
IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, 2015 1

An Online Mechanism for Resource Allocation
and Pricing in Clouds

Lena Mashayekhy, Student Member, IEEE, Mahyar Movahed Nejad, Student Member, IEEE,
Daniel Grosu, Senior Member, IEEE, and Athanasios V. Vasilakos, Senior Member, IEEE

Abstract —Cloud providers provision their various resources such as CPUs, memory, and storage in the form of Virtual Machine (VM)
instances which are then allocated to the users. The users are charged based on a pay-as-you-go model, and their payments should be
determined by considering both their incentives and the incentives of the cloud providers. Auction markets can capture such incentives,
where users name their own prices for their requested VMs. We design an auction-based online mechanism for VM provisioning,
allocation, and pricing in clouds that consider several types of resources. Our proposed online mechanism makes no assumptions
about future demand of VMs, which is the case in real cloud settings. The proposed online mechanism is invoked as soon as a user
places a request or some of the allocated resources are released and become available. The mechanism allocates VM instances to
selected users for the period they are requested for, and ensures that the users will continue using their VM instances for the entire
requested period. In addition, the mechanism determines the payment the users have to pay for using the allocated resources. We
prove that the mechanism is incentive-compatible, that is, it gives incentives to the users to reveal their actual requests. We investigate
the performance of our proposed mechanism through extensive experiments.

Index Terms —cloud computing; online truthful mechanism; dynamic pricing; resource allocation.

✦

1 INTRODUCTION

C LOUD computing is gaining more market share in
the IT industry by adding flexibility on resources

acquisition, enabling individuals and enterprises to pay
only for the resources and services they use. Cloud
providers offer their services based on the pay-as-you-go
model, enabling the reduction of enterprises’ capital and
operational costs. One of the major problems in offering
such services is designing efficient mechanisms for Vir-
tual Machine (VM) provisioning, allocation, and pricing.
Such mechanisms should consider the economic incen-
tives of both cloud users and cloud providers in finding
the market equilibrium [1]. Current cloud providers such
as Amazon EC2 and Microsoft Azure employ fixed-price
and auction-based mechanisms in order to provision re-
sources in the form of VM instances and sell them to the
users. The auction-based mechanisms complement the
fixed-price models, potentially providing the most cost-
effective option for obtaining cloud resources. Obtaining
the VMs in an auction market can significantly lower
users’ computing costs for their jobs [2]. The auction-
based mechanisms provide incentives to the users to
adjust consumption patterns according to availability,
price, and other factors. Existing resource allocation and
pricing mechanisms are offline, and thus, they need to
collect the information about all users’ requests and then

• L. Mashayekhy, M. Nejad, and D. Grosu are with the Department of
Computer Science, Wayne State University, Detroit, MI, 48202.
A. V. Vasilakos is with the Department of Computer Science, Electrical and
Space Engineering, Lulea University of Technology, 97187 Lulea, Sweden.
E-mail: mlena@wayne.edu, mahyar@wayne.edu, dgrosu@wayne.edu, vasi-
lako@ath.forthnet.gr

decide the allocation of VM instances to users and the
prices they need to pay. However, cloud users request
VM instances over time, thus, creating an online setting
for the provisioning, allocation, and pricing problem.
Therefore, cloud providers need to design online mech-
anisms suitable for such settings in order to provide
faster services and to efficiently allocate and price their
resources.
One of the challenges in designing online mecha-

nisms is dynamic pricing. A price determination function
should consider the incentives of both cloud providers
and users. In doing so, it should increase revenue, fa-
cilitate healthy competition among users, and increase
the efficiency of resource usage. A cloud provider may
increase the price to generate more profit. However, in
a competitive environment, if the increase in the price
is too high, the cloud provider may lose its potential
users leading to a profit loss. On the other hand, if the
cloud provider sets the price too low, it may become
overwhelmed by high demand from users. Since the
available capacity is limited, the cloud provider can
serve a limited number of users with low price, leading
to loss in both profit and reputation. The challenge is
how the cloud provider should determine the price to
maximize its profit in such competitive markets. Mecha-
nism design considers the incentives of the participants
when deciding the allocation and payment. In doing
so, the price determination function should determine
the payments of the users based on the value the users
derive from the services [3]. A fundamental problem
with significant economic implications is how the cloud
should price its heterogeneous resources at different
times under dynamic demand such that its overall profit

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, 2015 2

is maximized.
We consider an online market with multiple self-

interested users who are competing for cloud resources.
In online settings, all users arrive and depart dynami-
cally requiring making decisions without having infor-
mation about the future. Each user name her own price
for a bundle of VM instances, and specifies the amount
of time the bundle must be allocated and a deadline.
Each user has private information about her requested
bundle, and this information is not necessarily reflected
in her submitted request. This is due to the fact that
the users are self-interested, and they may manipulate
the system in order to maximize their utility. A key
property of our proposed mechanism, called incentive-
compatibility, is to give incentives to users to reveal their
actual requests including the price, the VM bundle, the
length of time of using the requested VM bundle, and
the deadline for their requested bundles. The objective
of the mechanism is to allocate cloud resources to the
users who value them the most. The mechanism also
calculates the price that each user must pay to the cloud
provider. The allocation and pricing mechanisms used
by the current cloud computing providers do not require
the users to explicitly specify a length of time for using
a VM at the time of submitting their requests. These
cloud providers charge the users a fixed price per hour
for each VM instance used. Our proposed mechanism
provides more flexibility allowing the users to specify
the length of time for which they would like to acquire
the bundle of VMs and a deadline. We believe that
our setting provides more opportunities to providers,
to optimize their operating costs and to increase their
profits, as well as to users, who will be able to better
express their requirements in order to maximize their
utilities.
In this paper, we design an online mechanism for the

VM allocation and pricing problem in clouds in the pres-
ence of multiple types of resources (e.g., cores, memory,
storage, etc.). Our proposed mechanism is online and
thus, makes no assumptions about future demand and
supply of VMs, which is the case in real cloud settings.
Our proposed online mechanism calculates the allocation
and payment as users arrive at the system and place
their requests. Our proposed mechanism demonstrates
the benefits of quick response, revenue maximization,
and incentive compatibility which are critical when pro-
viding online cloud services.

1.1 Our Contribution

We address the problem of online VM provision-
ing, allocation, and pricing in clouds in the pres-
ence of multiple types of resources. We design an
offline incentive-compatible mechanism and an online
incentive-compatible mechanism for VM allocation and
pricing that give incentives to the users to reveal their
actual true requests. Our proposed offline mechanism
is optimal given that the information on all the future

requests is known a priori. However, our proposed on-
line mechanism makes no assumptions about the future
demand for VMs, which is the case in real cloud settings.
Our proposed online mechanism is invoked as soon as
a user places a request or some allocated resources are
released and become available. The mechanism not only
provisions and allocates resources dynamically, but also
determines the users’ payments such that the incentive-
compatibility property is guaranteed. We compare the
performance of the optimal mechanism with that of
online mechanism. The proposed online mechanism pro-
vides very fast solutions making it suitable for execution
in real-time settings. We perform extensive experiments
showing that the proposed online mechanism is able to
find near optimal solutions.

1.2 Related Work

Mechanism design [4] is a sub-field of game theory
aiming at reaching systems’ equilibria having desired
properties such as high revenue [4]. There is a rich body
of work on mechanism design considering static systems
in which all participants are present and a one-time
decision is made to find a solution [5], [6], [7]. Such
systems are considered in an offline setting, whereas
in online mechanism design, all participants arrive and
depart dynamically, requiring making decisions without
having information about the future. The problem of on-
line mechanism design was introduced by Friedman and
Parkes [8]. They proposed strategy-proof online mecha-
nisms, where truthful revelation of a user’s valuation
is a dominant strategy equilibrium. For an introduction
to online mechanism design, the reader is referred to
Parkes [9]. Several online variants of Vickrey-Clarke-
Groves (VCG) mechanisms were proposed by Gershkov
and Moldovanu [10] and by Parkes and Singh [11].
These mechanisms focus on Bayesian-Nash incentive
compatibility. However, these studies rely on a model of
future availability, as well as future supply. Hajiaghayi
et al. [12] designed online mechanisms for auctioning
identical items, where users have three parameters as
private information: value, arrival time, and departure
time. However, they assumed that the number of users
is known in advance. Hajiaghayi et al. [13] investigated
online mechanisms for re-usable items in which items
can be allocated to different users at different time slots.
They mainly focused on unit-length requests. Porter [14]
studied the problem of online scheduling of a re-usable
resource in model-free setting, and characterized the
monotonicity properties.
Researchers approached the problem of resource pro-

visioning and allocation in clouds from different points
of view [15], [16], [17], [18]. Jangjaimon and Tzeng [16]
designed an enhanced adaptive incremental check-
pointing mechanism for multithreaded applications on
resource-as-a-service clouds under spot instance pricing.
The objective of their approach is to reduce the expected
job turn-around time and the cost. Kuo et al. [17] pro-

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, 2015 3

posed a 3-approximation algorithm for the VM place-
ment problem to minimize the maximum access latency.
Xiao et al. [19] studied the automatic scaling problem
in clouds. They proposed a color set algorithm to de-
cide the application placement and load distribution.
Their proposed algorithm is invoked periodically, and
it reduces the number of instances in order to save
energy. Lee and Zomaya [20] proposed two energy-
conscious task consolidation heuristics for clouds with
the goal of maximizing resource utilization considering
both active and idle energy consumption. Papagianni et
al. [21] tackled the problem of providing a unified re-
source allocation framework for networked clouds with
the goal of minimizing the cost of resource mapping
procedures. Ghazar and Samaan [22] proposed a pricing
mechanism for virtual network services to regulate the
demand for their shared substrate network resources.
Guazzone et al. [23] proposed a framework for dynamic
management of computing resources in order to achieve
suitable QoS levels and to reduce the amount of energy
consumption for providing services. HoseinyFarahabady
et al. [24] studied the problem of task assignment on
hybrid-clouds. They proposed two approximation meth-
ods for two different cases of known and unknown run-
ning time of available tasks. More specifically, they de-
signed a fully polynomial-time randomized approxima-
tion scheme based on a Monte Carlo sampling method
for the case of unknown running time. Leslie et al. [25]
proposed a framework for resource allocation and job
scheduling of VMs aiming to cost efficiently execute
deadline-constrained jobs. Their proposed framework
ensures quality of service in terms of cost, deadline com-
pliance and service reliability. Cao et al. [26] proposed a
pricing model to maximize profit considering different
factors of a cloud such as the amount of services, the
workload of an application, the cost of renting, and the
cost of energy consumption. In addition, they proposed
a queuing model in order to find optimal configuration
of a multiserver system. All of these prior works assume
that the information is publicly known, and none of them
considers a competitive setting, in which the requests
characteristics are private to the users.
Recently, the concepts of game theory and mechanism

design have been employed in the design of cloud
resource management mechanisms [27], [28], [29]. Feng
et al. [28] proposed a game theoretic approach consid-
ering multiple competing cloud providers. They pro-
posed iterative price determination algorithms for cloud
providers to maximize their profits when offering IaaS
(Infrastructure as a Service). Zhang et al. [29] proposed
a randomized mechanism for VM allocation in clouds
in an auction market. Their proposed mechanism is
truthful in expectation and is based on a pair of primal
and dual LPs (Linear Programs). It considers a different
settings than ours in which the the requests from the
users do not specify the duration of the time the VM
bundle is requested, the arrival time, and the deadline;
it only specifies the bundle of VM and its valuation.

Prasad et al. [30] proposed a cloud resource procurement
approach which not only automates the selection of
cloud providers but also implements dynamic pricing.
They proposed a strategy-proof mechanism based on
VCG, a Bayesian mechanism, and an optimal mecha-
nism for resource procurement where a user performs
a reverse auction for procuring resources from cloud
providers. Wang et al. [31] proposed a generalized domi-
nant resource fairness mechanism for the multi-resource
allocation problem, where there are multiple heteroge-
neous servers. Their proposed mechanism improves the
resource utilization leading to shorter job completion
times. In our previous studies, we proposed truthful
mechanisms for VM allocation in clouds in periodic-time
(offline) settings [32], [33], [34]. However, none of these
studies consider online settings.

Online resource management in clouds has recently
attracted a great deal of attention. Hua et al. [35] pro-
posed a scalable distributed scheme in cloud data centers
considering the network architecture design and data
placement. Their proposed network scheme leverages
the off-line precomputation to improve online cloud
services. Zhang et al. [36] proposed a bandwidth cost
minimization approach for uploading deferral big data
to a cloud or a federation of clouds. In doing so, they
designed a heuristic smoothing algorithm and an effi-
cient distributed randomized online algorithm. Abbasi
et al. [37] proposed an online algorithm to minimize
operational cost of a set of geo-distributed data centers.
Song et al. [38] proposed an online bin packing approach
that uses virtualization technology to allocate cloud
resources dynamically based on application demands.
Their proposed approach supports green computing by
optimizing the number of servers used. Zhao et al. [39]
proposed an online algorithm for dynamic VM pricing
across data-centers in a geo-distributed cloud in order to
maximize the overall profit. Zhang et al. [40] proposed
an online auction mechanism for resource allocation in
clouds in the presence of only one type of resources.
They assumed that job lengths and bids are within
known intervals. Zaman and Grosu [41] proposed a
truthful online mechanism for provisioning and alloca-
tion of VM instances in clouds. However, their mech-
anism assumes that the cloud provider offers only one
type of resources, computational resources. The current
work is different from the two above-mentioned studies
since it considers the existence of several resource types,
being more suitable for use in real cloud settings. Note
that considering one resource makes the problem NP-
hard, while in our study, we tackle a much more chal-
lenging problem which is strongly NP-hard. Therefore,
satisfying incentive-compatibility in our settings brings
about more challenges. In addition, unlike the above-
mentioned studies we do not consider any assumptions
on the bids and their distributions, and thus, creating a
general framework for the online setting.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, 2015 4

TABLE 1: VM instance types offered by Amazon EC2.

Small Medium Large Extralarge
m = 1 m = 2 m = 3 m = 4

CPU 1 2 4 8
Memory (GB) 1.7 3.75 7.5 15
Storage (GB) 160 410 850 1690

1.3 Organization

The rest of the paper is organized as follows. In Section 2,
we describe the online VM allocation and pricing prob-
lem in clouds. In Section 3, we introduce the basic con-
cepts of mechanism design, and present our proposed
offline optimal mechanism. In Section 4, we present
the proposed online mechanism, and characterize its
properties. In Section 5, we evaluate the mechanisms
by extensive experiments. In Section 6, we summarize
our results and present possible directions for future
research.

2 VM ALLOCATION AND PRICING PROBLEM

In this section, we model the online VM allocation and
pricing (OVMAP) problem in the presence of multiple
types of resources. A cloud provider offers R different
types of resources, R = {1, . . . , R}, such as cores, mem-
ory, storage, etc. These resources are provisioned in the
form of M types of VM instances VM = {1, . . . ,M}
and then offered to the users. Each VM instance of
type m ∈ VM has a specific amount of each type of
resource r ∈ R, denoted by wmr. The capacity Cr for
each resource r ∈ R available for allocation is limited.
In Table 1, we show the four types of VM instances
offered by Amazon EC2 US West (Northern California)
Region. If we consider that CPU represents the type 1
resource, memory, the type 2 resource, and storage, the
type 3 resource, we can characterize, for example, the
Medium instance (m = 2) by: w21 = 2, w22 = 3.75 GB,
and w23 = 410 GB.
A set U of N users are requesting a set of VM instances

for a certain amount of time in order to execute their
jobs on the cloud. User i, i ∈ U , requests a bundle
Si = 〈ki1, ki2, . . . , kiM 〉 of M types of VM instances,
where kim is the number of requested VM instances of
type m ∈ VM. In addition, she specifies a bid bi for
her requested bundle Si. User i’s request is denoted
by θi = (Si, ai, li, di, bi), where ai is the arrival time
of her request, li is the amount of time for which
the requested bundle must be allocated, and di is the
deadline for her job completion. For example, request
(〈4, 3, 1, 2〉, 2, 1, 7, $15) represents a user requesting 4
Small VM instances, 3 Medium VM instances, 1 Large
VM instance, and 2 Extra large VM instances; the request
arrives at time 2, needs 1 unit of time to execute,
expires at time 7, and her bid is $15. We denote by
σir =

∑

m∈VM kimwmr, the total amount of each resource
of type r that user i has requested.
We define δi = di − li as the time by which Si must

be allocated to user i in order for her job to complete
its execution. If the cloud provider allocates a requested

bundle, the request is never preempted. User i values her
requested bundle Si at bi, which is the maximum price
a user is willing to pay for using the requested bundle if
it is allocated within time window [ai, δi]. The users are
assumed to be single-minded. That means, user i desires
only Si and derives a value of bi if she gets Si, or any
superset of it, for the specified time before its deadline,
and zero value, otherwise.
The standard objective of mechanism design is to

maximize welfare [42], which can help a cloud provider
increase its revenue. This is due to the fact that the
mechanism allocates the VMs to the users who value
them the most. The welfare, V , is the sum of users’
valuations, V =

∑

i∈U bi · xi, where xi, i ∈ U , are
decision variables defined as follows: xi = 1, if bundle
Si is allocated to user i within time window [ai, δi];
and xi = 0, otherwise. Our goal is to design an online
incentive-compatible mechanism maximizing V , that is,
a mechanism that solves OVMAP.
We also define the offline version of OVMAP, called

VMAP, which considers that the information on all the
future requests is known a priori. In order to formulate
VMAP as an integer program we define the decision
variables over time t ∈ T as follows:

Xit =

{

1 if Si is allocated to i at t,

0 otherwise.
(1)

In addition, we define indicator parameters as follows:

yit =

{

1 if ai ≤ t ≤ δi,

0 otherwise.
(2)

The feasibility of the allocation to user i is indicated
by yit. This indicator parameter ensures that the al-
location of the requested bundle is within time win-
dow [ai, δi].
We formulate the problem of offline VM allocation and

pricing (VMAP) as an Integer Program (called VMAP-IP)
as follows:

Maximize
∑

i∈U

∑

t∈T

bi · yit ·Xit (3)

Subject to:
∑

t∈T

Xit ≤ 1, ∀i ∈ U (4)

∑

i∈U

t
∑

ω=t−li+1

∑

m∈VM

kimwmryiωXiω ≤ Cr,

∀r ∈ R, ∀t ∈ T (5)

Xit = {0, 1},∀i ∈ U , ∀t ∈ T (6)

yit = {0, 1},∀i ∈ U , ∀t ∈ T (7)

The objective function is to maximize welfare V , where
xi =

∑

t∈T yit·Xit. Constraints (4) ensure that the request
of each user is fulfilled at most once. Constraints (5)
guarantee that the allocation of each resource type does
not exceed the available capacity of that resource for
any given time. Constraints (6) and (7) represent the

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, 2015 5

integrality requirements for the decision variables and
indicator parameters. These constraints force the cloud
provider to provision the whole bundle of VM instances
and to allocate bundles to the selected users. The VMAP
problem is strongly NP-hard by a simple reduction from
the multidimensional knapsack problem [43]. Note that
VMAP-IP assumes that the information about all users’
requests is available at the time of solving it. As a result,
if solved, VMAP-IP finds the optimal allocation of cloud
resources in an offline setting. However, in an online
setting, we do not have the information about future
requests (such as arrivals), and thus, we have to rely on
online mechanisms that solve the OVMAP problem. Our
goal is to design such an online incentive-compatible
mechanism that solve the OVMAP problem.

3 MECHANISM DESIGN FRAMEWORK

In this section, we first present the basic concepts of
mechanism design and then propose an offline optimal
mechanism.

3.1 Preliminaries of Mechanism Design

In general, a deterministic mechanism M, is defined as
a tuple (A,P), where A = (A1, . . . ,AN) is the alloca-
tion function that determines which users receive their
requested bundles, and P = (P1, . . . ,PN) is the payment
rule that determines the amount that each user must pay
for the allocated bundles. In our model, each user i ∈ U
is characterized by her actual request denoted by θi.
Each user’s request is private knowledge. The users
may submit different requests from their actual (true)
requests. We denote by θ̂i = (Ŝi, âi, l̂i, d̂i, b̂i) user i’s
submitted request. Note that θi = (Si, ai, li, di, bi) is
user i’s actual request. The valuation function vi(θ̂i) of
user i is defined as follows:

vi(θ̂i) =











bi if Ŝi is allocated by A

∧(Si ⊆ Ŝi) ∧ (ti ≤ δi)

0 otherwise

(8)

where ti is the time at which Ŝi has been allocated
to user i. The goal is to design incentive-compatible
mechanisms that maximize the welfare V , where V =
∑

i∈U vi(θ̂i) · xi.

We denote by θ̂ = (θ̂1, . . . , θ̂N) the vector of re-
quests of all users. In addition, θ̂−i is the vector
of all requests except user i’s request (i.e., θ̂−i =
(θ̂1, . . . , θ̂i−1, θ̂i+1, . . . , θ̂N)). The utility function of user i

is quasi-linear, and thus, it is defined as the difference be-
tween her valuation and payment, ui(θ̂i, θ̂−i) = vi(θ̂i)−
Pi(θ̂i, θ̂−i), where Pi(θ̂i, θ̂−i) is the payment for user i

calculated by the mechanism using the payment rule P .
Definition 1 (Individual rationality): A mechanism is

individually-rational if for every user i reporting her
actual request θi we have ui(θi, θ̂−i) ≥ 0, for all other
users requests θ̂−i.

In other words, a mechanism is individually-rational if
a truthful user can always achieve as much utility from
participation as without participation. Therefore, users
reporting truthfully their requests will never incur losses
(i.e., negative utility) by participating in the mechanism.
However, such mechanisms do not give incentives to
users to report their requests truthfully. The goal of
a self-interested user is to maximize her utility, and
she may manipulate the mechanism by lying about her
actual request. In our case, the request of a user consists
of a bundle, an arrival time, an amount of time for which
the requested bundle must be allocated, a deadline, and
a value. As a result, a user can lie about any of these
parameters in the hope to increase her utility. These
manipulations may reduce the revenue of the cloud
provider. Our goal is to prevent such manipulations by
designing incentive-compatible mechanisms for solving
OVMAP. A mechanism is incentive-compatible if all users
have incentives to reveal their actual requests.

Definition 2 (Incentive compatibility): A mechanism M
is incentive-compatible (or truthful) if for every user i, for
every submitted requests of the other users θ̂−i, an actual
request θi and any other submitted request θ̂i of user i,
we have that ui(θi, θ̂−i) ≥ ui(θ̂i, θ̂−i).

In an incentive-compatible mechanism, truthful re-
porting is a dominant strategy for the users. In other
words, it is in the users best interest to submit their
actual request irrespective of other users requests. To
design an incentive-compatible mechanism, we need to
design a monotone allocation function A, while the
payment rule must be based on the critical payment [44].

For our model, we define monotonicity in terms of the
following preference relation � on the set of requests:
θ̂′i � θ̂i if Ŝi � Ŝ′

i, â′
i ≤ âi, l̂′i ≤ l̂i, d̂′i ≥ d̂i, and b̂′i ≥ b̂i for

user i. Moreover, Ŝ′
i � Ŝi if σ′

ir ≤ σir, ∀r ∈ R. That means
the request θ̂′i is more preferred than θ̂i if user i requests
a smaller bundle, submits an earlier request, the bundle
for a shorter time period, a later deadline, and submits
a higher value. In our setting, users cannot report an
earlier arrival (i.e., âi ≤ ai), a shorter length (i.e., l̂i ≤ li),
or a later deadline (i.e., d̂i ≥ di) than their true arrival
time, true length, and true deadline. There is no reason
for a user to submit her request earlier than when her job
is ready for execution. Declaring a shorter length does
not allow the completion of the job. Reporting a later
deadline may result in getting her bundle too late to
complete her job on time.

Definition 3 (Monotonicity): If a monotone allocation
function A allocates the resources to user i with θ̂i, then
it also allocates the resources to that user with θ̂′i, where
θ̂′i � θ̂i.

In other words, A is monotone if any winning user
who receives her requested bundle by declaring a re-
quest θ̂i is still wining if she submits a more preferred
request.

In addition to a monotone allocation function A,
any incentive-compatible mechanismM has a payment

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, 2015 6

rule P . To avoid manipulations and satisfy incentive-
compatibility, the payment Pi of any user i, must be in-
dependent of her request [42]. In this setting, a payment
rule that satisfies the critical payment property along
with a monotone allocation function are sufficient condi-
tions to obtain an incentive-compatible mechanism [42].
In the following, we describe the critical payment prop-
erty.
Definition 4 (Critical payment): If A is monotone, for

every θi, there exist a unique value bc
i , called critical

payment, such that ∀θ̂i � (Si, ai, li, di, b
c
i), θ̂i is a winning

declaration, and ∀θ̂i ≺ (Si, ai, li, di, b
c
i), θ̂i is a losing

declaration.
For given requests θ̂−i and allocation function A, θ̂i

is a winning declaration if i ∈ A(θ̂i, θ̂−i) (i.e., xi = 1);
otherwise we say that θ̂i is a losing declaration.
We define the payment rule P based on the critical

payment as follows. Pi(θ̂) = bc
i , if user i is a winning

user, and Pi(θ̂) = 0, otherwise. A winning user is a
user who is selected by the allocation function to receive
her request (i.e., xi = 1). We denote by bc

i , the critical
payment of user i.
In the next subsection, we incorporate our proposed

VMAP-IP in the design of a Vickrey-Clarke-Groves
(VCG)-based optimal mechanism which computes the
allocation and payment offline.

3.2 Incentive-Compatible Offline Optimal Mecha-
nism

In this section, we present a VCG-based optimal mech-
anism that solves VMAP, the offline version of OVMAP
problem. Since the setting is offline, our proposed mech-
anism has all the information about the users such as
their arrival, deadline, requested time, requested bundle,
etc, and thus, it finds the optimal solution. Any VCG-
based mechanism [42] requires an optimal allocation
algorithm implementing the allocation function A. A
VCG mechanism is defined as follows. A mechanism
is a Vickrey-Clarke-Groves (VCG) mechanism if the
allocation function A maximizes V , and the payment
function P is defined as follows:

Pi(θ̂i, θ̂−i) =
∑

j∈A(θ̂−i)

vj(θ̂j)−
∑

j∈A(θ̂),j 6=i

vj(θ̂j),∀i ∈ U ,

(9)
where

∑

j∈A(θ̂−i)
vj(θ̂j) is the optimal welfare that would

have been obtained had user i not participated, and
∑

j∈A(θ̂),j 6=i
vj(θ̂j) is the aggregated users’ valuations

except user i’s.
We design a VCG-based mechanism, called VCG-

VMAP, that solves the VMAP problem, by incorporat-
ing our proposed VMAP-IP and its optimal solution
along with the above-mentioned VCG payment rule.
The optimal offline VCG-VMAP mechanism is shown
in Algorithm 1. The mechanism has as input the vector
of resource capacities C = (C1, . . . , CR). VCG-VMAP
collects all the requests (lines 1-3), and when it has all

Algorithm 1 Optimal Offline Mechanism: VCG-VMAP (C)

1: for all i ∈ U do
2: Collect user request θ̂i = (Ŝi, âi, l̂i, d̂i, b̂i)
3: θ̂ = (θ̂1, . . . , θ̂N)
4: (V ∗, x∗) = Solution of IP-VMAP(θ̂)
5: Provisions and allocates VM instances based on x

∗.
6: for all i ∈ U do
7: (V ′∗, x′∗) = Solution of IP-VMAP(θ̂−i)

8: Pi =
∑

j∈U,j 6=i

b̂j(x
′∗
j − x

∗
j)

9: Output: V ∗; x∗; P

the information about the requests, it determines the
optimal allocation of resources to users by solving the
IP-VMAP given in Equations (3) to (7) (line 4). Then, the
mechanism provisions the resources in the form of VM
instances based on the requested number and types of
VM instances of winning users (line 7). Finally, the mech-
anism determines the payment of each user (lines 6-8).
In doing so, VCG-VMAP finds the allocation and welfare
obtained without each user’s participation (line 7). Then,
the mechanism charges each user based on the welfare
obtained with and without her participation (line 8). The
mechanism returns three parameters: V ∗, the optimal
welfare, x

∗ = (x∗
1, x

∗
2, . . . , x

∗
N), the optimal allocation of

VM instances to the users, and P = (P1,P2, . . . ,PN)
their payments.
Because VCG-VMAP is designed with an optimal

allocation function and uses the VCG payment rule, it is
incentive-compatible [42]. However, VMAP is strongly
NP-hard, and thus, the execution time of VCG-VMAP
becomes prohibitive for large instances of VMAP. In
addition, VCG-VMAP computes the allocation and pay-
ment offline since it has all the information about future
demands. However, in a real settings this information
is not available to the cloud providers and requires
designing online mechanisms. In Section 4, we introduce
our proposed online mechanism.

4 ONLINE MECHANISM FOR VM ALLOCATION
AND PRICING

Our goal is to design an incentive-compatible greedy
mechanism that solves the OVMAP problem in online
settings.
The VM instances have R dimensions, where the

R dimensions correspond to the R types of resources.
Since the cloud provider provisions resources in the form
of VM instances, any bundle of VMs can be seen as one
R-dimensional item. Without loss of generality, we con-
sider that the smallest item in the R-dimensional space
contains one unit of each resources. This assumption
does not restrict our proposed model since the resource
capacities can be normalized to their units. As a result,
the total volume of available items to allocate to the users
is

∏

r∈R Cr. In this section, we present an incentive-
compatible online mechanism for the OVMAP problem,
called OVMAP.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, 2015 7

Algorithm 2 OVMAP Mechanism (Event, A,P)

1: t← Current time
2: Qt ← {θ̂i|i ∈ U , i has not been allocated}
3: Q̃t ← {θ̂i|i ∈ U , (i has been allocated) ∧

(its job has not finished yet)}
4: for all i ∈ U do
5: for all r ∈ R do
6: σir =

∑

m∈VM
kimwmr

7: for all r ∈ R do
8: Ct

r ← Cr −
∑

i|θ̂i∈Q̃t σir

9: Ct ← (Ct
1, . . . , C

t
R); vector of resource capacities at time t

10: if Qt = ∅ or Ct = 0 then
11: return
12: At ← OVMAP-ALLOC(t,Qt, Ct)
13: A ← A∪At

14: P ← P ∪ {b̂i|(θ̂i, t) ∈ A
t}

15: P ← OVMAP-PAY(t,Qt,A,P, Ct)
16: return A,P

4.1 OVMAP Mechanism

The OVMAP mechanism is given in Algorithm 2.
OVMAP is an event handler, that is, it is invoked when a
new user request arrives or some allocated VM instances
become available. OVMAP takes as input an Event, the
current allocation set A, and the payment set P . An
Event is either a release of resources or an arrival of
a user request. In lines 1 to 8, OVMAP sets the current
time to t and initializes four variables as follows:

Qt: the set of requests of the users that have not
been allocated. Formally,
Qt ← {θ̂i|i ∈ U , t ≤ δ̂i ∧ ∄ti < t : (θ̂i, ti) ∈ A};
Q̃t: the set of requests of the users that have been
allocated and their jobs have not finished yet. For-
mally,
Q̃t ← {θ̂i|i ∈ U ∧ ∃ti < t : (θ̂i, ti) ∈ A ∧ ti + l̂i > t};
σir: the amount of each resource of type r requested
by user i; and,
Ct

r: the available capacity of the resource r at time t.

The mechanism stores the resource capacities at time
t as a vector Ct (line 9). Then, it proceeds only if re-
sources and requests are available. OVMAP determines
the allocation by calling OVMAP-ALLOC. The allocation
function OVMAP-ALLOC returns At, the set of users
who would receive their requested bundles at time t

(line 12). The mechanism then updates the overall al-
location set A using the newly determined set At. Then,
the mechanism determines the payment of users. The
payment of users in At are inserted into the payment
set with Pi = b̂i as their initial payment (line 14). The
payment function OVMAP-PAY returns updated set P
containing the payment of users at time t (line 15). The
payment of user i is going to be updated several times
until t = δi, i.e., until the time instance the user must
obtain the requested bundle. OVMAP-PAY calculates the
payments for these users and updates the payment set P .

Algorithm 3 OVMAP-ALLOC(t,Qt, Ct)

1: At ← ∅
2: for all i|θ̂i ∈ Q

t do

3: fi = b̂i

l̂i·
∏

r∈R
σir

4: Sort all θ̂i ∈ Q
t in non-increasing order of fi

5: for all θ̂i ∈ Q
t in non-increasing order of fi do

6: Ĉ = Ct

7: flag ← TRUE
8: for all r ∈ R do
9: Ĉr = Ĉr − σir

10: if Ĉr < 0 then
11: flag ← FALSE
12: break;
13: if flag then
14: Ct = Ĉ
15: At ← At ∪ (θ̂i, t)
16: Output: At

4.2 Allocation algorithm of OVMAP

The allocation algorithm OVMAP-ALLOC is given in
Algorithm 3. We define a metric called the bid density.
OVMAP-ALLOC algorithm allocates the VM instances to
users in decreasing order of their bid densities. OVMAP-
ALLOC considers the setting in which a set U of N

users are requesting a heterogeneous set of VM instances
for any length of time in order to execute their applica-
tions/jobs on the cloud. It also considers a continuous-
time model such that t ∈ [0, T]. Note that the request
time length for any user i is l̂i ≥ 1. The bid density is
defined as follows:

fi =
b̂i

l̂i ·
∏

r∈R σir

(10)

The bid of user i for a bundle of VM instances for time l̂i
can be interpreted as requesting a hyper-rectangle with
volume l̂i ·

∏

r∈R σir in the (R + 1)-dimensional space
defined by the R resource types and the time. User i

values this volume at b̂i, if allocated. Hence, fi represents
how much user i values one unit of volume from the
(R + 1)-dimensional space.
OVMAP-ALLOC sorts all requests in non-increasing

order of bid densities, fi (line 4). Then the algorithm
allocates bundles requested by the sorted users in Qt

while resources last (lines 5-15). OVMAP-ALLOC checks
if it can fulfill the request of user i (lines 8-12). If there are
not enough resources, user i will not be selected, and her
request will be rejected after the current time passes δi

(by removing user i from Qt). If there are enough re-
sources, user i will be allocated (line 15) and the amount
of available resources will be updated (line 14).
The mechanism uses the non-increasing order of bid

densities for allocation because the cloud provider is
interested in users who want to pay more per unit of
their resources per unit of time. OVMAP-ALLOC tries
to maximize the sum of the reported values of the
users who get their requested bundles. Finally, OVMAP-
ALLOC returns the set At of users who are selected for

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, 2015 8

Algorithm 4 OVMAP-PAY(t,Qt,A,P, Ct)

1: W = {θ̂i|∃t
′ ≤ t : (θ̂i, t

′) ∈ A ∧ t ≤ δ̂i}
2: Q̂ = Qt ∪W
3: for all i|θ̂i ∈ Q̂ do

4: fi = b̂i

l̂i·
∏

r∈R
σir

5: for all θ̂i ∈ W in non-increasing order of fi do
6: Ĉ ← Ct

7: for all r ∈ R do
8: Ĉr = Ĉr + σir

9: q = −1;
10: Ā ← OVMAP-ALLOC(t,Qt \ θ̂i, Ĉ)
11: for all θ̂j ∈ Q

t ∩ {θ̂j |(θ̂j , t) 6∈ A
t ∧ (θ̂j , t) ∈ Ā}

in non-increasing order of fj , where fj < fi do
12: q = j;
13: break;
14: if q then
15: Pi ← min(fq · l̂i ·

∏

r∈R
σir,Pi)

16: else
17: Pi ← 0
18: Output: P = (P1,P2, . . . ,PN)

allocation at time t.

4.3 Payment function of OVMAP

The payment function OVMAP-PAY is given in Algo-
rithm 4. This function calculates the critical payment of
each user i if her requested bundle is allocated at t. The
critical payment of user i is the minimum value that
she must report to get her requested bundle at time t.
OVMAP-PAY determines the set W of requests of users
who are allocated and still feasible for allocation at t

(line 1). Then, it determines the set Q̂ of requests of users
who are allocated or not allocated at t (line 2). OVMAP-
PAY calculates fi for all users in Q̂ (lines 3-4). Then,
OVMAP-PAY determines the payment for all users that
have been allocated at time t (lines 5-17). The payment of
user i is calculated based on the critical value payment.
To determine the critical payment, we eliminate user i

from the system, add back to Cr the resources allocated
to user i, and identify a losing user that becomes a
winner because of user i elimination. The value reported
by this losing user is the critical value of user i. Thus,
only the resources allocated to user i are placed back
into Cr (lines 7-8). Then, it calls the allocation algorithm,
OVMAP-ALLOC, without considering the participation
of user i (line 10). Then, OVMAP-PAY tries to find a
user j who had not been allocated at t when user i

participated, and would have been allocated at t if
user i did not participate (lines 11-17). If OVMAP-PAY
finds such a user, it stores her index q (line 12), and it
determines the payment of user i based on the density of
user q (line 15); otherwise user i pays 0 (line 17). In other
words, the payment of user i is calculated by multiplying
l̂i ·

∏

r∈R σir with the highest density among losing users,
(i.e., that of user q), who would win if user i would not
participate. This is the minimum value to be reported by
user i such that she gets her requested bundle. Finally,
the set Pt is returned to the mechanism.

4.4 Example of OVMAP Execution

We show the execution of the mechanism by considering
a setting in which the users bid as shown in Table 2.
For simplicity, we consider R = 1, that is only one
resource type is available (e.g., core). As a result, σi1 is
the total amount of resources that user i has requested.
For example, user 1’s bid θ̂1, contains the following
information: her requested resource is σ̂11 = 3, she
submits her bid at â1 = 0, she requests the bundle for
l̂1 = 3 time units, her deadline is d̂1 = 5, and she values
the allocation of the bundle for the entire time at b̂1 = 5.
We also show for each user, the value of δ̂i = d̂i− l̂i, the
time by which the bundle must be allocated to meet the

deadline, and fi = b̂i

l̂i×σ̂i1

, the bid density.

We assume that the available capacity of resource 1 for
allocation is 5 units. We show the execution of OVMAP
for this setting in Figure 1 and Table 3. In Figure 1a,
we show the initial state of the system, in Figure 1b, we
show the system state at time t = 0, and continue with
t = 1, 2, 3 in the subsequent figures. We also show the
values of Ct

1 and sets of Qt, Q̃t, A, and P for each of the
above time instances as a time diagram in Table 3. As a
reminder, Qt is the set of bids of users that participate
at time t, Q̃t is the set of bids of users that are holding
some resources at time t (including those who win their
bids at time t), Ct

1 is the amount of resources available
after allocation at time t, and A and P are the allocation
and payment sets.
In the second column of Table 3, we show the initial

system state and the subsequent columns represent the
state of the system at time t = 0, 1, 2, 3, respectively.
Figure 1a shows the initial state, where all resources are
available and there are no outstanding bids. In column
2 of Table 3, we see that all sets are empty and C0−

1 = 5,
since all resources are available for allocation. Users 1
and 2 submit their bids at t = 0 and hence OVMAP
is invoked. Now, Qt = {θ̂1, θ̂2}, since both users will
participate in the mechanism. As shown in Table 2,
f1 > f2, therefore user 1 is allocated a bundle of size
σ̂11 = 3. User 2’s request (σ̂21 = 3) cannot be satisfied
by the remaining resources (Ct

1 = 2), thus θ̂2 remains in
set Qt. θ̂1 is included in the set Q̃t, since user 1 is now
receiving some resources. Finally, (θ̂1, 0) is added to set
A and (θ̂1, 4) is added to set A, since the value of the
payment for user 1 determined in line 15 of OVMAP-
PAY is Pt

1 = f2 · l̂1 · σ̂11 = 4.
At time t = 1, users 3 and 4 submit their bids, and their

TABLE 2: User bids
θ̂i σ̂i1 âi l̂i d̂i b̂i δ̂i fi

θ̂1 3 0 3 5 5 2 0.56

θ̂2 3 0 3 4 4 1 0.44

θ̂3 2 1 5 8 6 3 0.60

θ̂4 2 1 2 5 3 3 0.75

θ̂5 3 3 4 9 8 5 0.67

θ̂6 3 3 6 10 9 4 0.50

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, 2015 9

TABLE 3: Execution of OVMAP
t t = 0− t = 0 t = 1 t = 2 t = 3

Qt ∅ {θ̂1, θ̂2} {θ̂4, θ̂3, θ̂2} {θ̂3} {θ̂5, θ̂3, θ̂6}

Q̃t ∅ {θ̂1} {θ̂4, θ̂1} {θ̂4, θ̂1} {θ̂5, θ̂3}
Ct

1
5 2 0 0 0

A ∅ {(θ̂1, 0)} {(θ̂1, 0), (θ̂4, 1)} {(θ̂1, 0), (θ̂4, 1)} {(θ̂1, 0), (θ̂4, 1), (θ̂5, 3), (θ̂3, 3)}
P ∅ (4,−) (4,−,−, 2.4) (4, 0,−, 2.4) (4, 0, 0, 2.4, 6,−)

t

C = 5

(a) Initial state

t

1

t=0
C = 5

θ

(b) t = 0

t

1

θ4

t=1

C = 5

θ

(c) t = 1

t

1

θ4t=2

C = 5

θ

(d) t = 2

t

1

θ5

θ3

θ4

t=3

C = 5

θ

(e) t = 3

Fig. 1: Execution of OVMAP

bids are included in the set Qt. User 4 has the highest
bid density (i.e., f4 > f3 > f2) and σ̂41 ≤ Ct

1 , therefore
user 4 obtains the requested bundle. At this time, should
user 4 not participate, user 3 would have received her
requested bundle, therefore (θ̂4, 2.4) is added to the set
P , where the payment of 2.4 is the product f3 · l̂4 · σ̂41.
The payment for user 1 does not change, since user 2
would still obtain her required bundle should user 1 not
participate. Figure 1c shows the allocation.
At t = 2, Ct

1 = 0, thus OVMAP is not invoked.
However, user 2’s deadline for allocation δ2 = 1 has
passed and she leaves the system. Since user 2 did not
obtained her bundle, her final payment is zero. Figure 1d
shows the allocation of resources at t = 2.
At t = 3, both users 1 and 4 complete their jobs

and bids θ̂5 and θ̂6 are submitted. User 3’s request is
still not allocated. According to the ordering on the bid
densities, users 5 and 3 obtain their requested bundles.
User 3’s payment is zero, since the remaining user 6
would not obtain her bundle even if user 3 would have
not participated. In a scenario with reserve price, user 3’s
payment will be set to the reserve price. Since δ1 = 2 has
passed, user 1’s payment will not change. We show the
outcome in Figure 1e. The process continues like this, as
more users submit their requests.
To show the importance of incentive compatibility, we

consider the following small example with two users, i

and j, arriving at the same time and competing for a unit
of resource. The true valuations of users i and j for the
unit of resource are $5 and $3, respectively. We consider
a scenario in which the cloud provider implements a fist-
price type auction to allocate the resources. That is, the
user with the highest bid wins and pays the price she
bids. If the users bid truthfully (bid the same as their
valuations), user i wins and pays $5. The revenue of
the provider is $5. Since user i wants to maximize her
utility (decrease her payment), she may misreport. If she

submits $3.01 as her bid, she still wins, and she pays
$3.01. However, the revenue of the provider reduces
from $5 to $3.01. As a result, user i can benefit by
missreporting, thus obtaining a higher utility. If user i

submits $2 as her bid, she will not win. In this scenario,
a user needs to know how other users bid in order to
strategize on how to bid to maximize her utility. Now
we consider a scenario using our proposed mechanism.
In the case that users i and j submit their actual true
bids, our mechanism selects user i as the winning user,
and charge her $3 based on the critical payment (bid
of the losing user). The revenue of the provider is $3.
If user i misreports and submits $4 as her bid, she
still wins. However, she still pays $3, and the revenue
of the provider does not change. As a result, user i

cannot benefit by missreporting and change the provider
revenue. This scenario shows that a user cannot change
the revenue of the cloud provider by missreporting her
true valuations. This leads to more stable revenues for
the cloud provider. Another benefit is that the user does
not need to strategize since she will maximize her utility
only by reporting her true valuation.

4.5 Properties of OVMAP

In this section, we investigate the properties of OVMAP.
We first show that the OVMAP mechanism is individually
rational (i.e., truthful users will never incur a loss).
Theorem 1: OVMAP mechanism is individually ratio-

nal.
Proof: We consider user i as a winning user. We

need to prove that if user i reports her true request
then her utility is non-negative. This can be easily seen
from the structure of the OVMAP mechanism. In line 15
of Algorithm 4, the payment for user i is set to Pi =
fq · l̂i ·

∏

r∈R σir, where user q is the user who would
have won if user i did not participate. Since user q

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, 2015 10

TABLE 4: Statistics of workload logs.

Logfile Avg
jobs
per
hour

Range
of CPU

Range of
memory
(MB)

Range of
Storage

(MB)

Available
CPUs

Memory
Capacity
(MB)

Storage
Capacity
(MB)

Avg CPU
per job

Avg mem-
ory per job
(MB)

Avg
storage
per job
(MB)

GWA-T-1 DAS-2 81 [1-128] [1-4,295] [10-51,070] 50 100 100 4.37 46.96 43.95
GWA-T-3 NorduGrid 34 1 [1-2,147] [10-1,053,072] 24 1,400 50,000 1 595.6 93,888.77
GWA-T-4 AuverGrid 33 1 [1.7-3,668] [10-259,316] 7 8,800 640,000 1 374.3653 27,805.86
GWA-T-10 SHARCNET 147 [1-3000] [1-32,021] [10-2,087,029] 85 2,000 1,000 2.9 94.49 39.43
METACENTRUM-2009-2 42 [1-60] [1-61,538] [10-2,592,130] 44 100 20,000 1.55 325.14 21,189.11
PIK-IPLEX-2009-1 36 [1-2560] [1-29,360] [10-4,815,007] 88 89,000 4,700 12.15 3,528.22 18,716.06

appears after user i in the decreasing order of the density
metric, we have, fq ≤ fi, and thus, OVMAP-PAY always
computes a payment Pi ≤ bi. As a result, the utility
of user i (i.e., ui = bi − Pi ≥ 0) is non-negative, and
she never incurs a loss. In addition, a truthful user who
does not win is not incurring a loss since she obtains 0
utility. This proves the individual-rationality of OVMAP
mechanism.

We now prove that the OVMAP mechanism is
incentive-compatible. In order to prove that the mech-
anism is incentive-compatible, we need to show that
the allocation algorithm is monotone, and the payment
function is based on the critical payment.
Theorem 2: OVMAP mechanism is incentive-

compatible.
Proof: We first show that the allocation algorithm

OVMAP-ALLOC is monotone. If user i wins by report-
ing θ̂i, then she will also win if she reports a more
preferred request θ̂′i ≥ θ̂i. Clearly, if user i reports
b̂′i ≥ b̂i, her bid θ̂′i will be allocated if θ̂i is also allocated.
Similarly, if a user gets the allocation by reporting d̂i, she
will also get it by reporting d̂′i ≥ d̂i. Similar reasoning
applies for the other parameters in the request of the
user.
We now prove that the payment function implemented

by OVMAP-PAY is based on the critical payment. In do-
ing so, we need to show that Pi determined by OVMAP-
PAY is the minimum value that user i must report to get
the allocation. User i’s payment is Pi = fq · l̂i ·

∏

r∈R σir

(line 15), where q is the index of user q appearing after
user i based on the non-increasing order of the bid
density (line 11), and she would have won if user i

did not participate. We consider that user i submits
a lower value b̂′i < Pi. User i’s new bid density is

f ′
i =

b̂′i

l̂i·
∏

r∈R
σir

< Pi

l̂i·
∏

r∈R
σir

. By replacing Pi, we have

f ′
i <

fq·l̂i·
∏

r∈R
σir

l̂i·
∏

r∈R
σir

. Thus, we have f ′
i < fq, that is,

user i will appear after user q who did not win. As
a result, if user i reports a bid below the minimum
value (i.e., Pi), she loses; otherwise she wins. This unique
value is the critical payment for user i. This, together
with the fact that losing users pay zero, show that the
payment function implemented by OVMAP is the critical
payment.
Since the payment is the critical payment and the al-

location function is monotone, it follows from Parkes [9]
that OVMAP is incentive-compatible.

Theorem 3: The time complexity of OVMAP mecha-

nism is polynomial.
Proof: The time complexity of OVMAP-ALLOC is

O(N(log N + MR)). This is because sorting the requests
requires O(N log N), while checking the feasibility of
the allocation for each user requires O(NMR). Similar
reasoning applies to OVMAP-PAY. As a result, the time
complexity of OVMAP mechanism is polynomial.

5 EXPERIMENTAL RESULTS

We perform extensive experiments with real workload
data in order to investigate the properties of our pro-
posed online mechanism, and the offline optimal VCG-
VMAP mechanism. For the VCG-VMAP mechanism,
we use the CPLEX 12 solver [45] to solve the VMAP
problem optimally. The data that drives our experiments
consists of six workload logs from the Grid Workloads
Archive [46] and the Parallel Workloads Archive [47].
The mechanisms are implemented in C++ and the ex-
periments are conducted on AMD 2.4GHz Dual Proc
Dual Core nodes with 16GB RAM which are part of the
university grid system. In this section, we describe the
experimental setup and analyze the experimental results.

5.1 Experimental Setup

Since real users request data have not been publicly
released by cloud providers yet, we rely on well stud-
ied and standardized workloads from both the Grid
Workloads Archive [46] and the Parallel Workloads
Archive [47]. We selected the following six logs based
on the availability of both recorded CPU and memory
requests/usage: i) DAS-2 traces from a research grid at
the Advanced School for Computing and Imaging in
Netherlands; ii) NorduGrid traces from the NorduGrid
system; iii) AuverGrid traces from the AuverGrid sys-
tem; iv) SHARCNET traces from SHARCNET clusters
installed at several academic institutions in Ontario,
Canada. v) MetaCentrum from the national grid of the
Czech republic; vi) IBM iDataPlex Cluster log from the
Potsdam Institute for Climate Impact Research (PIK) in
Germany. In our experiments, a user request is repre-
sented by a job in a log. We present statistics of the logs
in Table 4.
Each log represents a series of requests, where the

users arrive over time, and they can submit their re-
quests to a cloud provider. The following fields of the
log files are extracted to represent different features of
the users’ requests. (1) JobID: the user’s identifier; (2)

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, 2015 11

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

GW
A-T-1 DAS-2

GW
A-T-3 NorduGrid

GW
A-T-4 AuverGrid

GW
A-T-10 SHARCNET

M
ETACENTRUM

-2009-2

PIK-IPLEX-2009-1

S
oc

ia
l w

el
fa

re

Workload file

VCG-VMAP*
OVMAP

Fig. 2: OVMAP vs. VCG-VMAP: Welfare
(*VCG-VMAP was not able to determine the allocation for GWA-T-
3 NorduGrid, GWA-T-4 AuverGrid, and GWA-T-10 SHARCNET in
feasible time, and thus, there are no bars in the plots for those cases)

SubmitTime: the arrival time of the request; (3) RunTime:
the amount time for which the requested bundle must
be allocated; (4) ReqNProcs: the requested number of
processors; (5) Used Memory: the requested amount of
memory. Since the amount of storage usage was not
recorded in the workloads, we generate the requested
storage as shown in Table 4. We consider these resource
usage as values for the requested σir, the amount of each
resource of type r requested by user i, where i is a job in
a log, and r is a type of resource. We generate a random
number bi between 1 and 10 to represent user i’s bid.
For a deadline of a request, we choose a random number
between 3 to 6 times the job’s runtime. We use the job’s
runtime as the requested length of the job. We select 100
hours of the logs containing 706, 842, 1523, 1865, 677, and
416 requests for the afore-mentioned logs, respectively.

5.2 Analysis of Results

We compare the performance of OVMAP and VCG-
VMAP for different workloads. For each workload, we
record the execution time, the welfare, the revenue, the
percent of users served and the utilization for each
mechanism. Users served is the number of users who
received their requests for their entire requested time.
The utilization of each resource type is calculated as the
percentage of allocated resource out of the total capacity
of that resource over the entire time. We now present the
results obtained by OVMAP for the selected logs.
We analyze the performance of OVMAP and VCG-

VMAP in terms of welfare, execution time, the percent
of users served, resource utilization, and revenue. In this
case, users are requesting a heterogeneous set of VM
instances for a length of time. The optimal mechanism,
VCG-VMAP, could not find the solutions even after 72
hours for three out of the six logs. This is due to the fact
that the problem becomes more complex for different job
lengths, higher number of requests, and greater available
capacity. Fig. 2 shows the welfare achieved by the mech-

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

GW
A-T-1 DAS-2

GW
A-T-3 NorduGrid

GW
A-T-4 AuverGrid

GW
A-T-10 SHARCNET

M
ETACENTRUM

-2009-2

PIK-IPLEX-2009-1

E
xe

cu
tio

n
tim

e
(S

ec
on

ds
)

Workload file

VCG-VMAP*
OVMAP

Fig. 3: OVMAP vs. VCG-VMAP: Execution time
(*see Fig.2 note on VCG-VMAP)

 0

 20

 40

 60

 80

 100

GW
A-T-1 DAS-2

GW
A-T-3 NorduGrid

GW
A-T-4 AuverGrid

GW
A-T-10 SHARCNET

M
ETACENTRUM

-2009-2

PIK-IPLEX-2009-1

S
er

ve
d

us
er

s

Workload file

VCG-VMAP*
OVMAP

Fig. 4: OVMAP vs. VCG-VMAP: Users served
(*see Fig.2 note on VCG-VMAP)

anisms. VCG-VMAP is not able to determine the alloca-
tion for GWA-T-3 NorduGrid, GWA-T-4 AuverGrid, and
GWA-T-10 SHARCNET in feasible time, and thus, there
are no bars in the plots for those cases. For the remaining
logs, the results show that OVMAP obtains a welfare
very close to that obtained by the optimal VCG-VMAP
mechanism. On average the optimality gap is 3.7%. For
example, OVMAP and VCG-VMAP obtain welfares of
1233.57 and 1274.25 for the METACENTRUM-2009-2 log,
respectively, leading to a 3.19% optimality gap. Such
results are very promising given the fact that OVMAP
is an online mechanism which does not have any in-
formation about future demand. However, VCG-VMAP
is an offline mechanism and has all the information
available a priori. Fig. 3 shows the execution times of the
mechanisms on a logarithmic scale. As we expected from
the time complexity of the mechanism, the execution
time of OVMAP is very small. However, the execution
time of the optimal offline mechanism, VCG-VMAP, is
more than six order of magnitudes greater than that of
OVMAP for each of the logs. Note that the online setting
requires mechanisms with very small execution times.
Since OVMAP obtains close to optimal welfare and is

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, 2015 12

 0

 20

 40

 60

 80

 100

GW
A-T-1 DAS-2

GW
A-T-3 NorduGrid

GW
A-T-4 AuverGrid

GW
A-T-10 SHARCNET

M
ETACENTRUM

-2009-2

PIK-IPLEX-2009-1

C
or

e
ut

ili
za

tio
n

Workload file

VCG-VMAP*
OVMAP

Fig. 5: OVMAP vs. VCG-VMAP: Core utilization
(*see Fig.2 note on VCG-VMAP)

 0

 20

 40

 60

 80

 100

GW
A-T-1 DAS-2

GW
A-T-3 NorduGrid

GW
A-T-4 AuverGrid

GW
A-T-10 SHARCNET

M
ETACENTRUM

-2009-2

PIK-IPLEX-2009-1

M
em

or
y

ut
ili

za
tio

n

Workload file

VCG-VMAP*
OVMAP

Fig. 6: OVMAP vs. VCG-VMAP: Memory utilization
(*see Fig.2 note on VCG-VMAP)

very fast it is very suitable for solving the allocation
and pricing problem is online settings. We measured
the execution time of the mechanism for processing
each of the requests from the traces and calculated its
average. The average execution time of the mechanism
for processing a request is 1.27 microseconds. This shows
that the mechanism is very fast and can be used in
online settings. Since for each request the system will
need to instantiate a VM to serve the request, the total
time required to process and serve a request is given by
the sum of the time to instantiate a VM and the time
to run the mechanism. Since the time to instantiate a
VM is in the order of tens of seconds, the contribution
of the mechanism to the total time to process a request
is negligible. The total time to process a request will
basically impose an upper bound on the arrival rate of
requests. However, since not all of the requests will be
allocated (no VM instantiated) the upper bound on the
arrival rate will be much grater than the bound imposed
by the total time to process a request.

Fig. 4 shows the percentage of served users for the
mechanisms. The percentage of served users obtained
by OVMAP is very close to that of VCG-VMAP due

 0

 20

 40

 60

 80

 100

GW
A-T-1 DAS-2

GW
A-T-3 NorduGrid

GW
A-T-4 AuverGrid

GW
A-T-10 SHARCNET

M
ETACENTRUM

-2009-2

PIK-IPLEX-2009-1

S
to

ra
ge

 u
til

iz
at

io
n

Workload file

VCG-VMAP*
OVMAP

Fig. 7: OVMAP vs. VCG-VMAP: Storage utilization
(*see Fig.2 note on VCG-VMAP)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

GW
A-T-1 DAS-2

GW
A-T-3 NorduGrid

GW
A-T-4 AuverGrid

GW
A-T-10 SHARCNET

M
ETACENTRUM

-2009-2

PIK-IPLEX-2009-1

R
ev

en
ue

Workload file

VCG-VMAP*
OVMAP

Fig. 8: OVMAP vs. VCG-VMAP: Revenue
(*see Fig.2 note on VCG-VMAP)

to its close to optimal solution. This is due to the fact
that the solution determined by OVMAP is very close to
the optimal solution. Figs. 5 to 7 show the utilization
of cores, memory and storage, respectively. Note that
a higher utilization does not show the effectiveness of
the mechanisms. The objective of all the mechanisms
is maximizing the welfare not the utilization of the
resources. Fig. 8 shows the revenue achieved by the
cloud provider when using the mechanisms. OVMAP
is able to obtain a higher revenue than that of the VCG-
VMAP. For example, for log GWA-T-1 DAS-2, OVMAP
and VCG-VMAP obtain total revenues of $916.25 and
$783.67, respectively, corresponding to 16.91% higher
revenue using OVMAP. Note that the VCG-VMAP is
optimal in terms of welfare and not the revenue. This
is due to the fact that VCG-VMAP fulfills more requests
(i.e., more users are allocated), that is, it accepts more
bids. Accepting more bids, reduces the price charged to
users and implicitly the revenue.

From the above results we can conclude that OVMAP
decides the allocation and pricing much faster than
VCG-VMAP and achieves a welfare closer to the optimal.
As a result, OVMAP is suitable for making allocation

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, 2015 13

decisions and price determination in real-time.

6 CONCLUSION

The nature and dynamics of users’ demand in cloud
markets necessitates designing online mechanisms. Such
online mechanisms make no assumptions about future
demands. In this paper, we proposed an online incentive-
compatible mechanism, OVMAP, for VM allocation and
pricing in clouds. The OVMAP mechanism not only
provisions and allocates resources dynamically, but also
determines the price that users must pay for their re-
quested VMs. Our proposed mechanism provides incen-
tives to the users to reveal their actual requests facili-
tating a healthy competition among users. We proved
that OVMAP is individually-rational and incentive-
compatible. In addition, we proposed an optimal offline
mechanism in order to compare its performance with our
proposed online mechanism. The experimental results
showed that the proposed online mechanism obtains
better revenue and decides the allocation much faster
than the offline mechanism. For future work, we plan
to design and investigate new online mechanisms in
federated cloud settings.

ACKNOWLEDGMENT

We would like to thank the Associate Editor and the
reviewers for their helpful and constructive suggestions,
which considerably improved the quality of the paper.
This paper is a revised and extended version of [48]
presented at the 7th IEEE Intl. Conference on Cloud
Computing (CLOUD 2014). This research was supported
in part by NSF grants DGE-0654014 and CNS-1116787.

REFERENCES

[1] R. Buyya, C. Yeo, and S. Venugopal, “Market-oriented cloud
computing: Vision, hype, and reality for delivering it services as
computing utilities,” in Proc. 10th IEEE Intl. Conf. on High Perf.
Comp. and Comm., 2008, pp. 5–13.

[2] Amazon EC2 Instance Types. [Online]. Available:
http://aws.amazon.com/ec2/instance-types/

[3] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger, “Economic
models for resource management and scheduling in grid comput-
ing,” Concurrency and computation: practice and experience, vol. 14,
no. 13-15, pp. 1507–1542, 2002.

[4] N. Nisan and A. Ronen, “Algorithmic mechanism design,” in Proc.
of the 31st annual ACM Symp. on Theory of computing, 1999, pp.
129–140.

[5] J. D. Hartline and B. Lucier, “Bayesian algorithmic mechanism de-
sign,” in Proc. of the 42nd ACM Symposium on Theory of computing,
2010, pp. 301–310.

[6] J. Feigenbaum, M. Schapira, and S. Shenker, “Distributed algo-
rithmic mechanism design,” Algorithmic Game Theory, pp. 363–384,
2007.

[7] S. Dobzinski and S. Dughmi, “On the power of randomization in
algorithmic mechanism design,” in Proc. of the 50th Annual IEEE
Symposium on Foundations of Computer Science. IEEE, 2009, pp.
505–514.

[8] E. J. Friedman and D. C. Parkes, “Pricing wifi at starbucks:
issues in online mechanism design,” in Proceedings of the 4th ACM
conference on Electronic commerce, 2003, pp. 240–241.

[9] D. C. Parkes, “Online mechanisms,” in Algorithmic Game Theory,
N. Nisan, T. Roughgarden, Éva Tardos, and V. V. Vazirani, Eds.
Cambridge University Press, 2007.

[10] A. Gershkov and B. Moldovanu, “Efficient sequential assign-
ment with incomplete information,” Games and Economic Behavior,
vol. 68, no. 1, pp. 144–154, 2010.

[11] D. C. Parkes and S. Singh, “An MDP-based approach to online
mechanism design,” in Proc. 17th Annual Conf. on Neural Informa-
tion Processing Systems, 2003.

[12] M. T. Hajiaghayi, R. Kleinberg, and D. C. Parkes, “Adaptive
limited-supply online auctions,” in Proc. of the 5th ACM conference
on Electronic commerce, 2004, pp. 71–80.

[13] M. Hajiaghayi, R. Kleinberg, M. Mahdian, and D. C. Parkes,
“Online auctions with re-usable goods,” in Proc. 6th ACM Conf.
on Electronic Commerce, 2005, pp. 165–174.

[14] R. Porter, “Mechanism design for online real-time scheduling,” in
Proc. 5th ACM Conf. on Electronic Commerce, 2004, pp. 61–70.

[15] F. Xu, F. Liu, H. Jin, and A. V. Vasilakos, “Managing performance
overhead of virtual machines in cloud computing: A survey, state
of the art, and future directions,” Proceedings of the IEEE, vol. 102,
no. 1, pp. 11–31, 2014.

[16] I. Jangjaimon and N.-F. Tzeng, “Effective cost reduction for elastic
clouds under spot instance pricing through adaptive checkpoint-
ing,” IEEE Transactions on Computers, p. 1, 2014.

[17] J.-J. Kuo, H.-H. Yang, and M.-J. Tsai, “Optimal approximation
algorithm of virtual machine placement for data latency mini-
mization in cloud systems,” in Proc. of IEEE INFOCOM, 2014.

[18] L. Wang, F. Zhang, A. V. Vasilakos, C. Hou, and Z. Liu, “Joint
virtual machine assignment and traffic engineering for green data
center networks,” SIGMETRICS Performance Evaluation Review,
vol. 41, no. 3, pp. 107–112, 2013.

[19] Z. Xiao, Q. Chen, and H. Luo, “Automatic scaling of internet
applications for cloud computing services,” IEEE Transactions on
Computers, 2014.

[20] Y. C. Lee and A. Y. Zomaya, “Energy efficient utilization of
resources in cloud computing systems,” The Journal of Supercom-
puting, vol. 60, no. 2, pp. 268–280, 2012.

[21] C. Papagianni, V. Maglaris, C. Cervell, A. Leivadeas, S. Pa-
pavassiliou et al., “On the optimal allocation of virtual resources
in cloud computing networks,” IEEE Transactions on Computers,
vol. 62, no. 6, pp. 1060–1071, 2013.

[22] T. Ghazar and N. Samaan, “Pricing utility-based virtual net-
works,” IEEE Transactions on Network and Service Management,
vol. 10, no. 2, pp. 119–132, June 2013.

[23] M. Guazzone, C. Anglano, and M. Canonico, “Energy-efficient
resource management for cloud computing infrastructures,” in
Proc. of the 3rd IEEE Intl. Conf. on Cloud Computing Technology and
Science, 2011, pp. 424–431.

[24] M. HoseinyFarahabady, Y. C. Lee, and A. Y. Zomaya, “Random-
ized approximation scheme for resource allocation in hybrid-
cloud environment,” The Journal of Supercomputing, pp. 1–17, 2014.

[25] L. M. Leslie, Y. C. Lee, P. Lu, and A. Y. Zomaya, “Exploiting
performance and cost diversity in the cloud,” in Proc. of the 6th
IEEE International Conference on Cloud Computing, 2013, pp. 107–
114.

[26] J. Cao, K. Hwang, K. Li, and A. Y. Zomaya, “Optimal multiserver
configuration for profit maximization in cloud computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 24, no. 6, pp.
1087–1096, 2013.

[27] G. Wei, A. V. Vasilakos, Y. Zheng, and N. Xiong, “A game-
theoretic method of fair resource allocation for cloud computing
services,” The Journal of Supercomputing, vol. 54, no. 2, pp. 252–269,
2010.

[28] Y. Feng, B. Li, and B. Li, “Price competition in an oligopoly
market with multiple iaas cloud providers,” IEEE Transactions on
Computers, vol. 63, no. 1, pp. 59–73, 2014.

[29] L. Zhang, Z. Li, and C. Wu, “Dynamic resource provisioning in
cloud computing: A randomized auction approach,” in Proc. of
IEEE INFOCOM, 2014.

[30] A. Prasad and S. Rao, “A mechanism design approach to resource
procurement in cloud computing,” IEEE Transactions on Comput-
ers, 2014.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, 2015 14

[31] W. Wang, B. Li, and B. Liang, “Dominant resource fairness in
cloud computing systems with heterogeneous servers,” in Proc.
of IEEE INFOCOM, 2014.

[32] L. Mashayekhy, M. M. Nejad, and D. Grosu, “A truthful approx-
imation mechanism for autonomic virtual machine provisioning
and allocation in clouds,” in Proc. of the ACM Cloud and Autonomic
Computing Conf., 2013, pp. 1–10.

[33] M. Nejad, L. Mashayekhy, and D. Grosu, “Truthful greedy mech-
anisms for dynamic virtual machine provisioning and allocation
in clouds,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 2, pp. 594 – 603, February 2015.

[34] L. Mashayekhy, M. Nejad, and D. Grosu, “A PTAS mechanism for
provisioning and allocation of heterogeneous cloud resources,”
IEEE Transactions on Parallel and Distributed Systems, vol. PP, no. 99,
pp. 1–1, 2014.

[35] Y. Hua, X. Liu, and H. Jiang, “Antelope: A semantic-aware data
cube scheme for cloud data center networks,” IEEE Transactions
on Computers, 2014.

[36] L. Zhang, Z. Li, C. Wu, and M. Chen, “Online algorithms for
uploading deferrable big data to the cloud,” in Proc. of IEEE
INFOCOM, 2014.

[37] Z. Abbasi, M. Pore, and S. K. Gupta, “Online server and workload
management for joint optimization of electricity cost and carbon
footprint across data centers,” in Proc. 28th IEEE Intl. Symp. on
Parallel & Dist. Proc., 2014.

[38] W. Song, Z. Xiao, Q. Chen, and H. Luo, “Adaptive resource provi-
sioning for the cloud using online bin packing,” IEEE Transactions
on Computers, 2014.

[39] J. Zhao, H. Li, C. Wu, Z. Li, Z. Zhang, and F. Lau, “Dynamic
pricing and profit maximization for clouds with geo-distributed
datacenters,” in Proc. of IEEE INFOCOM, 2014.

[40] H. Zhang, B. Li, H. Jiang, F. Liu, A. V. Vasilakos, and J. Liu, “A
framework for truthful online auctions in cloud computing with
heterogeneous user demands,” in Proc. of IEEE INFOCOM, 2013.

[41] S. Zaman and D. Grosu, “An online mechanism for dynamic vm
provisioning and allocation in clouds,” in Proc. of the 5th IEEE
Intl. Conf. on Cloud Computing, 2012, pp. 253–260.

[42] N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani, Algorithmic
game theory. Cambridge University Press, 2007.

[43] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems.
Springer, 2004.

[44] A. Mu’alem and N. Nisan, “Truthful approximation mechanisms
for restricted combinatorial auctions,” in Proc. of the 18th national
conf. on Artificial intelligence. American Association for Artificial
Intelligence, 2002, pp. 379–384.

[45] IBM ILOG CPLEX V12.1 user’s manual. [Online]. Available:
ftp://ftp.software.ibm.com/software/websphere/ilog/docs/
optimization/cplex/psusrmancplex.pdf

[46] Grid workloads archive. [Online]. Available:
http://gwa.ewi.tudelft.nl

[47] Parallel workloads archive. [Online]. Available: http://www.cs.h-
uji.ac.il/labs/parallel/workload/

[48] L. Mashayekhy, M. M. Nejad, D. Grosu, and A. V. Vasilakos,
“Incentive-compatible online mechanisms for resource provision-
ing and allocation in clouds,” in Proc. of the 7th IEEE Intl. Conf.
on Cloud Computing, 2014.

Lena Mashayekhy received her BSc degree in
computer engineering-software from Iran Uni-
versity of Science and Technology, and her MSc
degree from the University of Isfahan. She is cur-
rently a PhD candidate in computer science at
Wayne State University, Detroit, Michigan. She
has published more than twenty peer-reviewed
papers in venues such as IEEE Transactions on
Parallel and Distributed Systems, IEEE BigData,
IEEE CLOUD, and ICPP. Her research interests
include distributed systems, cloud computing,

big data analytics, game theory and optimization. She is a student
member of the ACM, the IEEE, and the IEEE Computer Society.

Mahyar Movahed Nejad received his BSc de-
gree in mathematics from Iran University of
Science and Technology. He received his MSc
degree in socio-economic systems engineering
from Mazandaran University of Science and
Technology. He is currently a MSc student in
computer science, and a PhD candidate in
industrial and systems engineering at Wayne
State University, Detroit. His research interests
include cloud computing, big data analytics,
game theory, network optimization, and integer

programming. His papers appeared in journals such as IEEE Transac-
tions on Parallel and Distributed Systems. He is a student member of
the IEEE and the INFORMS.

Daniel Grosu received the Diploma in engineer-
ing (automatic control and industrial informatics)
from the Technical University of Iaşi, Romania, in
1994 and the MSc and PhD degrees in computer
science from the University of Texas at San An-
tonio in 2002 and 2003, respectively. Currently,
he is an associate professor in the Department
of Computer Science, Wayne State University,
Detroit. His research interests include parallel
and distributed systems, cloud computing, par-
allel algorithms, resource allocation, computer

security, and topics at the border of computer science, game theory
and economics. He has published more than ninety peer-reviewed
papers in the above areas. He has served on the program and steering
committees of several international meetings in parallel and distributed
computing. He is a senior member of the ACM, the IEEE, and the IEEE
Computer Society.

Athanasios V. Vasilakos is currently a pro-
fessor with the Lulea University of Technology,
Sweden. He has authored or co-authored over
200 technical papers in major international jour-
nals and conferences. He is author/co-author
of five books and 20 book chapters in the
area of communications. He has served as gen-
eral chair/technical program committee chair for
many international conferences. He served or is
serving as an editor and/or guest editor for many
technical journals, such as the IEEE Transac-

tions on Network and Service Management, the IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, the IEEE Transac-
tions on Information Technology in Biomedicine, the IEEE Transactions
on Computers, the ACM Transactions on Autonomous and Adaptive
Systems, IEEE JSAC special issues of May 2009, January 2011, and
March 2011, IEEE Communications Magazine, ACM/Springer Wireless
Networks (WINET), and ACM/Springer Mobile Networks and Applica-
tions (MONET). He is founding editor-in-chief of the International Journal
of Adaptive and Autonomous Communications Systems (IJAACS) and
the International Journal of Arts and Technology (IJART). He is general
chair of the Council of Computing of the European Alliances for Innova-
tion.

