
IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 1

Physical Machine Resource Management in
Clouds: A Mechanism Design Approach

Lena Mashayekhy, Student Member, IEEE, Mahyar Movahed Nejad, Student Member, IEEE, and
Daniel Grosu, Senior Member, IEEE

Abstract—We address the problem of physical machine resource management in clouds considering multiple types of physical
machines and resources. We formulate this problem in an auction-based setting and design optimal and approximate strategy-proof
mechanisms that solve it. Our proposed mechanisms consist of a winner determination algorithm that selects the users, provisions the
virtual machines (VMs) to physical machines (PM), and allocates them to the selected users; and a payment function that determines
the amount that each selected user needs to pay to the cloud provider. We prove that our proposed approximate winner determination
algorithm satisfies the loser-independent property, making the approximate mechanism robust against strategic users who try to
manipulate the system by changing other users’ allocations. We show that our proposed mechanisms are strategy-proof, that is,
the users do not have incentives to lie about their requested bundles of VM instances and their valuations. In addition, our proposed
mechanisms are in alignment with green cloud computing strategies in which physical machines can be powered on or off to save
energy. Our theoretical analysis shows that the proposed approximation mechanism has an approximation ratio of 3. We perform
extensive experiments in order to investigate the performance of our proposed approximation mechanism compared to that of the
optimal mechanism.

Index Terms—cloud computing, mechanism design, energy efficient resource management.

✦

1 INTRODUCTION

THE ever-growing demand for cloud resources from
businesses and individuals places the cloud re-

source management at the heart of the cloud providers’
decision-making process. A cloud provider offers infras-
tructure as a service (IaaS) by selling low level resources
of its physical machines (PMs) in the form of virtual
machines (VMs). These services are made available to
users as utilities in a pay-as-you-go model, reducing the
operational costs for the users. The cloud auction market
follows the pay-as-you-go model, and it has proven to
be beneficial for both users and cloud providers. This is
due to the fact that in such market, cloud providers can
attract more customers and better utilize their resources,
while users can obtain services at a lower price than in
the on-demand market.
We consider the physical machine resource manage-

ment problem in the presence of multiple PMs and
multiple types of resources (e.g., cores, memory, storage)
in an auction-based setting, where each user bids for a
bundle of heterogeneous VM instances. Bundles of het-
erogeneous VM instances are required by several types
of applications, such as social game applications com-
posed of three layers: front-end web server, load balanc-
ing, and back-end data storage. These types of applica-
tions require a bundle of heterogeneous VMs composed
of communication-intensive VMs, computation-intensive
VMs, and storage-intensive VMs, respectively [1]. The

• L. Mashayekhy, M. M. Nejad, and D. Grosu are with the Department of
Computer Science, Wayne State University, Detroit, MI, 48202.
E-mail: mlena@wayne.edu, mahyar@wayne.edu, dgrosu@wayne.edu

requests of the selected users are assigned to PMs, where
a PM can be a server, a rack of servers, or a group of
racks, and it may host several VMs. Each user has some
private information about her requested bundle of VM
instances and a private valuation for the bundle. This
information is not publicly known by the cloud provider
and the other users. The users are self-interested in a
sense that they want to maximize their own utility. The
cloud auction market could be vulnerable to such self-
interested users’ behaviors. It may be beneficial for the
cloud users to manipulate the auction outcomes and
gain unfair advantages by untruthfully revealing their
requests (i.e., different VM bundles or bids from their ac-
tual request). Strategic behaviors of any user may hinder
other qualified users, significantly reducing the auction
efficiency, and discouraging users from participation.
One of the goals in such settings is to design strategy-
proof mechanisms, that is, mechanisms that induce the
users to report their true requests and valuations.
Our proposed PM resource management mechanisms

consist of three phases: winner determination, provi-
sioning and allocation, and pricing. In the winner de-
termination phase, the cloud provider decides which
users receive their requested bundles. In the provision-
ing and allocation phase, the cloud provider provisions
the amount of resources in the form of VM instances
onto the PMs, and then allocates the requested bundles
of VMs to the winning users. In the pricing phase, the
cloud provider dynamically determines the price that the
winning users should pay for their requests.
The winner determination phase of the PM resource

management problem (PMRM) can be reduced to the

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 2

multiple multidimensional knapsack problem (MMKP).
In this setting, each PM is considered to be one multi-
dimensional knapsack. The bundle of VMs from a user
request is considered as an item. The aim is to select
a subset of items for each knapsack maximizing the
value. Chekuri and Khanna [2] showed that the multiple
knapsack problem (MKP) is strongly NP-hard (even in
the case of two knapsacks) using a reduction from the
Partition problem. The MMKP problem is much harder
than the MKP problem and is thus also strongly NP-
hard. Sophisticated algorithms for solving MMKP do
not necessarily satisfy the properties required to achieve
strategy-proofness, and they need to be specifically de-
signed to satisfy those properties. On the other hand,
another desirable property of such algorithms in cloud
auction settings is to have a very small execution time.

A major factor that a cloud provider needs to take
into account when offering VM instances to users is
pricing the VMs based on the market demand. Such
pricing functions should consider the incentives of both
cloud providers and users. Amazon reported that most
users have saved between 50% and 66% by bidding in
its spot market (Amazon auction market) compared to
standard on demand market [3]. Dynamic pricing is an
efficient way to improve cloud providers revenue [4].
Instead of exclusively selling VMs employing a fixed-
price model, cloud providers such as Amazon EC2 em-
ploy auction-based models, where users submit bids for
their requested VM instances. The auction-based model
allows the cloud providers to sell their VM instances at a
price determined according to the real market demand.
Note that in an untruthful auction, users may declare
bids lower than their actual valuations which may hurt
other users and indirectly lead to profit losses for the
cloud provider. Thus, unless strategy-proofness is en-
forced, maximizing the revenue may not be effective.
In the pricing phase, the cloud provider dynamically
determines the price that users should pay for their
requests.

We design an optimal and an approximation mecha-
nism that motivates cloud users to reveal their requests
truthfully. Our proposed mechanisms take the strategic
behavior of individual users into account and simultane-
ously maximize the global performance objective of the
system. In addition, both mechanisms place VMs in as
few PMs as possible. Such approach has been recognized
as an efficient way of reducing cost [5]. This is also in
alignment with green cloud computing objectives [6],
where the cloud provider determines which PMs to
power on/off in order to save energy. The mechanisms
allow a cloud provider to choose PMs configurations
that are aligned with its power consumption policies.
In addition, our proposed approximation mechanism
iteratively provisions VMs on each PM. This iterative
mechanism allows the cloud provider to power on/off
PMs based on the user demands.

1.1 Our Contribution

We address the problem of cloud resource management
in the presence of multiple PMs with multiple types
of resources. We design a strategy-proof greedy mecha-
nism, called G-PMRM. G-PMRM not only provisions and
allocates resources, but also dynamically determines the
price that users should pay for their requests. In order to
guarantee strategy-proofness of G-PMRM, we design the
winner determination algorithm, such that it determines
loser-independent allocations on each PM. This property
makes the G-PMRM mechanism robust against strategic
users who try to manipulate the system by changing the
allocations of other users. We prove that G-PMRM mech-
anism is a polynomial time 3-approximation mechanism.
We also design an optimal strategy-proof mechanism,
VCG-PMRM, that we use as a benchmark when we
investigate the performance of the G-PMRM mechanism.
We perform extensive experiments in order to investigate
the performance of the G-PMRM mechanism. The G-
PMRM mechanism is fast and finds near optimal solu-
tions, being very suitable for deployment in real cloud
settings.

1.2 Related Work

Researchers approached the problem of VM placement
in clouds considering different objectives and points of
view. Dong et al. [7] proposed a method for VM place-
ment considering multiple resource constraints using
hierarchical clustering with best fit. Their goal is to im-
prove resource utilization and reduce energy consump-
tion by minimizing both the number of active physical
servers and network elements. Ghribi et al. [8] proposed
an allocation algorithm with a consolidation algorithm
for VM placement in clouds in order to minimize overall
energy consumption and migration cost. Maurer et al. [9]
proposed a dynamic resource configuration to achieve
high resource utilization and low service level agreement
violation rates using knowledge management: case-
based reasoning and a rule-based approach. Kesavan
et al. [10] proposed a set of low-overhead management
methods for managing the cloud infrastructure capacity
to achieve a scalable capacity allocation for thousands of
machines. Hu et al. [11] studied two time-cost optimiza-
tion problems for provisioning resources and scheduling
divisible loads with reserved instances in clouds. They
formulated the problems as mixed integer programs.
Tsai et al. [12] proposed a hyper-heuristic scheduling
algorithm with the aim of reducing the makespan of task
scheduling in clouds. Their approach uses two detection
operators to determine when to change the low-level
heuristic algorithm and a perturbation operator. Doyle
et al. [13] proposed an algorithm to determine which
data center requests should be routed, based on the
relative priorities of the cloud operator. Such routing will
reduce the latency, carbon emissions, and operational
cost. Srikantaiah et al. [14] modeled the mapping of VMs
to PMs as a multidimensional bin packing problem in

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 3

which PMs are represented by bins, and each resource
is considered as a dimension of the bin. They studied
energy consumption and resource utilization and pro-
posed a heuristic algorithm based on the minimization
of the sum of the Euclidean distances of the current
allocations to the optimal point at each PM. Rodriguez
and Buyya [15] proposed a meta-heuristic algorithm
based on Particle Swarm Optimization for VM provi-
sioning and scheduling strategies on IaaS that mini-
mizes the overall workflow execution cost while meeting
deadline constraints. Their approach considers dynamic
provisioning, heterogeneity of unlimited computing re-
sources, and VM performance variation. However, none
of the above works proposed strategy-proof mechanisms
for resource management in clouds.
Many researchers focused on reducing the operational

costs of cloud providers through reducing energy con-
sumption. Mastroianni et al. [5] proposed an approach
for the consolidation of VMs on two resources, CPU and
RAM, so that both resources are exploited efficiently.
Their goal is to consolidate the VMs on as few PMs
as possible and switch the other PMs off in order to
minimize power consumption and carbon emissions,
while ensuring a good level of QoS. In their proposed
approach, decisions on the assignment and migration
of VMs are driven by probabilistic processes and are
based exclusively on local information. Mazzucco et
al. [16] proposed policies based on dynamic estimates
of users demand and models of system behavior in
order to determine the minimum number of PMs that
should be switched on to satisfy the demand with two
objectives, reducing energy consumption and maximiz-
ing revenues. Polverini et al. [17] studied the problem
of scheduling batch jobs on multiple geographically-
distributed data centers. They considered the benefit
of electricity price variations across time and locations.
Their proposed algorithm schedules jobs when elec-
tricity prices are sufficiently low and to places where
the energy cost per unit work is low. Mashayekhy et
al. [18] proposed energy-aware scheduling algorithms
for detailed task placement of MapReduce jobs. Their
scheduling algorithms account for significant energy
efficiency differences of different machines in a data
center. Khosravi et al. [19] proposed a VM placement
algorithm that increases the environmental sustainability
by taking into account distributed data centers with
different carbon footprint rates. Beloglazov et al. [20]
investigated the challenges and architectural principles
for energy-efficient management of cloud computing.
They proposed energy-aware allocation heuristics that
provision resources to improve energy efficiency of the
data center considering QoS requirements. For a sur-
vey on energy-efficient cloud computing systems, and
their taxonomy, the reader is referred to [21]. For a
survey of green computing performance metrics for data
centers, such as power metrics, thermal metrics, and
extended performance metrics, the reader is referred
to [22]. However, in this study we focus on cloud auction

markets which necessitate designing game theory based
mechanisms to reach market equilibria.

Motivated by the recent introduction of cloud auc-
tions by Amazon, resource allocation and pricing in
clouds have been increasingly considered by several re-
searchers. Yi et al. [23] proposed a resource provisioning
approach to reduce the monetary cost of computation
using Amazon spot instances. Their results show that by
using an appropriate checkpointing scheme, the cost and
task completion time can be reduced. Prasad et al. [24]
proposed a cloud resource procurement and dynamic
pricing approach in a reverse auction setting with sev-
eral cloud providers. They proposed several strategy-
proof mechanisms for resource procurement and pricing.
Fu et al. [1] proposed a core-based pricing method
using a coalitional game. However, they did not consider
strategy-proofness. Iyer and Veeravalli [25] studied the
problem of resource allocation and pricing strategies in
cloud computing. They considered the Nash Bargaining
Solution and Raiffa Bargaining Solution, and proposed
optimal solutions for allocating virtual CPU instances
for both independent tasks and workflow tasks. Kang
andWang [26] proposed an auction-based cloud resource
allocation algorithm that considers the fitness between
resources and services. Mihailescu and Teo [27] proposed
a reverse auction-based mechanism for dynamic pricing
of resources. A revenue sharing mechanism for multiple
cloud providers using cooperative games was proposed
by Niyato et al. [28]. Teng and Magoules [29] employed
game theoretical techniques to solve the multi-user equi-
librium allocation problem, and proposed a resource
pricing and allocation policy where users can predict the
future resource price. In our previous studies, we pro-
posed truthful mechanisms for VM allocation in clouds
without considering their placement onto PMs [30], [31].

Our work is different from all the previous works,
since we address the cloud resource management prob-
lem through an economic model by performing VM pro-
visioning, placement, pricing, and considering possible
energy savings. Moreover, we consider a realistic cloud
setting with multiple heterogeneous PMs providing mul-
tiple types of resources, and users requesting different
types of VM instances. We also provide worst case
performance guarantee for our proposed mechanism.

1.3 Organization

The rest of the paper is organized as follows. In Section 2,
we describe the PM resource management problem in
clouds. In Section 3, we present our proposed optimal
mechanism. In Section 4, we describe our proposed
approximation mechanism, and in Section 5, we charac-
terize its properties. In Section 6, we evaluate the perfor-
mance of the mechanisms by extensive experiments. In
Section 7, we summarize our results and present possible
directions for future research.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 4

TABLE 1: General purpose (M3) VM instance types
offered by Amazon EC2.

m3.medium m3.large m3.xlarge m3.2xlarge
m = 1 m = 2 m = 3 m = 4

CPU 1 2 4 8
Memory (GB) 3.75 7.5 15 30
Storage (GB) 4 32 80 160

2 PHYSICAL MACHINE RESOURCE MANAGE-
MENT PROBLEM

In this section, we present the system model and the
problem of Physical Machine Resource Management
(PMRM) in clouds.

We consider a cloud provider managing a public cloud
consisting of P PMs, PM = {1, . . . , P}, offering a
set R = {1, . . . , R} of R types of resources such as
cores, memory, and storage, to users in the form of
VM instances. The information about cloud’s physical
resources is not known to the users. A PM can be a
server, a rack of servers, or a group of racks. A key char-
acteristic of our model is that it enables cloud providers
to define PMs based on their resource configurations
and user demands. This allows the cloud provider to
treat the heterogeneous resources in a flexible way. Each
PM p has restricted capacity, Cpr, for a resource r ∈ R
available for allocation. We denote by Cp the vector of
available capacities on each PM p. The cloud provider
offers its heterogeneous resources to users in the form
of M types of VMs. The set of VM types is denoted
by VM. Each VM of type m ∈ VM consists of a specific
amount of each type of resource r ∈ R. In addition, wmr

represents the amount of resources of type r that one VM
instance of type m provides. Table 1 presents the four
types of general purpose (M3) VM instances offered by
Amazon EC2. By considering CPU, memory, and storage
as type 1, type 2, and type 3 resources, respectively, for
example, the m3.medium instance (m = 1) is character-
ized by: w11 = 1, w12 = 3.75 GB, and w13 = 4 GB.

We consider a set N of N users requesting a set
of VM instances. Each user has a private valuation
for obtaining her request consisting of VM instances.
Bidding is the process of expressing user’s valuation for
a heterogeneous set of VMs and communicating it to the
system. In general, it does not matter how the valuation
is being encoded, as long as the system can understand
the bid submitted by the user (bidder). Users use a
bidding language to express their requests. We define
a bidding language that can be used to express a user’s
request (which may or may not be their true request) and
to report it to the system. Each user i, i ∈ N , can submit
a pair (ρi, bi), where ρi is her requested bundle of VMs
and bi is the price that she is willing to pay for ρi. As a
result, her valuation is defined as vi(ρ̂i) = bi if ρi ⊆ ρ̂i

and vi(ρ̂i) = 0, otherwise. Such a bid βi = (ρi, bi) is called
an atomic bid. Users with atomic bids are called single-
minded bidders. User i’s requested bundle is represented
by ρi = 〈ki1, ki2, . . . , kiM 〉, where kim is the number of

TABLE 2: Notation

PM Set of physical machines {1, . . . , P}
VM Set of virtual machine types {1, . . . , M}
R Set of resources {1, . . . , R}
wmr Amount of resources of type r ∈ R provided

by a VM instance of type m ∈ VM
Cpr Capacity of p ∈ PM for a resource of type r ∈ R
N Set of users {1, . . . , N}
ρi Bundle requested by user i ∈ N
kim Number of requested VM instances of

type m ∈ VM by user i ∈ N
bi Bid of user i ∈ N
vi Valuation function of user i ∈ N
ui Utility function of user i ∈ N
Πi Payment of user i ∈ N

requested VM instances of type m ∈ VM. It is worth
noting that ρi can consist of one type of VM, while
the request for the remaining types of VMs are zero.
For example, request (〈10, 0, 0, 5〉, $25) represents a user
requesting 10 m3.medium VM instances, 0 m3.large VM
instance, 0 m3.xlarge VM instance, and 5 m3.2xlarge VM
instances; and her bid is $25. Table 2 summarizes the
notation used throughout the paper.
Given the above setting the problem of Physical Ma-

chine Resource Management (PMRM) in clouds is to deter-
mine the allocation of VM to PM simultaneously with the
allocation of VM to users and the prices for the VM bun-
dles such that the sum of users’ valuations is maximized.
A mechanism for solving the PMRM problem consists of
three phases: winner determination, provisioning and al-
location, and pricing. In the winner determination phase,
the cloud provider determines which users receive their
requested bundles. Based on the results of the winner
determination phase, the cloud provider provisions the
amount of resources in the form of VM instances onto
the PMs, and then allocates the requested bundles of
VMs to the winning users. Then, the cloud provider
determines the unique amount that each winning user
must pay based on the winner determination results.
Note that the payment of a user is not greater than its
submitted bid. The main building blocks of a PMRM
mechanism include: a winner determination function W
and a payment function Π.
Fig. 1 shows a high-level view of PMRM. For sim-

plicity, we consider that only one type of resource is
available. Four users submit their bids to the cloud
provider, where two PMs are available to fulfill the
users’ requests. As an example, user 1 requests two
V M1 and one V M2 as her bundle, and she submits a
bid of $0.50. The mechanism employed by the cloud
provider collects the bids and then selects the users
whose bundle would be provisioned. After it provisions
the VMs on the PMs based on the selected users, it
allocates the bundles to those users. The selected users
pay the amount determined by the mechanism to the
cloud provider.
User i has a quasi-linear utility function defined as the

difference between her valuation and payment, ui =
vi(Wi) − Πi, where Wi is the allocated bundle to user i,
and Πi is the payment for user i. The users are self-
interested, that is, they want to maximize their own

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 5

1VM

1VM

2VM $0.55

1VM

1VM

2VM $0.50

1VM

1VM

1VM

1VM

1VM

1VM

$0.40

1VM

1VM

1VM

1VM

2VM

2VM 2VM 2VM

1VM

1) Collecting Bids & winner

2) Provisioning & allocation

3) Pricing

2VM 2VM
1VM

1) Bid

3) Payment

2) P
rovision

PM PM

Cloud Provider

determination

2) Allocate

$0.45

Fig. 1: A high-level view of PMRM.

utility. It may be beneficial for cloud users to manipulate
the auction outcomes and gain unfair advantages via
untruthfully revealing their requests. Since the request of
a user is a pair of bundle and value, the user can declare
a higher value in the hope to increase the likelihood of
obtaining her requested bundle, or declare a different
VM bundle from her actual request. Strategic behaviors
of such users may hinder other qualified users, leading
to reduced revenue and reputation of the cloud provider.
Our goal is to design strategy-proof mechanisms that
solve the PMRM problem and discourage users from
gaming the system by untruthful reporting. The mecha-
nism maximizes social welfare, the sum of users’ valua-
tions for the requested bundles of VMs.

3 OPTIMAL MECHANISM FOR PMRM
In this section, we propose an optimal strategy-proof
mechanism for PMRM. For a detailed introduction on
mechanism design the reader is referred to [32].
Cloud users may submit different requests from their

true requests hoping to gain more utility. We denote by
β̂i = (ρ̂i, b̂i) user i’s declared request. Note that βi =
(ρi, bi) is user i’s true request. We denote by β =
(β1, . . . , βN) the vector of requests of all users, and
by β−i the vector of all requests except user i’s request
(i.e., β−i = (β1, . . . , βi−1, βi+1, . . . , βN)). Users are ra-
tional in a sense that they do not want to pay more
than their valuation for their requested bundles. A well-
designed mechanism should give incentives to users to
participate. Such a property of a mechanism is called
individual rationality and is defined as follows:
Definition 1 (Individual rationality): A mechanism

is individually-rational if for every user i with true
request βi and the set of other requests, we have
ui(βi) ≥ 0.
In other words, a mechanism is individually-rational

if a user can always achieve as much utility from
participation as without participation. However, such
mechanisms do not always give incentives to users to
report their requests truthfully. Our goal is to design a
mechanism that is strategy-proof, i.e., a mechanism that
gives incentives to users to reveal their true requests.
Definition 2 (Strategy-proofness): A mechanism is

strategy-proof (or incentive compatible) if ∀i ∈ N with a

true request declaration βi and any other declaration β̂i,
and ∀β̂−i, we have that ui(βi, β̂−i) ≥ ui(β̂i, β̂−i).
The strategy-proofness property implies that truthful

reporting is a dominant strategy for the users. As a
result, it never pays off for any user to deviate from
reporting her true request, irrespective of what the other
users report as their requests.
Our first proposed strategy-proof mechanism is an

optimal one and it is based on the Vickrey-Clarke-Groves
(VCG) mechanism. An optimal winner determination
function with VCG payments provides a strategy-proof
mechanism [33], [34], [35]. We define our proposed op-
timal VCG-based mechanism for PMRM as follows:
Definition 3 (VCG-PMRM mechanism): The VCG-

PMRM mechanism consists of winner determination
function W , and payment function Π, where

i) W is an optimal winner determination function
maximizing the social welfare, and

ii) Πi(β̂) =
∑

j∈N\{i}

vj(Wj(β̂−i)) −
∑

j∈N\{i}

vj(Wj(β̂)),

such that
∑

j∈N\{i} vj(Wj(β̂−i)) is the optimal social
welfare obtained when user i is excluded from partic-
ipation, and

∑

j∈N\{i} vj(Wj(β̂)) is the sum of all users
valuations in the optimal solution except user i’s value.
The problem that needs to be solved in the winner

determination phase of PMRM can be formulated as an
integer program (called IP-PMRM), as follows:

Maximize V =
∑

i∈N

∑

p∈PM

bi · Xip (1)

Subject to:
∑

p∈PM

Xip ≤ 1,∀i ∈ N (2)

∑

i∈N

∑

m∈VM

kimwmrXip ≤ Cpr,

∀p ∈ PM, ∀r ∈ R (3)

Xip = {0, 1} (4)

The decision variables Xip are defined as follows:
Xip = 1, if ρi is allocated to i on machine p; and 0
otherwise. The objective function is to maximize social
welfare V . Constraints (2) ensure that the request of each
user is fulfilled at most once. Constraints (3) guarantee
that the allocation of each resource type does not exceed
the available capacity of that resource for any PM. Con-
straints (4) represent the integrality requirements for the
decision variables.
The winner determination phase of VCG-PMRM (im-

plementing W) consists of solving the IP-PMRM. The
execution time of VCG-PMRM becomes prohibitive for
large instances of the PMRM problem. As a result,
we resort to designing a fast mechanism providing an
approximate solution for the PMRM problem. The VCG-
PMRM mechanism will be used in our experiments
as a benchmark for the performance of the proposed
approximation mechanism.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 6

4 A STRATEGY-PROOF APPROXIMATION
MECHANISM FOR PMRM
In this section, we introduce our proposed strategy-
proof greedy mechanism, G-PMRM. Greedy algorithms
to solve PMRM do not necessarily satisfy the strategy-
proofness property. To obtain a strategy-proof mecha-
nism, the winner determination function W must be
monotone, and the payment function Π must be based
on the critical payment [36]. In addition, we design an
iterative winner determination algorithm in the sense
that, in each iteration, it determines the assignment of
winning requests to their associated PM. This way the
mechanism utilizes PMs one by one until all winning
requests are assigned. This approach allows the cloud
provider to power off unutilized PMs to save energy.
In the following, we define the properties that our pro-
posed mechanism needs to satisfy in order to guarantee
strategy-proofness.
Definition 4 (Monotonicity): A winner determination

function W is monotone if it selects user i with β̂i as her
declared request, then it also selects user i with a more
preferred request β̂′

i, i.e., β̂′
i � β̂i.

That means, any winning user who receives her re-
quested bundle by declaring a request β̂i will still
be a winner if she requests a more preferred request
(i.e., smaller bundle and/or a higher bid). Formally,
β̂′

i � β̂i if b̂′i ≥ b̂i and ρ̂i =< k̂i1, k̂i2, . . . , k̂iM >,
ρ̂′i =< k̂′

i1, k̂
′
i2, . . . , k̂

′
iM > such that

∑

m∈VM k̂′
imwmr ≤

∑

m∈VM k̂imwmr,∀r ∈ R.
Definition 5 (Critical payment): Let W be a monotone

winner determination function, then for every βi, there
exists a unique value vc

i , called critical payment, such that
∀β̂i ≥ (ρi, v

c
i), β̂i is a winning declaration, and ∀β̂i <

(ρi, v
c
i) is a losing declaration. Πi(β̂) = vc

i if user i wins,
and Πi(β̂) = 0, otherwise.
However, a key challenge in the design of our greedy

mechanism in order to satisfy monotonicity is the pres-
ence of multiple PMs with multiple types of resources.
Lucier and Borodin [37] and Chekuri and Gamzu [38]
showed that loser-independent algorithms can be em-
ployed as sub-procedures in a greedy iterative approach
to obtain monotonicity for the overall winner determi-
nation algorithm.
Definition 6 (Loser-independence): An algorithm W is

loser-independent with respect to user i’s request β̂i in
which Wi(β̂i, β̂−i) = ∅, if user i declares a request β̂′

i,
then either Wj(β̂

′
i, β̂−i) = Wj(β̂i, β̂−i), for all j 6= i, or

Wi(β̂i, β̂−i) 6= ∅, where β̂′
i � β̂i.

In other words, if user i was not selected by algo-
rithm W when she declared request β̂i and now she
declares a new request β̂′

i while the declared requests
of the rest of the users do not change, then the outcome
of algorithm W changes only if user i becomes a winner
by declaring a better request β̂′

i.
If the bid of a not-selected user changes but her alloca-

tion stays the same then the allocations to all other users
do not change. A key property of loser-independent

Algorithm 1 G-PMRM Mechanism

1: {Collect user requests.}
2: for all i ∈ N do
3: Collect user request β̂i = (ρ̂i, b̂i) from user i
4: {Allocation.}
5: (V , x) = G-PMRM-WIN(β̂)
6: Provisions and allocates VM instances according to x.
7: {Payment.}
8: Π =G-PMRM-PAY(β̂,x)

Algorithm 2 IS-FEASIBLE(ρi, Cp)

1: for all r ∈ R do
2: σir =

∑

m∈VM
kimwmr

3: flag ← TRUE
4: for all r ∈ R do
5: if σir > Cpr then
6: flag ← FALSE
7: break;
8: Output: flag

algorithms is that if a user is not a winner, it guarantees
the same output no matter her declaration. This property
makes the algorithm robust against strategic users who
try to manipulate the system by changing other users
allocations. Note that if such a user tries to change
the allocation determined by the algorithm, she should
declare a request that will make her a winner.
Obtaining strategy-proofness requires the design of a

loser-independent winner determination algorithm that
allocates the resources of each PM individually. If the
winner determination algorithm is loser-independent for
each PM, then when the solutions for each individ-
ual machines are combined in an iterative fashion it
will lead to a monotone overall winner determination
algorithm. Having a monotone winner determination
algorithm along with a critical value payment, makes
the mechanism strategy-proof.
We define our proposed G-PMRM mechanism as fol-

lows:
Definition 7 (G-PMRM mechanism): The G-PMRM

mechanism consists of the winner determination
algorithm G-PMRM-WIN and the payment function
G-PMRM-PAY.
The G-PMRM mechanism is given in Algorithm 1. The

mechanism is run periodically by the cloud provider. It
collects the requests from all users, and then it deter-
mines the winning users by calling the G-PMRM-WIN
algorithm. Once the users are selected the mechanism
provisions the required number and types of VM in-
stances on the selected PMs, and then it determines
the payments by calling the G-PMRM-PAY function.
The users are then charged the payment determined by
the mechanism. G-PMRM-WIN and G-PMRM-PAY are
presented in the following.
Before describing the winner determination algorithm,

we need to define a function, called IS-FEASIBLE(), that
we call in our proposed winner determination algorithm.
IS-FEASIBLE() is given in Algorithm 2. It checks the
feasibility of allocating the requested bundle of VMs of
a user on a specific PM, that is, it checks whether PM p

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 7

Algorithm 3 G-PMRM-WIN(β̂)

1: U = ∅
2: for all i ∈ N do
3: for all r ∈ R do
4: σir =

∑

m∈VM
kimwmr

5: rpi =
∑

m∈VM
kimom

6: if b̂i ≥ rpi then
7: U = U ∪ {i}
8: for all p ∈ PM do
9: {First phase}
10: Cp = (Cp1, . . . , CpR)

11: Û ← ∅; x̂ = 0

12: for all i ∈ U do
13: if IS-FEASIBLE(ρi, Cp) then
14: Û ← Û ∪ {i}
15: V̂ = max

i∈Û
b̂i

16: j = argmax
i∈Û

b̂i

17: x̂j = 1
18: {Second phase}
19: Ũ ← ∅; x̃ = 0

20: for all i ∈ U do
21: if IS-FEASIBLE(ρi, Cp/2) then
22: Ũ ← Ũ ∪ {i}
23: for all i ∈ Ũ do

24: di = b̂i/

√

∑R

r=1

σir
Cpr

25: Sort Ũ in decreasing order of di

26: Ū ← ∅; C̃p = 0; flag ← TRUE
27: while Ũ 6= ∅ and flag do
28: for all r ∈ R do
29: if C̃pr > Cpr/2 then
30: flag ← FALSE
31: if flag then
32: i← argmax

i∈Ũ
di

33: Ũ = Ũ \ {i}
34: x̃i = 1
35: Ū ← Ū ∪ {i}
36: for all r ∈ R do
37: C̃pr = C̃pr + σir

38: Ṽ = 0; C̄p = 0
39: if Ū 6= ∅ then
40: for all i ∈ Ū except the last user j added to Ū do

41: Ṽ = Ṽ + b̂i

42: for all r ∈ R do
43: C̄pr = C̄pr + σir

44: for all r ∈ R do
45: σ̄jr = Cpr/2− C̄pr

46: flag ← TRUE
47: for all r ∈ R do
48: if σjr > σ̄jr then
49: flag ← FALSE
50: if flag then
51: for all r ∈ R do
52: σ̄jr = σjr

53: b̄j = dj

√

∑R

r=1

σ̄jr

Cpr

54: Ṽ = Ṽ + b̄j

55: {Third phase}
56: if V̂ ≥ Ṽ then
57: Vp = V̂ ; xp = x̂

58: else
59: Vp = Ṽ ; xp = x̃

60: Update U to the unallocated users based on xp

61: V =
∑

p∈PM
Vp; x =

∑

p∈PM
xp

62: Output: V , x

has enough resources to fulfill a requested bundle of
VMs. For user i with ρi = 〈ki1, ki2, . . . , kiM 〉, and PM p,
the function computes σir, the amount of resources of
type r requested by user i, and then checks it against

the available resource capacity Cpr for all types r ∈ R of
resources on PM p.
G-PMRM-WIN is given in Algorithm 3. G-PMRM-

WIN has one input parameter, the vector of users de-
clared requests β̂, and two output parameters: V , the
total social welfare, and x, the set of winning users.

The algorithm finds the total amount of each resource
type requested by each user in N (lines 2-4). It also
calculates the reserve price for each request (line 5).
We consider reservation prices for the VMs to avoid
non-profitable trade. The reserve price is often a reflec-
tion of the VM cost. The cloud provider sets a reserve
price om for each type of VM m ∈ VM. These prices
are denoted by a vector O =< o1, . . . , oM >. The reserve
price (bundle-specific) of a user is calculated based on
her requested bundle as follows: rpi =

∑

m∈VM kimom,
which is the weighted sum of reserve prices for all the
requested VMs in the bundle of user i. Users whose bids
are above the reserve prices are included in U , the set of
users who are not yet selected to receive their requested
bundles (lines 6-7). In the following, we call U , the set
of not-selected users. Then, the algorithm iterates over
all PMs to find a subset of users whose requests should
be assigned to each PM p, where the vector of resource
capacities of PM p is Cp = (Cp1, . . . , CpR) (lines 8-60).
Each iteration of the algorithm (lines 8-60) consists of
three phases. In the first phase, the algorithm finds the
user with the maximum bid (lines 9-17). In the second
phase, the algorithm finds the set of users based on
their bid densities whose overall requested amount of
resources is at least half of the capacities of the PM
(lines 18-54). In the third phase, the algorithm finds the
maximum social welfare Vp between the obtained social
welfare of the first and second phase (lines 55-60). Based
on the phase providing the maximum social welfare,
the algorithm chooses the set of winning users xp for
PM p. The requested bundle of VMs of these users will
be provisioned using the resources of PM p. Then, the al-
gorithm updates the set of not-selected users U (line 60).
After finding the set of winning users to be allocated
to each PM p,∀p ∈ PM, the algorithm calculates the
obtained social welfare V and the final set of winning
users specified by vector x (line 61).
In the following, we discuss each phase in detail. In

phase one, the algorithm first finds the set of users Û
whose requests can be fulfilled by PM p (lines 9-14)
by calling the IS-FEASIBLE() function that checks the
feasibility of allocating the requested bundle of VMs
of each user i on PM p. Then, it finds the maximum
bid among the users in Û (line 15). It also finds the
user associated with it as a winning user and updates x̂

(lines 16-17).
In the second phase, the algorithm finds the set of

users Ũ , where each user’s request is not greater than
half of the available capacity of the PM p, for each
resource by calling IS-FEASIBLE (lines 18-22). Then, the
algorithm calculates the bid densities of users in Ũ
(lines 23-24) according to a density metric defined as

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 8

di = b̂i
√

∑

R

r=1

σir
Cpr

,∀i ∈ U , where σir =
∑

m∈VM kimwmr

is the amount of each resource of type r requested by
user i, and 1

Cpr
is the relevance factor characterizing the

scarcity of resources of type r. Next, the algorithm sorts
the users in Ũ based on the decreasing order of their
bid densities (line 25). Then, the algorithm selects users
based on their bid densities (lines 26-37). To do that
it checks whether the total amount of requests of the
current selected users are less than half of the available
capacity of each resource in the PM (lines 28-30). If
the total amount of requests do not reach the half,
the algorithm selects a new user according to the bid
densities, and updates the set Ū , x̄, and the total amount
of requests assigned to PM p (lines 31-37). Then, G-
PMRM-WIN finds the social welfare of the selected users
in the second phase if Ū is not an empty set (lines 38-
54). It first, finds the social welfare Ṽ of all the selected
users except the last user (i.e., user j) added to the set Ū
(lines 40-43). Then, the algorithm finds the remaining
capacities of each resource σ̄jr from half of the capacities
of the PM (lines 44-45). It also checks if the actual request
of user j is less than the remaining capacities (lines 46-
52). Next, the algorithm calculates the value b̄j (line 53)
based on either the remaining capacities (lines 44-45) or
the actual user j’s request if her request is less than the
remaining capacities (lines 51-52). Finally, the algorithm
updates the social welfare Ṽ by adding b̄j (line 54).
In phase three, the algorithm selects the maximum

social welfare and the associated selected users from
the two phases as the social welfare and the set of
winning users whose requests will be provisioned on
PM p (lines 55-60). The obtained social welfare on PM p
is Vp, the maximum social welfare between the social
welfare of the two phases. The set of winning users
whose requests will be provisioned on PM p, xp, is the
solution that gives Vp. Then, the algorithm updates the
set of not-selected users U based on xp to guarantee that
each user is selected at most once (line 60). After finding
the set of users to be allocated to each PM, the algorithm
calculates the obtained social welfare V and the final set
of winning users specified by vector x (line 61).
The G-PMRM-PAY function is given in Algorithm 4.

The G-PMRM-PAY function has two input parameters,
the vector of users declared requests (β̂), and the set
of winning users given by x. The payment of winning
user i is vc

i , where vc
i is the critical payment of user i,

if i wins and zero if i loses. Finding the critical payment
is done by a binary search over values less than the
declared value and above the reserve price. We con-
sider reserve prices for the VMs in order to avoid non-
profitable trade.
G-PMRM-PAY initializes the payment of each user to

zero (line 4). Then for each winning user i (i.e., xi = 1) it
initializes the lower and upper bounds of the payment
to the reserve price and the declared value of the user,
respectively (lines 6-9). The reserve price of a user is
calculated based on her requested bundle as follows: l =

Algorithm 4 G-PMRM-PAY: Critical Payment Function

1: Input: β̂ = (β̂1, . . . , β̂N); vector of requests (bundle, bid)
2: Input: x; winning users
3: for all i ∈ U do
4: Πi = 0
5: if xi then
6: l = 0
7: for all m ∈ VM do
8: l = l + kimom

9: h = b̂i

10: while (h− l) ≥ 1 do
11: vc

i
= (h + l)/2

12: β̂c
i

= (ρ̂i, v
c
i
)

13: (V ′, x′) = G-PMRM-WIN ((β̂1, . . . , β̂c
i
, . . . , β̂N))

14: if x′
i
then

15: h = vc
i
{user i is winning by declaring vc

i
}

16: else
17: l = vc

i
18: Πi = h
19: Output: Π = (Π1, Π2, . . . , ΠN)

∑

m∈VM kimom, which is the weighted sum of reserve
prices for all the requested VMs in the bundle of user i.

G-PMRM-PAY sets the critical payment, vc
i , as the

average of the lower and upper bounds, and checks if
user i would have won if she have had declared her bid
as vc

i (lines 11-13). If user i would have won by declaring
vc

i , G-PMRM-PAY sets the value as a new upper bound;
otherwise, the value is a new lower bound (lines 14-
17). G-PMRM-PAY tries to reduce the gap between upper
and lower bound to 1. Then, the payment of user i, Πi

is set to the upper bound value (line 18). G-PMRM-PAY
returns an output parameter, Π, the payment vector for
the users.

Example. A key idea in the design of G-PMRM-WIN,
is finding a partial allocation in the second phase in
order to not only guarantee approximation ratio but
also strategy-proofness. It is not possible to guarantee
the strategy-proofness of the mechanism, if we allow G-
PMRM-WIN to find an allocation considering the full
capacity in the second phase. According to the Defini-
tion 4 (Monotonicity), any winning user who receives
her requested bundle by declaring a request β̂i will still
be a winner if she requests a more preferred request (i.e.,
smaller bundle and/or a higher bid). In the following,
we provide an example showing that considering the
full capacity in the second phase will not satisfy the
monotonicity property, that is, showing that if a winning
user submits a higher bid, she becomes a loser.

We consider six users, where their requests, bids, and
bid densities are shown in Table 3. We consider a cloud
provider with only one type of resource (storage) with
two PMs each with capacity of 1024 GB. The first phase
of the mechanism selects users I and II for PM1, and
users III and IV for PM2, where the solution has a total
value of $102+$102+$150+$50=$404. The second phase
of the modified mechanism (i.e., considering the full
capacity) selects user V for PM1, and user VI for PM2,
where the solution has a total value of $198+$198=$396.
As a result, the mechanism selects the result of the

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 9

TABLE 3: Example - Users requests.

User requested storage bid bid density
I 512 GB $102 204
II 512 GB $102 204
III 768 GB $150 200
IV 256 GB $50 200
V 1024 GB $198 198
VI 1024 GB $198 198

first phase as the solution. Now, we consider that user
IV submits a higher bid of $52 instead of her actual
value ($50). Her bid density would change to 208, which
is the highest density among all six users. Therefore,
the first phase selects users IV and I for PM1, and
user II for PM2, where the solution has a total value
of $102+$102+$52=$256. The second phase (with full
capacity) selects user V for PM1, and user VI for PM2,
where the solution has a total value of $198+$198=$396.
As a result, the modified mechanism selects the results of
the second phase as the solution. This solution does not
include user IV anymore, and the winner determination
is not monotone, and thus the mechanism is not strategy-
proof. This example shows that a user can lose by
declaring a higher value which should not be a case.
In the next section, we prove that our proposed mech-

anism is strategy-proof and that its worst-case perfor-
mance is well-bounded.

5 PROPERTIES OF G-PMRM
In this section, we investigate the properties of G-PMRM.
We first show that the mechanism is individually rational
(i.e., truthful users will never incur a loss).
Theorem 1: G-PMRM mechanism is individually ratio-

nal.
Proof: We consider two cases. In case one, we con-

sider a truthful user i who does not win. Such user is not
incurring a loss since she pays 0 (line 4 of Algorithm 4),
and her utility is 0. In case two, we consider user i as a
winning user. We need to prove that if user i reports her
true request then her utility is non-negative. In line 18 of
Algorithm 4, the payment for user i is set to h, where h
is initially set to b̂i as an upper bound. The determined
payment of user i is less than the initial value of h
due to binary search. As a result, G-PMRM-PAY always
computes a payment Πi ≤ b̂i. The utility of user i (i.e.,
ui = b̂i − Πi ≥ 0) is non-negative if she report truthfully
(i.e., b̂i = bi), and she never incurs a loss. This proves
the individual-rationality of G-PMRM.

We now prove that the allocation on each PM (ob-
tained in each iteration of the G-PMRM-WIN algorithm)
is loser-independent.
Theorem 2: The allocation obtained by each iteration of

G-PMRM-WIN is loser-independent.
Proof: To prove the loser-independency property of

each iteration of G-PMRM-WIN, we need to analyze the
results of two scenarios, a current declaration and a new
declaration. In the current declaration, user i submits
a request β̂i, and G-PMRM-WIN on PM p finds V̂
and Ṽ as the social welfare obtained by the first and

the second phase, respectively. In the new declaration,
user i submits a request β̂′

i � β̂i, and the rest of the
users declare the same request as they declared in their
current declarations. G-PMRM-WIN on PM p finds V̂ ′

and Ṽ ′ as the social welfare obtained in this scenario by
the first and the second phase, respectively.
In order to prove that the allocation obtained by each

iteration of G-PMRM-WIN on each machine p is loser-
independent, we need to show that V̂ ′ ≥ V̂ and Ṽ ′ ≥ Ṽ .
In addition, if either V̂ ′ > V̂ or Ṽ ′ > Ṽ , then user i has
been selected, and if the obtained social welfare does
not change, then either user i has been selected or the
allocation of the users does not change. We separate the
proof into two cases as follows.
i) V̂ ′ ≥ V̂ , if one user increases her bid. If V̂ ′ > V̂ ,

then user i must be the user with the maximum bid,
and thus, user i is in the solution (i.e., x̂′

i = 1). If V̂ ′ = V̂ ,
then the allocation of the users does not change unless
user i declares a bid b̂′i = V̂ , and she is selected by the
algorithm.
ii) Ṽ ′ ≥ Ṽ , we consider two subcases (a) and (b).

In subcase (a), we consider that the overall amount of
resource requests is less than half of the capacities of a
PM. Then all users must be selected (i.e., x̃′

i = 1,∀i ∈ Ũ ′),
where Ũ ⊆ Ũ ′ since user i may declare a smaller bundle.
As a result, Ṽ ′ ≥ Ṽ . In subcase (b), we consider that the
overall amount of resource requests is at least half of
the capacities of a PM. Note that user i has a better bid
density by declaring β̂′

i. If x̃′
i = 0, then x̃i = 0. If Ṽ ′ = Ṽ

and x̃′
i = 0, then the allocation would be the same. In

addition, if Ṽ ′ > Ṽ , then x̃′
i = 1.

This proves that the allocation obtained by each it-
eration of G-PMRM-WIN on each machine p is loser-
independent.
Theorem 3: G-PMRM-WIN is a monotone winner de-

termination algorithm.
Proof: The allocation obtained by each iteration of

G-PMRM-WIN on each machine p is loser-independent
with respect to the request of each user. If loser-
independent algorithms are employed as sub-procedures
in a greedy iterative approach, then the overall winner
determination algorithm is monotone [37], [38]. There-
fore, the overall allocation on all PMs obtained by G-
PMRM-WIN is monotone.
Theorem 4: G-PMRM-PAY implements the critical pay-

ment.
Proof: We need to prove that Πi is the critical pay-

ment for user i,∀i ∈ N . We assume that user i is selected
by G-PMRM-WIN (i.e., xi = 1). If user i declares a higher
value than Πi, (i.e., b̂′i > Πi), she wins and pays the
same amount Πi. This is due to the fact that if user i
was selected in phase one, then declaring a higher value
makes her a winner. In addition, if user i was selected
in phase two, declaring a higher value increases her bid
density, and thus, user i becomes a winner. If user i
declares a lower value than Πi, (i.e., b̂′i < Πi), this leads
to a lower bid density and a lower value. If user i was
chosen based on either phase one or two, a lower bid

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 10

density and a lower value for the user makes user i a
non-winning user. These show that the payment Πi is the
minimum valuation that user i must bid to obtain her
required bundle. This payment is between the reserve
price and the declared value of the user. The critical
payment property holds considering the reserve prices.
In the case in which user i is not a winner, she pays 0,
thus, satisfying the properties of the critical payment.
As a result, the payment determined by G-PMRM-PAY
is the critical payment.
We now show that our proposed mechanism, G-

PMRM, is strategy-proof.
Theorem 5: G-PMRM mechanism is strategy-proof.
Proof: The winner determination is monotone (The-

orem 3) and the payment is the critical value payment
(Theorem 4), therefore, according to [32], our proposed
mechanism, G-PMRM, is strategy-proof.
Theorem 6: The time complexity of G-PMRM is poly-

nomial.
Proof: The time complexity of G-PMRM-WIN is

O(PN(log N+MR)). This is because sorting the requests
requires O(N log N), while checking the feasibility of the
allocation for each user on each PM requires O(MR).
The time complexity of G-PMRM-PAY is polynomial for
similar reasons. As a result, the time complexity of G-
PMRM is polynomial.
We now prove that in the case of only one PM (i.e.,

P = 1), G-PMRM-WIN is a 2-approximation algorithm.
Theorem 7: The approximation ratio of G-PMRM-WIN

in the case of only one PM is 2.
Proof: Let X∗ be set of users in the optimal solution,

and V ∗ be the optimal social welfare. Let X and V be
the set of users and the social welfare in the obtained
solution by G-PMRM, respectively. We need to prove
that V ∗ ≤ V α, where α is the approximation ratio.
We consider two cases:
i) V is obtained by the second phase of the winner

determination algorithm (i.e., V = Ṽ). If the amount of
overall requests is less than half of the capacities of the
physical machine, then all such users must be selected
(i.e., X∗ = X and V ∗ = V). We now consider that the
amount of overall allocated requests is at least one half
the resource capacities of a physical machine.
In the optimal solution, for the remaining capacity of

that resource, the social welfare is less than V since the
second phase is based on bid densities. Thus, the first
half contains the most valuable requests. Therefore, V >
V ∗/2.
ii) V is obtained by the first phase of the winner deter-

mination algorithm (i.e., V = V̂). That means V̂ ≥ Ṽ . In
the optimal solution, the first half cannot have a better
social welfare and the second half cannot have a better
social welfare than the first half. As a result, V > V ∗/2.

Theorem 8: The approximation ratio of G-PMRM in the
case of multiple PMs is 3.

Proof: To prove this theorem we use a result
from [38], that states that if the winner determination

algorithm is α-approximation on a bin, then the overall
approximation ratio of the winner determination algo-
rithm applied iteratively on multiple bins is α + 1. Since
we proved that the approximation ratio for G-PMRM-
WIN on only one PM is 2, then it follows from [38] that
the overall approximation ratio of G-PMRM on multiple
PMs is 3.

6 EXPERIMENTAL RESULTS

We perform extensive experiments in order to investigate
the performance of the proposed mechanism G-PMRM
against the performance of the optimal VCG-PMRM
mechanism. While it is desirable to compare G-PMRM
with several other mechanisms, we found out that the
existing mechanisms and approaches are not directly
comparable to ours and decided to compare it with
the optimal mechanism, VCG-PMRM. Therefore, we rely
on the optimal results obtained by VCG-PMRM as a
benchmark for our experiments. For the VCG-PMRM
mechanism, we use the IBM ILOG CPLEX Optimization
Studio Multiplatform Multilingual eAssembly to solve
the PMRM problem optimally. The mechanisms are im-
plemented in C++ and the experiments are conducted
on AMD 2.4GHz Dual Proc Dual Core nodes with 16GB
RAM which are part of the WSU Grid System. In this
section, we describe the experimental setup and analyze
the experimental results.

6.1 Experimental Setup

The generated requests are based on realistic data com-
bining publicly available information provided by Ama-
zon EC2 and Microsoft Azure as follows. We consider
the same types of VM instances available to users as
those offered by Amazon EC2. Each of these VM in-
stances has specific resource demands with respect to
two available resource types: cores and memory. We
also set the amount of each resource type provided by
a VM instance to be the same as in the specifications
provided by Amazon Web Services for its Spot Instances
and Elastic Compute Cloud (EC2) (See Table 1). Users
can request a bundle of VMs, where for each VM type,
they can request between 0 and 20 VM instances.
We generate bids based on Amazon Spot market re-

port on users bidding strategies [3]. Amazon regularly
updates its spot price history based on the past 90 days
of activity. Amazon reported that most users bid between
the price of reserved instances and on-demand prices.
By doing so, these users saved between 50% and 66%
compared to the on demand prices. The lowest price
of the reserved instances is for the Heavy Utilization
Reserved Instances which is $0.018 per hour for a medium
VM instance of General Purpose - Current Generation.
However, the trade-off is that the user’s requested bun-
dles can be reclaimed by a cloud provider if the spot
price exceeds their submitted bid prices. Thus, some
users bid above on-demand prices and up to twice the
on-demand prices in some cases. To generate bids, we

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 11

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

50 100 200 300 400 500 600

S
oc

ia
l w

el
fa

re

Number of users

VCG-PMRM*
G-PMRM

(a)

0.0001

0.001

0.01

0.1

1

10

100

1000

10,000

50 100 200 300 400 500 600

E
xe

cu
tio

n
tim

e
(S

ec
on

ds
)

Number of users

VCG-PMRM*
G-PMRM

(b)

 0

 200

 400

 600

 800

 1000

 1200

50 100 200 300 400 500 600

R
ev

en
ue

 (
$)

Number of users

VCG-PMRM*
G-PMRM

(c)

Fig. 2: G-PMRM vs. VCG-PMRM: (a) Social welfare; (b) Execution time; (c) Revenue. (*VCG-PMRM was not able to
determine the allocation for 500 and 600 users in feasible time, and thus, there are no bars in the plots for those cases)

TABLE 4: Simulation Parameters

Param. Description Value(s)
N Number of users [50-600]
M Number of VM instances 4 (M,L,XL,2XL)
R Number of resource types 2 (Core, Memory)
PM Number of PMs 100
C1 Core capacity 512 cores
C2 Memory capacity 1244.9 GB
wmr Amount of resource r provided by a

VM instance m
as in Table 1

kim Number of requested VM of type m
by user i

[0, 20]

b0i bid of user i for a medium VM [0.018, 0.34]

bi value of user i b0i
˙∑M

m=1
2m−1kim

generate a random number, b0
i , for each user i from

the range [0.018, 0.34] for a medium VM instance, where
the range is given by the lowest price for the reserved
Amazon EC2 medium instance and the on-demand price
for the medium instance. Then, we multiply the ran-
dom number by the total weights of VMs in the user’s
requested bundle. The total weight of a VM instance
for user i is

∑M

m=1 2m−1kim. For both mechanisms G-
PMRM and VCG-PMRM, we set the reserve prices of
the VMs to the half of the posted prices for the Heavy
Utilization Reserved Instances. Such reservation prices
are reasonable considering the VM costs and a low profit
margin. The parameters and their values used in the
experiments are listed in Table 4.

We setup the PM configurations based on the speci-
fication of the Titan system [39] at Oak Ridge National
Laboratory (No. 2 in Top500 [40]). Titan currently con-
tains 299,008 CPU cores and 710 terabytes of memory.
We consider 100 PMs available from Titan, where each
PM has 512 cores and 1244.9 gigabytes of memory.

6.2 Analysis of Results

We compare the performance of G-PMRM and VCG-
PMRM for different numbers of users, ranging from 50
to 600. For 500 and 600 users, the optimal mechanism,
VCG-PMRM, could not find the solutions even after 24
hours. This is due to the fact that the problem is strongly
NP-hard, and it is infeasible to solve for large instances.

Fig. 2a shows the social welfare obtained by the
mechanisms for 50 to 600 users. The results show that
G-PMRM obtains the optimal social welfare when user
demand is low compared to the available capacity. For
example, for 200 users, G-PMRM and VCG-PMRM ob-
tain the same social welfare of 1259.19. However, the
results show that with the increase of the user demand,
optimality gap increases. For example, for 300 users, the
social welfare obtained by G-PMRM and VCG-PMRM
is 1582.25 and 2056.26, respectively. For the first five
groups of users for which the optimal mechanism could
find solutions, the optimality gap is 23%. This gap is
reasonable given the fact that the execution time of the
VCG-PMRM is very large as we show in the next figure.
Fig. 2b shows the execution times of the mechanisms

on a logarithmic scale. The execution time of VCG-
PMRM is more than five orders of magnitude greater
than that of G-PMRM. G-PMRM is very fast being
suitable for real cloud settings, where the number of
PMs and users are large. In addition, in auction-based
mechanisms the response time should be very small.
For example, Amazon runs its Spot Market auction-
based mechanism every hour, and needs to find the
winning users and their payments as soon as possible.
In particular, the optimal VCG-PMRM mechanism is not
feasible when the problem scales. VCG-PMRM was not
able to determine the allocation for 500 and 600 users in
feasible time, and thus, there are no bars in the plots for
those cases. The results of Fig. 2a and 2b show that when
the user demand is low, VCG-PMRM obtains the results
in reasonable time. However, the execution time of VCG-
PMRM is prohibitive when the demand is high. On
the other hand, G-PMRM not only obtains the optimal
results when the user demand is low, but also it obtains
reasonable solutions very fast when the demand is high.
Fig. 2c shows the revenue obtained by the cloud

provider using both mechanisms. The results show that
G-PMRM and VCG-PMRM obtains the same revenue for
the cloud provider when user demand is low compared
to the available capacity. However, when the demand
is high, G-PMRM obtains a higher revenue than VCG-
PMRM. This is due to the fact that VCG-PMRM fulfills

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 12

 0

 20

 40

 60

 80

 100

50 100 200 300 400 500 600

U
se

d
P

M
s

Number of users

VCG-PMRM*
G-PMRM

(a)

 0

 20

 40

 60

 80

 100

50 100 200 300 400 500 600

U
se

rs
 s

er
ve

d
(%

)

Number of users

VCG-PMRM*
G-PMRM

(b)

Fig. 3: G-PMRM vs. VCG-PMRM: (a) Used PMs; (b) Users served. (* see note in Fig. 2)

 0

 20

 40

 60

 80

 100

50 100 200 300 400 500 600

C
or

e
ut

ili
za

tio
n

(%
)

Number of users

VCG-PMRM*
G-PMRM

(a)

 0

 20

 40

 60

 80

 100

50 100 200 300 400 500 600

M
em

or
y

ut
ili

za
tio

n
(%

)

Number of users

VCG-PMRM*
G-PMRM

(b)

Fig. 4: G-PMRM vs. VCG-PMRM: (a) Core utilization; (b) Memory utilization. (* see note in Fig. 2)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20

S
oc

ia
l w

el
fa

re

Hours

VCG-PMRM
G-PMRM

Fig. 5: G-PMRM vs. VCG-PMRM: Social welfare over
time.

more requests, which in turn, leads to accepting more
bids, and thus, reducing the price. Note that both mech-
anisms charge users bellow their submitted bids.

Fig. 3a shows the percentage of used PMs for the
mechanisms. With an increase in the number of users,
both mechanisms activate more PMs. For example for
100 users, G-PMRM powers on about 46 percent of all
the PMs, while VCG-PMRM powers about 28 percent of
all the PMs. By increasing the number of users, all PMs
are activated by both mechanisms. This can be seen for
400 users.

Fig. 3b shows the percentage of served users by the
mechanisms. When the demand is low, all users are

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

U
se

d
P

M
s

Hours

VCG-PMRM
G-PMRM

Fig. 6: G-PMRM vs. VCG-PMRM: Used PMs over time.

served by both mechanisms. However, by increasing in
the demand, the percentage of served users decreases.
Note that a higher percentage of served users does not
necessarily result in a higher revenue.

Figs. 4a and 4b show the percentage of resource uti-
lization for both mechanisms. The percentage of core
and memory utilization increases with the increase in
the number of users. This is due to the fact that with
more demand, the cloud provider can better utilize its
resources.

We now analyze the performance of the mechanisms
over an extended period of time of 24 hours, where
users dynamically arrive and submit their requests. We
consider that between 50 and 150 users arrive every

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 13

TABLE 5: Different scenarios for User A’s request declaration

Case ρ̂A b̂A Scenario

I < 0, 0, 0, 15 > $35.14 ρ̂A = ρA, b̂A = bA

II < 0, 0, 0, 15 > $50 ρ̂A = ρA, b̂A > bA

III < 0, 0, 0, 15 > $25 ρ̂A = ρA, b̂A < bA

IV < 0, 0, 0, 15 > $10 ρ̂A = ρA, b̂A < bA

V < 0, 0, 0, 20 > $35.14 ρ̂A > ρA, b̂A = bA

VI < 0, 0, 0, 100 > $35.14 ρ̂A > ρA, b̂A = bA

hour and that each user requests resources for 1 to
4 hours. Fig. 5 shows the social welfare obtained by
the mechanisms for each hour. The results show that
G-PMRM obtains the optimal social welfare in several
cases. When the number of users’ requests accumulates,
G-PMRM cannot always find the optimal solution. How-
ever, the optimality gap is small as guaranteed by the
results of Theorem 8. Fig. 6 shows the percentage of PMs
used in each hour. When the number of users’ requests
accumulates, both mechanisms use all the available PMs.
However, with a decrease in the number of requests,
both mechanisms can turn off several PMs to reduce the
energy costs.

We also perform experiments to investigate the effect
of untruthful reporting on the utility of the users. In
these experiments, we consider the case with 300 users,
and select one of the winning users (i.e., User A) with
true request of 15 VMs of type m3.2xlarge and true
valuation of 35.14. We consider User A’s declarations
that are different from her true request as shown in
Table 5, where Case I represents User A true request.
Fig. 7 shows the payment and the utility of User A for
all these cases.

In case II, User A submits a request with a higher bid
and G-PMRM selects User A as a winner determining
the same payment for her as in case I. In case III,
User A submits a request with a lower bid, where the
bid is not less than her payment determined by G-
PMRM. In this case also, the user is selected as a winner,
and her payment remains the same. In case IV, User A
reports a lower bid than her bid in case I (the true
valuation). G-PMRM does not select the user as a winner
leading to zero utility for her. Therefore, User A did
not increase her utility by this untruthful reporting. If
User A requests a larger bundle as shown in case V, she
obtains the bundle due to available capacities. However,
her payment increases while her utility decreases due to
requesting more VMs. If User A requests a larger bundle
as in case VI, G-PMRM does not select the user as a
winner leading to zero utility for her. These cases show
that if any user submits an untruthful request, she can
not increase her utility, that is the mechanism is strategy-
proof.

From all the above results we can conclude that G-
PMRM decides the allocation much faster than VCG-
PMRM, achieves a social welfare close to the optimal,
and obtains a higher revenue than VCG-PMRM. The per-
formance of G-PMRM scales very well with the number
of users.

 0

 10

 20

 30

 40

 50

 60

Case I

Case II

Case III

Case IV

Case V

Case VI

C
ur

re
nc

y

Different cases for User A

Declared value
Payment

Utility
True value

Fig. 7: G-PMRM: Effect of untruthful declarations on the
user.

7 CONCLUSION

We proposed optimal and approximate strategy-proof
mechanisms for resource management in clouds in the
presence of multiple PMs and multiple types of resources
that give incentives to the users to reveal their true
valuations for the requested bundles of VM instances.
Therefore, our mechanisms do not put the burden on
users to compute complex strategies of how to best inter-
act with the mechanisms. We investigated the properties
of our proposed mechanisms by performing extensive
experiments. The results showed that the performance
of our proposed approximation mechanism scales very
well with the number of users. We plan to implement
the mechanism as part of an integrated solution for
dynamic resource management in an experimental cloud
computing system.

ACKNOWLEDGMENT

This research was supported in part by NSF grants DGE-
0654014 and CNS-1116787.

REFERENCES
[1] H. Fu, Z. Li, C. Wu, and X. Chu, “Core-selecting auctions for

dynamically allocating heterogeneous vms in cloud computing,”
in Proc. 7th IEEE Intl. Conf. Cloud Comput., 2014, pp. 152–159.

[2] C. Chekuri and S. Khanna, “A polynomial time approximation
scheme for the multiple knapsack problem,” SIAM Journal on
Computing, vol. 35, no. 3, pp. 713–728, 2005.

[3] “Amazon EC2 Spot Instance Curriculum,” [Online]. Available:
http://aws.amazon.com/ec2/spot-tutorials/.

[4] H. Xu and B. Li, “Dynamic cloud pricing for revenue maximiza-
tion,” IEEE Trans. Cloud Comput., vol. 1, no. 2, pp. 158–171, 2013.

[5] C. Mastroianni, M. Meo, and G. Papuzzo, “Probabilistic consoli-
dation of virtual machines in self-organizing cloud data centers,”
IEEE Trans. Cloud Comput., vol. 1, no. 2, pp. 215–228, 2013.

[6] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for
cloud computing,” Future Generation Comput. Syst., vol. 28, no. 5,
pp. 755–768, 2012.

[7] J. Dong, X. Jin, H. Wang, Y. Li, P. Zhang, and S. Cheng, “Energy-
saving virtual machine placement in cloud data centers,” in Proc.
13th IEEE/ACM Int. Symp. on Cluster, Cloud and Grid Comput., 2013,
pp. 618–624.

[8] C. Ghribi, M. Hadji, and D. Zeghlache, “Energy efficient VM
scheduling for cloud data centers: Exact allocation and migration
algorithms,” in Proc. 13th IEEE/ACM Int. Symp. on Cluster, Cloud
and Grid Comput., 2013, pp. 671–678.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 14

[9] M. Maurer, I. Brandic, and R. Sakellariou, “Adaptive resource
configuration for cloud infrastructure management,” Future Gen-
eration Comput. Syst., vol. 29, no. 2, pp. 472–487, 2013.

[10] M. Kesavan, R. Soundararajan, A. Gavrilovska, I. Ahmad,
O. Krieger, and K. Schwan, “Practical compute capacity man-
agement for virtualized datacenters,” IEEE Trans. Cloud Comput.,
vol. 1, no. 1, pp. 88–100, 2013.

[11] M. Hu, J. Luo, and B. Veeravalli, “Optimal provisioning for
scheduling divisible loads with reserved cloud resources,” in Proc.
18th IEEE Int. Conf. on Networks, 2012, pp. 204–209.

[12] C.-W. Tsai, W.-C. Huang, M.-C. Chiang, C.-S. Yang, and M.-H.
Chiang, “A hyper-heuristic scheduling algorithm for cloud,” IEEE
Trans. Cloud Comput., vol. 99, no. PrePrints, p. 1, 2014.

[13] J. Doyle, R. Shorten, and D. O’Mahony, “Stratus: Load balancing
the cloud for carbon emissions control,” IEEE Trans. Cloud Com-
put., vol. 1, no. 1, pp. 116–128, 2013.

[14] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy aware consolida-
tion for cloud computing,” in Proc. USENIX Workshop on Power
Aware Comput. and Syst., vol. 10, 2008.

[15] M. Rodriguez and R. Buyya, “Deadline based resource provision-
ing and scheduling algorithm for scientific workflows on clouds,”
IEEE Trans. Cloud Comput., vol. 99, no. PrePrints, p. 1, 2014.

[16] M. Mazzucco, D. Dyachuk, and R. Deters, “Maximizing cloud
providers’ revenues via energy aware allocation policies,” in Proc.
3rd IEEE Int. Conf. on Cloud Comput., 2010, pp. 131–138.

[17] M. Polverini, A. Cianfrani, S. Ren, and A. Vasilakos, “Thermal-
aware scheduling of batch jobs in geographically distributed data
centers,” IEEE Trans. Cloud Comput., no. PrePrints, p. 1, 2013.

[18] L. Mashayekhy, M. Nejad, D. Grosu, Q. Zhang, and W. Shi,
“Energy-aware scheduling of mapreduce jobs for big data appli-
cations,” IEEE Trans. Parallel Distrib. Syst. (forthcoming).

[19] A. Khosravi, S. K. Garg, and R. Buyya, “Energy and carbon-
efficient placement of virtual machines in distributed cloud data
centers,” in Proc. Int. European Conf. Parallel and Distrib. Comput.,
2013, pp. 317–328.

[20] A. Beloglazov and R. Buyya, “Optimal online deterministic al-
gorithms and adaptive heuristics for energy and performance
efficient dynamic consolidation of virtual machines in cloud data
centers,” Concurrency and Computation: Practice and Experience,
vol. 24, no. 13, pp. 1397–1420, 2012.

[21] A. Beloglazov, R. Buyya, Y. C. Lee, A. Zomaya et al., “A taxonomy
and survey of energy-efficient data centers and cloud computing
systems,” Advances in Computers, vol. 82, no. 2, pp. 47–111, 2011.

[22] L. Wang and S. U. Khan, “Review of performance metrics for
green data centers: a taxonomy study,” The Journal of Supercom-
puting, vol. 63, no. 3, pp. 639–656, 2013.

[23] S. Yi, D. Kondo, and A. Andrzejak, “Reducing costs of spot
instances via checkpointing in the amazon elastic compute cloud,”
in Proc. 3rd IEEE Int. Conf. Cloud Comput., 2010, pp. 236–243.

[24] A. Prasad and S. Rao, “A mechanism design approach to resource
procurement in cloud computing,” IEEE Trans. Comput., 2014.

[25] G. N. Iyer and B. Veeravalli, “On the resource allocation and pric-
ing strategies in compute clouds using bargaining approaches,”
in Proc. 17th IEEE Int. Conf. on Networks, 2011, pp. 147–152.

[26] Z. Kang and H. Wang, “A novel approach to allocate cloud
resource with different performance traits,” in Proc. 10th IEEE Intl.
Conf. on Services Computing, 2013, pp. 128–135.

[27] M. Mihailescu and Y. M. Teo, “On economic and computational-
efficient resource pricing in large distributed systems,” in Proc.
10th IEEE/ACM Int. Conf. Cluster, Cloud and Grid Comput., 2010,
pp. 838–843.

[28] D. Niyato, A. Vasilakos, and Z. Kun, “Resource and revenue shar-
ing with coalition formation of cloud providers: Game theoretic
approach,” in Proc. IEEE/ACM Int. Symp. Cluster, Cloud & Grid
Comput., 2011, pp. 215–224.

[29] F. Teng and F. Magoules, “Resource pricing and equilibrium
allocation policy in cloud computing,” in Proc. 10th IEEE Int. Conf.
Computer and Inf. Tech., 2010, pp. 195–202.

[30] L. Mashayekhy, M. M. Nejad, and D. Grosu, “A truthful approxi-
mation mechanism for autonomic virtual machine provisioning
and allocation in clouds,” in Proc. ACM Cloud and Autonomic
Comput. Conf., 2013, pp. 1–10.

[31] M. M. Nejad, L. Mashayekhy, and D. Grosu, “A family of truthful
greedy mechanisms for dynamic virtual machine provisioning
and allocation in clouds,” in Proc. of the 6th IEEE Intl. Conf. on
Cloud Comput., 2013, pp. 188–195.

[32] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorith-
mic game theory. Cambridge University Press, 2007.

[33] W. Vickrey, “Counterspeculation, auctions, and competitive sealed
tenders,” The Journal of Finance, vol. 16, no. 1, pp. 8–37, 1961.

[34] E. H. Clarke, “Multipart pricing of public goods,” Public choice,
vol. 11, no. 1, pp. 17–33, 1971.

[35] T. Groves, “Incentives in teams,” Econometrica: Journal of the
Econometric Society, vol. 41, no. 4, pp. 617–631, 1973.

[36] A. Mu’Alem and N. Nisan, “Truthful approximation mechanisms
for restricted combinatorial auctions,” Games and Economic Behav-
ior, vol. 64, no. 2, pp. 612–631, 2008.

[37] B. Lucier and A. Borodin, “Price of anarchy for greedy auctions,”
in Proc. 21st ACM-SIAM Symp. on Discrete Algo., 2010, pp. 537–553.

[38] C. Chekuri and I. Gamzu, “Truthful mechanisms via greedy iter-
ative packing,” in Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques. Springer, 2009, pp. 56–69.

[39] “Titan,” [Online]. Available: http://www.olcf.ornl.gov/titan/.

[40] “Top 500 Supercomputers,” [Online]. Available:
http://www.top500.org.

Lena Mashayekhy received her BSc degree in
computer engineering-software from Iran Uni-
versity of Science and Technology, and her MSc
degree from the University of Isfahan. She is cur-
rently a PhD candidate in computer science at
Wayne State University, Detroit, Michigan. She
has published more than twenty peer-reviewed
papers in venues such as IEEE Transactions on
Parallel and Distributed Systems, IEEE BigData,
IEEE CLOUD, ICPP, etc. Her research interests
include distributed systems, cloud computing,

big data analytics, game theory and optimization. She is a student
member of the ACM, the IEEE, and the IEEE Computer Society.

Mahyar Movahed Nejad received his BSc de-
gree in mathematics from Iran University of
Science and Technology. He received his MSc
degree in socio-economic systems engineering
from Mazandaran University of Science and
Technology. He is currently a MSc student in
computer science, and a PhD candidate in
industrial and systems engineering at Wayne
State University, Detroit. His research interests
include cloud computing, big data analytics,
game theory, network optimization, and integer

programming. His publications appeared in journals such as IEEE Trans-
actions on Parallel and Distributed Systems. He is a student member of
the IEEE and the INFORMS.

Daniel Grosu received the Diploma in engineer-
ing (automatic control and industrial informatics)
from the Technical University of Iaşi, Romania, in
1994 and the MSc and PhD degrees in computer
science from the University of Texas at San An-
tonio in 2002 and 2003, respectively. Currently,
he is an associate professor in the Department
of Computer Science, Wayne State University,
Detroit. His research interests include parallel
and distributed systems, cloud computing, par-
allel algorithms, resource allocation, computer

security, and topics at the border of computer science, game theory
and economics. He has published more than ninety peer-reviewed
papers in the above areas. He has served on the program and steering
committees of several international meetings in parallel and distributed
computing. He is a senior member of the ACM, the IEEE, and the IEEE
Computer Society.

