0.230 $0.175

V M4

(Extralarge)

$0.24 $0.364 $0.384 $0.260 $0.444 $0.32 $0.460 $0.350

federation structure, where each of the m individual
cloud providers is a federation, the first merge occurs

after m(m−1)
2 attempts in the worst case. The second

merge requires (m−1)(m−2)
2 attempts and so on. As a

result, the total worst case number of merges is in O(m3).
In the worst case scenario, splitting a federation F is in
O(2|F |), which involves finding all the possible partitions
of size two of the participating federations.

4 EXPERIMENTAL RESULTS

We perform a set of simulation experiments which al-
lows us to investigate how effective the proposed feder-
ation formation mechanism is in producing stable cloud
federations.

4.1 Experimental Setup

For our experiments, we consider that eight indepen-
dent cloud providers are participating. We set the costs
and the types of VMs offered by each of these cloud
providers to the types and costs of VMs offered by
Amazon EC2 [43] in each of its eight regions. These
cloud providers offer four types of VM instances as
presented in Table 2. For the cost of VMs, we use the VM
prices of On-Demand Instance Prices offered by Amazon
EC2. We set the cost of VM instances to the half of the
actual VM prices of Amazon EC2 regions. The detailed
information regarding the cost of VMs are presented
in Table 5. We relied only on EC2 information for its
different regions because it is publicly available. Each
of the cloud providers considered in the simulation are
independent and the cost information from each of the
Amazon EC2 regions is used only to setup their cost
structure. Following Samaan [33] and Toosi et al. [10],
we consider 1024 cores, 1740 GB of memory, and 225 TB
of storage as the average of capacities of the cloud
providers from which 40% is available for the federation.
We generate 100 requests such that requests with less

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 10

 0

 20

 40

 60

 80

 100

 120

small medium large xlarge

P
ro

fit

Request

CFFM
OCFM
RCFM

Fig. 1: Total profit of the cloud federation

TABLE 6: Parameters

Param. Description Value(s)
m Number of cloud providers 8

n Number of VM types 4

Ni Number of cores [512, 1536]
Mi Memory (GB) [870, 2610]
Si Storage (TB) [112, 338]
cj VM cost vector (4) Based on Amazon Regions
pj VM price vector (4) Based on Microsoft Azure

than 15%, 25%, 35%, and 45% of the total available
capacity belong to the small, medium, large, and extra-
large classes, respectively. All requests cannot be served
by only one cloud provider and they need to form a
federation in order to serve the user. Each class contains
25 requests, and in the plots we represent the average
of the obtained results. The parameters used in our
experiments and their values are listed in Table 6.

While it is desirable to compare our proposed mecha-
nism with several mechanisms, we found out that the
existing mechanisms and approaches are not directly
comparable to ours and decided to compare it with
only two other mechanisms, Optimal Cloud Federation
Mechanism (OCFM), and Random Cloud Federation
Mechanism (RCFM). The OCFM mechanism finds the
optimal solution to the federation formation problem,
that is, it finds a cloud federation with maximum profit.
This is achieved by exhaustively enumerating all the
possible federations and solving IP-CFPM optimally for
each of these federations. We rely on the optimal results
obtained by OCFM as a benchmark for our experiments.
We use the IBM ILOG Concert Technology APIs [44] in
C++ to solve the integer program IP-CFPM associated
with the mechanism. IBM ILOG provides optimization
APIs and its engine is the CPLEX Optimizer that solves
integer programming problems. The RCFM mechanism
selects several cloud providers randomly and forms a
federation. All the mechanisms are implemented in C++,
and the experiments are conducted on AMD 2.93GHz
hexa-core dual-processor systems with 90GB of RAM
which are part of the Wayne State Grid System.

 0

 1

 2

 3

 4

 5

 6

 7

 8

small medium large xlarge

A
ve

ra
ge

 s
iz

e

Request

CFFM
OCFM
RCFM

Fig. 2: Average size of the cloud federation

 0.001

 0.01

 0.1

 1

 10

 100

 1000

small medium large xlarge

T
im

e
(s

ec
)

Request

CFFM
OCFM

Fig. 3: Execution time of the mechanisms

4.2 Analysis of Results

In Fig. 1, we compare the total profit obtained by CFFM
with that obtained by the other two mechanisms. In all
cases CFFM yields the highest profit which is very close
to the optimal profit obtained by OCFM. These results
show that RCFM achieves profits that are not even half
the profits obtained by the other two mechanisms. In
addition, the obtained total profit obtained by CFFM
and OCFM increases with the increase in the size of the
requests.

Fig. 2 shows the average number of cloud providers
participating in the federation for each class of requests.
As it is expected, with the increase in the size of the
requests, more cloud providers need to participate in
the federation to serve the requests. The size of the
formed federations obtained by our proposed mecha-
nism, CFFM, is close to that of the optimal solution. Note
that in RCFM some of the federations are not feasible
(i.e., the randomly chosen cloud providers cannot fulfill
the request). Therefore, the average federation size of
RCFM is very small.

Fig. 3 shows the execution time of the two mecha-
nisms. The execution times of RCFM are negligible com-
pared to that of CFFM and OCFM, and thus, we chose
not to present them in the figure. From 255 federations
that the eight cloud providers could form, CFFM only
considers some of them in the merge-and-split process
based on the merge and split rules. On average, CFFM
explores 48 federations until it finds the final federation.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 11

 0

 5

 10

 15

 20

 25

 30

 35

C1 C2 C3 C4 C5 C6 C7 C8

In
di

vi
du

al
 p

ro
fit

 (
sm

al
l r

eq
ue

st
s)

Cloud providers

CFFM
OCFM

Fig. 4: Profit of cloud providers (small requests)

 0

 5

 10

 15

 20

 25

 30

 35

C1 C2 C3 C4 C5 C6 C7 C8

In
di

vi
du

al
 p

ro
fit

 (
m

ed
iu

m
 r

eq
ue

st
s)

Cloud providers

CFFM
OCFM

Fig. 5: Profit of cloud providers (medium requests)

As a result, the execution time of CFFM is a lot less than
that of OCFM which goes through all the federations.
The mechanisms require more time for larger requests.
The execution time of our proposed mechanism, CFFM,
is about two orders of magnitude less than that of the
optimal mechanism OCFM.
Figs. 4 to 7 show the individual profit of each par-

ticipating cloud provider in the federation, separately,
for each class of requests. The mechanisms use different
profit division rules as follows. CFFM uses the estimated
normalized Banzhaf value, while the OCFM uses the
normalized Banzhaf value. As it is shown in the fig-
ures, the individual profits of the participating cloud
providers are very close in CFFM and OCFM. The dif-
ference between the average individual profit of CFFM
and OCFM is 17%, 17%, 17% and 6% for small, medium,
large, and extra-large requests presented in Figs. 4 to
7, respectively. The reason that the difference between
the average individual profit of CFFM and OCFM for
the extra-large requests are much less than those for
the other requests is that the number of federations
that are checked during the process of merge-and-split
is higher, leading to a precise estimated normalized
Banzhaf value. This is due to the fact that for larger
requests the number of participating cloud providers in
a federation increases resulting in more possibilities for
merge-and-split operations. However, this comes at the
cost of higher execution time.
We now investigate the performance of the proposed

mechanism in more details. Figs. 8 to 11 show the

 0

 5

 10

 15

 20

 25

 30

 35

C1 C2 C3 C4 C5 C6 C7 C8

In
di

vi
du

al
 p

ro
fit

 (
la

rg
e

re
qu

es
ts

)

Cloud providers

CFFM
OCFM

Fig. 6: Profit of cloud providers (large requests)

 0

 5

 10

 15

 20

 25

 30

 35

C1 C2 C3 C4 C5 C6 C7 C8

In
di

vi
du

al
 p

ro
fit

 (
xl

ar
ge

 r
eq

ue
st

s)
Cloud providers

CFFM
OCFM

Fig. 7: Profit of cloud providers (extralarge requests)

percentage of participation of cloud providers in the
federation, separately, for each class of requests. In all
cases, the cloud provider with the lowest cost (i.e., C1)
is a member of the formed federation. Fig. 8 shows
that C1 and C4 participated in all formed federations
obtained by CFFM and OCFM for small requests. For
40% of the requests a federation with size two does
not have enough capacity to fulfill the requests, and
thus, C6 participated in the formed federation on such
cases. Figs. 9 shows that C1, C4, and C6 participated in
all formed federations for the medium requests. This
is due to the fact that their capacity is sufficient for
the medium size requests. Note that all three cloud
providers have to participate in the federations for the
medium size requests unlike the small size requests
case. In addition, as the size of the requests becomes
larger, the cloud providers with higher costs are selected
to participate in federations. For example, comparing
Fig. 8 and Fig. 10 we observe that C1, C4, and C6 are
members of the formed federations obtained by CFFM
and OCFM. Based on Table 5, these cloud providers have
the lowest costs. By increasing the size of the requests
from small to large, the available capacity of these cloud
providers are not sufficient enough. To fulfill the large
requests (Fig. 10) federations with larger capacity are
needed. The next lowest cost cloud provider is C8, and
thus, C8 is included in the federations formed by CFFM
and OCFM to provide the requested VMs. Note that
the percentage of participation of cloud providers in
the federation obtained by RCFM is distributed over

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 12

 0

 20

 40

 60

 80

 100

C1 C2 C3 C4 C5 C6 C7 C8

P
ar

tic
ip

at
ed

 in
 a

 fe
de

ra
tio

n
(%

)
(s

m
al

l r
eq

ue
st

s)

Cloud providers

CFFM
OCFM
RCFM

Fig. 8: Percentage participation of cloud providers (small
requests)

 0

 20

 40

 60

 80

 100

C1 C2 C3 C4 C5 C6 C7 C8

P
ar

tic
ip

at
ed

 in
 a

 fe
de

ra
tio

n
(%

)
(m

ed
iu

m
 r

eq
ue

st
s)

Cloud providers

CFFM
OCFM
RCFM

Fig. 9: Percentage participation of cloud providers
(medium requests)

all cloud providers. This is due to the fact that RCFM
selects the participating cloud providers in a federation
randomly without considering their cost.

Figs. 12 to 15 show the percentage of requested cores
provided to the federation by each cloud provider. For
example, Fig. 12 shows that using CFFM and OCFM,
41.8% of the small requests are provided by C1, 53.4%
of are provided by C4, and 4.8% are provided by C6.
However, RCFM selects the cloud providers randomly
to provide VMs for the small requests, and thus, the
percentage of provided requests by cloud providers is
far from the optimal solution. As shown in Fig. 13,
the percentage of provided requests by C1, C4, and C6

changes to 27.5%, 41.3%, and 31.2% , respectively. The
results show that with the increase in the size of the
requests, the percentage of requests provided by C6

increases. This is due to the fact that more resources
are needed to fulfill the demand of medium requests,
and thus, C6 needs to provide more resources in the
federation. Note that the amount of provided resources
depends on the available capacity of the cloud providers.

From the above results, we conclude that our proposed
mechanism, CFFM, is able to form stable federations
with total profit very close to the optimal profit. In
addition, CFFM finds the results in reasonable amount
of time making it suitable for real cloud settings.

 0

 20

 40

 60

 80

 100

C1 C2 C3 C4 C5 C6 C7 C8

P
ar

tic
ip

at
ed

 in
 a

 fe
de

ra
tio

n
(%

)
(la

rg
e

re
qu

es
ts

)

Cloud providers

CFFM
OCFM
RCFM

Fig. 10: Percentage participation of cloud providers
(large requests)

 0

 20

 40

 60

 80

 100

C1 C2 C3 C4 C5 C6 C7 C8
P

ar
tic

ip
at

ed
 in

 a
 fe

de
ra

tio
n

(%
)

(x
la

rg
e

re
qu

es
ts

)
Cloud providers

CFFM
OCFM
RCFM

Fig. 11: Percentage participation of cloud providers (ex-
tralarge requests)

5 CONCLUSION

In this paper, we proposed a mechanism that improves
the cloud providers’ dynamic resource scaling capabil-
ities to fulfill users’ demands. We proposed a cloud
federation formation game that characterizes the pro-
cess of federation formation and then proposed a novel
cloud federation formation mechanism called CFFM. In
the proposed mechanism, cloud providers dynamically
cooperate to form a federation in order to provide the
requested resources to a user. The resources are provi-
sioned as VM instances of different types. The proposed
mechanism forms cloud federations yielding the highest
total profit. The mechanism also determines the indi-
vidual profit of each participating cloud providers in
the federation using the normalized estimated Banzhaf
value. In addition, our proposed mechanism produces a
stable cloud federation structure, that is, the participat-
ing cloud providers in the federation do not have incen-
tives to break away from the federation. We performed
extensive experiments to investigate the properties of
our proposed mechanism. The results showed that our
proposed mechanism is able to form stable federations
with total profit very close to the optimal profit. In ad-
dition, our mechanism finds the stable cloud federation
in a reasonable amount of time making it suitable for
real cloud settings. For the future work, we plan to
incorporate the data privacy concerns into the federation

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 13

 0

 20

 40

 60

 80

 100

C1 C2 C3 C4 C5 C6 C7 C8

P
ro

vi
de

d
sm

al
l r

eq
ue

st
s

(%
)

Cloud providers

CFFM
OCFM
RCFM

Fig. 12: Percentage of request provided by cloud
providers (small requests)

 0

 20

 40

 60

 80

 100

C1 C2 C3 C4 C5 C6 C7 C8

P
ro

vi
de

d
m

ed
iu

m
 r

eq
ue

st
s

(%
)

Cloud providers

CFFM
OCFM
RCFM

Fig. 13: Percentage of request provided by cloud
providers (medium requests)

formation problem and to investigate the influence of
cloud providers’ policies on the federation formation
process.

ACKNOWLEDGMENTS

This paper is a revised and extended version of [45]
presented at the 5th IEEE/ACM International Confer-
ence on Utility and Cloud Computing (UCC 2012). The
authors wish to express their thanks to the editor and the
anonymous referees for their helpful and constructive
suggestions, which considerably improved the quality
of the paper. This research was supported, in part, by
NSF grants DGE-0654014 and CNS-1116787.

REFERENCES

[1] L. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A
break in the clouds: towards a cloud definition,” ACM SIGCOMM
Computer Communication Review, vol. 39, no. 1, pp. 50–55, 2008.

[2] M. Parashar, M. AbdelBaky, I. Rodero, and A. Devarakonda,
“Cloud paradigms and practices for computational and data-
enabled science and engineering,” Computing in Science & Engi-
neering, vol. 15, no. 4, pp. 10–18, 2013.

[3] B. Rochwerger, D. Breitgand, A. Epstein, D. Hadas, I. Loy,
K. Nagin, J. Tordsson, C. Ragusa, M. Villari, S. Clayman et al.,
“Reservoir-when one cloud is not enough,” Computer, vol. 44,
no. 3, pp. 44–51, 2011.

[4] B. Rochwerger, C. Vázquez, D. Breitgand, D. Hadas, M. Villari,
P. Massonet, E. Levy, A. Galis et al., “An architecture for federated
cloud computing,” Cloud Computing, pp. 391–411, 2010.

 0

 20

 40

 60

 80

 100

C1 C2 C3 C4 C5 C6 C7 C8

P
ro

vi
de

d
la

rg
e

re
qu

es
ts

 (
%

)

Cloud providers

CFFM
OCFM
RCFM

Fig. 14: Percentage of request provided by cloud
providers (large requests)

 0

 20

 40

 60

 80

 100

C1 C2 C3 C4 C5 C6 C7 C8
P

ro
vi

de
d

xl
ar

ge
 r

eq
ue

st
s

(%
)

Cloud providers

CFFM
OCFM
RCFM

Fig. 15: Percentage of request provided by cloud
providers (extralarge requests)

[5] D. Hilley, “Cloud computing: A taxonomy of platform and
infrastructure-level offerings,” CERCS Report. College of Comput-
ing, George Institute of Technology, 2009.

[6] B. Rochwerger, D. Breitgand, E. Levy, A. Galis et al., “The reservoir
model and architecture for open federated cloud computing,”
IBM J. of Res. and Dev., vol. 53, no. 4, pp. 4–1, 2009.

[7] R. Buyya, R. Ranjan, and R. N. Calheiros, “Intercloud: Utility-
oriented federation of cloud computing environments for scaling
of application services,” in Algorithms and architectures for parallel
processing. Springer, 2010, pp. 13–31.

[8] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “How to enhance
cloud architectures to enable cross-federation,” in Proc. of the 3rd
IEEE Intl. Conf. on Cloud Computing, 2010, pp. 337–345.

[9] I. Goiri, J. Guitart, and J. Torres, “Characterizing cloud federation
for enhancing providers’ profit,” in Proc. IEEE Intl. Conf. on Cloud
Computing, 2010, pp. 123–130.

[10] A. Toosi, R. Calheiros, R. Thulasiram, and R. Buyya, “Resource
provisioning policies to increase iaas provider’s profit in a feder-
ated cloud environment,” in Proc. of the 13th IEEE Intl. Conf. on
High Performance Computing and Communications, 2011, pp. 279–
287.

[11] R. Van den Bossche, K. Vanmechelen, and J. Broeckhove, “Cost-
optimal scheduling in hybrid iaas clouds for deadline constrained
workloads,” in Proc. of the 3rd IEEE Intl. Conf. on Cloud Computing,
2010, pp. 228–235.

[12] A. Nordal, A. Kvalnes, J. Hurley, and D. Johansen, “Balava:
Federating private and public clouds,” in Proc. of the IEEE World
Congress on Services, 2011, pp. 569–577.

[13] E. Bin, O. Biran, O. Boni, E. Hadad, E. K. Kolodner, Y. Moatti, and
D. H. Lorenz, “Guaranteeing high availability goals for virtual
machine placement,” in Proc. of the 31st IEEE Intl. Conf. on Dist.
Comp. Syst., 2011, pp. 700–709.

[14] S. Chaisiri, B. Lee, and D. Niyato, “Optimization of resource pro-
visioning cost in cloud computing,” IEEE Transactions on Services
Computing, vol. 5, no. 2, pp. 164–177, 2012.

[15] D. Bruneo, “A stochastic model to investigate data center perfor-
mance and qos in iaas cloud computing systems,” IEEE Transac-

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 14

tions on Parallel and Distributed Systems, vol. 25, no. 3, pp. 560–569,
2014.

[16] M. Mihailescu and Y. M. Teo, “The impact of user rationality
in federated clouds,” in Proc. of the 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, 2012, pp. 620–
627.

[17] X. Yang, B. Nasser, M. Surridge, and S. Middleton, “A business-
oriented cloud federation model for real-time applications,” Fu-
ture Generation Computer Systems, vol. 28, no. 8, pp. 1158–1167,
2012.

[18] M. Kesavan, R. Soundararajan, A. Gavrilovska, I. Ahmad,
O. Krieger, and K. Schwan, “Practical compute capacity man-
agement for virtualized datacenters,” IEEE Transactions on Cloud
Computing, vol. 1, no. 1, pp. 88–100, 2013.

[19] M. Rodriguez and R. Buyya, “Deadline based resource provision-
ing and scheduling algorithm for scientific workflows on clouds,”
IEEE Transactions on Cloud Computing, vol. 99, no. PrePrints, p. 1,
2014.

[20] J. Doyle, R. Shorten, and D. O’Mahony, “Stratus: Load balancing
the cloud for carbon emissions control,” IEEE Transactions on Cloud
Computing, vol. 1, no. 1, pp. 116–128, 2013.

[21] C. Mastroianni, M. Meo, and G. Papuzzo, “Probabilistic consoli-
dation of virtual machines in self-organizing cloud data centers,”
IEEE Transactions on Cloud Computing, vol. 1, no. 2, pp. 215–228,
2013.

[22] G. Wei, A. Vasilakos, Y. Zheng, and N. Xiong, “A game-theoretic
method of fair resource allocation for cloud computing services,”
The Journal of Supercomputing, vol. 54, no. 2, pp. 252–269, 2010.

[23] V. Jalaparti and G. Nguyen, “Cloud resource allocation games,”
Technical Report, University of Illinois, 2010.

[24] H. Zhang, B. Li, H. Jiang, F. Liu, A. V. Vasilakos, and J. Liu, “A
framework for truthful online auctions in cloud computing with
heterogeneous user demands,” in Proc. of IEEE INFOCOM, 2013.

[25] L. Mashayekhy, M. M. Nejad, and D. Grosu, “A truthful approx-
imation mechanism for autonomic virtual machine provisioning
and allocation in clouds,” in Proc. of the ACM Cloud and Autonomic
Computing Conference, 2013, pp. 1–10.

[26] M. M. Nejad, L. Mashayekhy, and D. Grosu, “A family of truthful
greedy mechanisms for dynamic virtual machine provisioning
and allocation in clouds,” in Proc. of the 6th IEEE Intl. Conf. on
Cloud Computing, 2013, pp. 188–195.

[27] M. Hassan, B. Song, and E. Huh, “Distributed resource allocation
games in horizontal dynamic cloud federation platform,” in Proc.
IEEE Intl. Conf. on High Perf. Comp. and Comm., 2011, pp. 822–827.

[28] M. Mihailescu and Y. M. Teo, “Dynamic resource pricing on
federated clouds,” in Proc. of the 10th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, 2010, pp. 513–
517.

[29] D. Niyato, A. Vasilakos, and Z. Kun, “Resource and revenue shar-
ing with coalition formation of cloud providers: Game theoretic
approach,” in Proc. IEEE/ACM Intl. Symp. on Cluster, Cloud and
Grid Comp., 2011, pp. 215–224.

[30] L. Mashayekhy and D. Grosu, “A merge-and-split mechanism for
dynamic virtual organization formation in grids,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 25, no. 3, pp. 540–549,
2014.

[31] ——, “A distributed merge-and-split mechanism for dynamic
virtual organization formation in grids,” in Proc. 11th IEEE Intl.
Conf. on Network Computing and Applications, 2012, pp. 36–43.

[32] H. Li, C. Wu, Z. Li, and F. Lau, “Profit-maximizing virtual
machine trading in a federation of selfish clouds,” in Proc. of the
IEEE INFOCOM, 2013, pp. 25–29.

[33] N. Samaan, “A novel economic sharing model in a federation
of selfish cloud providers,” IEEE Transactions on Parallel and
Distributed Systems, vol. 25, no. 1, pp. 12–21, 2014.

[34] G. Owen, Game Theory, 3rd ed. New York, NY, USA: Academic
Press, 1995.

[35] ——, “Multilinear extensions and the banzhaf value,” Naval Re-
search Logistics Quarterly, vol. 22, no. 4, pp. 741–750, 1975.

[36] Y. Matsui and T. Matsui, “Np-completeness for calculating power
indices of weighted majority games,” Theoretical Computer Science,
vol. 263, no. 1-2, pp. 305–310, 2001.

[37] L. S. Shapley, “A value for n-person games,” in Contributions to the
Theory of Games II, ser. Ann. Math. Studies, H. W. Kuhn and A. W.
Tucker, Eds. Princeton, New Jersey, USA: Princeton University
Press, 1953, vol. 28, pp. 307–317.

[38] WindowsAzure: Purchase Options - Pricing. [Online]. Available:
http://www.windowsazure.com/en-us/pricing/calculator/

[39] D. Knuth, The Art of Computer Programming, Volume 4, Combinato-
rial Algorithms, Part 1. Addison-Wesley, 2011.

[40] K. Apt and A. Witzel, “A generic approach to coalition forma-
tion,” International Game Theory Review, vol. 11, no. 3, pp. 347–367,
2009.

[41] T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohme,
“Coalition structure generation with worst case guarantees,” Ar-
tificial Intelligence, vol. 111, pp. 209–238, 1999.

[42] A. Bogomolnaia and M. Jackson, “The stability of hedonic coali-
tion structures,” Games & Econ. Behavior, vol. 38, no. 2, pp. 201–
230, 2002.

[43] Amazon EC2 Pricing. [Online]. Available:
http://aws.amazon.com/ec2/pricing/

[44] IBM ILOG CPLEX V12.1 user’s manual. [Online]. Available:
ftp://public.dhe.ibm.com/software/websphere/ilog/docs/op-
timization/cplex/ps usrmancplex.pdf

[45] L. Mashayekhy and D. Grosu, “A coalitional game-based mecha-
nism for forming cloud federations,” in Proc. of the 5th IEEE/ACM
Intl. Conf. on Utility and Cloud Computing, 2012, pp. 223–227.

Lena Mashayekhy received her BSc degree in
computer engineering-software from Iran Uni-
versity of Science and Technology, and her MSc
degree from the University of Isfahan. She is
currently a PhD candidate in computer science
at Wayne State University, Detroit, Michigan. Her
research interests include distributed systems,
cloud computing, big data, game theory and
optimization. She is a student member of the
ACM, the IEEE, and the IEEE Computer Society.

Mahyar Movahed Nejad received his BSc de-
gree in mathematics from Iran University of
Science and Technology. He received his MSc
degree in socio-economic engineering from
Mazandaran University of Science and Technol-
ogy. He is currently a MSc student in computer
science, and a PhD candidate in industrial and
systems engineering at Wayne State University,
Detroit. His research interests include distributed
systems, big data analytics, game theory, net-
work optimization, and integer programming. He

is a student member of the IEEE and the INFORMS.

Daniel Grosu received the Diploma in engineer-
ing (automatic control and industrial informatics)
from the Technical University of Iaşi, Romania, in
1994 and the MSc and PhD degrees in computer
science from the University of Texas at San An-
tonio in 2002 and 2003, respectively. Currently,
he is an associate professor in the Department
of Computer Science, Wayne State University,
Detroit. His research interests include parallel
and distributed systems, cloud computing, par-
allel algorithms, resource allocation, computer

security, and topics at the border of computer science, game theory
and economics. He has published more than ninety peer-reviewed
papers in the above areas. He has served on the program and steering
committees of several international meetings in parallel and distributed
computing. He is a senior member of the ACM, the IEEE, and the IEEE
Computer Society.

