
A Distributed Merge-and-Split Mechanism for Dynamic Virtual Organization
Formation in Grids

Lena Mashayekhy
Department of Computer Science

Wayne State University
Detroit, MI 48202, USA

Email: mlena@wayne.edu

Daniel Grosu
Department of Computer Science

Wayne State University
Detroit, MI 48202, USA

Email: dgrosu@wayne.edu

Abstract—We model the Virtual Organization (VO) forma-
tion problem in grids using concepts from coalitional game
theory and design a distributed mechanism for solving it. The
proposed distributed mechanism enables the formation of VOs
guaranteeing the maximum profit for their participating Grid
Service Providers (GSPs). We show that the proposed mechanism
produces stable VOs, that is, the GSPs do not have incentives to
break away from the current VO and join some other VO. We
perform extensive simulation experiments using real workload
traces to characterize the properties of the proposed distributed
mechanism. The results show that the proposed distributed
mechanism not only produces VOs that are stable yielding high
revenue for the participating GSPs, but also decides the structure
of the VOs in a reasonable amount of time.

Keywords-grid computing; VO formation; coalitional games;

I. I NTRODUCTION

Grid computing systems are composed of heterogeneous
resources (CPUs, storage, etc.) owned by autonomous or-
ganizations. These systems provide essential resources for
conducting cutting-edge science and engineering research. The
resource management in such open distributed environments
is a very complex problem. One important aspect of resource
management in grids is how Grid Service Providers (GSPs)
pool their resources together to execute large scale applica-
tions. These GSPs collaborate and form Virtual Organizations
(VOs) [1].

The life-cycle of a VO consists of four phases: (i) identifi-
cation, in which the possible partners and the VO’s objectives
are identified; (ii) formation, in which the potential partners
(GSPs) negotiate the exact terms, the goal, and the durationof
collaboration; (iii) operation, in which the members of theVO
collaborate in solving a specific task; and (iv) dissolution, in
which the VO is dismantled. This paper focuses on designing
mechanisms for the second phase, the formation of VOs. We
model the VO formation as a coalitional game where GSPs
decide to form VOs in such a way that each GSP maximizes
its own profit, the difference between revenue and costs. A
GSP will choose to participate in a VO if its profit is not
negative. The VOs provide the composite resource needed
to execute applications. A VO is traditionally conceived for
the sharing of resources, but it can also represent a business
model [1]. In this work, a VO is a coalition of GSPs which
desire to maximize their individual profits and are largely
indifferent about the global welfare. We design a distributed

VO formation mechanism based on concepts from coalitional
game theory [2]. The model that we consider consists of a
set of GSPs and a grid user that submits a program and a
specification consisting of a deadline and payment. A subset
of GSPs will form a VO to execute the program before its
deadline. The objective of each GSP is to form a VO that
maximizes its own profit.

Related Work.Several economic-based models and systems
for resource management in open distributed systems have
been proposed in the literature [3], [4]. They do not explicitly
address the problem of VO formation and management which
is one of the key issues that need to be solved in large
scale computing systems in order to facilitate collaboration
among participating organizations. Globus Toolkit [5] supports
the operation and management of VOs by providing basic
middleware for VO policy specification and enforcement,
resource management, provisioning, and discovery. The toolkit
does not provide mechanisms for VO formation and tools for
VO management and analysis. The VO formation problem
can be viewed as a coalition formation problem. Research
on coalition formation has been conducted in the multi-agent
systems community for problems such as allocating a task [6]
and service composition [7]. Sandholm et al. [8] proposed a
method for finding the optimal coalition structure where the
optimal coalition structure is defined in terms of maximizing
the social welfare. Their method does not take into account the
incentives of the players to form coalitions. In addition, they
did not consider the task assignment and the payoff division
when finding the optimal coalition structure.

To the best of our knowledge, the closest work to ours is
by Patel et al. [9] which describes the mechanisms for VO
formation used in the CONOISE-G project. The mechanisms
used in CONOISE-G are based on Constraint Satisfaction Pro-
gramming (CSP) techniques [10] while our proposed mech-
anism is based on coalitional game models and techniques.
CSP techniques do not facilitate the stability and robustness
analysis of the VO formation process, while this is intrinsic
and represents one of the strengths of coalitional game theory.
Furthermore, the CONOISE-G project does not address the
issues of scheduling the applications within the VO, while
our proposed framework addresses this issue and provides a
mechanism for application scheduling within VOs. Carroll and

Grosu [11], developed a VO formation framework based on
extensive form games. The approach we use here is based
on coalitional games and merge-and-split operations which,
unlike the one used in [11], guarantees the stability of the
VOs formed by the proposed mechanism and is more compu-
tationally efficient. In our previous work [12] we proposed
a centralized mechanism for VO formation in grids. The
mechanism, called MSVOF, is executed by a trusted party
that also facilitates the communication among VOs/GSPs. The
distributed mechanism we propose in this paper addresses
the drawbacks (single point of failure, scalability, etc.)of the
MSVOF mechanism.

Our Contribution.We address the problem of VO formation
in grids by designing a distributed mechanism that allows the
GSPs to make their own decisions to participate in VOs. In this
mechanism, instead of having a centralized party deciding the
formation of VOs, the GSPs themselves decide to form VOs.
The mechanism produces a stable VO structure, that is, none of
the GSPs has incentives to merge to another VO or split from a
VO to form another VO. The mechanism determines the map-
ping of the tasks to each of the VOs that minimizes the cost of
execution by using a branch-and-bound method. We analyze
the properties of our proposed VO formation mechanism and
perform extensive simulation experiments using real workload
traces from the Parallel Workloads Archive [13]. The results
show that the proposed distributed mechanism determines not
only a stable VO that maximizes the individual payoffs of the
participating GSPs, but also determines the VOs faster than
MSVOF, a centralized mechanism proposed in [12].

Organization.The rest of the paper is organized as follows.
In Section II, we describe the VO formation problem and the
game theoretic framework used to design the proposed VO
formation mechanism. In Section III, we present the proposed
distributed mechanism, and characterize its properties. In Sec-
tion IV, we evaluate the mechanism by extensive simulation
experiments. In Section V, we summarize our results and
present possible directions for future research.

II. V IRTUAL ORGANIZATION FORMATION FRAMEWORK

In this section, we model the VO formation in grids as
a coalitional game and introduce the coalition formation
framework used in the design of the proposed mechanism.

A. VO Formation as a Coalitional Game

The system model assumes that a user wants to execute a
large-scale application programT consisting ofn independent
tasks {T1, T2, . . . , Tn} on the available set of grid service
providers (GSPs) by a given deadlined. Application programs
consisting of several independent tasks are representative for
a wide range of problems in science and engineering [14].
Each taskT ∈ T composing the application program is
characterized by its workloadw(T), which can be defined
as the amount of floating-point operations required to execute
the task. Executing the application programT requires a large
number of resources which cannot be provided by a single
GSP. Thus, several GSPs pool their resources together to

execute the application. We consider that a set ofm GSPs,
G = {G1, G2, . . . , Gm}, are available and are willing to
provide resources for executing programs. Here, we assume
that the GSPs are driven by incentives in the sense that they
will execute a task only if they make some profit out of it.
More specifically, the GSPs are assumed to be self-interested
and welfare-maximizing entities. Each service providerG ∈ G
owns several computational resources which are abstractedas
a single machine with speeds(G). The speeds(G) gives the
number of floating-point operations per second that can be
executed by GSPG. Therefore, the execution time of taskT at
GSPG is given by theexecution time functiont : T ×G → R

+,
where t(T,G) = w(T)

s(G) . We also assume that once a task is
assigned to a GSP, the task is neither preempted nor migrated.

A GSP incurs cost for executing a task. The cost incurred by
GSPG ∈ G when executing taskT ∈ T is given byc(T,G),
where c : T × G → R

+ is the cost function. Furthermore
we assume that a GSP has zero fixed costs and its variable
costs are given by the functionc. A user is willing to pay
a priceP less than her available budgetB if the program is
executed to completion by deadlined. If the program execution
exceedsd, the user is not willing to pay any amount that
is, P = 0. Since a single GSP does not have the required
resources for executing a program, GSPs form VOs in order to
have the necessary resources to execute the program and more
importantly, to maximize their profits. The profit is simply
defined as the difference between the payment received by a
GSP and its execution costs. If the profit is negative (i.e., a
loss), the GSP will choose not to participate.

We model the VO formation problem as a coalitional game.
A coalitional game[2] is defined by the pair(G, v), whereG
is the set of players andv is a real-valued function called the
characteristic function, defined onS ⊆ G such thatv : S →
R

+ and v(∅) = 0. In our model, the players are the GSPs
that form VOs which are coalitions of GSPs. In this work, we
use the terms VO and coalition interchangeably. Each subset
S ⊆ G is a coalition. If all the players form a coalition, it is
called thegrand coalition. A coalition has avaluegiven by the
characteristic functionv(S) representing the profit obtained
when the members of a coalition work as a group. For each
coalition of GSPsS ⊆ G, there exists a mappingπS : T → S,
which assigns taskT ∈ T to service providerG ∈ S. To
maximize the profit obtained by a VO, we need to find an
optimal mapping of all the tasks on the members of VO in
such a way that the mapping minimizes the execution cost.
We call this task assignment problem the MIN-COST-ASSIGN
problem.

MIN-COST-ASSIGN finds a mapping ofn tasks tok GSPs
in VO S, wherek = |S|. The goal is to minimize the cost of
execution. We consider the following decision variables:

σS(T,G) =

{

1 if πS(T) = G,

0 if πS(T) 6= G.
(1)

We formulate the MIN-COST-ASSIGN problem as an inte-

ger program (IP) as follows:

Minimize C(T , S) =
∑

T∈T

∑

G∈S

σS(T,G)c(T,G), (2)

Subject to:
∑

T∈T

σS(T,G)t(T,G) ≤ d, (∀G ∈ S), (3)

∑

G∈S

σS(T,G) = 1, (∀T ∈ T), (4)

∑

T∈T

σS(T,G) ≥ 1, (∀G ∈ S), (5)

σS(T,G) ∈ {0, 1}, (∀G ∈ S and∀T ∈ T). (6)

The objective function (2) represents the costs incurred for
executing the programT on S under the mapping. Con-
straints (3) ensure that each GSP can execute its assigned
tasks by the deadline. Constraints (4) guarantee that each
task T ∈ T is assigned to exactly one GSP. Constraints (5)
ensure that each GSPG ∈ S is assigned at least one task.
Constraints (6) represent the integrality requirements for the
decision variables.

We define the following characteristic function for our
proposed VO formation game:

v(S) =

{

0 if |S| = 0 or IP is not feasible,
P − C(T , S) if |S| > 0 and IP is feasible,

(7)

where |S| is the cardinality ofS. Note that v(S) can be
negative ifC(T , S) > P . That means GSPs inS incur cost.
The objective of each GSP is to determine the membership
in a coalition that gives the highest share of profit. Here, we
adopt the equal sharing of the profit as the payoff division rule.
That is, each GSP in coalitionS receives the sharev(S)/|S|.

Due to their welfare-maximizing behavior, the GSPs prefer
to form a low profit coalition if their profit divisions are higher
than those obtained by participating in a high profit coalition.
Therefore, a service providerG determines its preferred coali-
tion S, whereG ∈ S by solving:

max
(S)

P − C(T , S)

|S|
(8)

The GSPs’ goal is to maximize their own profit by solving
the optimization problem given in equation (8). Therefore,
minimizing the costC(T , S) by solving the MIN-COST-
ASSIGN problem maximizes the profitP − C(T , S) earned
by a VO. A VO obtains profit and then the profit is divided
among participating GSPs. As a result, a GSP prefers a VO
that provides the highest profit among all possible VOs.

The payoff or the share of GSP G part of coalition S,
denoted byxG(S) is given byxG(S) = v(S)

|S| . Thus, the payoff
vector(xG1

(S), · · · , xGr
(S)) gives the payoff divisions of the

r GSPs that are part of coalitionS. In this paper, we assume
that if a GSP does not execute a task it receives a payoff of 0.
If there are some GSPs that do not participate in executing
any task of the program, they are not considered members of
the VO executing the application.

B. Coalition Formation Framework

Coalition formation[15] is the partitioning of the players
into disjoint sets. A coalition structureCS = {S1, S2, . . . , Sh}
forms a partition of the set of GSPsG such that each player is a
member of exactly one coalition,i.e., Si∩Sj = ∅ for all i and
j, wherei 6= j and

⋃

Si∈CS Si = G. The problem of finding the
optimal coalition structure is NP-complete [8]. Enumerating
all coalition structures to find the optimal coalition structure
is not feasible since the possible number of coalition structures
is Bm, them-th Bell number [16] which gives the number of
partitions of a set of sizem, wherem = |G|.

In the VO formation game defined in the previous section
only one of the coalitions in the coalition structure is selected
to execute the application program. The selected coalitionis
the one that yields the highest individual payoff for all of its
members. The coalitions that cannot complete the program
within the deadline will not be considered since the payoff
for such coalitions is zero.

The following concepts are used in the design of the VO
formation mechanism.

Definition 1 (Collection):A collection in G, is defined as
the setC = {S1, · · · , Sk} of mutually disjoint coalitions. If
∪k

j=1Sj = G, the collectionC is called apartition of G.
Definition 2 (Comparison):A collection comparison⊲ is

defined to compare two collectionsA andB that are partitions
of the same subsetS ⊆ G. A ⊲ B implies that the wayA
partitionsS is preferred to the wayB partitionsS.

In the proposed VO formation game, a welfare-maximizing
GSP will determine its coalition by considering the profit it
earns and not the coalition value. Thus, comparison relations
among collections are defined based on the GSPs’ individual
payoffs. These comparison relations correspond to the merge
and split rules which will be defined later in this section. We
consider two collectionŝS = {∪k

j=1Sj} and {S1, · · · , Sk}
from the same subset. We define two comparison relations,
the merge comparison⊲m and thesplit comparison⊲s, based
on the individual payoffs as follows:

Ŝ ⊲m{S1, · · · , Sk} ⇐⇒ {∀j ∈ {1, . . . , k}, ∀Gi ∈ Ŝ ∩ Sj ;

xi(Ŝ) ≥ xi(Sj) and∃j ∈ {1, . . . , k},
∃Gr ∈ Sj ; xr(Ŝ) > xr(Sj)}

(9)

{S1, · · · , Sk} ⊲sŜ ⇐⇒ {∃j ∈ {1, . . . , k}, ∀Gi ∈ Ŝ ∩ Sj ;

xi(Sj) ≥ xi(Ŝ) and
∃Gr ∈ Sj ; xr(Sj) > xr(Ŝ)}

(10)

Equation (9) implies that collection̂S composed of only one
coalition{∪k

j=1Sj} is preferred over{S1, · · · , Sk}, if at least
one playerGr is able to improve its payoff without decreasing
other players’ payoffs. Equation (10) implies that collection
{S1, · · · , Sk} is preferred over̂S, if at least one coalitionSj

is able to keep the payoffs of its members while at least one
of its members,Gr, is able to improve its payoff regardless
of the effect on the other players outside ofSj .

Using the defined comparison relations, we propose a VO
formation mechanism involving two types of rules as fol-
lows [15]:

Merge Rule:Merge any set of coalitions{S1, · · · , Sk},
where{∪k

j=1Sj}⊲m{S1, · · · , Sk}.
Split Rule: Split any coalition Ŝ = {∪k

j=1Sj}, where
{S1, · · · , Sk}⊲s{∪

k
j=1Sj}.

Coalitions decide to merge only if at least one GSP is able
to strictly improve its individual payoff through the merge
rule without decreasing the other GSPs’ payoffs. Therefore,
the merge rule is an agreement among the GSPs to operate
together if it is beneficial for them.

As we mentioned before, one of the formed coalitions, the
final coalition, executes the program, thus, the formation of
the rest of the coalitions is not important. The reason for
this is that the rest of the GSPs which are not in the final
coalition can participate again in another coalition formation
process for executing another application program. Therefore,
a coalition decides to split only if there is at least one sub-
coalition that strictly improves the individual payoffs ofits
constituent GSPs. Under the split rule, the individual payoffs
of the other sub-coalitions may decrease. The split rule canbe
seen as the implementation of aselfishdecision by a coalition,
which does not take into account the effect of the split on the
other coalitions.

Two coalitionsSi and Sj decide to merge based on the
merge comparison defined by (9) where all of GSPs inSi∪Sj

are able to keep or improve their individual payoffs. A GSP
individual payoff is computed based on (8) while satisfying
the deadline constraint. As a result, the merge occurs if the
following two inequalities are satisfied where at least one of
them must be strict.

P − C(T , Si ∪ Sj)

|Si ∪ Sj |
≥

P − C(T , Si)

|Si|
(11)

P − C(T , Si ∪ Sj)

|Si ∪ Sj |
≥

P − C(T , Sj)

|Sj |
(12)

Since |Si ∪ Sj | > |Si| and |Si ∪ Sj | > |Sj |, in order for a
GSP inSi to keep or improve its payoff,P −C(T , Si∪Sj) ≥
P−C(T , Si), and it should be the same for a GSP inSj . Thus,
C(T , Si ∪ Sj) ≤ C(T , Si) and C(T , Si ∪ Sj) ≤ C(T , Sj).
That means that coalitions can only merge when the cost of
the formed coalition by merge is less than their cost.

For the split rule, a coalition̂S decides to split into two
coalitions Si and Sj based on the split comparison defined
by (10), where all GSPs inSi, Sj , or both are able to keep or
improve their individual payoffs. Thus,̂S splits if at least one
of the following inequalities is satisfied.

P − C(T , Ŝ)

|Ŝ|
<

P − C(T , Si)

|Si|
(13)

P − C(T , Ŝ)

|Ŝ|
<

P − C(T , Sj)

|Sj |
(14)

That means that the individual payoff of each GSP in at least
one of the splitted coalitions,Si or Sj , should be higher than
its individual payoff inŜ.

The stability of the resulting coalition structure is charac-
terized using the concept of defection functionD [15].

Definition 3 (Defection function):A defection functionD is
a function which associates with each partitionP of G a group
of collections inG.
A partition P is D-stable if no group of players is interested
in leavingP. Thus, the players can only form the collections
allowed by D. A defection functionDP which allows the
formation of all partitions of the grand coalition was proposed
by Apt and Witzel [15]. DP -stability is defined based on
this function. DP allows any group of players to leave the
partition P of G through merge-and-split rules to create
another partition inG. Therefore,DP -stability means that no
coalition has an incentive to merge or split.

III. D ISTRIBUTED MERGE-AND-SPLIT VO FORMATION

MECHANISM (DMSVOF)

The proposed distributed merge-and-split VO formation
mechanism (DMSVOF) is given in Algorithm 1. In DMSVOF,
the merge and split decisions are made in a distributed fashion.
For each VO, DMSVOF selects a GSP as a decision maker,D,
that is responsible for making the merge and split decisions.
Each VO in the coalition structureCS has its own decision
maker. We denote byD the decision maker of a VOS ∈ CS,
and byD the set of all available decision makers.

In the description of DMSVOF we denote by B&B-MIN-
COST-ASSIGN(S) the function that implements the branch-
and-bound method [17] for solving the MIN-COST-ASSIGN
problem for a VOS.

DMSVOF starts with a coalition structureCS consisting of
every singletonG ∈ G as a VOS in CS. For each VOS ∈ CS,
its only member becomes a decision makerD (i.e.,D = {G}).
Each decision makerD uses a vectorvisited to keep track of
all decision makers inD that are visited for merging. Initially,
eachD sets all the entries ofvisited to FALSE. That means
that all VOs should be considered for merging. Each decision
makerD maintains another vector, calledstatus, to keep track
of the status of all decision makers inD. Initially, D sets
the status of all decision makers toUNKNOWN. All decision
makers must know the status of others.

A GSPG becomes a decision makerD by either receiving
a request from a user or by receiving a request from another
decision maker in the system. If a user sends a request for
executing a job then every singletonG ∈ G becomes a VO
S. If another decision maker,D′, sends a request toG, it
also sends the set of GSPs as a VOS. By receiving this
request,G becomes a decision maker forS. Then,G changes
the visited entry corresponding toD′ to TRUE. That means,
VO S andS′ cannot merge, whereD andD′ are the decision
makers ofS and S′, respectively.D checks if all tasks can
be executed by the GSPs participating in its associated VO
(line 17). It also computesv(S) based on the allocation. If a
GSP is a decision maker of a VO, then, it enters the merge-
and-split process (lines 18-48). First, the MERGE procedure is
invoked, and then, all decision makers synchronize with each
other (line 23). That is, they all wait for every decision maker
to find a stable VO, that does not want to merge with any other
VOs. Then, ifD is still a decision maker, it starts the split

Algorithm 1 Distributed Merge-and-Split VO Formation Mecha-
nism (DMSVOF)
1: Every GSP G executes:
2: D = ∅
3: for all G′ ∈ G, G 6= G′ do
4: D′ ← {G′}
5: visited[D′]← FALSE; status[D′]← UNKNOWN
6: D = D ∪D′

7: end for
8: if Receive〈user, T 〉 then
9: S = {G}

10: D ← {G}
11: D = D ∪D
12: end if
13: if Receive〈D′, S,D, split〉 then
14: visited[D′]← TRUE
15: D ← {G}
16: end if
17: Map programT on S ∈ CS
18: while D ∈ D do
19: stop = MERGE()
20: if stop then
21: D = D \D, D is not a decision maker anymore

(Exit from DMSVOF)
22: end if
23: Synchronize with the other decision makers
24: Receive〈D′, done〉
25: status[D′]← DONE
26: [stop, D′′] = SPLIT()
27: if stop then
28: Broadcast〈D, done〉 to all other decision makers inD
29: if status[D′] = DONE, ∀D′ ∈ D then
30: break
31: end if
32: Sleep
33: Receive〈D′, D′′〉
34: visited[D′]← FALSE
35: visited[D′′]← FALSE
36: status[D′]← UNKNOWN
37: status[D′′]← UNKNOWN
38: else
39: Wakeup
40: Broadcast〈D, D′′〉
41: end if
42: end while
43: if D ∈ D then
44: Broadcast〈D, 〈v(S)/|S|〉 to all other decision makers
45: Receive the individual values from all other decision makers
46: FindD′ ∈ D whereS′ = maxS∈CS {v(S)/|S|}
47: D′ notifies the user to execute programT on VO S′

48: end if

process by invoking the SPLIT procedure, otherwise it exits
the mechanism. This GSP may become a decision maker again
if it receives a request from another decision maker (lines 13-
16). In the split process, if the splitting does not occur,stop
flag is set toTRUE and D broadcasts messageDONE to all
decision makers. That means, its VO is stable with respect to
splitting. If the status of all the decision makers isDONE, for
all S in the system,D exits from the merge-and-split while-
loop. That means, none of the VOs want to merge or split any
more. However, even if one of the decision makers does not
finish its decision on merge or split,D goes to sleep.

If the splitting occurs, thestop flag is set toFALSE and
D sends a wakeup message to all decision makers. All the
decision makers that were on sleep condition start the merging
process again. Also, they change thestatus of two new

Algorithm 2 MERGE(): Distributed Merge
1: repeat
2: Randomly selectD′ ∈ D for which

visited[D′] = FALSE and
status[D′] = UNKNOWN, rank[D] < rank[D′]

3: Send a Merge request〈D, S, merge〉 to D′ of S′

4: if Receive〈D′, ACK〉 then
5: visited[D′]← TRUE
6: D′ becomes a decision maker forS ∪ S′

7: return TRUE {Exit from the Merge process}
8: end if
9: if Receive〈D′, NACK〉 then

10: visited[D′]← TRUE
11: end if
12: if Receive〈D′, remove〉 then
13: status[D′]← REMOVED
14: D = D \D′

15: CS = CS \ S′

16: end if
17: Receive a Merge request〈D′, S′, merge〉
18: visited[D′]← TRUE
19: B&B-MIN-COST-ASSIGN(S ∪ S′)

{Map programT on S ∪ S′}
20: if S ∪ S′⊲m{S, S′} then
21: S ← S ∪ S′ {mergeS andS′}
22: S′ ← ∅ {S′ is removed fromCS}
23: Send〈D, ACK〉
24: {D is the decision maker of the new VOS ∪ S′}
25: D = D \D′

26: for all D′′ ∈ D, D′′ 6= D do
27: Send〈D′, remove〉 to D′′

28: visited[D′′]← FALSE
29: end for
30: else
31: Send〈D, NACK〉
32: end if
33: until visited[D′] = TRUE, ∀D′ ∈ D, D 6= D′

34: return FALSE

decision makersD′ and D′′ to UNKNOWN, and thevisited
to FALSE. This is needed since these decision makers are
the decision makers of the new VOs. As a result, multiple
successive merge-and-split operations are repeated by each D.
The mechanism terminates if there are no choices for merge
or split for all existing VOs inCS, and thus, the status of all
of them isDONE.

If D breaks the while-loop, it means that all VOs ter-
minate from the merge-and-split decisions. Each decision
maker broadcasts its individual value to all other decision
makers (line 44), it also finds a VO that yields the highest
individual value. A decision maker for the VO with the highest
individual value sends a message to the user, and it executes
the programT .

The merge process (described in Algorithm 2) is a pairwise
negotiation between two VOs based on the merge comparison
(⊲m). The decision makerD of VO S starts the negotiation
by choosing a non-visited decision maker inD randomly
and sending a request to merge (lines 1-3). The non-visited
decision maker is selected such that the status of that decision
maker isUNKNOWN and its rank is higher than that of the
current decision maker. The rank of a GSPG, denoted by
rank[G], is an integer drawn randomly from the interval
[1,m], before the VO formation process starts. We use the
ranking to impose an order on the merge requests. The reason

of using an order for choosing a decision maker for merge is
to prevent deadlocks in the system due to cycles of requests.
Decision makerD also sends its VOS to D′ as part of
the request message. If a decision makerD sends a merge
request toD′, the decision maker that receives the request,
D′, analyzes the possibility of merging their VOs,S andS′.
Depending on the result of the merge comparison,D′ may
respond with an acceptance (denoted byACK) or rejection
(denoted byNACK) of the merge. The decision maker of
a VO responding with an acceptance message becomes a
decision maker for the merged VOs,S ∪ S′ (lines 4-8).D
is not a decision maker anymore and it exits the mechanism.
If D′ responds with a reject message,D changesvisited[D′]
to TRUE, so it will not be selected for the merge (lines 9-11).
If D receives a message thatD′ is not available any more (it
has been merged with another VO),D updates the status of
D′ and the coalition structure.

If D receives a merge request fromD′, it needs to check
whether it can merge withD′. D sets thevisited entry
corresponding toD′ to TRUE and calls B&B-MIN-COST-
ASSIGN to find an optimal allocation for the application
programT onS∪S′. If S∪S′⊲m{S, S′}, i.e., all the members
receive higher profit by merging,D sends anACK message
to D′. S ∪ S′ is saved inS, andS′ is removed fromCS. D
becomes a decision maker of the merged VO. It also sends
a message to all decision makers to removeD′ from the set
of decision makersD. SinceS is changed, it can visit all the
existing VOs in the next merge steps. Thus,visited[D′′] for
all D′′ ∈ D, D′′ 6= D is set toFALSE (lines 20-29).

If the merge comparison is not optimal, one or more GSPs
would receive less individual payoff in the merged VOs than
in their current VO. As a result,D sends a reject message
(NACK) to D′ (line 31).D tries to find another non-visited
decision maker suitable for merging. If all the VOs are tested
and a merge does not occur (visited is TRUE for all the
existing decision makers)D exits from the merge process.

The VO obtained by the merge process is then subject
to split. In the split process (presented in Algorithm 3), a
VO that has more than one member is subject to splitting.
D tries to split S into two disjoint VOsS′ and S′′, where
S′ ∪ S′′ = S. D calls B&B-MIN-COST-ASSIGN twice to
find an optimal allocation onS′ and an optimal allocation on
S′′ for applicationT . Since the split is a selfish decision, the
splitting occurs even if only one of the members of coalitionS′

or S′′ can improve its individual value.D remains a decision
maker for the VO that it belongs to (here, we assumeD ∈ S),
and it selects a GSPG′′ ∈ S′′ randomly as a decision maker
of S′′. D addsD′′ to the set of decision makers and sendsS′′

to D′′.

If a VO splits, then the merging process starts again. The
merge or split decisions are made in a distributed manner,
i.e., each decision maker makes its own decisions. Multiple
successive merge-and-split operations are repeated untilthe
mechanism terminates. That means that there are no choices

Algorithm 3 SPLIT(): Distributed Split
1: if |S| > 1 then
2: for all partitions{S′, S′′} of S,

whereS = S′ ∪ S′′, S′ ∩ S′′ = ∅ do
3: B&B-MIN-COST-ASSIGN(S′)

{Map programT on S′}
4: B&B-MIN-COST-ASSIGN(S′′)

{Map programT on S′′}
5: if {S′, S′′}⊲sS then
6: S ← S′ {that isCS = CS

⋃

S′ \ S}
7: CS = CS

⋃

S′′

8: SelectG′′ whereG′′ ∈ S′′and{G′′} 6∈ D as a
decision maker ofS′′

9: D′′ ← {G′′}
10: D = D ∪D′′

11: Send〈D, S′′,D, split〉 to D′′

12: visited[D′′]← TRUE
13: for all D′ ∈ D, D′ 6= D, D′ 6= D′′ do
14: visited[D′]← FALSE
15: end for
16: return [FALSE, D′′]
17: end if
18: end for
19: end if
20: return [TRUE, NULL]

for merge or split for all existing coalitions inCS.

DMSVOF Properties.We now investigate the properties of
DMSVOF. We will first show that DMSVOF produces stable
VOs and then investigate its complexity.

Theorem 1:Every partition ofG determined by DMSVOF
is DP -stable.

Proof: (Sketch) There is no cycle of partitions in any
sequence of merge and split operations. This is due to the fact
that if two VO merge, in the split process, these VOs cannot
split because of the individual values of the component GSPs
cannot increase. Using the comparison relations⊲m and⊲s, the
resulting partition after each merge or split is more preferred
than a previous partition. Existing partitions do not appear
again, and every sub-sequence of merge-and-split operations
is acyclic. Since the number of different partitions is finite, the
merge-and-split iterations terminate. The final partitioncannot
be subject to any further merge or split. As a result, the final
partition isDP -stable.

Next, we investigate the computational and communication
complexity of DMSVOF. The computational complexity of the
mechanism is determined by the number of attempts for merge
and split. In the worst case scenario, each decision maker
needs to make a merge attempt with all the other decision
makers inD. The number of decision makers is the same as
the number of VOs inCS. In each iteration, the total number
of merge attempts for a decision maker is equal to the number
of VOs, that is,O(|CS|). However, the merge process requires
a significantly less number of attempts. This is due to the fact
that if a VO is found for merge, the merge occurs. In the
worst case scenario, splitting a VOS is in O(2|S|) which
involves finding all the possible partitions of size two of the
participating GSPs in that VO. The coalitions inCS are small
sets especially since we apply selfish split decisions that keep
the size of the coalitions as small as possible. As a result, the

split is reasonable in terms of complexity. In addition, once
a coalition decides to split, the search for further splits is not
needed.

The communication complexity is defined in terms of num-
ber of messages that are exchanged in the mechanism. In the
merge process, the total number of messages that a decision
maker exchanges is inO(|CS|). In the split process, if a VO
splits, it needsO(1) messages for communication. However,
whether it splits or not, the VO needs to broadcast either
its status or the id of a new decision maker, thus requiring
O(|CS|) messages.

IV. EXPERIMENTAL RESULTS

Experimental Setup.For our experiments we consider 16 GSPs
which is a reasonable estimation of the number of GSPs in
real grids. The number of GSPs is small since each GSP is a
provider and not a single machine. We use real workloads from
the Parallel Workloads Archive [13] to drive our simulation
experiments. More specifically, we use the logs from the Atlas
cluster at Lawrence Livermore National Laboratory (LLNL).
This log consists of recently collected traces (from November
2006 to Jun 2007) that contain a good range of job sizes,
from 8 to 8832. We used the cleaned log LLNL-Atlas-2006-
2.1-cln.swf which has 43,778 jobs. We selected 21,915 jobs
that completed successfully out of all the jobs in the log. About
13% of the total completed jobs are large jobs having runtimes
greater than 7200 seconds.

We selected six different sizes (i.e., number of tasks) of
the application program from the Atlas log, ranging from 256
to 8192 tasks. For each program, the number of allocated
processors the job uses gives the number of tasks, while the
average CPU time used gives the average runtime of a task.
We used the peak performance of a processor to convert the
runtime to workload for each task. We generated the values
of the other parameters based on the extracted data from the
Atlas log. The parameters and their values are listed in Table I.
The values for deadline and payment were generated in such
a way that there exists a feasible solution in each experiment.

Each task has a workload expressed in Giga Floating-point
Operation (GFLOP). To generate a workload, we extract the
runtime of a job (in seconds) from the logs, and multiply
that by the performance of a processor in the Atlas system
(4.91 GFLOPS). This number gives the maximum amount of
giga floating-point operations for a task. We assume that the
workload of each task is within[0.5, 1.0] of the maximum
GFLOP of the job. The workload vector,w, contains the
workload of each task of the application program.

The speed vectors is generated relative to the Atlas
system. Each GSP has a speed chosen within the range
4.91 × [16, 128] GFLOPS. This is because each GSP can
have several processors capable of performing4.91 GFLOPS.
The reason that we chose this range is that the number of
processors of the Atlas cluster is 9,216. If all16 GSPs have
the highest performance of128× 4.91, we would have 2048
processors that is 22.2 percent of the power of the Atlas
system. As a result the generated deadline is at most 16 times

TABLE I: Simulation Parameters

Param. Description Value(s)
m Number of GSPs 16
n Number of tasks [8, 8832]
s GSP’s speeds (m × 1 vector) 4.91×[16, 128] GFLOPS
w Tasks’ workload (n × 1 vector) [17676, 1682922.14] GFLOP
t Execution time matrix (m × n) w

s
seconds

c Cost matrix (m × n) [1, φb × φr]
d Deadline [0.3, 2.0] × Runtime×n/1000

seconds
P Payment [0.2, 0.4] × maxc × n units
φb Maximum baseline value 100
φr Maximum row multiplier 10
Runtime Runtime of a job from log ≥ 7200 seconds
maxc Maximum cost φb × φr

greater than the runtime. This guarantees that there is a feasible
solution for the task allocation. The execution time of each
task Tj on each GSPGi is obtained using the speed vector
and the workload vector.

Each cost matrixc is generated using the method described
by Braun et al. [18]. First, a baseline vector of sizen is
generated where each element is a random uniform number
within [1, φb]. Then, the rows of the cost matrix are generated
based on the baseline vector. Each elementj in row i of the
matrix, c(i, j), is obtained by multiplying the elementi of the
baseline vector with a uniform random number within[1, φr],
a row multiplier. Therefore, one row requiresm different row
multipliers. As a result, each element in the cost matrix is
within the range[1, φb × φr].

We use the SimGrid toolkit [19] to simulate the grid
system. SimGrid is a toolkit for the simulation of distributed
applications in heterogeneous distributed environments.We
consider that each GSP is a host, and we use a complete graph
to set the routes among GSPs. That means, each GSP has a
direct link with any other GSPs to send and receive messages.
We set the latency of the links to 0.015 milliseconds. We
also use the CPLEX solver provided by IBM ILOG CPLEX
Optimization Studio for Academics Initiative [20] for solving
the MIN-COST-ASSIGN problem.

Analysis of Results.We compare the performance of our
distributed VO formation mechanism, DMSVOF, with that of
the centralized VO formation mechanism, MSVOF, proposed
in [12]. Both mechanisms use merge-and-split operations to
find a VO to execute the program. Also, the mechanisms
use the branch-and-bound method for solving MIN-COST-
ASSIGN and finding the mapping of the tasks to GSPs in
a VO. We perform a series of ten experiments in each case,
and we present the average of the obtained results.

In Fig. 1a, we show the performance of DMSVOF and
MSVOF in terms of individual GSP’s payoffs in the final VO
as a function of the number of tasks. The figure shows that in
some cases DMSVOF provides higher individual payoff for
GSPs in the final VO, while in some other cases MSVOF
provides higher individual payoff for GSPs in the final VO.
The reason is that both mechanisms find stable partitions
which may be different. This is expected since for a given
problem several stable partitions may exist. However, the
results show that there is no significant differences between

 0

 500

 1000

 1500

 2000

256
512

1024
2048

4096
8192

In
di

vi
du

al
 p

ay
of

f

Number of tasks

DMSVOF
MSVOF

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

256
512

1024
2048

4096
8192

N
um

be
r

of
 G

S
P

s
in

 th
e

V
O

Number of tasks

DMSVOF
MSVOF

(b)

 0

 50

 100

 150

 200

256
512

1024
2048

4096
8192

E
xe

cu
tio

n
tim

e
(S

ec
on

ds
)

Number of tasks

DMSVOF
MSVOF

(c)

Fig. 1: DMSVOF vs. MSVOF: (a) GSPs Individual Payoff; (b) Size of Final VO; (c) Execution Time.

the individual payoff for GSPs provided by the DMSVOF and
the MSVOF. Note that the individual profit may decrease with
the increase in the number of tasks. This can happen when an
almost the same total profit is divided among the GSPs that are
part of a larger VO (e.g., the case for 4096 and 8192 tasks).

In Fig. 1b, we compare the size of the final VO obtained
by DMSVOF and MSVOF. This figure shows that as the
number of tasks increases the size of the VO obtained by
both mechanisms increases. This means that the more tasks,
the more GSPs pool their resources to form a VO in order to
execute the program. The results show that both mechanisms
try to find a small final VO in order to provide higher
individual payoff for its GSPs.

Fig. 1c shows the execution time of DMSVOF and MSVOF.
These results were obtained on a 3.00GHz Intel quad-core
PC with 8GB of memory. The results show that the proposed
DMSVOF mechanism is able to reduce the execution time.
This reduction is mostly due to the concurrency in the split
process, since each decision maker decides for its split regard-
less of the decisions of the other decision makers. As a result,
each merge-and-split iteration of DMSVOF takes less time
than an iteration of MSVOF. The reason for getting higher
execution times for 4096 and 8192 tasks is that the VOs
explored by the mechanism are larger in size. As a result,
the split operation takes more time to test the possible cases.

From the above results, we conclude that the proposed
distributed VO formation mechanism is not only able to form
stable VOs with the highest individual payoff for the GSPs,
but also to find the final VO in reasonable amount of time.

V. CONCLUSION

We modeled the VO formation problem as a coalitional
game and designed a distributed VO formation mechanism
based on merge-and-split operations (called DMSVOF). We
performed extensive experiments with data extracted from
real workload traces to investigate DMSVOF’s properties. We
showed that the sizes of the final VOs obtained by DMSVOF
and MSVOF (a centralized mechanism) are equal in most of
the cases. We also show that the two mechanisms produce
VO’s for which the individual GSP’s profits are similar. The
advantage of DMSVOF is that it determines the final VO much
faster than MSVOF. As future work, we would like to consider
the task dependencies in our VO formation model and design
new distributed mechanisms for VO formation.

Acknowledgment.This research was supported in part by NSF
grants DGE-0654014 and CNS-1116787.

REFERENCES

[1] I. Foster and C. Kesselman,The grid: blueprint for a new computing
infrastructure. Morgan Kaufmann, 2004.

[2] M. J. Osborne,An Introduction to Game Theory. New York, NY, USA:
Oxford University Press, 2004.

[3] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger, “Economic models
for resource allocation and scheduling in grid computing,”Concur. &
Comp.: Practice and Exp., vol. 14, no. 13-15, pp. 1507–1542, 2002.

[4] R. Wolski, J. S. Plank, J. Brevik, and T. Bryan, “Analyzing market-based
resource allocation strategies for the computational grid,” Intl. J. of High
Perf. Comp. Applications, vol. 15, no. 3, pp. 258–281, Aug. 2001.

[5] “Globus.” [Online]. Available: http://www.globus.org
[6] O. Shehory and S. Kraus, “Task allocation via coalition formation

among autonomous agents,” inProc. of Intl. Joint Conf. on Artificial
Intelligence, vol. 14, 1995, pp. 655–661.

[7] I. M üller, R. Kowalczyk, and P. Braun, “Towards agent-based coalition
formation for service composition,” inProc. of the IEEE/WIC/ACM Intl.
Conf. on Intelligent Agent Technology, Dec. 2006, pp. 73–80.

[8] T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohme,
“Coalition structure generation with worst case guarantees,” Artificial
Intelligence, vol. 111, pp. 209–238, 1999.

[9] J. Patel, W. T. L. Teacy, N. R. Jennings, M. Luck, S. Chalmers, N. Oren,
T. J. Norman, A. Preece, P. M. D. Gray, G. Shercliff, P. J. Stockreisser,
J. Shao, W. A. Gray, N. J. Fiddian, and S. Thompson, “Agent-based
virtual organisations for the grid,”Multiagent Grid Syst., vol. 1, no. 4,
pp. 237–249, 2005.

[10] K. Apt, Principles of Constraint Programming. New York, USA:
Cambridge University Press, 2003.

[11] T. E. Carroll and D. Grosu, “Formation of virtual organizations in grids:
A game-theoretic approach,”Concur. & Comp.: Practice and Exp.,
vol. 22, no. 14, pp. 1972–1989, 2010.

[12] L. Mashayekhy and D. Grosu, “A merge-and-split mechanismfor
dynamic virtual organization formation in grids,” inProc. of the 30th
IEEE Intl. Perf. Comp. and Comm. Conf., 2011, pp. 1–8.

[13] “Parallel workloads archive.” [Online]. Available: ”http://www.cs.h-
uji.ac.il/labs/parallel/workload/”

[14] C. Weng and X. Lu, “Heuristic scheduling for bag-of-tasks applications
in combination with QoS in the computational grid,”Future Generation
Computer Systems, vol. 21, no. 2, pp. 271–280, 2005.

[15] K. Apt and A. Witzel, “A generic approach to coalition formation,”
International Game Theory Review, vol. 11, no. 3, pp. 347–367, 2009.

[16] D. Knuth,The Art of Computer Programming, Volume 4, Combinatorial
Algorithms, Part 1. Addison-Wesley, 2011.

[17] E. Lawler and D. Wood, “Branch-and-bound methods: A survey,”
Operations research, pp. 699–719, 1966.

[18] T. Braunet al., “A comparison of eleven static heuristics for mapping
a class of independent tasks onto heterogeneous distributed computing
systems,”J. Parallel and Distr. Comp., vol. 61, no. 6, pp. 810–837,
2001.

[19] The SimGrid project. [Online]. Available: http://simgrid.gforge.inria.fr
[20] “IBM ILOG CPLEX Optimization Studio for Academics Initia-

tive.” [Online]. Available: http://www01.ibm.com/software/websphere/
products/optimization/academic-initiative/

