
IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 1

Truthful Mechanisms for Competitive
Reward-Based Scheduling

Lena Mashayekhy, Student Member, IEEE, Nathan Fisher, Member, IEEE, and Daniel Grosu, Senior
Member, IEEE

Abstract—We consider a competitive environment for reward-based scheduling of periodic tasks, where the execution of each task
consists of a mandatory and an optional part. Each task obtains a value if the processor successfully schedules all its mandatory part,
and also an additional reward value if the processor successfully schedules a part of its optional execution. Each task is owned by
a self-interested agent who has multiple choices for its requests based on its optional part. We model the reward-based scheduling
problem by considering such multi-minded agents, and specify a bidding language for representing their requests. However, the agent
may try to manipulate the system to obtain an unfair allocation on the processor. We address this challenge by designing novel
truthful mechanisms in which it is always in the agent’s best interest to report their true task characteristics. We propose two truthful
mechanisms (an exact and approximate) for selecting a feasible subset of agents and an allocation of optional execution that maximizes
the total reward obtained by the selected tasks. To address the pseudo-polynomial complexity of the exact mechanism, we show that
our proposed approximate mechanism is a polynomial-time approximation scheme (PTAS). Our extensive experiments show that our
proposed approximation mechanism is capable of finding near-optimal solutions efficiently while guaranteeing truthfulness.

Index Terms—Reward-Based Scheduling; Periodic Task Systems; Competitive Environments; Mechanism Design.

F

1 INTRODUCTION

O VER the past two decades, the increased connec-
tivity between real-time embedded devices has

spurred a shift in real-time system design and research
from traditionally closed and independent systems to
more open and more interconnected systems. In these
increasingly open systems, a designer might not know at
design-time the characteristics of the set of tasks that will
execute in the system. Thus, the system may potentially
be executing in situations where it is not possible to meet
all the execution demands of the users and must choose
which execution should complete and which should be
discarded. To address such open system scenarios, real-
time system researchers have developed several useful
and interesting frameworks for allocating processing
time in the presence of overload, such as reward-based
scheduling [1], IRIS [2], Q-RAM [3], and many others.
Even more recent research has applied these frameworks
in the design of open systems; for example, Kim [4]
applied reward-based scheduling to manage QoS allo-
cation in a cluster and grid computing setting. While
these frameworks have successfully enabled designers
to determine the optimal allocation of system execution
under overload in an open system, all of these frame-
works implicitly rely upon the assumption that users
are cooperative by truthfully expressing their timing
requirements and the value that they place upon meeting
these requirements. However, any robust system design
must also consider the possibility that users will lie about

• L. Mashayekhy, N. Fisher, and D. Grosu are with the Department of
Computer Science, Wayne State University, Detroit, MI, 48202.
E-mail: mlena@wayne.edu, fishern@wayne.edu, dgrosu@wayne.edu

their requirements in order to obtain a larger allocation
of processing resources. Unfortunately, these previously-
proposed frameworks are ill-suited to deal with such a
possibility.

In this paper, we consider reward-based scheduling
for periodic tasks in which there is a reward associ-
ated with each task’s execution. Each task’s execution
is composed of a mandatory and an optional part.
Each job of a task must complete both its mandatory
execution, as well as any allocated optional execution,
by the job’s deadline, while a non-decreasing reward
function is associated with the execution of the optional
part. A reward-based scheduling model is appropriate in
settings where real-time tasks can obtain more precise
results with additional computation. There are several
applications that can benefit from extra processing. For
example, the amount of processing may affect the video
quality of a multimedia application: more processing
yields a better quality video and thus, more reward
for the viewer. Another example of such applications
is realtime cloud services [5], where a user specifies
the least amount of quality of service in the service
level agreement. Additional processing power may lead
to faster execution time of the user’s job, and would
increase the user quality of service. In this paper, we take
a first step towards the design of overloaded systems
in an open and competitive environment by proposing
a competitive reward-based scheduling framework that uti-
lizes techniques from algorithmic game theory to ensure
a fair allocation of resources in open real-time systems
even in the presence of uncooperative users.

We extend the traditional reward-based scheduling
model [1] to the competitive environment setting where

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 2

each task may be owned by a separate agent. Each agent
knows the characteristics of its own task and reports, to
the processor owner, the task’s period, mandatory exe-
cution requirement, optional execution and the “reward”
that agent obtains from execution of the mandatory part
plus any optional part. Each agent submits these char-
acteristics of its task to the processor owner in the form
of K bids, where K represents the different choices for
its requested optional execution and its corresponding
reward. Such agents submitting K bids are called K-
minded bidders. The processor owner must determine
(based on each task’s reported reward) which agents’
tasks are selected for execution and among the selected
tasks how much optional execution (beyond the manda-
tory) is allocated to each job of a task.

Since each agent is self-interested, it may report task
parameters and values different from the true ones if by
doing so its task will be selected to run on the processor.
Consider again the example of multimedia video pro-
cessing; if multiple users are sharing a single processing
resource, there may be an incentive for one user to
“game” the system to obtain a larger processing time that
is disproportionate to the reward that this user derives
from the enhanced video quality. The challenge is to
align the individual goals of the self-interested agents
with the overall system goals. Such challenge calls for
algorithmic mechanism design [6] rather than algorithm
design. Mechanism design focuses on designing rules in
a competitive environment to achieve specific properties
such as truthfulness and efficiency. The truthfulness prop-
erty guarantees that the agents cannot manipulate the
system by lying, and the efficiency property ensures a
maximized system-wide objective.

A mechanism for real-time systems will take the task
characteristics from each agent and decide which agents
obtain the processor. The mechanism also determines the
amount that should be paid by the agents who obtained
the processor. We are interested in designing mecha-
nisms that give incentives to the agents to report the
true characteristics of their tasks and thus, guarantee an
efficient processor allocation. Our proposed mechanisms
provide tractable solutions and support truthfulness.

1.1 Our Contributions

We address the problem of reward-based scheduling of
periodic tasks upon a single processor in a competitive
environment by designing truthful mechanisms. This is
an NP-complete problem (as will be shown later). We
observe that the reward-based scheduling is a K-minded
setting rather than a single-minded setting by nature.
We first model the reward-based scheduling problem
for K-minded bidders as a multi-unit auction, and spec-
ify their bidding language. We then design a truthful
exact mechanism that uses a pseudo-polynomial-time
dynamic programming algorithm to optimally allocate
the single processor to a subset of participating agents.
In the absence of computationally tractable optimal al-

gorithms for solving this problem, we then design an ap-
proximation algorithm to find a near-optimal allocation.
In general, approximation algorithms do not necessarily
satisfy the properties required to achieve truthfulness.
Our proposed approximation mechanism, called MIR-
MAX-REW, is a truthful polynomial-time approxima-
tion scheme (PTAS) mechanism that gives incentives to
agents to reveal their true valuations for the requested
execution times of their tasks. We analyze the properties
of the MIR-MAX-REW mechanism and perform exten-
sive experiments. The results show that MIR-MAX-REW
determines near optimal allocations while satisfying the
truthfulness property.

1.2 Related Work

Traditional real-time task scheduling upon a uniproces-
sor in non-competitive settings has been studied ex-
tensively (e.g., [7], [8], [9]). In these traditional hard-
real-time systems, the focus has been primarily upon
schedulability: determining a priori whether a specified
system can meet all deadline constraints. Subsequent
research has considered systems where meeting all the
deadlines is impossible and the system must decide
which tasks to complete by their deadlines and which
to abort or permit a deadline miss. For these types of
systems where successfully meeting all deadlines is not
possible, the goal is typically to optimize a given perfor-
mance metric. The imprecise computation [10] model was
an early effort to characterize systems where additional
execution may lead to improved results; the goal is to
obtain a schedule that minimizes the total system error
due to the computation imprecision. The related Increase-
Reward-with-Increase-Service (IRIS) framework [2] also ad-
dressed the setting where the scheduler may have to
decide on which task to allocate execution based on the
“reward” obtained. Baruah et al. [11] focused on a setting
where the system was overloaded and each job had an
associated value obtained from meeting its deadline; an
online scheduler was designed to maximize the accumu-
lated values of the successfully-executed jobs. Aydin et
al. [1] studied reward-based scheduling for periodic tasks
in which there is a reward associated with each task’s
execution. Each task is composed of a mandatory and an
optional part. The mandatory part must meet the task’s
deadline, while a non-decreasing reward function is as-
sociated with the execution of the optional part. The goal
is to find a schedule that maximizes the weighted aver-
age reward. Researchers have also considered settings
where different tasks have different quality-of-service
(QoS) settings. Based upon the available resources, the
system must determine which QoS levels to select based
on some rewards metrics; the Q-RAM model [3] is an
example of such a framework. All of these prior works
assume that the task characteristics are publicly known,
and none of them considers a competitive setting, in
which the task’s characteristics are private to the agents
and the agents compete for resources.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 3

In non-real-time computer systems, the study of re-
source allocation under competition has recently re-
ceived much attention. Nisan and Ronen [12] introduced
the technique of algorithmic mechanism design for com-
putational problems in a competitive setting. They ad-
dressed the problem of minimization of the makespan
of tasks on parallel machines by designing a truthful
approximation mechanism for the problem. The field of
mechanism design has been applied to several computer
science problems such as routing [13] and multicast
transmission [14].

As mentioned in the previous section, we model the
reward-based scheduling problem for K-minded bidders
as a multi-unit auction. In multi-unit auctions, there ex-
ists multiple identical items, and agents can bid for sev-
eral items together, called bundle. In the case of multi-
unit auctions with single-minded bidders, each bidder is
only interested in a single bundle of items. Lehmann et
al. [15] proposed truthful greedy mechanisms for single-
minded bidders. Kothari et al. [16] proposed an FP-
TAS mechanism for the single-good multi-unit allocation
problem. Their proposed mechanism is approximately
truthful for the special case of marginal decreasing val-
uations. Mu’Alem and Nisan [17] proposed a truthful
mechanism for known single minded bidders, where
each agent not only is interested in a single bundle of
goods, but also the identity of its bundle is known by the
mechanism (i.e., it is not a private information). Briest
et al. [18] improved the results of [17], and proposed
a truthful fully polynomial time approximation scheme
(FPTAS) for single-minded bidders. However, in the case
of K-minded bidders, it is shown that FPTAS using VCG
payments are not possible unless P=NP [19].

In the general K-minded bidders case, an agent bids
for K bundles with the desire of receiving one of them.
It is worth noting that, the agent specifies the value of
each bundle, where both the bundles and the values are
private information. Bartal et al. [20] proposed a truthful
mechanism for non-single-minded bidders in a multi-
good setting, where there exists the same number of
units for each good, and each bidder desires no more
than a single unit of each good. Babaioff et al. [21] pro-
posed mechanisms for K-minded bidders, where each
bidder is interested in exactly one bundle from a set of
bundles. However, they considered that all such bundles
have exactly the same value for the bidder which is
not the case in our reward-based mechanism. Lavi and
Swamy [22] proposed a randomized 1

2 -approximation
mechanism for K-minded bidders. However, their pro-
posed mechanism uses a weaker notion of truthfulness,
truthful in expectation. Dobzinski and Nisan [19] pro-
posed a deterministic truthful 2-approximation mecha-
nism for multi-unit auctions. In particular, they focused
on indivisible units. Dobzinski et al. [23] proposed a
truthful in expectation FPTAS mechanism for multi-unit
auctions. However, their mechanism is randomized with
a weaker truthfulness-in-expectation guarantee, while
our proposed mechanisms are deterministic in terms

of truthfulness. Vocking [24] proposed a randomized
universally-truthful PTAS mechanism for multi-unit auc-
tions. Vocking’s mechanism is a probability distribution
over a set of deterministic truthful mechanisms while
our mechanism is deterministic. The setup for Vocking’s
mechanism assumes that the valuations are given by
black boxes that can be queried by the mechanism (weak
value queries), while in our case the valuations are given
explicitly as a vector.

For real-time scheduling in a competitive setting, there
are very few prior results. Porter [25] studied the prob-
lem of online real-time scheduling of jobs on a single
processor in a competitive environment. In this work,
the private characteristics of the agents consists of re-
lease time, job length, deadline, and value. However,
this work does not address the traditional recurring
task models (e.g., sporadic or periodic tasks) which are
commonly found in real-time applications. In addition,
he considered only single-minded agents. Recently, we
proposed a truthful FPTAS allocation mechanism for
sporadic tasks competing for allocation upon a single
processor [26]. However, our previous study considers
a completely different real-time setting, that only deals
with single-minded bidders and does not consider a
reward-based scheduling model. Thus, the mechanism
design techniques used in [26] cannot be applied in our
current study. In this paper, we consider the reward-
based scheduling model of periodic tasks in a competi-
tive environment with K-minded agents, by permitting
each agent to specify K different execution time and
value pairs for its task. In the presence of competition,
our proposed truthful allocation algorithms determine
for each task whether it is selected for execution and
what (if any) optional execution for the task is permitted.

1.3 Organization
The paper is organized as follows. In Section 2, we
describe the problem of reward-based scheduling of
periodic tasks upon a single processor in a competitive
environment. In Section 3, we present our proposed
exact mechanism, and in Section 4 we present our pro-
posed approximation mechanism that solve the prob-
lem in competitive environments. We characterize the
properties of the proposed mechanisms. In Section 5, we
evaluate the mechanisms by extensive experiments. In
Section 6, we summarize our results and present possible
directions for future research.

2 MODEL

In this section, we discuss the original problem of
reward-based scheduling for real-time systems in non-
competitive settings. Then, we define the competitive
version of the problem.

2.1 Reward-Based Scheduling
In reward-based scheduling, there is a set of N periodic
tasks τ = {τ1, τ2, . . . , τN}. Each task τi is characterized

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 4

by a tuple (emi , eoi , pi, ri(.)) where emi is a mandatory
execution time, eoi is an optional execution time, pi is
a period, and ri(.) is a reward function. Task τi releases
a job to the system every pi time units. Each job needs
to be executed for emi units of mandatory execution before
a new job is released by the task. We assume that the
relative deadline of each job is equal to task period (i.e.,
di = pi). A job may execute up to eoi units of optional
execution before its deadline. We denote the j-th job of
task τi by Jij . If Jij completes its mandatory execution
time emi and executes its optional portion for xij ≥ 0
units, then it obtains a reward of ri(xij). It is assumed
that ri is a concave, non-decreasing function over R+

and that r(0) is finite.
The system aims to complete the mandatory execution

parts of all jobs by their deadline and maximize the
total reward over all tasks in the system by executing a
portion of the optional execution of the jobs. Let xij ≥ 0
be the amount of optional execution completed by job Jij
for any schedule of the task system over its hyperperiod
H (i.e., the least common multiple of p1, . . . , pN). The
total reward for task τi over a hyperperiod is given by:

H/pi∑
j=1

ri(xij) (1)

The above reward is obtained when each job completes
its mandatory execution by its deadline. The reward-
based scheduling problem consists of finding the values
of xij , i = 1, . . . , N and j = 1, . . . ,H/pi, that give the
maximum total reward.

Aydin et al. [1] showed that if the task system is
feasible on a single preemptive uniprocessor with EDF
scheduling, then there exists an optional assignment of
the xij values maximizing Equation (1), where each job
of any task τi executes the same amount of optional ex-
ecution. We will denote such optimal optional execution
for task τi by αi. The problem of finding an allocation of
optional executions that maximizes the total reward in
non-competitive environments (called MAX-REW-NC) is
formulated as the following linear program:

Maximize
N∑
i=1

ri(αi) (2)

Subject to:
N∑
i=1

emi + αi

pi
≤ 1 (3)

αi ≤ eoi , ∀i = 1, . . . , N (4)
0 ≤ αi, ∀i = 1, . . . , N (5)

The objective function (2) represents the total reward
obtained by the tasks. Constraint (3) ensures that the
sum of the utilization of the selected tasks does not
exceed 1, where the utilization of a task is the ratio of
its execution requirement to its period. Constraints (4)
guarantee that for each task at most the total requested
optional execution is allocated. Constraints (5) guarantee

that the allocation of each task is at least zero. In a
non-competitive setting, the mandatory execution parts
of all jobs are scheduled, and the objective is to find
the allocation of the optional parts to maximize the
reward. Since the allocated optional parts of each job
of a task over the periods remain the same, maximizing
the reward over one period of the task maximizes the
overall reward.

2.2 Competitive Reward-Based Scheduling in the
Presence of Overload

In the work by Aydin et al. [1], the authors assumed that
the set of tasks is feasible for their mandatory execution
time under EDF scheduling. In this paper, we consider a
new type of reward-based problem (called MAX-REW)
which assumes the presence of overload, i.e., it is not
possible to schedule all the tasks on the uniprocessor so
that all the jobs execute for their mandatory execution
part and meet their deadline. In other words the sum
of the ratios emi /pi is greater than one. This assumption
reflects the possibility that many agents are competing
for a scarce resource.

We consider that each Agent i specifies, via the
task specification τi, a maximum of discrete K differ-
ent choices for the amount of optional execution part
⟨0, . . . , eoi,K−1⟩, and a vector of values ⟨v0i , . . . , v

K−1
i ⟩,

where vki represents the value of ri(e
o
i,k), the value ob-

tained by executing the mandatory part and the (k+1)-
th amount of the optional execution. For the purposes of
this paper, we will assume that all task parameters (i.e.,
period, execution times, and values) are integers. Note
that the value of ri(0) is the value obtained by executing
only the mandatory part emi (where eoi,0 = 0). The choices
and preferences of Agent i are as follows:

Choice (Total execution, Value)
1 (emi , v0i)
2 (emi + eoi,1, v

1
i)

. . .
k + 1 (emi + eoi,k, v

k
i)

. . .

K (emi + eoi,K−1, v
K−1
i)

where 0 ≤ eoi,k ≤ eoi,K−1, more specifically eoi,k are sorted
such that eoi,k−1 ≤ eoi,k ≤ eoi,k+1, and eoi,k ∈ N+. There-
fore, eoi,K−1 is the most optional execution requested by
Agent i. As a result, each task τi is characterized by a
(K+1)-tuple (pi, ⟨(emi , v0i), . . . , (e

m
i + eoi,K−1, v

K−1
i)⟩). We

assume that ∀i, emi + eoi,K−1 ≤ pi. In addition, Agent i
receives no reward if its task is not selected for execution.

The MAX-REW problem is to allocate the single pro-
cessor to a subset of tasks such that the allocation is
feasible and maximizes the total value obtained. MAX-

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 5

REW is formally defined as follows:

Maximize
N∑
i=1

K∑
k=1

yik · vk−1
i (6)

Subject to:
N∑
i=1

K∑
k=1

yik(e
m
i + eoi,k−1)

pi
≤ 1 (7)

K∑
k=1

yik ≤ 1,∀i = 1, . . . , N (8)

yik ∈ {0, 1}, ∀i = 1, . . . , N and ∀k = 1, . . . ,K (9)

where yik represent the decision variables such that

yik =

1 if the mandatory part and optional

part eoi,k−1 of τi is allocated
0 otherwise

(10)

The objective function (6) represents the total value
obtained by the agents. Constraints (7) ensure that the
allocation of the selected tasks does not exceed the
capacity of the processor. Constraints (8) guarantee that
for each task at most one of the requested execution
time is allocated. Constraints (9) represent the integrality
requirement for the decision variables yik. Note that in
the above formulation we are implicitly requiring that
for each task all of its jobs execute the same amount of
optional execution.

2.3 Example
In order to compute the optimal solution for the MAX-
REW problem, we rely upon the agents to report their
true characteristics. However, agents can manipulate the
system by lying. We present an example in a cloud
computing setting to show how a strategic agent can
affect the optimal solution by untruthful reporting of its
task requirements. This example is inspired by [5]. We
consider five users (agents) who want to launch their
real-time services, and they submit all the information
about the real-time applications to the cloud provider.
Each agent submits its desired execution units and the
value obtained by receiving its request. The requested
bundles (execution units) and the values of the tasks
owned by these agents are shown in Table 1. The first
column shows the agents id, the second column gives
the requested mandatory execution along with its value,
and the third column gives the requested mandatory
and optional execution along with its value, where the
value is the summation of the mandatory value and
the reward of the optional execution. We assume that
pi = 10 for all i, and K = 2 (i.e., each agent submits two
bundles of requests). For example, Agent 1 submits two
bundles (2, 3) and (6, 7), where in the former it specifies
its mandatory execution as 2 units, with a value of 3,
and in the latter, it specifies that for 4 units of optional
execution (total of 6 units), it receives an extra reward
of 7-3 = 4 (for a total reward of 7). Since all these tasks

TABLE 1: Agents’ characteristics example

Agent(i) (emi , v0i) (emi + eoi,1, v
1
i)

1 (2,3) (6,7)
2 (4,6) (5,10)
3 (2,5) (4,6)
4 (3,4) (5,7)
5 (2,2) (4,5)

cannot be scheduled to execute on a single processor
using the MAX-REW linear program Eqs. (6-9), we want
to assign the processor to the agents such that we obtain
the maximum reward. If each agent is truthful, MAX-
REW integer linear program assigns the processor to
the second bundle of Agent 2 (5,10), the first bundle
of Agents 3 (2,5), and the first bundle of Agent 4 (3,4),
which results in a reward of 10+5+4=19.

We analyze two cases in which an agent tries to
manipulate the system. In the first case, a non-winning
agent manipulates the system by declaring a higher
value hoping to become a winner. We assume Agent 1
lies about the obtained reward of its optional execution
and reports its second bundle as (6, 15) while everyone
else reports their true requests. The second bundle of
Agent 1 (6,15), the first bundle of Agent 3 (2,5), and the
first bundle of Agent 5 (2,2) would be selected. However,
since Agent 1 values the received bundle at 7 units,
the solution gives a suboptimal reward of 7+5+2=14. In
the second case, a winning agent lies about its required
execution units. Now, assume that all agents report their
true characteristics except Agent 2 who lies about its
required optional unit and declares 6 units in its second
bundle (6,10) instead of its true request (5,10). In this
case, the first bundle of Agent 1, (2,3), the first bundle of
Agent 3, (2,5), and the second bundle of Agent 2, (6,10)
would be selected, resulting in a suboptimal reward
of 3+5+10=18. In both cases, the total reward is less
than the one obtained when all agents report truthfully
their requirements. This example motivates the need for
mechanisms that incentivize truthful behavior on the
part of the agents.

3 MECHANISM DESIGN

In this section, we present the basic concepts of mecha-
nism design, and then we introduce a VCG-based exact
mechanism for our model that solves MAX-REW.

The problem of reward-based scheduling of periodic
tasks upon a single processor in a competitive environ-
ment is NP-complete by a reduction to the multiple-
choice knapsack problem. In a multiple-choice knapsack
problem, the items are subdivided into N classes to
pack in a knapsack, where at most one item must be
taken from each class. If we consider the processor as
a knapsack, the agents can be divided into N classes.
In each class, an agent has K items (i.e., requests), and
at most one request of an agent must be selected from
its class. Since the multiple-choice knapsack problem is
NP-complete [27] the reward-based scheduling problem

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 6

considered in this paper is also NP-complete. The aim is
to select a subset of agents for the knapsack maximizing
the total value.

We consider a set of agents N = {1, . . . , N}, where
each Agent i owns a sporadic task τi and submits its
characteristics (e.g., the parameters of its task and their
values). For every Agent i, we define its valuation function
Vi(·) as a step function as follows:

Vi(ei) =

vK−1
i ei ≥ emi + eoi,K−1

. . .

vki emi + eoi,k ≤ ei < emi + eoi,k+1

. . .

0 ei < emi

(11)

where Vi(ei) denotes the value derived from obtain-
ing ei, ei ≤ pi, units of execution time. Thus, Vi(·)
is a monotonically increasing function (i.e., if e ≤ e′,
then V (e) ≤ V (e′)).

We formulate the problem as a combinatorial auction
where agents have preferences over sets of items, called
bundles. Without loss of generality, we assume that each
agent specifies exactly K bundles. In this case, Agent i
can define its preferences over K bundles in the form
of (ei,k, v

k
i), where ei,k = emi + eoi,k is the size of the

(k + 1)-th bundle and vki is its value (0 ≤ k < K). The
goal is to select a subset of agents with their assignment
maximizing the total value.

In this settings, agents are not single-minded. A single-
minded agent cares about one specific bundle; if it does
not receive the bundle, it values it at zero [15]. A multi-
minded agent specifies a set of bids (bundles), and uses a
bidding language to express its valuation function over
the set of bids [21], [28]. Note that it is more challenging
to design truthful mechanisms for cases in which agents
are K-minded.

We consider that Vi(·) is represented as a K-minded
bid. Each Agent i specifies a collection of pairs (ei,k, v

k
i),

where ei,k is the size of (k + 1)-th bundle and vki is
the maximum price that it is willing to pay for that
bundle. Based on all bids {(ei,0, v0i), . . . , (ei,K−1, v

K−1
i)}

of Agent i, we define the value Vi(ei) for an allocation
ei to be maxei,k≤ei v

k
i . This corresponds to a special case

of XOR bidding language [29]. Bidding languages relate
to the representation of bids in combinatorial auctions
such that agents can encode their valuation and send it
to the auctioneer. Our goal is to design a mechanism
maximizing the total reward (in economics called so-
cial welfare) obtained by the agents

∑
i∈N Vi(ei), where∑

i∈N ei/pi ≤ 1.

3.1 Preliminaries

In this subsection, we present the basic concepts of
mechanism design.

Definition 1 (Mechanism): A mechanism M = (A,Π)
consists of an allocation function A and a payment
rule Π. The allocation function determines an allocation

of the resources to a set of winning agents, and the
payment rule determines the amount that each agent
must pay.

We aim to design a mechanism which allocates
the processor to a subset of agents. Since the
agents are selfish, they may declare different char-
acteristics than their actual characteristics. We de-
note the declared characteristics of Agent i by θ̂i =
(p̂i, ⟨(êi,0, v̂0i), . . . , (êi,K−1, v̂

K−1
i)⟩) and its actual charac-

teristics by θi = (pi, ⟨(ei,0, v0i), . . . , (ei,K−1, v
K−1
i)⟩), ∀i :

i ∈ N . We assume that an agent’s period is publicly
known and an agent cannot lie about their period (i.e.,
p̂i = pi).

A mechanism takes all the declared characteristics
of the agents as input, and it computes an allocation.
The mechanism motivates the agents to reveal their
true characteristics by charging them some payments.
We denote by θ̂ = (θ̂1, . . . , θ̂N) the vector of declared
characteristics of the agents and by θ̂−i the vector of
all declared characteristics except the Agent i’s declared
characteristics (i.e., θ̂−i = (θ̂1, . . . , θ̂i−1, θ̂i+1, . . . , θ̂N)).
The allocation algorithm A gets θ̂, the agents’ declared
characteristics, as an input, and outputs A(θ̂) ⊆ N , the
set of winning agents along with their allocated bundles.
Therefore, Agent i wins if i ∈ A(θ̂). The reward obtained
by the algorithm is given by the sum of the values of the
winning agents. The strategy of an agent is represented
by its declared characteristics.

Agent i has a utility function µi = Vi(ei) − πi, where
πi is the payment that Agent i is required to pay to
the mechanism based on Π, and ei is the amount of
execution allocated to Agent i. The mechanism attempts
to maximize the reward while the selfish agents try to
maximize their own utility. We are interested in design-
ing a truthful mechanism where it is always in each
agent’s best interest to declare the true requirements of
its task.

Definition 2 (Truthful Mechanism): A mechanism M is
truthful (or incentive compatible) if all agents have incen-
tives to reveal their true characteristics. Formally, if the
utility of Agent i by true declaration of its characteristics
(θi) is µi and its utility by a non-true declaration θ̂i
is µ̂i, we have always µi(θi, θ̂−i) ≥ µ̂i(θ̂i, θ̂−i) for any
declaration θ̂−i of other agents’ characteristics.

In other words, a mechanism is truthful if truthful
reporting is a dominant strategy for the agents, that is,
the agents maximize their utilities by truthful reporting
independently of what the other agents are reporting.

In this paper, the agents are multi-parameter, which
means that they have more than one piece of private
information that can lie about. In one-parameter mech-
anisms, the private information of each agent consists
of only one number, while in multi-parameter mecha-
nisms the private information consists of more than one
number [30]. In general, multi-parameter auctions are
more challenging to design since they consider multi-
dimensional settings where each agent’s preference is

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 7

given by multiple values [18], [30]. In the next subsec-
tion, we propose an exact truthful mechanism for the
MAX-REW problem.

3.2 Truthful Exact Mechanism
In this subsection, we design a Vickrey-Clarke-Groves
(VCG)-based truthful mechanism that solves the MAX-
REW problem. A VCG mechanism is a generalization
of Vickrey’s second price auction [31] proposed by
Clark [32] and Groves [33]. If VCG mechanisms are
obtained from optimal allocation algorithms, the par-
ticular VCG payment rule makes truthful reporting the
dominant strategy of the agents [12]. This means that the
truthfulness property is guaranteed. Our proposed exact
mechanism consists of an optimal allocation function
and a VCG-based payment rule. In the following, we
present our proposed optimal allocation and the VCG-
based payment rule.

In order to design a VCG-based mechanism for MAX-
REW, we need to design an allocation algorithm that
provides the optimal solution to MAX-REW. We propose
a dynamic programming algorithm, called DP-MAX-
REW, to find the optimal solution to MAX-REW. DP-
MAX-REW is given in Algorithm 1. The DP-MAX-REW
algorithm has one input parameter, the vector of agents
declared characteristics (θ̂). The algorithm has two out-
put parameters: V ∗, the optimal total reward, and x∗,
the optimal allocation to the agents.

Let H = lcm(p1, . . . , pN) be the hyperperiod, Emax =
max∀i∈N {êmi + êoi,K−1}, and Vmax = max∀i∈N {v̂K−1

i }.
It is trivial that an upper bound on the maximum
execution that can be allocated in any solution is NEmax,
and an upper bound on the maximum value that can
be achieved in any solution is NVmax. DP-MAX-REW
solves optimally the problem assuming xi ∈ Z+ accord-
ing to the following dynamic programming recurrence
(Lines 16-21):

U(i, e, v) =

min
∀k
{U(i− 1, e, v), U(i− 1, e− êi,k, v − v̂ki) +

êi,k
p̂i
}

if(e > êi,k and v > v̂ki)

min
∀k
{U(i− 1, e, v),

êi,k
p̂i
}

if(e = êi,k and v = v̂ki)

U(i− 1, e, v) otherwise
(12)

where U(i, e, v) denotes the minimum utilization of a
subset of agents {1, 2, . . . , i} whose total allocation is
exactly e units of execution, and total value is exactly v.
The recurrence considers several cases, not allocating the
bundle to Agent i, and allocating êi,k units with value v̂ki
to Agent i, where k is the index of k-th bundle of Agent i.
In the case of allocating a bundle to Agent i, the recur-
rence considers the value of utilization when allocating
each bundle to Agent i and finds the minimum among
all. In each step, it checks the minimum utilization of
allocating e− êi,k units with total value of v− v̂ki to i− 1

Algorithm 1 DP-MAX-REW: Exact Allocation Algorithm

1: Input: θ̂ = (θ̂1, . . . , θ̂N); vector of characteristics (set of
bundles and their values)

2: Emax = max∀i∈N {êmi + êoi,K−1}
3: Vmax = max∀i∈N {v̂K−1

i }
4: V ∗ = 0
5: for all e = 0, . . . , NEmax do
6: k = 1
7: for all v = 0, . . . , NVmax do
8: if (e = ê1,k and v = v̂k1) then
9: U(1, e, v) = ê1,k/p̂1

10: k = k + 1
11: else
12: U(1, e, v) =∞
13: for all i = 2, . . . , N do
14: for all e = 0, . . . , NEmax do
15: for all v = 0, . . . , NVmax do
16: U(i, e, v) = U(i− 1, e, v)
17: for all k = 1, . . . ,K do
18: if (e > êi,k and v > v̂ki) then
19: U(i, e, v) = min{U(i, e, v),

U(i− 1, e− êi,k, v − v̂ki) +
êi,k
p̂i
}

20: else if (e = êi,k and v = v̂ki) then
21: U(i, e, v) = min{U(i, e, v),

êi,k
p̂i
}

22: if U(i, e, v) ≤ 1 and V ∗ < v then
23: V ∗ = v
24: Find x∗ by looking backward at U(i, e, v)
25: Output: x∗; optimal allocation
26: Output: V ∗; optimal total reward

agents while it allocates the remaining time to the kth
bundle of Agent i. As a result, the value of utilization
would be U(i−1, e− êi,k, v− v̂ki)+

êi,k
p̂i

(first condition). In
the case where there is not enough utilization to be allo-
cated to i−1 agents (i.e., e− êi,k = 0 and v− v̂ki = 0), the
value of utilization is calculated based on allocating only
to Agent i which is êi,k

p̂i
(second condition). In the case

of not allocating the bundle to Agent i, the minimum
utilization remains the same as the minimum utilization
of i − 1 agents with total allocation of e units and total
value of v (third condition). The maximum value of all
feasible cases which has a utilization bounded by 1 gives
the optimal reward (Lines 22-23). Once the final value is
determined, the algorithm finds x∗, the optimal alloca-
tion of the agents by looking backward at U(i, e, v). The
DP-MAX-REW algorithm finds the optimal solution to
the MAX-REW problem. The proof is trivial employing
the principle of optimality. DP-MAX-REW is a pseudo-
polynomial time algorithm with time complexity given
by O(KN3EmaxVmax).

In addition to our proposed optimal allocation algo-
rithm, our truthful exact mechanism consists of a VCG-
based payment rule. We define our VCG-based mecha-
nism that solves the MAX-REW problem as follows.

Definition 3 (VCG-MAX-REW mechanism): The VCG-
MAX-REW mechanism M = (A,Π) is a VCG-based
mechanism, where A maximizes the reward based on the
allocation algorithm DP-MAX-REW, and the payment of

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 8

TABLE 2: Different scenarios for Agent 2’s request declaration

Case (êm2 + êo2,1, v̂
1
2) Scenario Status Payment Utility

I (5, 10) v̂12 = v12 , êm2 + êo2,1 = em2 + eo2,1 Win 7 3
II (5, 12) v̂12 > v12 , êm2 + êo2,1 = em2 + eo2,1 Win 7 3
III (5, 9) v̂12 < v12 , êm2 + êo2,1 = em2 + eo2,1 Win 7 3
IV (5, 6) v̂12 < v12 , êm2 + êo2,1 = em2 + eo2,1 Lose 0 0
V (6, 10) v̂12 = v12 , êm2 + êo2,1 > em2 + eo2,1 Win 8 2
VI (9, 10) v̂12 = v12 , êm2 + êo2,1 > em2 + eo2,1 Lose 0 0

each agent i is defined by:

πi =
∑

j∈A(θ̂−i)

Vj(xj)−
∑

j∈A(θ̂),j ̸=i

Vj(xj), (13)

where the first part is the optimal reward in the case of
removing Agent i from the system; the second part is the
sum of all except Agent i’s value in the optimal case.
The VCG-based payment calculates the payment of each
agent based on the requests of the rest of the agents.

Since our proposed mechanism, VCG-MAX-REW,
uses an optimal allocation algorithm and VCG-based
payments, it is therefore, a truthful mechanism [12].
The mechanism has pseudo-polynomial execution time
which becomes prohibitive for large problem instances.

3.3 Example
We consider the same example in the cloud comput-
ing setting as in Section 2.3, and show how applying
the VCG-MAX-REW mechanism gives incentive to the
agents to report their true characteristics. In addition,
our proposed mechanism is robust against manipulation
by an agent. If every agent reports its true require-
ments, VCG-MAX-REW assigns the processor to the
second bundle of Agent 2, (5,10), the first bundle of
Agents 3, (2,5), and the first bundle of Agent 4, (3,4),
which results in a reward of 10+5+4=19. If Agent 1 lies
and reports its second bundle as (6, 15) and everyone
else reports their true values, then it wins. VCG-MAX-
REW finds the payment of 12 for Agent 1. Since its actual
value is 7, its utility is 7 − 12 < 0. As a result, it is not
beneficial for Agent 1 to manipulate the mechanism by
lying about its value.

Now, consider that all agents report their true charac-
teristics except Agent 2. We analyze different scenarios
based on its submitted request shown in Table 2. In
Case I, Agent 2 submits its true request, VCG-MAX-REW
selects it as a winning agent, and finds the payment of 7
for Agent 2 resulting in a utility 10 − 7 = 3. In Case II,
Agent 2 submits a request with a higher value 12. In
this case, Agent 2 is still a winner and the mechanism
determines the same payment of 7 leading to a utility of
10− 7 = 3. In Case III, it submits a request with a lower
value 9, which is not less than the payment determined
by our mechanism (i.e., 7). Thus, Agent 2 is still winning,
and the mechanism determines the same payment for the
agent as in Case I. However, if Agent 2 submits a request
with a lower value below the payment (e.g., v̂12 = 6 in
Case IV), it becomes a loser leading to zero utility.

We now investigate scenarios in which Agent 2 re-
quests a different execution time than its actual request.
In Case V, it submits a higher execution of 6 units instead
of its true request of 5, where the agent requests (6,10)
as its second bundle. In this case, Agent 2 still wins the
bundle. However, she pays more than she pays in Case
I, II, and III. The mechanism finds the payment of 8
resulting in a utility 10−8 = 2. Thus, its utility decreases.
In Case VI, Agent 2 becomes a loser by submitting a
higher execution 9. We showed that if an agent submits
an untruthful request, it can not increase its utility. As
a result, the truthful mechanism gives incentive to the
agents to not manipulate the system.

4 TRUTHFUL PTAS MECHANISM

In this section, we introduce our proposed truthful
approximation mechanism that solves the MAX-REW
problem. Babaioff et al. [21] showed that the model
of “single-value multi-minded agents”, where an agent
desires several different bundles all for the same value,
does not fall into the family of one-parameter domains
defined by Archer and Tardos [34]. The authors showed
that since the desired bundles are not public informa-
tion, value monotonicity by itself is no longer sufficient
for dominant strategy implementation. In our setting,
the agents are not only multi-minded, but also have
a general monotone valuation function making value
monotonicity not sufficient for dominant strategy imple-
mentation. As a result, we rely on a concept of maximal-
in-range allocation (defined later in this section) which
has been used to obtain truthful mechanisms for this
more complicated setting.

Nisan and Ronen [35] showed that a family of alloca-
tion algorithms, called maximal-in-range, yields truthful
VCG-based mechanisms. The definition of the maximal-
in-range allocation algorithm is as follows:

Definition 4 (Maximal-in-range allocation algorithm):
An allocation A is maximal-in-range (MIR) if there exist
a set of allocations R such that for every possible
input V1, . . . , VN , the algorithm outputs the allocation
that maximizes the reward in R. That means, for
all input valuations V1, . . . , VN , the algorithm outputs
argmax(e1,...,eN)∈R

∑
i∈N Vi(ei), where ei is the allocation

of agent i.
An allocation A is MIR if it optimizes the reward over

some range R, where R is the range of the algorithm.
If A is a maximal-in-range allocation and Π is the VCG
payment then (A,Π) is a truthful mechanism [19]. The

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 9

challenge addressed by our work is to design a truthful
mechanism (A,Π) with an approximation guarantee for
real-time reward-based scheduling systems which is the
first for such a setting.

The main idea in the design of our proposed approx-
imation algorithm, is finding the best partial allocation
to a subset of agents first, and then allocating the re-
maining resources through dynamic programming based
on the rounded requests of the unallocated agents. The
partial allocation is used as a seed for the approximate
solution and it also allows us to control the solution
error. The allocation process consists of two phases, a
partial allocation and an allocation of rounded requests
of remaining agents. To introduce our proposed approx-
imation algorithm, we first need to define the concept
of r-round allocations in which at most r agents are
used for the partial allocation and the requests of the
remaining agents are rounded.

Definition 5 (r-round allocation): Let H =
lcm(p1, . . . , pN) be the hyperperiod. An allocation
(x1, . . . , xN) is r-round if there exists a set B of agents,
where |B| ≤ r, and h =

∑
i∈B

H·xi

pi
, such that the

following two conditions hold:
• For each agent i ̸∈ B, its allocation over the hyper-

period is a multiple of max(⌊ H−h
(N−r)2

⌋, 1), where H is
the total processing units of the processor,

•
∑

i ̸∈B
H·xi

pi
≤ max(⌊ H−h

(N−r)2
⌋, 1) · (N − r)

2.

Note that xi = êmi + êoi,k, where 0 ≤ êoi,k ≤ êoi,K−1. The
second condition means that max(⌊ H−h

(N−r)2
⌋, 1) · (N − r)

2

is an upper bound on the number of units allocated
to agents not in B. The r-round is an allocation that
schedules the tasks of at most r agents, taking at most
one bundle for each agent along with allocating tasks
of the remaining agents using rounding. The rounding
allows us to reduce the hyperperiod to equi-sized units,
and thus, to obtain a polynomial running time for the
algorithm. Furthermore, we have chosen the rounding
in such a way that we can show that we will lose only
a bounded amount of value (when compared with an
optimal allocation mechanism).

Based on r-round allocations, we define a range R
of allocations, where R is the set of all the r-round
allocations for a fixed r, that is, the set of allocations that
schedule tasks of at most r agents, taking at most one
bundle for each task along with allocating tasks of the
remaining agents using rounding. The algorithm finds
the best allocation in R leading to near-optimal solution
to the MAX-REW problem.

We define our proposed approximation mechanism
that solves the MAX-REW problem as follows:

Definition 6 (PTAS-MAX-REW mechanism): The PTAS-
MAX-REW mechanism consists of the allocation algo-
rithm MIR-MAX-REW given in Algorithm 2 and the
payment function VCG-PAY given in Algorithm 3.

Our proposed allocation algorithm, MIR-MAX-REW,
is given in Algorithm 2. MIR-MAX-REW has two input
parameters, the vector of agents declared characteristics

Algorithm 2 MIR-MAX-REW: Approximation Algorithm

1: Input: θ̂ = (θ̂1, . . . , θ̂N); vector of characteristics (set of
bundles and their values)

2: Input: r
3: H = lcm(p1, . . . , pN)
4: V̂ = 0
5: x̂← 0
6: B ← {B|B ⊆ N and |B| ≤ r}
7: for all B ∈ B do
8: for all allocation (e1, . . . , eN), where ∀i ̸∈ B, ei = 0 and

∀i ∈ B, êmi ≤ ei ≤ (êmi + êoi,K−1) do
9: h← 0

10: V ← 0
11: for all i ∈ B do
12: h = h+ H·ei

pi
13: V = V + Vi(ei)
14: xi = ei
15: if h ≤ H then
16: {(e1, . . . , eN) is feasible}
17: B̃ = N \B
18: q = max(⌊ H−h

(N−r)2
⌋, 1)

19: for all e = 0, . . . , (N − r)2 do
20: Z(0, e) = 0
21: A(0, e) = 0
22: for all i ∈ B̃ indexed by 1, . . . , N − r do
23: for all e = 0, . . . , (N − r)2 do
24: Z(i, e) = 0
25: A(i, e) = 0
26: for all j = 0, . . . , e do
27: a = jq +A(i− 1, e− j)
28: if a ≤ H − h and a = eq then
29: if Z(i, e) ≤ Vi(

jqpi
H

)+Z(i−1, e− j) then
30: Z(i, e) = Vi(

jqpi
H

) + Z(i− 1, e− j)
31: A(i, e) = a
32: V = V + Z(|B̃|, (N − r)2)
33: Find x̃ by looking backward at Z(|B̃|, (N − r)2)
34: if V̂ ≤ V then
35: V̂ = V
36: x̂← x+ x̃
37: Output: x̂; near-optimal allocation
38: Output: V̂ ; near-optimal total reward

(θ̂), an integer r, where r ≤ N . MIR-MAX-REW has two
output parameters: V̂ , the near-optimal reward and x̂,
the near-optimal allocation to the agents. The algorithm
finds a set B, where each member of B is a subset
of at most r agents in N (Line 6). Set B is the range
of the algorithm consisting the set of the allocations
with at most r agents, and B is one of the r-round
allocations. MIR-MAX-REW checks each set B ∈ B of
agents such that it finds an allocation for agents in B
and an allocation for agents not in B which maximizes
the total reward considering feasibility of allocations
(Lines 7-35). For each B, the algorithm considers all
feasible allocations to agents in B based on all of their K
specified bundles for each agent (Line 8). The algorithm
finds h =

∑
i∈B

H·ei
pi

, the total units of processing time
of the agents in B, and V the total reward of agents in B
(Lines 9-14). For analyzing the feasibility of an allocation
to agents in B, MIR-MAX-REW checks

∑
i∈B

H·ei
pi

≤ H
condition (Line 15).

For each B and its feasible allocation to the agents

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 10

in B according to their bids, the algorithm splits the
remaining H − h units of processing time into at most
(N − r)

2 equi-sized bundles of size q = max(⌊ H−h
(N−r)2

⌋, 1).
MIR-MAX-REW optimally allocates these equi-size bun-
dles among the agents that are not in B, B̃, according
to the dynamic programming recurrence (Lines 22-30).
We define Z(i, e) and A(i, e) as follows: if there exists an
allocation of execution of exactly e equi-sized bundles
to the first i agents (i.e., {1, 2, . . . , i}), then Z(i, e) is the
maximum value of all such allocations and A(i, e) is
the number of units from a hyperperiod that have been
allocated to agents {1, . . . , i} (i.e., eq); otherwise, if such
an allocation does not exist, both Z(i, e) and A(i, e) are
zero. Below is the dynamic programming recurrence:

Z(i, e) = maxj≤e{Vi(
jqpi

H) + Z(i− 1, e− j)|
(jq +A(i− 1, e− j) ≤ H − h)
∧ (jq +A(i− 1, e− j) = eq)}

where jq + A(i − 1, e − j) represents the number of
units from a hyperperiod that have been allocated to
the agents 1, . . . , i. In the recurrence, we consider al-
locations to an agent for the whole hyperperiod while
the valuation function of the agents refers to a single
period. Please recall that Aydin et al. [1] showed that
any allocation of execution to jobs of tasks over a hy-
perperiod could be converted to an allocation (with the
same total reward) where each job of the same task has
identical execution. As a result, in considering the value
of an allocation of j bundles, the argument of the valu-
ation function is the number of units (i.e., jq) divided
by the number of periods (i.e., H/pi). The recurrence
considers several cases, not allocating any bundle to i,
and allocating jqpi

H units to agent i, where j ≤ e. For
each case, MIR-MAX-REW checks the feasibility of allo-
cating jqpi

H units by having a condition on the number
of units from a hyperperiod that have been allocated
(Lines 26-27). The utilization of these agents is limited
by the allocation of agents in B. The maximum among
all feasible cases gives the value of Z(i, e). The values
determined by the dynamic program in MIR-MAX-REW
may not give the actual bundle sizes specified by the
agent (due to the rounding). However, Vi(·) is a non-
decreasing step function (Eq. 11), and it rounds down to
the nearest bundle and obtains the same overall reward.
In addition, the dynamic program in the MIR-MAX-REW
does not explicitly check if e is larger than êmi + êoi,K−1,
due to the fact that the Vi(·) step function does not
increase after this value. The maximum reward for all
agents in B̃ is determined by Z(|B̃|, (N − r)

2
). The total

reward for all agents in B ∪ B̃ = N is the sum of
V and Z(|B̃|, (N − r)

2
) (Line 31). The algorithm saves

the maximum obtained total reward in V̂ (Lines 33-35).
Finally, the algorithm outputs the best allocation among
all allocations considered which gives the maximum
total reward. Note that for MIR-MAX-REW (Lines 22-30)
we reformulated the dynamic programming used in DP-
MAX-REW to consider the hyperperiod as a dimension
of the table. Since we are rounding by q units, we reduce

Algorithm 3 VCG-PAY: Payment Function

1: Input: θ̂ = (θ̂1, . . . , θ̂N); vector of characteristics (set of
bundles and their values)

2: Input: V̂ ; reward
3: Input: x̂; allocation
4: Input: r
5: for all i ∈ N do
6: (V̂ ′, x̂′) = MIR-MAX-REW(θ̂−i, r)
7: sum1 = 0
8: sum2 = 0
9: for all j ∈ N , j ̸= i do

10: sum1 = sum1 + Vj(x̂
′
j)

11: sum2 = sum2 + Vj(x̂j)
12: Pi = sum1 − sum2

13: Output: P = (P1,P2, . . . ,PN)

the size of the dimension to polynomial in N and ϵ.
However, we use a different formulation in DP-MAX-
REW considering NEmax for one of the dimensions
of the table, which leads to a pseudo-polynomial time
complexity for DP-MAX-REW.

The payment function for our PTAS, VCG-PAY (Al-
gorithm 3), has four input parameters, the vector of
the Agents’ declared characteristics (θ̂), the reward V̂ ,
the allocation x̂, and the integer r. The output P is
a payment vector for the agents. VCG-PAY calls MIR-
MAX-REW to find the allocation and reward obtained
without Agent i’s participation (Line 6). Based on the
allocation to the agents with and without Agent i’s
participation, VCG-PAY finds the payment for Agent i,
where sum1 is the sum of all values without Agent i’s
participation in the mechanism, and sum2 is the sum of
all except Agent i’s value in the optimal case (Lines 7-
12). The time complexity of VCG-PAY is O(N) times the
complexity of the MIR-MAX-REW.

Theorem 1: MIR-MAX-REW is a PTAS.
Proof: To prove that MIR-MAX-REW is a PTAS, we

need to show the reward obtained by the algorithm is
at least (1 − ϵ) times the optimal, and that the time
complexity of the algorithm is polynomial in N , K,
where ϵ = 1/(r + 1).

First, we show that the time complexity of MIR-MAX-
REW is polynomial in N , K, and log(Emax). Using
the XOR bidding language [29], each bundle can be
represented by log(Emax) bits. Since for each agent there
are at most K bundles, collecting the bids from all agents
takes O(NK log(Emax)). The running time depends on
the partial allocation of agents in B and the dynamic
programming. For the partial allocation, there are at
most

(
N
r

)
possible selections of sets B, where for each

B, at most Kr allocations to agents in B are considered.
Note that r is defined by ϵ and thus assumed to be a fixed
constant. Then, the allocation for agents not in B is deter-
mined by dynamic programming. We assume B̃ = N\B,
and renumber the agents such that B̃ = {1, . . . , N − r}.
The utilization of every agent i in B̃ is scaled; i.e., the
dynamic programming jumps over q columns instead of
filling one column at a time. Thus, the time complexity

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 11

of the dynamic programming is O((N − r)
5
). Overall

the algorithm runs in time polynomial in N , K, and
log(Emax) for every fixed r.

We now show that the solution is within (1 − ϵ) of
the optimal solution, where ϵ = 1/(r + 1). To obtain the
tightest theoretical bound of the algorithm, we prove the
approximation ratio assuming that the set of agents al-
located bundles is the first phase is exactly of size r (i.e.,
|B| = r). Note that the approximation ratio trivially still
holds when we permit allocations of less than r agents
in the first phase (i.e., |B| < r), since if the algorithm
returned such a smaller first-phase allocation as the best
found, then it must be that its valuation is greater than
all the allocations considered with |B| = r. Let x∗ be
the optimal allocation, and V ∗ be the corresponding
optimal value. Assume that MIR-MAX-REW determines
an allocation x and a value V . Without loss of generality,
we consider V1(x

∗
1) ≥ V2(x

∗
2) ≥ . . . ≥ VN (x∗

N). In the first
step, MIR-MAX-REW optimally allocates bundles to r

agents in B. We have h =
∑

i∈B
H·x∗

i

pi
, the total units of

execution allocated to agents in B. The second step is
allocating the remaining units to the agents who were
not selected in the first step. The rounding procedure
for the remaining agents increases their utilization from
ei
pi

to ⌈ ei·H·(N−r)2

pi·(H−h) ⌉ · ⌊ H−h
(N−r)2

⌋/H . This may lead to an
infeasible allocation of x∗ based on the new rounded
utilization. If H−h

(N−r)2
≤ 1, then q is set to one. In this

case, there is no inflation of the bundles required, and
the remaining H − h units can be optimally allocated.
As a result, each agent i ̸∈ B gets the same allocation
as x∗. Otherwise, if q = ⌊ H−h

(N−r)2
⌋ (i.e., q ̸= 1), at most

(N − r)⌊ H−h
(N−r)2

⌋ ≤ H−h
N−r units are added by rounding

up. This is due to the fact that at most N − r agents will
be available for the allocation by dynamic programming.

Now, for the case that q ̸= 1, consider that the
rounding of the bundles in the second step for the
remaining N − r (denoted B̃) causes the allocation x∗ to
be infeasible. By the above paragraph, the total increase
in allocation due to rounding is at most H−h

N−r . Thus, for
the rounding to cause infeasibility of x∗, the original
allocation in x∗ to agents of B̃ must be strictly larger
than (H −h)− H−h

N−r = (H−h)(N−r−1)
N−r . Furthermore, since

there are N − r agents in B̃ and a total allocation is
strictly larger than (H−h)(N−r−1)

N−r , at least one agent of B̃
must have had an allocation in x∗ strictly greater than
(H−h)(N−r−1)

(N−r)2 , by the generalized pigeonhole principle.
Consider removing such an agent j ∈ B̃ with largest
allocation in x∗ exceeding (H−h)(N−r−1)

(N−r)2 ; then, since x∗

was feasible, the remaining (N − r − 1) agents must
have been allocated at most (H − h) − (H−h)(N−r−1)

(N−r)2

units in x∗. However, notice that the increased allocation
due to rounding for (N − r − 1) agents is at most
(N − r − 1) ∗ ⌊ H−h

(N−r)2 ⌋. Therefore, the removal of j from
the allocation permits the remaining elements of B̃ to
be feasible allocated with respect to x∗ and rounding.
Due to the optimality of the dynamic programming

solution, the second stage will return an allocation with
value greater than or equal to the allocation where j is
removed from consideration.

Since the allocation with j removed serves as a lower
bound on the returned allocation from the algorithm, it
is sufficient to derive an upper bound on the value of
j and consider the decrease in total returned value due
to its removal. Since j is not selected in the first step, it
is at most as valuable as the (r + 1)-th agent in x∗. As
a result, the value of j is at most V ∗

r+1 . Therefore, with
the exclusion of Agent j from the returned allocation,
the total decrease in the value is at most V ∗

r+1 . We have,
V ≥ V ∗(1 − 1

r+1) which gives the required approxima-
tion. Therefore, we have (1 − ϵ)V ∗ ≤ V ≤ V ∗, where
ϵ = 1/(r + 1).

Theorem 2: PTAS-MAX-REW is truthful.
Proof: The PTAS-MAX-REW mechanism consists of

the allocation algorithm MIR-MAX-REW and the pay-
ment function VCG-PAY. MIR-MAX-REW is maximal-
in-range because it outputs the best allocation over the
the range of r-round allocations. That is, MIR-MAX-REW
checks each set B ∈ B of agents such that it finds an allo-
cation for agents in B and an allocation for agents not in
B (the equi-sized bundles are allocated optimally among
the agents not in B) which maximizes the total reward
considering the feasibility of allocations. In other words
MIR-MAX-REW finds an optimal r-round allocation and
therefore it is maximal-in-range. The payment function
VCG-PAY is a VCG-based payment function. Since any
maximal-in-range allocation algorithm along with a VCG
payment scheme is truthful (by [19]), PTAS-MAX-REW
is a truthful mechanism.

5 EXPERIMENTAL RESULTS

We perform extensive experiments to investigate the
properties of VCG-MAX-REW and PTAS-MAX-REW.
While it is desirable to compare PTAS-MAX-REW with
several other mechanisms, we found out that the existing
mechanisms and approaches are not directly compara-
ble to ours and decided to compare it with the opti-
mal mechanism, VCG-MAX-REW. Therefore, we rely on
the optimal results obtained by VCG-MAX-REW as a
benchmark for our experiments. Both mechanisms are
implemented in C++ and the experiments are conducted
on a cluster of Intel 2.93GHz Quad Proc Hexa Core nodes
with 90GB RAM.

5.1 Experimental Setup
We generate the requested execution units of several
problem instances with different number of agents rang-
ing from 10 to 50. For each problem size we generate ten
problem instances, and present the average results.

In order to generate the utilizations of the agents,
we used the UUniFast-Discard method described in [36]
with a discard limit equal to half the number of agents.
Since we assume that available resources do not satisfy
the demand of all the agents, we should select a target

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 12

 0

 2000

 4000

 6000

 8000

 10000

10 20 30 40 50

T
ot

al
 r

ew
ar

d

Number of agents

PTAS-MAX-REW ε=0.5
PTAS-MAX-REW ε=0.33

VCG-MAX-REW

(a)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

10 20 30 40 50

E
xe

cu
tio

n
tim

e
(S

ec
on

ds
)

Number of agents

PTAS-MAX-REW ε=0.5
PTAS-MAX-REW ε=0.33

VCG-MAX-REW

(b)

Fig. 1: VCG-MAX-REW and PTAS-MAX-REW performance (K=2): (a) Total reward; (b) Execution time.

utilization greater than 1. In this case, there exists compe-
tition among the agents and our mechanisms determine
the winners and the payments so that the truthful be-
havior of agents is guaranteed. Mechanism design is not
really required when there is an abundance of resources
that can easily satisfy all the agents demands. We set the
target utilization U to 5. For the period generation, we
use a random uniform number generator to generate a
vector of integers within [10, 50]. The mandatory execu-
tion part is computed by multiplying the corresponding
entry in this vector with its associated utilization. We
generate K − 1 random numbers between mandatory
execution and the period as the optional execution units.
In the experiments, we use K = 2, . . . , 6, that is, 2-
minded to 6-minded agents. We use a random uniform
number generator to generate the values as integers
within the interval [1, 1500]. For PTAS-MAX-REW, we
use ϵ = 0.50 and ϵ = 0.33 corresponding to r = 1 and
r = 2, respectively.

5.2 Analysis of Results

We now compare the performance of VCG-MAX-REW
and PTAS-MAX-REW for different number of agents.
Fig. 1a shows the total reward for 10 to 50 agents ob-
tained by VCG-MAX-REW and PTAS-MAX-REW, where
ϵ is 0.50 and 0.33, and K = 2. This figure shows that for
each number of agents, the total reward increases as ϵ
decreases. The PTAS-MAX-REW with both values of ϵ
obtains solutions very close to the optimal solutions ob-
tained by VCG-MAX-REW. Fig. 1b shows the execution
time of the proposed mechanisms for different number
of agents. Note that the vertical axis is in logarithmic
scale. This figure shows that by increasing the number of
agents, the execution time of all mechanisms increases.
In addition, by decreasing ϵ (i.e., increasing the accu-
racy), the execution time of PTAS-MAX-REW increases.
This is the case for any PTAS algorithm. Increasing ϵ
from 0.33 to 0.5 results in a very small decrease in the
total reward, showing that the solutions obtained by

 0

 2000

 4000

 6000

 8000

 10000

2 3 4 5 6

T
ot

al
 r

ew
ar

d

k-minded

PTAS-MAX-REW ε=0.5
VCG-MAX-REW

Fig. 2: VCG-MAX-REW and PTAS-MAX-REW total re-
ward for various values of K (N=10)

PTAS-MAX-REW are not very sensitive to ϵ. PTAS-MAX-
REW with ϵ = 0.5 obtains a total reward very close to
the optimal reward obtained by VCG-MAX-REW and re-
quires a significantly smaller (three orders of magnitude
smaller) execution time than VCG-MAX-REW. As an
example for N = 50 agents, PTAS-MAX-REW obtains a
total reward of 6805 requiring an execution time of 13.23
seconds, while VCG-MAX-REW obtains a total reward
of 7274 requiring an execution time of 6505.71 seconds.
Because PTAS-MAX-REW with ϵ = 0.5 produces near-
optimal solutions in a very small amount of time, we
recommend it for solving the reward-based scheduling
problem in competitive real-time environments.

Figs. 2 and 3 show the effects of considering K-
minded agents for different values of K, for the case
of 10 agents. In this set of experiments, we allow each
agent to have 1 to 5 choices of optional execution in
addition to its mandatory execution part making the
agent 2-minded to 6-minded. The results show that
the total reward slightly increases since there are more
configurations with relatively higher reward to choose
from by increase in the choices of optional execution. In
addition, we analyze the effects of Vmax on the execution
time of the VCG-MAX-REW and PTAS-MAX-REW. Note

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 13

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

2 3 4 5 6

E
xe

cu
tio

n
tim

e
(S

ec
on

ds
)

k-minded

PTAS-MAX-REW ε=0.5 Vmax=1500
PTAS-MAX-REW ε=0.5 Vmax=3000

VCG-MAX-REW Vmax=1500
VCG-MAX-REW Vmax=3000

Fig. 3: VCG-MAX-REW and PTAS-MAX-REW execution
time for various values of K (N=10)

that the vertical axis of Fig. 3 is in logarithmic scale.
Fig. 3 shows that if Vmax is within the range [1, 3000] the
execution time of VCG-MAX-REW increases compared
to the case when Vmax is within the range [1, 1500], while
the execution time of the PTAS-MAX-REW remains the
same. As we mentioned, the time complexity of the
VCG-MAX-REW is O(KN3EmaxVmax), where Vmax is
the maximum of the agents’ declared values, and Emax

is the maximum of the agents’ requested execution units.
Thus, the execution time of the VCG-MAX-REW mech-
anism is highly dependent on Vmax and Emax, where
PTAS-MAX-REW’s execution time does not depend at
all upon these parameters. Therefore, PTAS-MAX-REW
is most appropriate for settings where the VCG-MAX-
REW’s running time is high due to large values of
Vmax and/or Emax (e.g., in systems that have both
fine-grained execution-time granularity and large task
execution requirements).

We consider one instance of the problem with ten 2-
minded agents, where Agent 3, 4, 5, and 8 are selected
with second, second, first, and second of their corre-
sponding bundles, respectively. The declared values of
these agents are shown in Fig. 4. The total reward of
these agents is 4000. The payment of these agents are
shown in Fig. 4, where the rest of the agents pay zero.
The difference between the declared values of the agents
and their payments gives their utility. This figure shows
that all agents have non-negative utility, and thus, none
of the agents lose by participating in the mechanism. The
payments of the agents who do not obtain an allocation
are zero and are not shown in the figure.

From all above results, we can conclude that our
proposed PTAS mechanism obtains near-optimal results
in reasonable amount of time while giving incentive
to agents to reveal their true valuations. Based on the
properties of PTAS-MAX-REW, the agents do not need
to strategize since they will not be able to do better than
reporting their true valuations.

6 CONCLUSION
We proposed truthful exact and approximation mech-
anisms for the reward-based scheduling problem in a

 0

 200

 400

 600

 800

 1000

 1200

 1400

Agent 3 Agent 4 Agent 5 Agent 8

V
al

ue

Declared values
Payments

Fig. 4: PTAS-MAX-REW Payments (10 agents and K=2)

competitive environment. Each task obtains a value if
the processor successfully schedules all its mandatory
jobs, and also an additional reward value if the processor
successfully schedules a part of its optional jobs. Each
task is owned by a selfish agent, and the agent may try to
manipulate the mechanism to obtain an unfair allocation
on the processor. We formulated the problem as a multi-
parameter combinatorial auction with K-minded agents,
where agents can choose K different optional execution
units. The proposed mechanisms give incentives to the
agents such that it is always in the agent’s best interest
to report the true characteristics of their tasks. Since
the exact mechanism is computationally intractable, we
designed a truthful PTAS mechanism. We investigated
the properties of our proposed mechanisms by perform-
ing experiments. The results showed that the proposed
approximation mechanism determines near optimal allo-
cations while giving the agents incentives to report their
true characteristics of their tasks.

For future work, we plan to extend this study to mul-
tiprocessor systems where there are multiple levels of
competition (e.g., the setting where users are competing
for allocation in a shared service and the service itself
is executing on a shared processing platform). Many
online services which utilize a cloud-based computing
infrastructure (e.g., Netflix) use such an architecture.

ACKNOWLEDGMENT

We would like to thank the Associate Editor and the
reviewers for their helpful and constructive suggestions,
which considerably improved the quality of the paper.
This research was supported in part by the NSF grants
CNS-0953583 and CNS-1116787.

REFERENCES
[1] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez, “Optimal

reward-based scheduling for periodic real-time tasks,” IEEE Trans.
Comput., vol. 50, no. 2, pp. 111–130, February 2001.

[2] J. Dey, J. Kurose, D. Towsley, C. Krishna, and M. Girkar, “Efficient
on-line processor scheduling for a class of iris real-time tasks,” in
Proc. of the 13th ACM SIGMETRICS Conference, 1993.

[3] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek, “A resource
allocation model for qos management,” in Proc. 18th IEEE Real-
Time Systems Symp., 1997.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 14

[4] K. H. Kim, “Reward-based allocation of cluster and grid resources
for imprecise computation model-based applications,” Int. J. of
Web and Grid Services, vol. 9, no. 2, pp. 146–171, 2013.

[5] K. H. Kim, A. Beloglazov, and R. Buyya, “Power-aware provision-
ing of virtual machines for real-time cloud services,” Concurrency
Comput.: Practice Experience, vol. 23, no. 13, pp. 1491–1505, 2011.

[6] A. Mas-Colell, M. D. Whinston, and J. R. Green, Microeconomic
Theory. Oxford University Press, Jun. 1995.

[7] C. L. Liu and J. W. Layland, “Scheduling algorithms for multi-
programming in a hard-real-time environment,” J. ACM, vol. 20,
pp. 46–61, January 1973.

[8] A. K. Mok, “Fundamental design problems of distributed sys-
tems for hard real-time environments,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, Cambridge, Mass., 1983.

[9] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling
algorithm: exact characterization and average case behavior,” in
Proc. of Real Time Systems Symposium, 1989, pp. 166 –171.

[10] K. Lin, J. Liu, and S. Natarajan, “Scheduling real-time, periodic
jobs using imprecise results,” in Proc. of the Real-Time Systems
Symposium, San Fransisco, CA, December 1987.

[11] S. Baruah, G. Koren, B. Mishra, A. Raghunathan, L. Rosier, and
D. Shasha, “On-line scheduling in the presence of overload,” in
Proc. 32nd Symp. on Foundations of Comput. Sci., 1991, pp. 100–110.

[12] N. Nisan and A. Ronen, “Algorithmic mechanism design,” Games
and Economic Behavior, vol. 35, pp. 166–196, 2001.

[13] J. Feigenbaum, C. Papadimitriou, R. Sami, and S. Shenker, “A
bgp-based mechanism for lowest-cost routing,” in Proc. 21st ACM
Symp. on Principles of Distributed Comp., 2002, pp. 173–182.

[14] J. Feigenbaum, C. H. Papadimitriou, and S. Shenker, “Sharing the
cost of multicast transmissions,” Journal of Computer and System
Sciences, vol. 63, no. 1, pp. 21 – 41, 2001.

[15] D. Lehmann, L. Oćallaghan, and Y. Shoham, “Truth revelation
in approximately efficient combinatorial auctions,” Journal of the
ACM, vol. 49, no. 5, pp. 577–602, 2002.

[16] A. Kothari, D. C. Parkes, and S. Suri, “Approximately-
strategyproof and tractable multiunit auctions,” Decision Support
Systems, vol. 39, no. 1, pp. 105–121, 2005.

[17] A. Mu’Alem and N. Nisan, “Truthful approximation mechanisms
for restricted combinatorial auctions,” Games and Economic Behav-
ior, vol. 64, no. 2, pp. 612–631, 2008.

[18] P. Briest, P. Krysta, and B. Vöcking, “Approximation techniques
for utilitarian mechanism design,” SIAM Journal on Computing,
vol. 40, no. 6, pp. 1587–1622, 2011.

[19] S. Dobzinski and N. Nisan, “Mechanisms for multi-unit auctions,”
J. Artificial Intelligence Res., vol. 37, pp. 85–98, 2010.

[20] Y. Bartal, R. Gonen, and N. Nisan, “Incentive compatible multi
unit combinatorial auctions,” in Proc. of the 9th Conf. on Theoretical
aspects of rationality and knowledge, 2003, pp. 72–87.

[21] M. Babaioff, R. Lavi, and E. Pavlov, “Single-value combinatorial
auctions and algorithmic implementation in undominated strate-
gies,” Journal of the ACM, vol. 56, no. 1, p. 4, 2009.

[22] R. Lavi and C. Swamy, “Truthful and near-optimal mechanism
design via linear programming,” J. ACM, vol. 58, no. 6, p. 25,
2011.

[23] S. Dobzinski, N. Nisan, and M. Schapira, “Truthful randomized
mechanisms for combinatorial auctions,” Journal of Computer and
System Sciences, vol. 78, no. 1, pp. 15–25, 2012.

[24] B. Vöcking, “A universally-truthful approximation scheme for
multi-unit auctions,” Games and Economic Behavior, 2013.

[25] R. Porter, “Mechanism design for online real-time scheduling,” in
Proc. 5th ACM Conf. on Electronic Commerce, 2004, pp. 61–70.

[26] A. Mohammadi, N. Fisher, and D. Grosu, “Truthful mechanisms
for allocating a single processor to sporadic tasks in competitive
real-time environments,” IEEE Trans. Comput., vol. 63, no. 8, pp.
2066–2079, 2014.

[27] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems.
Springer, 2004.

[28] S. Dobzinski and S. Dughmi, “On the power of randomization in
algorithmic mechanism design,” in Proc. of the 50th Annual IEEE
Symposium on Foundations of Computer Science, 2009, pp. 505–514.

[29] N. Nisan, “Bidding languages,” in Combinatorial auctions, P. Cram-

ton, Y. Shoham, and R. Steinberg, Eds. Cambridge: MIT, 2006.
[30] S. Chawla, J. D. Hartline, D. L. Malec, and B. Sivan, “Multi-

parameter mechanism design and sequential posted pricing,” in
Proc. 42nd ACM Symp. Theory of Comput., 2010, pp. 311–320.

[31] W. Vickrey, “Counterspeculation, auctions, and competitive sealed
tenders,” The Journal of Finance, vol. 16, no. 1, pp. 8–37, 1961.

[32] E. Clarke, “Multipart pricing of public goods,” Public choice,
vol. 11, no. 1, pp. 17–33, 1971.

[33] T. Groves, “Incentives in teams,” Econometrica: Journal of the
Econometric Society, vol. 41, no. 4, pp. 617–631, 1973.

[34] A. Archer and É. Tardos, “Truthful mechanisms for one-parameter
agents,” in Proc. 42nd IEEE Symp. Foundations of Comput. Sci., 2001,
pp. 482–491.

[35] N. Nisan and A. Ronen, “Computationally feasible vcg mecha-
nisms,” J. of Artificial Intell. Res., vol. 29, no. 1, pp. 19–47, 2007.

[36] R. Davis and A. Burns, “Priority assignment for global fixed prior-
ity pre-emptive scheduling in multiprocessor real-time systems,”
in Proc. 30th IEEE Real-Time Systems Symp., Dec. 2009, pp. 398–409.

Lena Mashayekhy received her BSc degree in
computer engineering-software from Iran Uni-
versity of Science and Technology, and her MSc
degree from the University of Isfahan. She is cur-
rently a PhD candidate in computer science at
Wayne State University, Detroit, Michigan. She
has published more than twenty peer-reviewed
papers in venues such as IEEE Transactions on
Parallel and Distributed Systems, IEEE BigData,
IEEE CLOUD, and ICPP. Her research interests
include distributed systems, cloud computing,

big data analytics, game theory and optimization. She is a student
member of the ACM, the IEEE, and the IEEE Computer Society.

Nathan Fisher received the BS degree from the
University of Minnesota, Minneapolis, in 1999,
the MS degree from Columbia University, New
York, in 2002, and the PhD degree from the Uni-
versity of North Carolina, Chapel Hill, in 2007, all
in computer science. He is an associate profes-
sor with the Department of Computer Science,
Wayne State University, Detroit, Michigan. His
research interests are in real-time and embed-
ded computer systems, parallel and distributed
algorithms, resource allocation, and approxima-

tion algorithms. His current research focus is on multiprocessor schedul-
ing theory and composability of real-time applications. He is a member
of the ACM, the IEEE, and the IEEE Computer Society.

Daniel Grosu received the Diploma in engineer-
ing (automatic control and industrial informatics)
from the Technical University of Iaşi, Romania, in
1994 and the MSc and PhD degrees in computer
science from the University of Texas at San An-
tonio in 2002 and 2003, respectively. Currently,
he is an associate professor in the Department
of Computer Science, Wayne State University,
Detroit. His research interests include parallel
and distributed systems, cloud computing, par-
allel algorithms, resource allocation, computer

security, and topics at the border of computer science, game theory
and economics. He has published more than ninety peer-reviewed
papers in the above areas. He has served on the program and steering
committees of several international meetings in parallel and distributed
computing. He is a senior member of the ACM, the IEEE, and the IEEE
Computer Society.

