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Abstract— This paper addresses the problem of optimally
coordinating connected vehicles crossing an intersection with-
out any explicit traffic signals. We propose a game-in-game
framework that utilizes Vehicle-to-Vehicle (V2V) and Vehicle-
to-Infrastructure (V2I) technologies in order to maximize in-
tersection throughput and to minimize traffic accidents and
congestion. A Platoon Structure Formation Algorithm (PSFA)
is proposed to form coalitions for CAVs at the intersection
boundary, and a strategic game for CAVs in the interior is
proposed to avoid predicted accidents inside the intersection.
We perform extensive experiments to evaluate our proposed
game-in-game framework under different traffic conditions.
The results show that our proposed game-in-game framework
reduces the accidents by 99%, while increasing the intersection
throughput significantly.

I. INTRODUCTION

The number of vehicles on the road is predicted to double
from 1.1 billion to 2 billion in the next 15 years, making
traffic accidents and congestion to be two major concerns. In
2015, 2.44 million nonfatal injuries and 35,092 deaths were
reported on U.S. roadways. In addition, traffic congestion
made U.S. drivers spend 6.9 billion hours more on the road
and purchase an extra 3.1 billion gallons of fuel in 2014 [1].
By utilizing rich vehicle sensor data shared among vehicles
(V2V) and between vehicles and roadside infrastructures
(V2I), we can significantly reduce traffic accidents and traffic
congestion.

Intersections are the primary sources of traffic bottlenecks.
Traffic lights are considered as one of the most efficient
ways to control traffic at intersections. However, with the
emergence of connected autonomous vehicles (CAVs), a
new way of coordination and cooperation among vehicles is
possible leading to design of smart virtual traffic lights. CAVs
are equipped with Internet access, usually with a wireless
local area network, that facilitates the exchange of real-
time data between transportation system users, operators,
and infrastructure. CAVs will use the data shared by other
vehicles and infrastructure to adjust their speeds and avoid
accidents. We believe in the near future, every vehicle on the
road will be connected, and thus it will be possible to remove
signals from intersections, while significantly improve traffic
operations and safety.

In this paper, we regulate signal-free intersections for
CAVs using game theory. We propose a hierarchical game-
in-game framework to improve the traffic safety by reducing
collisions, while increasing the intersection throughput. This
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is an interconnected and layered approach considering both
coalitional and non-cooperative games. In the first layer,
we propose a platoon formation game at the boundary of
the intersection that groups vehicles in forms of platoons
and schedules them to pass the intersection in order to
maximize the throughput and traffic transient smoothness.
In the second layer, a strategic game at the interior is
proposed that runs in realtime to avoid collisions inside the
intersection. Our proposed game-in-game framework finds
equilibrium solutions for intersection traffic management.
Related Work. Transportation systems are experiencing a
paradigm shift with the emergence of connected and au-
tonomous vehicles and more intelligent infrastructures. This
paradigm is gaining traction after extensive research on intel-
ligent transportation systems and electric vehicles (e.g., [2],
[3], [4]). Several research efforts have focused on intersection
control management using machine learning [5] and opti-
mization methods [6]. For a survey, the reader is referred
to [1]. These methods are the common mathematical tools
to study centralized and decentralized systems, but they do
not consider the possibility of interactions among system’s
elements. The common mathematical tool to study complex
interactions among elements of systems is game theory.

Game theory provides an analytical framework to study
conflicts and/or cooperations of systems’ elements as intel-
ligent decision makers. In the past few years, researchers
mainly have used game theory models to adjust the traffic
light durations in order to improve the intersection through-
put [7], [8], [9]. Khanjary [7] modeled a single intersection
with Cournot’s oligopoly game to adjust the duration of
red and green lights, where the payoff is calculated by the
number of passed vehicles. Elhenawy et al. [8] proposed a 2-
player game to model two conflicting drivers. However, their
approach is a small-scale game that cannot be applicable to
a busy traffic intersection. To the best of our knowledge, this
is the first study that designs a game-in-game framework to
regulate an intersection with connected vehicles.
Organization. The rest of the paper is organized as follows.
In Section II, we describe the system model. In Section III,
we describe our hierarchical game-in-game approach for
regulating intersections. In Section IV, we evaluate the game-
in-game approach by extensive experiments. In Section V,
we summarize our results and present possible directions for
future research.

II. PROBLEM STATEMENT

An intersection consists of two parts: a boundary zone
and an interior zone (Figure 1). The region at the center of



Fig. 1: A general 4-way intersection and possible conflicts

the intersection is called an interior zone and has a length
of L. This is the area of potential collisions of vehicles.
The intersection has a control zone, called boundary of an
intersection, where CAVs can communicate with each other
and the infrastructure. The distance between the entry of the
boundary zone and the entry of the interior zone is B. We
consider a set of CAVs, C = {c1, c2, ..., ci, ..., cN}, in an
intersection. Our objective is to maximize the intersection
throughput by coordinating the CAVs to cross the intersec-
tion without any collisions.

Signalization is one of the main intersection traffic man-
agement approaches for safe and efficient movement of
traffic, where it assigns the right-of-way to one set of
non-conflicting traffic movements at a time, forcing all
movements in conflict with the active traffic movements to
stop. Figure 1 shows a general four-way intersection and
possible traffic conflicts. Note that right turning movements
are always compatible and are eliminated in this represen-
tation. We abstract the intersection into a compatible graph
representation G(L, E) shown in Figure 2, where vertices
are lanes L and edges E represent their compatibility. We
define the following terms:

Definition 1 (Compatible Lanes): A group of lanes not
conflicting one another. For example, lane a and lane b are
a pair of compatible lanes.

Definition 2 (Traffic Stream Rate (ri)): The average
number of CAVs passing lane i ∈ L at each time unit. For
example, ra = 5 means 5 CAVs pass lane a in each time
unit (e.g., 1 min). We assume ri > 0 for all lanes.

Definition 3 (Platoon Stream Rate (rP)): The
summation of the traffic stream rates of a set of lanes
in P. For example, given a set of lanes P = {a, b, d} and
stream rates of ra = 5, rb = 8, rd = 5, the platoon stream
rate is rP = 18.

Definition 4 (Throughput Threshold (τ )): The
maximum number of vehicles that can go through the
intersection during a time unit considering the lane conflicts.
This number has a limit due to the capacity restriction of
the intersection infrastructure.

Fig. 2: Graph of traffic-compatible lanes

There are two measurements for the system’s performance:
safety and throughput, that are defined in Section IV.

III. HIERARCHICAL GAME-IN-GAME FRAMEWORK

In this section, we model and formulate the intersection
management for CAVs as a novel hierarchical game-in-game
framework, and we describe our proposed games. We find
equilibrium solutions of our proposed games for intersection
traffic management.

Our proposed game-in-game framework aims to regulate
a normal 4-way intersection with CAVs, specifically by
sending virtual light signals to each CAV. The virtual lights
signal includes stop, move forward, and speed change. All
CAVs communicate with a central controller inside the
intersection, and they follow the virtual signals sent by
the central controller. We propose a coalitional game for
CAVs in the boundary (platoon formation game) in order to
maximize traffic transient smoothness and throughput. CAVs
in a platoon work cooperatively for speed harmonization
while keeping safe distances among themselves. We propose
a strategic game for CAVs in the interior to avoid accidents.
As an independent decision maker, each CAV will observe
other vehicles around itself and will obtain data in real-time
for the immediate future trajectories (e.g., adjusting speed).

A. Platoon Formation Game at Boundary

We now introduce the platoon formation game at the
boundary as a coalitional graph game in partition form.
Coalitional game theory studies the interactions between
groups of players, where they can cooperate and form
alliances, while ultimately trying to maximize utility. We
define the platoon formation game as follows:

Definition 5 (Platoon Formation Game at Boundary):
It is a 3-tuple BG(L, G, f), where L is the set of
lanes, G(L, E) is their compatible graph, and f is the
characteristic function defined on any coalition P ⊆ L, such
that f : P→ R+ and f(∅) = 0.

We define a coalition or a platoon as a subset of vehicles
in the lanes. If all lanes form a coalition, we call it the
grand coalition. We define the characteristic function of a
coalition P as follows:

f(P) =

{
0 if |P| = 0 or any lanes in P conflict,
rP if |P| > 0 and all non-conflicting

(1)

The platoon formation game studies how to form platoons
of CAVs considering lane conflicts. The platoon formation
game should satisfy two main properties, fairness and sta-
bility. The core (the most popular solution concept of a



Algorithm 1 Platoon Structure Formation Algorithm (PSFA)

1: Input: BG(L, G, f), τ
2: PS = ∅ /*initial set of the platoon structure*/
3: Ḡ = G /*the compatibility graph*/
4: repeat
5: Q← ∅ /*create an empty queue*/
6: for all i ∈ L belong to Ḡ do
7: Ki = {i} (i.e., i ∈ group Ki)
8: f(Ki) = f({i}) = ri /*initialization*/
9: add i to Q /*unvisited vertices*/

10: P = ∅ /*initial platoon*/
11: while Q is not empty do
12: Find i in Q with maximum f(Ki)
13: remove i from Q
14: if f(Ki) ≤ τ then
15: P← P ∪ i
16: f(P)+ = f({i})
17: for all neighbor j ∈ Q of i (ij ∈ E) do
18: if f(Kj) < f({j}) + f(P) then
19: Kj = Kj ∪ P
20: f(Kj) = f({j}) + f(P)
21: PS = PS ∪ P
22: update Ḡ by removing P from Ḡ
23: until all vertices are assigned to platoons in PS
24: output: PS

coalitional game) of the platoon formation game is empty
due to the lane conflicts and the capacity restriction of the
intersection. As a result, the grand coalition is not stable and
does not form, leading to the formation of independent and
disjoint coalitions.

Definition 6 (Platoon structure): A platoon structure
PS = {P1,P2, . . . ,Ph} is a partitioning of L such that each
lane is a member of exactly one coalition, i.e., Pi ∩ Pj = ∅
for all i and j, where i 6= j and

⋃
Pi∈PS Pi = L.

We denote by Π the set of all platoon structures. In the next
subsection, we present our proposed algorithm for forming
a stable platoon structure, and we investigate its properties.

B. Platoon Structure Formation Algorithm

We propose a Platoon Structure Formation Algorithm
(PSFA) to form a stable platoon structure for the proposed
game. The proposed algorithm maximizes the throughput of
the intersection considering the capacity of the intersection
and avoiding accidents. In doing so, the algorithm forms
independent and disjoint platoons of CAVs maximizing the
platoon stream rates of the formed platoons considering
the throughput threshold constraint. Our proposed algorithm,
PSFA, is given in Algorithm 1. The algorithm receives
the compatible graph of an intersection and the throughput
threshold as the inputs. The algorithm finds a vertex i with
the highest traffic stream rate and marks all the other vertices
as unvisited. This vertex i is the first member of a platoon P1.
Then, the algorithm iteratively explores the neighbors of
the current vertex and calculates the platoon stream rates
considering if the neighbor vertex of any vertex in P1 joins
the platoon. The group of vertices whose platoon stream rate
is mostly closed to the threshold form the final platoon P1,
and they are removed from the compatible graph for the

TABLE I: Coalition Formation Baseline

compatible combination baseline throughputs

baseline-1
f

e

g

h

d

a

c

b

{a, b}
{c, d}
{e, f}
{g, h}

{13, 7, 6, 11}

baseline-2
f

e

g

h

d

a

c

b

{a, d}
{h, e}
{c, f}
{g, b}

{10, 10, 6, 11}

baseline-3
f

e

g

h

d

a

c

b

{a, e}
{h, d}
{c, f}
{g, b}

{7, 13, 6, 11}

baseline-4
f

e

g

h

d

a

c

b

{a, e}
{h, d}
{c, g}
{f, b}

{7, 13, 5, 12}

baseline-5
f

e

g

h

d

a

c

b

{h, e}
{a, d}
{b, f}
{g, c}

{10, 10, 12, 5}

next iteration to find P2. After all iterations are explored,
the platoon structure PS = {P1,P2, . . . ,Ph} is the output
of the algorithm.

For example, consider an intersection shown in Figure 1
with the traffic stream rate for each lane listed in an al-
phabetic order as: {5, 8, 2, 5, 2, 4, 3, 8}. The formed platoon
structure consists of P1 = {c, d, h}, P2 = {a, b, e} and
P3 = {f, g}.

Notice that the platoon formulation game aims at max-
imizing the platoon stream rates in order to increase the
throughput of the intersection. However, the formed platoon
structure may have platoons with conflicting lanes. For
example, in P1, lane h and lane c conflict. We define a
strategic game in Section IV.D that coordinates the CAVs
in a platoon by solving the conflicts inside each platoon.

A baseline for the throughput maximization problem is to
form all compatible groups without any conflicts and find
a group with the highest throughput. For the intersection in
Figure 1, there are 5 possible compatible groups formation to
consider (shown in the first column of Table I). To show the
efficiency of platoon formation using PSFA, we will compare
its performance with these baselines.

C. Intersection Management

For all the formed platoons in PS , we need to find their
time intervals to manage the intersection. The time interval
of a platoon is a duration for a virtual green light that CAVs
of that platoon are allowed to pass the intersection. For a
platoon P ∈ PS, its time interval is denoted by xP. We
define W as an upper bound on the summation of the interval
durations, representing the traffic signal cycle. Each interval’s
duration is also bounded to be within a range [bl, bh].



To maximize the throughput of the intersection across all
intervals, while satisfying the above mentioned constrains,
we formulate the problem as a Linear Optimization Program
as follows:

Maximize
∑
P∈PS

rPxP

s.t.
∑
P∈PS

xP ≤W

bl ≤ xP ≤ bh, ∀P ∈ PS

(2)

where xP is a decision variable. The number of CAVs passing
the intersection during an interval xP is NP = rPxP, and the
number of CAVs passing the intersection from lane i ∈ P is
Ni = rixP.

D. CAVs Strategic Game at Interior

We depict all lanes’ trajectories inside the intersection
(shown in Figure 1), and the crossing points of trajectories
are hot spots for potential accidents. Notice that each trajec-
tory only crosscuts one another at each time, thus we only
consider the crash between two vehicles. To avoid possible
accidents, we formulate a 2-player strategic game, where
each pair of CAVs adjusts their speeds once a potential
accident predicted according to the sensory observation and
prediction. A detector runs on each CAV in real-time and is
responsible for observing nearby connected vehicles, predict-
ing the possible accident, and triggering the strategic games.

We propose a strategic game at interior IG =
〈C, (Ui)i∈C, (si)i∈C〉, where C is the player set such that
C = [C]2 = {{i, j}|ci, cj ∈ C, ci 6= cj} for a 2-player
game, Ui is the utility function (payoff) of CAV i ∈ C, and
si is the strategy (speed assignment) of CAV i. Each CAV
is able to change its speed with a constant value, denoted
by δ, at any time. For CAV i with speed v at time t, its
set of strategies is defined as Sti =

{
v−it , vit, v

+
it

}
, where

v−it = vit − δ and v+it = vit + δ. We define Si as the set
of feasible strategies (i.e., the strategy space) of CAV i.
In addition, s = (si, sj) ∈ S is a strategy profile (list of
strategies for each CAV), where S = Si × Sj .

When CAV i chooses a strategy, then the CAV obtains a
payoff Ui(s). The payoff depends on the strategy profile cho-
sen (i.e., on the strategy chosen by CAV i and the strategies
chosen by all the other players). More specifically, the utility
(payoff) of CAVs is impacted by the possibility of accident,
change in travel time, and cost of speed change. After an
accident is predicted, if CAVs choose any strategies and an
accident still can happen, those CAVs will be charged ∞
(Ui = ∞). When a CAV chooses to decelerate, it also
forces others CAVs behind that to slow down and can lead to
increase in the total traffic time, and thus it may negatively
impact the utility of that CAV. We will analyzing the payoff
functions of the CAVs participating in our proposed Strategic
Game at Interior in the next subsection.

We use the Nash Equilibrium as the solution concept of
our proposed game. A strategy profile s∗ ∈ S is a Nash
equilibrium if no unilateral deviation in strategy by any CAV

Fig. 3: Scenario 1: Predicted accident on the same lane

is profitable for that CAV:

Ui(s
∗
i , s
∗
−i) ≥ Ui(si, s∗−i) ∀i, si ∈ Si (3)

where s−i is a strategy profile of all players except for CAV i.
Our proposed game IG has a Nash Equilibrium following
Theorem 1.

Theorem 1 (Nash Equilibrium Existence): If C is finite
and Si is finite for every CAV i, then our proposed strategic
game IG = 〈C, (Ui)i∈C, (si)i∈C〉 has at least one Nash
Equilibrium.

If there are multiple Nash Equilibria, we select the one
with the maximum sum of the payoffs as the solution of the
game. The final solution of the game is the Nash Equilib-
rium (s̃∗1, · · · , s̃∗C) = arg max

∑
i∈C Ui(s

∗
i , s
∗
−i), where s̃∗i is

the final strategy for CAV i.
The new speeds of the CAVs are based on the final

strategies corresponding to a Nash Equilibrium.

E. Analyzing the Strategic Game at Interior

Now, we analyze the game considering an accident has
been predicted. An accident can be caused by i) CAVs on
the same lane, and ii) CAVs on two conflicting lanes. In each
scenario, we will define the payoff function of the CAVs and
will present the Nash Equilibrium of the game.
Scenario 1: Predicted accident on the same lane: An acci-
dent between two CAVs on the same lane is predicted
to happen if the front CAV decelerates or the back CAV
accelerates. Figure 3 shows this scenario, where CAVs A
and B are the two participants in a predicted accident (either
A decelerated or B accelerated or both). We simply represent
each CAV’s strategies as {v−, v, v+}. Based on the predicted
accident, CAVs A and B can choose different strategies as
follows:
• CAV A speeds up. CAV B can choose to not change

its speed or to slow down. The problem is that if A
increases its speed, it possibly causes another accident
with CAV C, which is in front of CAV A. As a result,
we measure when such an accident can happen (between
A and C). The sooner they will crash, the worse the
payoff will return to CAV A.

• CAV A slows down or does not change its speed. If B
slows down, all other vehicles may need to slow down
consequently because of the platoon speed harmoniza-
tion. If B does not change speed, then A and B will
have an accident based on the item above, and this is
reflected in the payoff function.

Now we describe these cases in detail.
CAV A accelerates. If A chooses to speed up, it may cause
an accident with its front CAV C. As a result, this needs
to be reflected in the payoff function. The distance between



TABLE II: Payoff Table of the Strategic Game (Scenario 1)

CAV B

v−B vB v+B

CAV A
v−A −∞,−∞ −∞,−∞ −∞,−∞
vA 0,− 5

6
−∞,−∞ −∞,−∞

v+A −5, − 5
6

−5, 0 −∞,−∞

CAVs A and C is dCA, and their current speeds are vA
and vC . CAV A increases its speed to v+A at time t and CAV
C’s speed is vC :

If v+A ≤ vC , then CAV A receives a payoff of ∞ since
no accident will be caused while traveling time will also
decrease.

If v+A > vC , a crash is predicted to happen in time t+ tp,
where tp is calculated as:

tpA =
dCA

v+A − vC
(4)

CAV A is penalized for the future crash with CAV C, and
its payoff is calculated as:

UA(v+A) = − H

tpA + ε
(5)

where H is a constant cost and ε is a tuning parameter. If
the accident would happen at the moment (i.e., tpA = 0),
the payoff is −∞, while the payoff increases with a later
accident time (i.e., higher values of tpA).
CAV A does not change its speed. If A chooses to not
change its speed, we need to analyze CAV B’s choices.
When CAV B chooses to slow down, other vehicles be-
hind B whose speeds are higher then v−B may need to
decrease their speeds in order to avoid future accidents.
Therefore, the payoff is calculated based on the average time
delay on passing the intersection using the following:

UB(v−B) =
L

vB
− L

v−B
(6)

where the L is the length of the interior of the intersection.
Note that the length of the turning trajectories are very close
to the length of the straight trajectories.

Considering a situation as an example, where vB = 3,
vA = 2, vC = 2 and the speed of all CAVs following B is
2. The distances between CAVs C, A, and B are dCA = 2
and dAB = 1. Having L = 5, δ = 1, ε = 0, and H = 10,
the payoff table of the game between CAVs A and B
is shown in Table II. The game has two Nash Equilibria
(NE), (vA, v

−
B) and (v+A , vB) with the total payoffs of − 5

6
and −5, respectively. Therefore, the final solution of the
game is (vA, v

−
B), which shows the new speeds of the CAVs

to avoid an accident.
Scenario 2: Predicted accident on the conflicting lanes:
Figure 4 shows this scenario, where CAVs A and D are
predicted to crash shortly and considered as the players.
The predicted crash point is labeled as I . If both CAVs
choose to change their speeds (v+A = v+D or v−A = v−D) and
the accident is still predicted to happen, their payoffs are

AB C

D

F

E

dDI

dAI

I

Fig. 4: Scenario 2: Predicted accident on two crossing lanes

set to −∞. Considering any pair of conflicting CAVs i
and j ∈ {A,B, . . . , F}, the payoffs are calculated as
follows:

Ui(v
+
i ) =

− H
tp+ε

vi 6= vj

−∞ vi = vj
(7)

Ui(v
−
i ) =


L
vi
− L

v−i
vi 6= vj

−∞ vi = vj
(8)

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We build a 4-way intersection simulator considering the
intersection layout presented in Figure 1. The intersection’s
size is 25meter × 25meter. Each vehicle’s size is 2meter ×
5meter, and the safety distance between two vehicles is
≥ 0.5 meters. Following [10], we classify traffic condi-
tions by traffic stream rates: light traffic, heavy traffic, and
jam traffic. If the average jam density is 150 vehicles per
lane per kilometer (≈ 240 vehicles/lane/mile) [10], and
the average speed is assumed to be 45km/h(≈ 30mph),
then the stream rate is ≈ 20 vehicles per lane per 10
seconds accordingly. With the average speed of 30mph, the
stream rates (vehicles/lane/10 sec) for three conditions (light,
heavy, and jam) are [1,10], [10,15], and [15,25], respectively,
considering their densities [60,120], [120,180], [180,300]
(vehicles/lane/mile). Each CAV arrives to the boundary with
a speed, uniformly distributed between 20mph-50mph. We
set the throughput threshold to 50 vehicles/10 sec for all
lanes. Finally, the traffic light’s cycle is 120 seconds.

B. Analysis of Results

We conduct 10 independent experiments and 20 traffic
rounds in each experiment. The system’s performance is
measured by 1) the average throughput in each traffic round;
and 2) the ratio of the number of actual accidents to the total
number of predicted accidents (without using our proposed
strategic game). The throughout is the total number of vehi-
cles passing the intersection safely. We compared the PSFA’s
performance with the baselines 1-5 presented in Table I at
the boundary. PSFA and the baselines are implemented along
with the CAV Strategic Game at the interior to minimize the
number of accidents at the intersection. We selected the top
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1 2 3 4 5 6 7 8 9 10

Experiment
100

200

300

400

500

600

700

Av
er

ag
e 

nu
m

be
r o

f C
AV

s baseline-2
baseline-5
PSFA
with traffic light

(b) Heavy Traffic: Throughput

1 2 3 4 5 6 7 8 9 10

Experiment
100

200

300

400

500

600

700

Av
er

ag
e 

nu
m

be
r o

f C
AV

s baseline-4
baseline-5
PSFA
with traffic light

(c) Jam Traffic: Throughput
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Fig. 5: Comparison between throughput and accident under light, heavy and jam traffic conditions

two baselines in terms of performance to compare with the
PSFA. The results are shown in Figure 5. We also presented
the results of current practice, which uses only traffic light
signals (called: with traffic light).

Using PSFA, the performance is dramatically improved
compared with that of the baselines and with the traffic light
only. The throughput with traffic light signal is marginally
increased by the baselines. However, there is a signifi-
cant improvement when using our game-in-game framework
(PSFA). Under the light traffic condition, the throughput
increases over 2.4 times as shown in Figure 5a (from ≈ 180
CAVs/lane/round to ≈ 430 CAVs/lane/round). Under the
heavy traffic condition, the increase in throughput reaches
to ≈ 1.43 times as shown in Figure 5b. Even under the jam
condition, there are still over 20 vehicles able to go through
the intersection at each traffic round (Figure 5c).

Figures 5d-5f show that the accident ratio of PSFA is
always lower than that of the baselines. This ratio is below
0.15% for PSFA under light and heavy conditions and lower
than 0.38% under jam condition. The results show that
using our proposed game-in-game framework, 99% of the
accidents can be avoided without the existence of a traffic
light.

V. CONCLUSION

In this paper, we proposed a hierarchical game-in-game
framework to regulate signal-free intersections for CAVs.
We measured the intersection performance by the throughput
and ratio of accidents under three traffic conditions. The
results demonstrate that our proposed framework efficiently
improves the traffic safety, while significantly increases the
intersection throughput. For our future work, we plan to
investigate more complex situations, where a more than 2-

player strategic game needs to be defined.
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