A Distributed Merge-and-Split Mechanism for Dynamic Virtual Organization
Formation in Grids

Lena Mashayekhy Daniel Grosu
Department of Computer Science Department of Computer Science
Wayne State University Wayne State University
Detroit, Ml 48202, USA Detroit, Ml 48202, USA
Email: M ena@ayne. edu Email: dgr osu@vayne. edu

~ Abstract—We model the Virtual Organization (VO) forma- VO formation mechanism based on concepts from coalitional
tion problem in grids using concepts from coalitional game game theory [2]. The model that we consider consists of a
theory and design a distributed mechanism for solving it. The set of GSPs and a grid user that submits a program and a

proposed distributed mechanism enables the formation of VOs ificati isti f a deadli d t A subset
guaranteeing the maximum profit for their participating Grid ~ SPECIIcation consisting ot a deadiine and payment. A subse

Service Providers (GSPs). We show that the proposed mechanism0f GSPs will form a VO to execute the program before its
produces stable VOs, that is, the GSPs do not have incentives todeadline. The objective of each GSP is to form a VO that
break away from the current VO and join some other VO. We maximizes its own profit.

perform extensive simulation experiments using real workload

traces to characterize the properties of the proposed distribiéd Related Work.Several economic-based models and systems
mggmimngthf;nﬁlﬂgﬁuiggvxxotﬁth;?3rep§2§f§3ie?é?ﬁrébﬁf§ﬁ for resource management in open distributed systems have
revenue for the participating GSPs, but also decides the struct@ been proposed in the literature [3]! [4]. They do not expici .
of the VOs in a reasonable amount of time. address the problem of VO formation and management which
is one of the key issues that need to be solved in large
scale computing systems in order to facilitate collaborati

. INTRODUCTION among participating organizations. Globus Toolkit [5] sags

Grid computing systems are composed of heterogeneang operation and manggement_qf VOS by providing basic
resources (CPUs, storage, etc.) owned by autonomous rglu_jdleware for VO policy 'speglflcatlon gnd enforcement,
ganizations. These systems provide essential resources :ﬁ;ource manggement, provisioning, and dlsqovery. Thkitoo
conducting cutting-edge science and engineering reseBineh oes not provide mechanisms for VO formation and tools for
resource management in such open distributed environme% be Vi q liton f . bl R h
is a very complex problem. One important aspect of resourca’ P€ Viewed as a coa ftion formation broblem. esearc
management in grids is how Grid Service Providers (GSF%’T coalition formation has been conducted in the multi-agen
pool their resources together to execute large scale mp“gystems community for problems such as allocating a task [6]

tions. These GSPs collaborate and form Virtual Organizlatio‘rjmoI service _cor_nposition [7.]' Sandh_o_lm et al. [8] proposed a
(VOS) [1] method for finding the optimal coalition structure where the

optimal coalition structure is defined in terms of maximgin
the social welfare. Their method does not take into accdwnt t

Keywords-grid computing; VO formation; coalitional games;

% management and analysis. The VO formation problem

The life-cycle of a VO consists of four phases: (i) identifi

cation, in which the possible partners and the VO's objestiv) . "
are identified; (ii) formation, in which the potential paets incentives of the players to form coalitions. In additiohey

(GSPs) negotiate the exact terms, the goal, and the durtaﬁiorgid not_ cqnsider the_task ass_ignment and the payoff division
collaboration; (iii) operation, in which the members of ¥@ when finding the optimal coalition structure.

collaborate in solving a specific task; and (iv) dissolution To the best of our knowledge, the closest work to ours is
which the VO is dismantled. This paper focuses on designibhg Patel et al. [9] which describes the mechanisms for VO
mechanisms for the second phase, the formation of VOs. Wéemation used in the CONOISE-G project. The mechanisms
model the VO formation as a coalitional game where GSRsed in CONOISE-G are based on Constraint Satisfaction Pro-
decide to form VOs in such a way that each GSP maximizgeamming (CSP) techniques [10] while our proposed mech-
its own profit, the difference between revenue and costs. ahism is based on coalitional game models and techniques.
GSP will choose to participate in a VO if its profit is notCSP techniques do not facilitate the stability and robusstne
negative. The VOs provide the composite resource needmthlysis of the VO formation process, while this is intrinsi

to execute applications. A VO is traditionally conceived foand represents one of the strengths of coalitional gameytheo
the sharing of resources, but it can also represent a bgsinegrthermore, the CONOISE-G project does not address the
model [1]. In this work, a VO is a coalition of GSPs whichissues of scheduling the applications within the VO, while
desire to maximize their individual profits and are largelpur proposed framework addresses this issue and provides a
indifferent about the global welfare. We design a distrlolit mechanism for application scheduling within VOs. Carroltla

Grosu [11], developed a VO formation framework based axecute the application. We consider that a setnof5SPs,
extensive form games. The approach we use here is baged= {Gi,Gs,...,G,,}, are available and are willing to

on coalitional games and merge-and-split operations whigirovide resources for executing programs. Here, we assume
unlike the one used in [11], guarantees the stability of thbhat the GSPs are driven by incentives in the sense that they
VOs formed by the proposed mechanism and is more compuill execute a task only if they make some profit out of it.
tationally efficient. In our previous work [12] we proposedMore specifically, the GSPs are assumed to be self-intefeste
a centralized mechanism for VO formation in grids. Thand welfare-maximizing entities. Each service provifee G
mechanism, called MSVOF, is executed by a trusted pamyns several computational resources which are abstrasted
that also facilitates the communication among VOs/GSPs. Th single machine with speedG). The speed(G) gives the
distributed mechanism we propose in this paper addressesnber of floating-point operations per second that can be
the drawbacks (single point of failure, scalability, etof)the executed by GSE;. Therefore, the execution time of tagkat
MSVOF mechanism. GSPG is given by theexecution time functioh: 7xG — R™,

Our Contribution.We address the problem of VO formatiorhere¢(T,G) = “ZJ. We also assume that once a task is
in grids by designing a distributed mechanism that alloves tf@ssigned to a GSP, the task is neither preempted nor migrated
GSPs to make their own decisions to participate in VOs. s thi A GSP incurs cost for executing a task. The cost incurred by
mechanism, instead of having a centralized party decidieg tGSPG € G when executing tasi’ € 7 is given byc(T, G),
formation of VOs, the GSPs themselves decide to form VOgherec : 7 x G — RT is the cost function Furthermore
The mechanism produces a stable VO structure, that is, fonawe assume that a GSP has zero fixed costs and its variable
the GSPs has incentives to merge to another VO or split frongasts are given by the function A user is willing to pay

VO to form another VO. The mechanism determines the mag-price P less than her available budgst if the program is

ping of the tasks to each of the VOs that minimizes the cost @kecuted to completion by deadlitelf the program execution
execution by using a branch-and-bound method. We analyxceedsd, the user is not willing to pay any amount that
the properties of our proposed VO formation mechanism aigl P = 0. Since a single GSP does not have the required
perform extensive simulation experiments using real vaa#tl resources for executing a program, GSPs form VOs in order to
traces from the Parallel Workloads Archive [13]. The resulhave the necessary resources to execute the program and more
show that the proposed distributed mechanism determines moportantly, to maximize their profits. The profit is simply
only a stable VO that maximizes the individual payoffs of thdefined as the difference between the payment received by a
participating GSPs, but also determines the VOs faster th@®P and its execution costs. If the profit is negative, (a
MSVOF, a centralized mechanism proposed in [12]. loss), the GSP will choose not to participate.

Organization.The rest of the paper is organized as follows. We model the VO formation problem as a coalitional game.
In Section II, we describe the VO formation problem and th@ coalitional game[2] is defined by the pai(g, v), whereg
game theoretic framework used to design the proposed V&the set of players andis a real-valued function called the
formation mechanism. In Section Ill, we present the progoséharacteristic functiondefined onS C G such thatv : S —
distributed mechanism, and characterize its propertieSec- R* andv(@) = 0. In our model, the players are the GSPs
tion IV, we evaluate the mechanism by extensive simulatidhat form VOs which are coalitions of GSPs. In this work, we
experiments. In Section V, we summarize our results atge the terms VO and coalition interchangeably. Each subset
present possible directions for future research. S C g is acoalition. If all the players form a coalition, it is
called thegrand coalition A coalition has avaluegiven by the
Il. VIRTUAL ORGANIZATION FORMATION FRAMEWORK characteristic function(S) representing the profit obtained
In this section, we model the VO formation in grids asvhen the members of a coalition work as a group. For each
a coalitional game and introduce the coalition formatioooalition of GSPsS C G, there exists a mappings : 7 — S,
framework used in the design of the proposed mechanismwhich assigns task’ € 7 to service providerG € S. To
A. VO Formation as a Coalitional Game ma_ximize the.profit obtained by a VO, we need to find an
optimal mapping of all the tasks on the members of VO in
The system model assumes that a user wants to execuig,é a way that the mapping minimizes the execution cost.
large-scale application prograi consisting ofn independent \ye ca|l this task assignment problem the MIN-COST-ASSIGN
tasks {71, T5,...,T,} on the available set of grid serviceprgplem.
provi_de_rs (GSPs) by a given deadlidieApplication programs i N.COST-ASSIGN finds a mapping of tasks tok GSPs
consisting of several independent tasks are represemntimtiv in VO 5, wherek = |S|. The goal is to minimize the cost of

a wide range of problems .in science a_nd gngineering ngxecution. We consider the following decision variables:
Each taskT € 7 composing the application program is

characterized by its workload)(T"), which can be defined

as the amount of floating-point operations required to ebeecu os(T,G) = {
the task. Executing the application progr&nrequires a large

number of resources which cannot be provided by a single

GSP. Thus, several GSPs pool their resources together taVe formulate the MIN-COST-ASSIGN problem as an inte-

1 if 75(T) =G,

ger program (IP) as follows: B. Coalition Formation Framework

Minimize C(7, S) = Z Z os(T, Q)e(T, G) @) Coalition formation[15] is the partitioning of the players
’ oy &k ’ T into disjoint sets. A coalition structu@S = {S;, 5, ..., S,}

forms a partition of the set of GSEssuch that each player is a
Subject to: Z os(T,G)HT,G) <d, (VG € S), (3) member of exactly one coalitiong., S;NS; = 0 for all < and

TeT Jj»wherei # jand{Jg s Si = G. The problem of finding the

optimal coalition structure is NP-complete [8]. Enumergti
Z os(I,G) =1, (vI'€ T), (4) all coalition structures to find the optimal coalition stiure
Ges is not feasible since the possible number of coalition stmes
Z os(T,G) > 1, (VG € S), (5) is By, them-th Bell number [16] which gives the number of
TerT partitions of a set of sizen, wherem = |G|.

In the VO formation game defined in the previous section
os(T,G) € {01}, (VG € S andvT € 7). (6) only one of the coalitions in the coalition structure is stde
The obijective function (2) represents the costs incurred ff €xecute the application program. The selected coaliton
executing the progran¥ on S under the mapping. Con- the one that yields t_h_e highest individual payoff for all tf i
straints (3) ensure that each GSP can execute its assigfidnPers. The coalitions that cannot complete the program
tasks by the deadline. Constraints (4) guarantee that ed¢Hn the deadline will not be considered since the payoff

taskT € T is assigned to exactly one GSP. Constraints (&7 Such coalitions is zero. . _
ensure that each GSE ¢ S is assigned at least one task, The following concepts are used in the design of the VO

Constraints (6) represent the integrality requirementsttie ~formation mechanism.

decision variables. Definition 1 (Collection):A collectionin g, is defined as
We define the following characteristic function for outhe setC = {5y, - - vSk_} of .mutually d'SJO'_r?t coalitions. If
proposed VO formation game: U%_,S; = G, the collectionC is called apartition of g.
. . . Definition 2 (Comparison):A collection comparison> is
o(8) = {0 if 5| =0 or IP is not feasible, (7 defined to compare two collectionsand B that are partitions
P—C(T,5) if|S|>0andIPis feasible, of the same subsef C G. A B implies that the wayA
where || is the cardinality ofS. Note thatv(S) can be PartitionssS'is preferred to the way3 partitions.S. o
negative ifC(7,S) > P. That means GSPs ifi incur cost. In the proposed VO formation game, a welfare-maximizing

The objective of each GSP is to determine the membersl@&P will determine its coalition by considering the profit it
in a coalition that gives the highest share of profit. Here, WS and not the coalition value. Thus, comparison reistio
adopt the equal sharing of the profit as the payoff divisida.ru @Mmong collections are defined based on the GSPs’ individual
That is, each GSP in coalitiofi receives the share(S)/|S|. Payoffs. These comparison relations correspond to the energ
Due to their welfare-maximizing behavior, the GSPs pref@nd split rules which will be defined later in this section. We
to form a low profit coalition if their profit divisions are Higr consider two collectionsS' = {U§=15j} and {S,---, Sk}
than those obtained by participating in a high profit coafiti from the same subset. We define two comparison relations,
Therefore, a service providét determines its preferred coali-the merge comparison,,, and thesplit comparison-, based

tion S, whereG € S by solving: on the individual payoffs as follows:
P-C(T,S) 8 Som{S1,++, Sk} = {V¥je{l,...,k}, VG; € SN S;;
max —— g (8) @i(8) > 2i(S)) and3j € {1,...,k}, (9

3G, € 8 52+(5) > 2r(S5)}

The GSPs’ goal is to maximize their own profit by solving

the optimization problem given in equation (8). Therefore, {Si.---,Sk}>sS <= {Fj€{l,...,k}, VG € SNS;

minimizing the costC(7,S) by solving the MIN-COST- i(S;) 2 zi(S) and (10)

ASSIGN problem maximizes the profit — C(7, S) earned AGr € 8 520(S5) > @r(S)}

by a VO. A VO obtains profit and then the profit is dividedEquation (9) implies that collectio§ composed of only one

among participating GSPs. As a result, a GSP prefers a \é@alition {U§:15j} is preferred ovef Sy, --- , Sk}, if at least

that provides the highest profit among all possible VOs. one playerG,. is able to improve its payoff without decreasing
The payoff or the share of GSP G part of coalitionS, other players’ payoffs. Equation (10) implies that coliect

denoted by (.S) is given byzg(S) = vl(gl)' Thus, the payoff {Sy,---,S,} is preferred ovesS, if at least one coalitiors),

vector(zg, (S), -+ ,xq, (S)) gives the payoff divisions of the is able to keep the payoffs of its members while at least one

r GSPs that are part of coalitiof. In this paper, we assumeof its membersG,., is able to improve its payoff regardless

that if a GSP does not execute a task it receives a payoff ofdd.the effect on the other players outside %f

If there are some GSPs that do not participate in executingUsing the defined comparison relations, we propose a VO

any task of the program, they are not considered membersfafmation mechanism involving two types of rules as fol-

the VO executing the application. lows [15]:

Merge Rule:Merge any set of coalition$sS, - - , Sk}, Definition 3 (Defection function)A defection functiof is

where{U¥_, S;}>n,{S1, -+, Sk} a function which associates with each partitiBrof G a group
Split Rule: Split any coalitonS = {U*_, S;}, where of collections ing.
{5y, ,Sk}ps{uz?:lgj}_ A partition P is D-stable if no group of players is interested

Coalitions decide to merge only if at least one GSP is abi leavingP. Thus, the players can only form the collections

to strictly improve its individual payoff through the mergealov"ecj by D. A defection functionDp which allows the

rule without decreasing the other GSPs’ payoffs. Therefor](é")rmation of all partitions of the grand coalition was prepd

the merge rule is an agreement among the GSPs to ope /APt and Witzel [15]. Dp-stability is defined based on

together if it is beneficial for them. this function.Dp allows any group of players to leave the

As we mentioned before, one of the formed coalitions, gfagrtition P Of g.through merge-and-s.plllt rules to create
final coalition, executes the program, thus, the formatibn Smot.h.er part|t|on.|rg. T_herefore,ID)p -stab|l|ty means that no
the rest of the coalitions is not important. The reason f&Qa“tIOI’\ has an incentive to merge or split.
this is that the rest of the GSPs which are not in the finallll. DISTRIBUTED MERGEAND-SPLIT VO FORMATION
coalition can participate again in another coalition fotiom MECHANISM (DMSVOF)

process for executing another application program. Thesef h - i f .
a coalition decides to split only if there is at least one sub- The proposed distributed merge-and-split VO formation

coalition that strictly improves the individual payoffs @& Mmechanism (DMSVOF) is given in Algorithm 1. In DMSVOF,
constituent GSPs. Under the split rule, the individual fisyo the merge and split decisions are made in a dlst_nl_auteddasm
of the other sub-coalitions may decrease. The split rulebean For e_ach VO, D_MSVOF Sek?CtS aGSPasa demspn m@ge_r,
seen as the implementation ofelfishdecision by a coalition, that is responsible for making the merge and split decisions

which does not take into account the effect of the split on tIfeaCh VO in the coalition S”U?t%"és has its own decision
other coalitions. maker. We denote by the Qemsmn mgker of a V@ € CS,
Two coalitions S; and S; decide to merge based on theanlOI b%Ddthe s_et .Of allfagallsa\k;g:demmdon maksrs.B&B MIN
merge comparison defined by (9) where all of GSPS;in S; OnS'tI' isglscc;:lr\llp“o% Of on th we <Ienote y h b- h
are able to keep or improve their individual payoffs. A GSIQ A () the function that implements the branch-

individual payoff is computed based on (8) while satisfyingnd'bound method [17] for salving the MIN-COST-ASSIGN
the deadline constraint. As a result, the merge occurs if t Eoblem for a VOS. . - .
following two inequalities are satisfied where at least ofie 0 DMS.VOF starts with a coallt!on structuts consisting of
them must be strict. every singletorG € G as aVOS in CS. For each VQS € CS,

its only member becomes a decision makefi.e., D = {G}).

Each decision makeb uses a vectovisited to keep track of

P - C(T,Si USj) > P - C('T7 S»L)

11
1Si U S;| - [Si] a all decision makers ifD that are visited for merging. Initially,
P-C(T,5Vs;) P-C(T,5)) (12) eachD sets all the entries afisited to FALSE. That means
1S U S| - 1551 that all VOs should be considered for merging. Each decision

makerD maintains another vector, callattus, to keep track
of the status of all decision makers . Initially, D sets
the status of all decision makers t&JNKNOAN. All decision

Since |S; U S;| > |S;| and |S; U S;| > |S;], in order for a
GSP inS; to keep or improve its payofl® —C (7, S;US;) >

P—-C(T,S,), and it should be the same for a GSFSin Thus, makers must know the status of others
C(T, SiUSj) < C(T,Sl) andC(T, SiUSj) < C(T,SJ) .

- GSP G becomes a decision makér by either receiving
That means that coalitions can only merge when the cost o L
. .) a request from a user or by receiving a request from another
the formed coalition by merge is less than their cost.

. 2 . L decision maker in the system. If a user sends a request for
For the split rule, a coalitiort decides to split into two : . .
" ' . X .~ _executing a job then every singlet@n becomes a VO
coalitions S; and S; based on the split comparison define gal y sing €9

by (10), where all GSPs i85, S, or both are able to keep o> If another decision maker)’, sends a request t&, it

. T N also sends the set of GSPs as a YO By receiving this
improve their individual payoffs. Thus splits if at least one requestG becomes a decision maker f6t Then,G changes
of the following inequalities is satisfied. i

the visited entry corresponding t@’ to TRUE. That means,

P-C(T,8) P-C(T,S:) VO S andS’ cannot merge, wher® and D’ are the decision
13 EA 13) makers ofS and S, respectively.D checks if all tasks can
P—C(T,§) P—-C(T,S;) be executed by the GSPs participating in its associated VO
B B (14 (line 17). It also computes(S) based on the allocation. If a

GSP is a decision maker of a VO, then, it enters the merge-
That means that the individual payoff of each GSP in at leastd-split process (lines 18-48). First, the MERGE procedsir
one of the splitted coalitionss; or S;, should be higher than invoked, and then, all decision makers synchronize wittheac
its individual payoff inS. other (line 23). That is, they all wait for every decision raak
The stability of the resulting coalition structure is chara to find a stable VO, that does not want to merge with any other
terized using the concept of defection functibr{15]. VOs. Then, if D is still a decision maker, it starts the split

Algorithm 1 Distributed Merge-and-Split VO Formation Mecha-Algorithm 2 MERGE(): Distributed Merge

nism (DMSVOF)

1: Every GSP G executes:

22D=0

3:foral G' € G,G# G do

4: D' —{G'}

5: wisited[D’] — FALSE; status[D’] «— UNKNOAN
6

7

8

9

: D=DuD’
: end for
: if Receive(user 7') then

12: end if

13: if Receive(D’, S, D, split) then
14: wisited[D'] — TRUE

15 D —{G}

16: end if

17: Map progranZ on S € CS

18: while D € D do

19: stop = MERGE()

20: if stop then

21: D =D\ D, D is not a decision maker anymore
(Exit from DMSVOF)
22: endif

23: Synchronize with the other decision makers
24: Receive(D’, done)

25: status[D'] — DONE

26: [stop, D"] = SPLIT()

27: if stop then

28: Broadcast D, done) to all other decision makers i
29: if status[D’] = DONE,VD’ € D then
30: break

31: end if

32: Sleep

33: Receive(D’, D)

34: visited[D'] « FALSE

35: visited|D"] «— FALSE

36: status[D’] + UNKNOAN

37: status[D""] « UNKNOWN

38: else

39: Wakeup

40: Broadcast{D, D"")

41: end if

42: end while

43: if D € D then

44: Broadcast{D, (v(S)/|S]) to all other decision makers

45: Receive the individual values from all other decision erak
46: FindD’ € D whereS’ = maxgecs {v(S)/|S|}

47: D’ notifies the user to execute programon VO S’

48: end if

1: repeat
2: Randomly selecD’ € D for which
visited[D’] = FALSE and
status[D'] = UNKNOWN, rank[D] < rank[D’]
3 Send a Merge reque$D, S, merge) to D’ of S’
4 if Receive(D’, ACK) then
5: visited[D'] +— TRUE
6: D’ becomes a decision maker f6ru S’
7.
8
9

return TRUE {Exit from the Merge process
end if

: if Receive(D’, NACK) then
10: visited[D’] — TRUE
11: endif
12: if Receive(D’, remove) then
13: status[D'] «— REMOVED
14: D=D\D'
15: CS=CS\ S
16: endif

17: Receive a Merge reque&b’, S’, merge)

18: wisited[D'] — TRUE

19: B&B-MIN-COST-ASSIGNG U S’)
{Map program7 on S U S’}

20: if SUS>R{S, S’} then

21: S« SuUS’ {mergeS and S’}
22: S’ — p {S’ is removed fromCS}
23: Send(D, ACK)

24: {D is the decision maker of the new VOU S’}
25: D=D\D

26: for all D" € D, D" # D do

27: Send(D’, remove) to D"

28: visited[D"] — FALSE

29: end for

30: else

31 Send(D, NACK)

32: endif

33: until visited[D'] = TRUE, VD’ € D,D # D’
34: return FALSE

decision makersD’ and D" to UNKNOWN, and thewisited
to FALSE. This is needed since these decision makers are
the decision makers of the new VOs. As a result, multiple
successive merge-and-split operations are repeated hy/eac
The mechanism terminates if there are no choices for merge
or split for all existing VOs inCS, and thus, the status of all
of them isDONE.

If D breaks the while-loop, it means that all VOs ter-
minate from the merge-and-split decisions. Each decision
maker broadcasts its individual value to all other decision

process by invoking the SPLIT procedure, otherwise it exitaakers (line 44), it also finds a VO that yields the highest
the mechanism. This GSP may become a decision maker agaitividual value. A decision maker for the VO with the highes
if it receives a request from another decision maker (lir@s lindividual value sends a message to the user, and it executes

16). In the split process, if the splitting does not ocaigp
flag is set toTRUE and D broadcasts messad#NE to all

the prograni’ .
The merge process (described in Algorithm 2) is a pairwise

decision makers. That means, its VO is stable with respectriegotiation between two VOs based on the merge comparison

splitting. If the status of all the decision makersDONE, for

(>m). The decision makeD of VO S starts the negotiation

all S in the system,D exits from the merge-and-split while-by choosing a non-visited decision maker T randomly
loop. That means, none of the VOs want to merge or split aayd sending a request to merge (lines 1-3). The non-visited
more. However, even if one of the decision makers does ridcision maker is selected such that the status of thatidecis

finish its decision on merge or splify goes to sleep.
If the splitting occurs, thestop flag is set toFALSE and

maker is UNKNOWN and its rank is higher than that of the
current decision maker. The rank of a G®&R denoted by

D sends a wakeup message to all decision makers. All thenk[G], is an integer drawn randomly from the interval
decision makers that were on sleep condition start the mgrgi1, m], before the VO formation process starts. We use the

process again. Also, they change th&itus of two new

ranking to impose an order on the merge requests. The reason

of using an order for choosing a decision maker for merge Adgorithm 3 SPLIT(): Distributed Split
to prevent deadlocks in the system due to cycles of requests.if |S| > 1 then

L . ’ 2: for all partitions{S’,S”} of S,
Decision makerD also sends its VOS to D’ as part of whereS — §' U S" ' ('S = 0 do

the request message. If a decision makersends a merge 3: B&B-MIN-COST-ASSIGN(S’)
request toD’, the decision maker that receives the request, . l\{ﬂl\lﬂl\?%gfggfzg GOIF\] g:/})

) -~)) , “MIN- ~
D, anal_yzes the possibility of merging their VO_S,andS . {Map program7 on $"}
Depending on the result of the merge comparisbh,may s: if {57,815 then
respond with an acceptance (denoted 4§ K) or rejection 6 S8 {tGat isCS =CS(Js'\ S}

i 7: cs=cs|Js”
(denoted byNACK) 'of the merge. The decision maker of : SelectG” Where G ¢ §7and {G"'} ¢ D as a
a VO responding with an acceptance message becomes a decision maker 0"’
decision maker for the merged VOS,U S’ (lines 4-8).D 9 D" — {G"}
: - T T D=DuUD"
is n?t a decision _maker anymore and it exits th.e’mech;anlsﬁ:. Send(D. 8, D, split) to D"
If D’ responds with a reject messade,changewisited[D’'] 15 visited[D"] — TRUE
to TRUE, so it will not be selected for the merge (lines 9-11)13: forall D' € D,D’' # D,D’ # D" do
If D receives a message that is not available any more (it }g; ené”ff;rted[D] FALSE
has been merged with another VQ), updates the status of 5. return [FALSE, D]
D’ and the coalition structure. 17: end if
18: end for

If D receives a merge request frobX, it needs to check 19: end if
whether it can merge withD’. D sets theuvisited entry 20 retumn [TRUE NULL]
corresponding toD’ to TRUE and calls B&B-MIN-COST-
ASSIGN to find an optimal allocation for the application
program7 on SusS’. If SUS>,,{S, S’} i.e., all the members for merge or split for all existing coalitions i@S.

receive higher profit by mergind) sends anACK message pMsvOF PropertiesWe now investigate the properties of

to D’. SU S is saved inS, and S” is removed fronCS. D psvOF. We will first show that DMSVOF produces stable
becomes a decision maker of the merged VO. It also sengss and then investigate its complexity.

a message to all decision makers to rem@/efrom the set Theorem 1:Every partition ofG determined by DMSVOF
of decision maker®. SincesS is changed, it can visit all the is D p-stable.

it H T 7
existing VOs in the next merge steps. Thussited[D"] for Proof: (Sketch) There is no cycle of partitions in any

all D" € D, D" # D is set toFALSE (lines 20-29). sequence of merge and split operations. This is due to the fac
If the merge comparison is not optimal, one or more GSH3at if two VO merge, in the split process, these VOs cannot
would receive less individual payoff in the merged VOs thasplit because of the individual values of the component GSPs
in their current VO. As a resultD sends a reject messagecannot increase. Using the comparison relatiopsindr, the
(NACK) to D’ (line 31). D tries to find another non-visited resulting partition after each merge or split is more prefer
decision maker suitable for merging. If all the VOs are teéstdhan a previous partition. Existing partitions do not appea
and a merge does not occusifited is TRUE for all the again, and every sub-sequence of merge-and-split opesatio
existing decision makers) exits from the merge process. is acyclic. Since the number of different partitions is &nithe
merge-and-split iterations terminate. The final partitt@mnot
eé:é subject to any further merge or split. As a result, the final
artition isID p-stable. [|
"Next, we investigate the computational and communication
complexity of DMSVOF. The computational complexity of the

S"uS” = S. D calls B&B-MIN-COST-ASSIGN twice to L7 :
. . !) ; : mechanism is determined by the number of attempts for merge
find an optimal allocation ot%’ and an optimal allocation on : : .

and split. In the worst case scenario, each decision maker

S" for application7 . Since the split is a selfish decision, the . .

o ; ! heeds to make a merge attempt with all the other decision
splitting occurs even if only one of the members of coalitiin . - :

" . L7 : .. makers inD. The number of decision makers is the same as
or S can improve its individual valueD remains a decision . . .
. i the number of VOs irCS. In each iteration, the total number

maker for the VO that it belongs to (here, we assume 5), of merge attempts for a decision maker is equal to the number
and it selects a GSB” € S” randomly as a decision maker 9 P q

of §”. D addsD” to the set of decision makers and seis of \./OS.’. that is O(|CS]). However, the MErge Process requires
0 D" a significantly less number of attempts. This is due to the fac

that if a VO is found for merge, the merge occurs. In the
If a VO splits, then the merging process starts again. Theorst case scenario, splitting a VO is in O(2!°) which
merge or split decisions are made in a distributed mannawolves finding all the possible partitions of size two oéth
i.e., each decision maker makes its own decisions. Multiptarticipating GSPs in that VO. The coalitions@s are small
successive merge-and-split operations are repeated thetil sets especially since we apply selfish split decisions teapk
mechanism terminates. That means that there are no choittessize of the coalitions as small as possible. As a rest, t

The VO obtained by the merge process is then subj
to split. In the split process (presented in Algorithm 3),
VO that has more than one member is subject to splitting
D tries to split.S into two disjoint VOs.S’ and S”, where

split is reasonable in terms of complexity. In addition, enc
a coalition decides to split, the search for further spbtsaiot
needed.

TABLE [: Simulation Parameters

The communication complexity is defined in terms of num-"
ber of messages that are exchanged in the mechanism. In the
merge process, the total number of messages that a decisipn

GSP’s speedsnf x 1 vector)
Tasks’ workload © x 1 vector)

Param. Description Value(s)
Number of GSPs 16
Number of tasks [8, 8832]

4.91 x[16, 128] GFLOPS
(17676, 1682922.14] GFLOP

- n ; . Execution time matrix.: x n) “ seconds
maker exchanges is i@(|CS]). In the split process, if a VO «¢ Cost matrix n x n) [1, ¢o X &/]
. . P d Deadline [0.3,2.0] x Runtimexn /1000
splits, it needs0(1) messages for communication. However, seconds
whether it splits or not, the VO needs to broadcast either ’F\’Aaymem aseline val [1%3,0.4] X maze X n units
its status or the id of a new decision maker, thus requiring;” Maximum row multiplier 10

Runtime
max.

Runtime of a job from log
Maximum cost

> 7200 seconds
Db X Pr

O(|CS|) messages.

IV. EXPERIMENTAL RESULTS

.) _ greater than the runtime. This guarantees that there isibfea
Experimental Setugizor our experiments we consider 16 GSPS| tion for the task allocation. The execution time of each
which is a reasonable estimation of the number of GSPs

! | : tH5k T; on each GSR5; is obtained using the speed vector
real grids. The number of GSPs is small since each GSP IS the workload vector.

tpr:gvlli?aer;ﬁgldcvztr;cf;ndgsleAT;CiC(lam[ai;’;/ i;sderi\rlzalo\fjvfglr?li?;ifgomEach cost matrix is generated using the method described
. o rby Braun et al. [18]. First, a baseline vector of sizeis
experiments. More specifically, we use the logs from thesAtla . .

: . generated where each element is a random uniform number
cluster at Lawrence Livermore National Laboratory (LLNL)

This log consists of recently collected traces (from NovembWithin [1, @] Then, the rows of the cost matrix are generated
9 y based on the baseline vector. Each elemjeint row i of the

2006 to Jun 2007) that contain a good range of job sizg atrix, c¢(, j), is obtained by multiplying the elemenbf the
from 8 to 8832. We used the cleaned log LLNL-Atlas-2006-

. ; . paseline vector with a uniform random number withing, |,

2.1-cIn.swf which has 43,778 jobs. We selected 21,915 joRs . : .

; ; row multiplier. Therefore, one row requires different row

that completed successfully out of all the jobs in the logoéth - : L

. : : . multipliers. As a result, each element in the cost matrix is

13% of the total completed jobs are large jobs having rurgime ., .

Within the range[l, ¢, x ¢,].
greater than 7200 seconds. Wi the SimGrid toolkit 1191 to simulate th id
We selected six different sizes (i.e., number of tasks) of e use the SimGrid toolkit [19] to simulate the gri

the application program from the Atlas log, ranging from 25%ystem. SimGrid is a toolkit for the simulation of distribdt

to 8192 tasks. For each program, the number of allocatgaplications in heterogeneous distributed environmews.
’ é)sider that each GSP is a host, and we use a complete graph

rocessors the job uses gives the number of tasks, while b
P : g set the routes among GSPs. That means, each GSP has a

average CPU time used gives the average runtime of a tagk.” " . X :
We used the peak performance of a processor to convert reect link with any other GSPs to send and receive messages.
e set the latency of the links to 0.015 milliseconds. We

runtime to workload for each task. We generated the valu .
of the other parameters based on the extracted data from P use fche CPL.EX S prowded_py .IBM ILOG C.PLEX
ptimization Studio for Academics Initiative [20] for sahg

Atlas log. The parameters and their values are listed ineTabl
The values for deadline and payment were generated in sﬁ%ﬁ MIN-COST-ASSIGN problem.

a way that there exists a feasible solution in each expetimefnalysis of ResultsWe compare the performance of our
Each task has a workload expressed in Giga Floating-poflistributed VO formation mechanism, DMSVOF, with that of
Operation (GFLOP). To generate a workload, we extract ttee centralized VO formation mechanism, MSVOF, proposed
runtime of a job (in seconds) from the logs, and multiplyn [12]. Both mechanisms use merge-and-split operations to
that by the performance of a processor in the Atlas systdind a VO to execute the program. Also, the mechanisms
(4.91 GFLOPS). This number gives the maximum amount tge the branch-and-bound method for solving MIN-COST-
giga floating-point operations for a task. We assume that tA&SIGN and finding the mapping of the tasks to GSPs in
workload of each task is withif0.5,1.0] of the maximum a VO. We perform a series of ten experiments in each case,

GFLOP of the job. The workload vectoty, contains the and we present the average of the obtained results.
workload of each task of the application program. In Fig. 1a, we show the performance of DMSVOF and
The speed vectors is generated relative to the AtlasMSVOF in terms of individual GSP’s payoffs in the final VO
system. Each GSP has a speed chosen within the ramagea function of the number of tasks. The figure shows that in
491 x [16,128] GFLOPS. This is because each GSP casome cases DMSVOF provides higher individual payoff for
have several processors capable of perforrifg GFLOPS. GSPs in the final VO, while in some other cases MSVOF
The reason that we chose this range is that the numberpobvides higher individual payoff for GSPs in the final VO.
processors of the Atlas cluster is 9,216. If &i GSPs have The reason is that both mechanisms find stable partitions
the highest performance a8 x 4.91, we would have 2048 which may be different. This is expected since for a given
processors that is 22.2 percent of the power of the Atlasoblem several stable partitions may exist. However, the
system. As a result the generated deadline is at most 16 timesults show that there is no significant differences betwee

DMSVOF mmmmm 16 4 DMSVOF mmmmm DMSVOF mmmmm
2000 - MSVOF MSVOF 200 MSVOF

1500

150 -

1000 A 100 A

Individual payoff
Execution time (Seconds)

500 50 4

Number of GSPs in the VO

% Y % < % Ry % <
: ©. Q Q% e - Q. Q, (2} 2
< < % % Q- 6 < < % % \9€

Number of tasks Number of tasks Number of tasks

(€Y (b) (c)
Fig. 1: DMSVOF vs. MSVOF: (a) GSPs Individual Payoff; (b) 8iaf Final VO; (c) Execution Time.

the individual payoff for GSPs provided by the DMSVOF andcknowledgmeniThis research was supported in part by NSF
the MSVOF. Note that the individual profit may decrease witgrants DGE-0654014 and CNS-1116787.

the increase in the number of tasks. This can happen when an
almost the same total profit is divided among the GSPs that are

part of a larger VO (e.g., the case for 4096 and 8192 tasksi.ll |. Foster and C. Kesselmaithe grid: blueprint for a new computing
infrastructure Morgan Kaufmann, 2004.

In Fig. 1b, we compare the Size_ of the final VO 0btainGd[Z] M. J. OsborneAn Introduction to Game ThearyNew York, NY, USA:
by DMSVOF and MSVOF. This figure shows that as the Oxford University Press, 2004.

number of tasks increases the size of the VO obtained H§l R:Buyya, D.Abramson, J. Giddy, and H. Stockinger, “Ecaomodels
both hani . Thi h h k for resource allocation and scheduling in grid computinggncur. &
oth mechanisms Increases. Is means that the more tas S’Comp.: Practice and Expvol. 14, no. 13-15, pp. 1507-1542, 2002.

the more GSPs pool their resources to form a VO in order tf#] R. Wolski, J. S. Plank, J. Brevik, and T. Bryan, “Analygimarket-based
execute the program. The results show that both mechanisms resource allocation strategies for the computational“ghidl. J. of High

. Perf. Comp. Applicationsvol. 15, no. 3, pp. 258-281, Aug. 2001.
try to find a small final VO in order to provide higher (s} «Giobus " [Online]. Available: http:/www.globus.or

individual payoff for its GSPs. [6] O. Shehory and S. Kraus, “Task allocation via coaliticornfiation
Fig. 1c shows the execution time of DMSVOF and MSVOF. among autonomous agents,” Rroc. of Intl. Joint Conf. on Artificial

. Intelligence vol. 14, 1995, pp. 655-661.
These results were obtained on a 3.00GHz Intel quad'com I. Mller, R. Kowalczyk, and P. Braun, “Towards agent-baseditima

PC with 8GB of memory. The results show that the proposed formation for service composition,” iRroc. of the IEEE/WIC/ACM Intl.
DMSVOF mechanism is able to reduce the execution time, Conf. on Intelligent Agent Technolagiec. 2006, pp. 73-80.

Thi ducti . ty d to th in th I.{S] T. Sandholm, K. Larson, M. Andersson, O. Shehory, and Fnie,
IS regucton Is mostly due to the concurrency In the spli “Coalition structure generation with worst case guarasteAtrtificial

process, since each decision maker decides for its spétdeg Intelligence vol. 111, pp. 209-238, 1999.
less of the decisions of the other decision makers. As atresul®] J Patel, W. T. L. Teacy, N. R. Jennings, M. Luck, S. Chasnét. Oren,

Lo . . T. J. Norman, A. Preece, P. M. D. Gray, G. Shercliff, P. J. Steisker,
each merge-and-split iteration of DMSVOF takes less time ; Shao, W. A. Gray, N. J. Fiddian, and S. Thompson, “Agenedas

than an iteration of MSVOF. The reason for getting higher virtual organisations for the gridMultiagent Grid Syst.vol. 1, no. 4,
execution times for 4096 and 8192 tasks is that the VQs_ Pp. 237-249, 2005. , _
. . . iItO] K. Apt, Principles of Constraint Programming New York, USA:

explore_d by th_e mechanism are larger in size. As_ a resull,’ cambridge University Press, 2003.
the split operation takes more time to test the possiblescasg1] T. E. Carroll and D. Grosu, “Formation of virtual orgaafions in grids:

From the above results, we conclude that the proposed A game-theoretic approachConcur. & Comp.: Practice and Exp.
distributed VO f i hanism | t onlv able to f vol. 22, no. 14, pp. 1972-1989, 2010.

Istribute i orma 'Qn meC. ar."sm IS not only able 10 T0IMy 51 | - Mashayekhy and D. Grosu, “A merge-and-split mechanifan
stable VOs with the highest individual payoff for the GSPS, = dynamic virtual organization formation in grids,” iRroc. of the 30th

REFERENCES

but also to find the final VO in reasonable amount of time. IEEE Intl. Perf. Comp. and Comm. Con2011, pp. 1-8.
[13] “Parallel workloads archive.” [Online]. Available: http://www.cs.h-
V. CONCLUSION uji.ac.il/labs/parallel/workload/”

. .. [14] C. Weng and X. Lu, “Heuristic scheduling for bag-of#asapplications
We modeled the VO formation problem as a coalitional in combination with QoS in the computational gridEtiture Generation

game and designed a distributed VO formation mechanism Computer Systemsol. 21, no. 2, pp. 271-280, 2005.

_ _enli -] K. Apt and A. Witzel, “A generic approach to coalition rfoation,”
based on merge-and-split operations (called DMSVOF). VUIEB International Game Theory Reviewol. 11, no. 3, pp. 347-367, 2009.

performed extensive experiments with data extracted frgas] D. Knuth, The Art of Computer Programming, Volume 4, Combinatorial
real workload traces to investigate DMSVOF’s propertiee. W - élg?_rlthlms, Pegt Il3 C\C/idlsdon-\éVesler)]/, 20d1t. § hods: A suy

; - ; . Lawler an . Wood, “Branch-and-bound methods: 8y
showed that the sizes (_)f the final VQs obtained by .DMSVO[F-’ Operations researchpp. 699-719, 1966.
and MSVOF (a centralized mechanism) are equal in most [@§] T. Braunet al, “A comparison of eleven static heuristics for mapping
the cases. We also show that the two mechanisms produce a class of independent tasks onto heterogeneous disttilsoraputing
VO’s for which the individual GSP’s profits are similar. The %%tfms' J. Parallel and Distr. Comp.vol. 61, no. 6, pp. 810-837,
advantage of DMSVOF is that it determines the final VO mugha] The SimGrid project. [Online]. Available: http://sinidrgforge.inria.fr
faster than MSVOF. As future work, we would like to considei20] “IBM ILOG CPLEX Optimization Studio for Academics Initia
the task dependencies in our VO formation model and design tive.” [Online]. Available: http://www01.ibm.com/softwafwebsphere/

L. . . products/optimization/academic-initiative/
new distributed mechanisms for VO formation.

