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Abstract²Efficient representation of traffic networks, 

including congestion states, plays an important role in the 

effectiveness of routing algorithms incorporating Intelligent 

Transportation Systems (ITS) data. We employ an emerging 

FRQFHSW� LQ� DQDO\]LQJ� FRPSOH[� QHWZRUNV� FDOOHG� ³FRPPXQLW\�

structure detection´ to capture traffic network dynamics in the 

form of hierarchical community-based representations of road 

networks. A key strength of these community (structure) 

detection methods is their computational efficiency. We 

investigate the impact of traffic dynamics on the hierarchical 

community-based representations of large road networks. The 

resulting hierarchical community representations and their 

evolution over varying traffic conditions with time can aid the 

computational performance of real-time routing algorithms. 

We analyze the performance of hierarchical community 

detection methods on the metropolitan road networks of New 

York City, Detroit, and San Francisco Bay area.  

I. INTRODUCTION 

FFICIENT representation of traffic networks, including 

congestion states, plays an important role in the 

effectiveness of routing algorithms incorporating real-time 

Intelligent Transportation Systems (ITS) data. While road 

transportation network capacity is not growing fast enough 

to cope with increasing demand [1], the quickly expanding 

ITS coverage in the US can be a key enabler for reducing or 

controlling traffic congestion. The ITS coverage in the US 

and around the world provides valuable data about traffic 

network dynamics, and this requires routing algorithms to 

not only extract information from traffic data in real-time but 

also incorporate this information for a possible change in the 

optimal route and response in real-time. 

Current state-of-the-art dynamic routing algorithms are 

incapable of computing these updated directions in an 

acceptable time as the network size increases. This is 

particularly true for algorithms that attempt to account for 

the non-stationary aspects of traffic network dynamics 

(fluctuations in traffic speeds/densities over time and/or 

explicit treatment of congestion states). 
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Dynamic programming methods (both deterministic and 

stochastic) are prevalent in the literature and suffer from 

curse of dimensionality in dealing with the scale and 

complexity of transportation networks in urban areas and 

require unacceptable run times for computing routing 

policies and offering rerouting options once the vehicle is en 

route [2, 3]. Naïve policies that arbitrarily limit the degree of 

³ORRN� DKHDG´� WR� IHZ� OLQNV� DKHDG� RI� WKH� YHKLFOH� FDQ� RQ� WKH�

other hand lead to inferior performance (in reducing travel 

times and/or cost). 

Vast majority of the current literature still revolves around 

relatively small road networks or unrealistic assumptions 

and are yet to demonstrate any resemblance of a practical 

real-world algorithm that can support the realities of current 

day transportation network dynamics [4, 5]. Overcoming 

these challenges not only depends on effectiveness of 

routing algorithms but also on the efficient representation of 

traffic network in a timely fashion which leads to reducing 

the run time and improving the performance of routing 

algorithms.  

In this paper, to efficiently represent the road network and 

its traffic conditions, we employ an emerging concept in 

analyzing complex networks called community structure 

detection. We use this method to capture traffic network 

dynamics (congestion states) in the form of hierarchical 

community-based representations of road networks. While it 

has been shown that the community detection method is 

effective in path finding in static networks [6], there is no 

study on dynamic networks. In this study, we present the 

results for both static and dynamic road networks.  

We first explain structure of road networks in section II 

EDVHG� RQ� URDG¶V� IXQFWLRQDO� FODVV�� Section III proposes the 

application of community detection methods to road 

networks. Section IV presents experimental results from 

applying community detection algorithm to both static and 

dynamic road networks. Finally, section V offers some 

concluding remarks and directions for future research. 

II. NETWORK STRUCTURE BASED ON HIGHWAY 

FUNCTIONAL CLASSIFICATION SYSTEM 

Road networks commonly inherit a functional 

classification (e.g., arterial highways, collector roads, local 

URDGV«�� WKDW� FDQ� EH� HPSOR\HG�  for  hierarchical  

representation  of  the  network. 
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Fig. 1. Metro Detroit road network with 232,969 road arcs and 

168,806 cross-section nodes 

Functional classification (FC) groups streets and highways 

into classes based on the character of service they are 

intended to provide. The classification is rooted in the road 

network design and helps determine the speed category and 

travel time (cost) of passing through the road when there is 

no congestion. There are commonly five different FCs in 

road networks. For instance, FC1 roads are very long 

distance routes between major cities, which form a sparse 

higher level network. This higher level network essentially 

partitions the whole network into several sub-networks. 

Each FC extends the coverage of its preceding FC network 

(e.g., FC2 extends FC1). For the Metro Detroit road network 

shown in Fig. 1, we present the different FCs in Fig. 2. 

Using the functional classification of roads through a 

hierarchical search algorithm accelerates the routing process 

for the search algorithm exploits (whenever possible) the 

sparser and faster higher level roads between the closest 

entry and exit points given the origin and destination. This  

 

 

 
(a) Network limited to FC1           (b) Network limited to FC1 ± FC2  

 

  
(c) Network limited to FC1 ± FC3        (d) Network limited to FC1 ± FC4 

Fig. 2. Functional class hierarchy of Metro Detroit road 

network 

approach is commonly used in speeding up the routing 

algorithms for large road networks, and has proven to be 

effective [6-16].  

One of the weak points of hierarchical methods based on 

fixed FCs is that they prefer travel over higher level arcs 

(e.g., highways) without considering the congestion state at 

that level. Although the speed limit is higher at higher levels, 

and the optimal route might pass through higher levels when 

there is no congestion at those levels, this route may not 

necessarily be optimal under recurrent (rush hours) or non-

recurrent (accident) congestion. Therefore, incorporating just 

the fixed topology of road networks and its functional 

classes might not always be adequate for efficient 

hierarchical routing.  

To address the above-mentioned challenges, we use a 

community detection algorithm, in particular, the /RXYDLQ¶V�

method [17] for the hierarchical representation of road 

networks with consideration for network congestion status. 

Community detection methods for directed networks 

consider the weight of each arc (cost of traversing the arc) 

for extracting the hierarchical structure. In the next section, 

we first explain the basic principles behind community 

detection methods. 

III. COMMUNITY-BASED REPRESENTATION OF 

ROAD NETWORKS  

Complex networks have attracted a great deal of attention 

across many fields of science [18-20]. A recently proposed 

concept in analyzing complex networks is their ³FRPPXQLW\�

VWUXFWXUH´ [21, 22]. Many networks can be decomposed into 

communities such that the densely connected subsets of 

nodes form communities with only sparser connections 

between them. A wide variety of methods have been lately 

developed for detecting communities in networks (see [23] 

for a recent review).  

Road networks are commonly represented by directed 

graphs where streets form the arcs and intersections are 

considered as nodes. To capture the dynamics of road 

networks, travel time or congestion state of each arc can be 

considered as the arc ³weight´. Meaning, a road segment 

with a low weight generally indicates that traffic flows freely 

through that arc segment, and if selected for travel, leads to a 

lower overall travel time. Then, community detection 

methods can be employed to decompose the road network 

(with arc weights) to effectively represent the network 

structure and connectivity. To date, there DUHQ¶W� any 

comprehensive studies to show the effectiveness of these 

methods for traffic road networks. In particular, we 

investigate the ability of community detection methods to 

represent the traffic dynamics of road networks. This is 

being done with the hope that the resulting community 

structure will aid the development and execution 

performance of routing algorithms. The rationale being that 

by applying community detection on a road network, it is 

decomposed into communities, such that, adjacent 

communities are connected by the inter-community arcs. 
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Therefore, for routing sort of applications, the shortest path 

between any pair of nodes in different communities should 

generally involve traversing one of these inter-community 

arcs [21]. As a result, detecting such arcs can be used to 

accelerate the route computation process, which justifies the 

detection of communities in road networks. 

To model a road network in the form of communities, we 

use a graph representation of the road network. We consider 

a graph )k8á  #á9o as a directed graph where 8 is a set of 

nodes representing road intersections, #   is a set of arcs 

representing roads, and 9 is a set of arc weights 

representing travel time of passing through that arc. 

Community detection methods partition the graph into 

disjoint communities (subgraphs). If ) is partitioned into J 

communities %ãk8ã á  #ãá  9ãoá L L s åJ, these communities 

have the following properties: 

    J� 8ã
á
ã@5 L 8

� #ã
á
ã@5 C #

     (1) 

ÊLá Má8ã � ê 8ä L Î�á#ã ê #ä L Îá s Q Lá M Q Já�����L M M 

such that the union of all nodes in all communities is 8.  

In each community %ã, a subset of #,  #ã, connects its 

nodes, 8ã. In addition to these arcs, #��� #ã
á
ã@5  is a subset 

of arcs representing the inter-community arcs, which 

connect pairs of communities.  

To partition the graph into communities, a modularity 

measure was first introduced in [21]. This measure gives a 

value, 3, between -1 and 1 for a partition based on the 

density of arcs inside communities in comparison with the 

density of arcs between communities. A higher value of 3 

indicates a better partitioning of the network. In the case of 

weighted networks, the modularity measure is defined as in 

in Eq. (2): 

3 L 5

6à
Ã >9ÜÝ F  

ÞÔÞÕ

6à
?Ü:%Ü  á%Ý;ÜáÝ   (2) 

Ük%Ü á%Ýo L Jsá�����%Ü  L %Ý

rá�RWKHUZLVH
    (3) 

I L 5

6
Ã 9ÜÝÜáÝ     (4) 

where 9ÜÝ represents the weight of the arc between E and F, 

GÜ is the sum of the weights of the arcs attached to vertex E, 

%Ü is the community to which vertex E Ð 8 is assigned.  

As explained in Section II, road networks have a valuable 

characteristic, which is their hierarchical structure. However, 

as stated earlier, the fixed hierarchal representation of road 

networks based on their fixed topology / functional classes 

may not always be efficient. This is the case when dynamics 

of traffic networks change over time (e.g., due to recurrent 

or non-recurrent congestion). Building a hierarchy from a 

representation that considers the traffic dynamics would be 

more efficient. Since, traffic dynamics are considered in the 

community representation of road networks, a hierarchical 

structure can be built based on that. Therefore, the detected 

communities in a road network can be an input to another 

iteration of community detection, which extracts a 

hierarchical representation of the road network.  

Recently, fast algorithms are proposed to detect 

hierarchical community structure in networks [17, 24]. In 

these approaches, each hierarchy forms a directed graph in 

itself with fewer arcs and nodes as we go up the levels. 

These higher levels are abstractions of their lower levels 

graphs.  
  

We adapt a hierarchical community detection method, 

/RXYDLQ¶V� PHWKRG� [17], for constructing hierarchical 

representation of the road network based on the congestion 

status. This method not only extracts a hierarchical 

community structure, but exhibits excellent computational 

performance even for large-scale directed networks. The 

/RXYDLQ¶V�PHWKRG is a heuristic method based on the gain in 

modularity, Â3, by adding (removing) a vertex E into (from) 

a community % in each iteration of their proposed 

method.�Â3 is defined as follows:  

Â3 L dÃ ÐÕÖ>6Ã ÐÔÕÕÐ´ÕáÖÐ´

6à
F @Ã ÐÕÖ>ÞÔÕÐ´áÖ�Ñ´

6à
A6h F

dÃ ÐÕÖÕáÖÐ´

6à
F @Ã ÐÕÖÕÐ´áÖ�Ñ´

6à
A6 F @ ÞÔ

6à
A6h (5) 

where Ã 9ÝÞÝáÞÐ¼  is the sum of the weights of the arcs inside 

%, Ã 9ÝÞÝÐ¼áÞ�Ñ¼  is the sum of the weights of the arcs 

incident to vertices in %, and Ã 9ÜÝÝÐ¼  is the sum of the 

weights of the arcs from E to vertices in %ä�  

    In the next section, we analyze the performance of this 

method for both static and dynamic road networks. 

IV. EXPERIMENTAL RESULTS 

In this Section, we first evaluate the performance of 

/RXYDLQ¶V� PHWKRG, a hierarchical community detection 

method, in static road networks. Then, we analyze the 

effects of traffic network dynamics on the detected 

hierarchical communities. We conduct all of our 

experiments in C++. Experiments are conducted on an Intel 

2.53 GHz Dual Core processor with 3G RAM Linux 

Platform (Fedora). 

A. Static Road Networks 

:H�VKRZ�WKH�SHUIRUPDQFH�RI�WKH�DGDSWHG�/RXYDLQ¶V�PHWKRG�

for community structure detection in static road networks 

with a numerical study carried out on the metropolitan road 

networks of Detroit, New York City and San Francisco Bay 

area. We use two different datasets; the first dataset is a real 

road network of Metro Detroit provided by NAVTEQ [25]. 

This data consists of recently collected road network 

features such as coordinates of all intersections, speed limits, 

etc. The second dataset is from the Center for Discrete 

Mathematics and  Theoretical Computer Science (DIMACS)  

of Rutgers, New Jersey [26]. It includes coordinates of all  
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Table 1 Properties of sample city road networks 
 # of nodes # of arcs 

New York 264,346 733,846 

San Francisco 321,270 800,172 

Metro Detroit 168,806 232,969 

 

Table 2 Number of communities in each level revealed by the 

community detection algorithm 

 New York San Francisco Metro Detroit 

Level 0 264,347 321,271 168,806 

Level 1 79,261 93,100 67,136 

Level 2 18,968 23,104 21,508 

Level 3 4,007 5,085 5,833 

Level 4 952 1244 1,453 

Level 5 438 672 457 

Level 6 - - 368 

 

intersections, the distance graph, and the travel time graph of 

the U.S. road network. 

Table 1 shows the number of nodes and arcs of all three 

road networks. Table 2 reports the number of communities 

identified in each level of the hierarchy using the 

hierarchical community detection algorithm. The algorithm 

extracted the same number of hierarchy levels in New York 

and San Francisco while it extracted one more level for 

Metro Detroit. This is due to the fact that Metro Detroit has a 

somewhat sparser network with respect to the other two 

networks. In the first level (level 0), each community 

contains just one node. As the level increases in the 

hierarchy, more nodes are merged to construct each 

community. Therefore, there   are fewer communities at the 

higher levels. For instance, the Metro Detroit network is 

represented by only 368 communities in the top level (Level 

6) of its hierarchy. 

This representation can be exploited by hierarchical 

search strategies in routing algorithms such that they do not 

need to equally explore the whole network to find the 

optimal path. That is, the routing algorithms just need to 

consider only the relevant communities and the inter-

community arcs (and ignore the rest of the network), hence, 

leading to reduced routing computational burden.  

In our experiments, the hierarchical community detection 

algorithm finds the hierarchical communities in less than one 

second for the studied road networks. This fast execution 

time enables us to capture changes in the structure of the 

communities with change in the road network dynamics, for 

example, due to varying traffic congestion patterns over 

time. In the next subsection, we analyze the effects of traffic 

network dynamics on the detected hierarchical communities.  

B. Dynamic Road Networks 

We perform here a set of experiments to investigate the 

effects of traffic network dynamics (congestion states) on 

community-based representations of large road networks. 

We use real road network data from Metro Detroit provided 

by NAVTEQ [25] to drive our experiments. This data 

consists of recently collected road network features 

including all arcs (232,969), and all nodes (168,806), speed 

limits of road segments, etc. Using this data, we obtain the 

travel time of passing through each arc when there is no 

congestion by dividing the distance with the speed limit. The 

captured travel time is static. That means, it does not include 

the impact of varying traffic dynamics by time of day on 

travel time. Unfortunately, we did not have access to real-

time ITS arc travel times for whole of Metro Detroit. Many 

transportation studies in the literature [8],[27], employed 

artificially generated time-dependent costs for analysis. In 

this work, we too generated time-dependent costs based on 

the same model for Metro Detroit road network, as described 

in our previous work [28] .  

We generate six distinct congestion state graphs to capture 

different levels of congestion severity in the network.  

In each case, we divide the speed of traffic going through 

a fraction of the arcs by a randomly generated value between 

[1.5, 3]. For example, in congestion state graph #1, 5% of all 

arcs (randomly selected) are forced to experience 

congestion; travel time of passing through these arcs is now 

PRUH�WKDQ�WKH�³EDVH´�VFHQDULR�ZKHUH�WKHUH�LV�QR�FRQJHVWLRQ��

State 2, 3, 4, 5, and 6 correspond to cases where 10%, 15%, 

20%, 25%, and 30% of the arcs experience congestion, 

respectively. Congestion states represent situations such as 

rush hours, accidents, bad weather conditions, and special 

events (games), which influence traffic patterns.   

Note that the number of communities and number of inter-

community arcs play an important role in the efficiency of 

routing algorithms. This is due to the fact that the 

performance of the routing algorithms depends on the 

number of nodes searched by the algorithms. One can reduce 

the state space  by not covering  undesirable nodes through a  

 

Table 3 Effects of changes in congestion states on number of 

communities 
 Base State 1 State 2 State 3 State 4 State 5 State 6 

Level 0 168806 168806 168806 168806 168806 168806 168806 

Level 1 67137 66248 65444 64441 63331 62414 61211 

Level 2 21509 20661 19952 19284 18567 17999 17684 

Level 3 5834 5448 5116 4923 4740 4543 4467 

Level 4 1454 1301 1250 1235 1129 1138 1120 

Level 5 458 437 471 479 493 520 569 

Level 6 369 387 430 445 469 508 557 

 

Table 4 Effects of changes in congestion states on number of 

inter-community arcs 

 Base State 1 State 2 State 3 State 4 State 5 State 6 

Level 0 232969 232969 232969 232969 232969 232969 232969 

Level 1 122181 121144 120299 119246 118069 117197 116004 

Level 2 53749 52465 51677 51042 50354 50214 50600 

Level 3 21181 20432 20169 20273 20555 20637 21043 

Level 4 8089 7722 7811 8142 8188 8413 8551 

Level 5 3758 3763 4038 4237 4595 4726 5061 

Level 6 3054 3328 3740 3956 4338 4566 4910 
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Fig. 3. Effect of changes in the inter-community arcs at the top 

level at different congestion states 

trip [2, 3, 29]. 

Table 3 shows the number of communities detected in 

each level of hierarchy under the different congestion states. 

It is clear from the table that the number of communities 

decreases in the lower levels of hierarchy with increasing 

network congestion severity. This is due to the fact that the 

gaps between speeds of arcs decreases, which leads to 

merging of some neighbor communities into larger 

communities. This happens in neighborhoods in which the 

congestion occurs.  

On the other hand, the number of communities increases in 

the higher levels of hierarchy with congestion severity. 

Merging communities in lower levels makes strong/dense 

communities in higher levels. These dense communities 

merge with fewer neighboring communities in those higher 

levels. Therefore, it leads to more communities in the top 

level as the severity of congestion goes up. Interestingly, this 

is true for all states of congestion in all levels of detected 

hierarchical communities. This shows that the community 

detection methods not only represent the road networks 

efficiently, but also capture traffic network dynamics 

effectively.  

Table 4 shows the number of inter-community arcs in 

each level of the hierarchy, for the different states of traffic 

congestion. The data pattern is consistent with the data 

pattern from Table 3. As we move up the congestion state 

(from State #1 to State #6), inter-connectivity arcs decrease 

at lower levels with a decrease in number of communities. 

We see the opposite trend at higher levels for there are more 

communities. 

Another approach to study the effects of traffic dynamics 

on the detected communities is to check to see how many 

inter-community arcs at the top level would change with 

increasing congestion. To do so, we compare the inter-

community arcs of each congestion state with the inter-

community arcs of the network without any congestion (base 

case) in the top level. The results (shown in Fig. 3) show that 

more than 50% of the inter-community arcs in the top level  

 
Fig. 4. Percentage of changes in the inter-community arcs at the 

top level at different congestion states 

 
Fig. 5. Number of top level inter-community arcs downgraded 

to lower levels due to congestion 

of the base network are not anymore the inter-community 

arcs in the top level of the networks with congestion. This is 

due to the fact that these inter-community arcs no longer 

play their previous function of connecting communities. 

They are either impacted by the decrease in the speed of 

traffic going through them or by empowering other arcs in 

their traffic mobility regarding changes in community 

structures. The precise percentage of these changes in the 

number of inter-community arcs in the top level is presented 

in Fig.  4. 

We show in Fig. 5 that the number of inter-community 

arcs affected by the decrease in their traffic speed is less than 

newly formed inter-community arcs under congestion. 

Although in state 1, only 5% of arcs are experiencing 

congestion, it leads to changes in the connectivity structure 

of communities which plays an important role in bringing 

new arcs to a higher level functionality.  

From the above results, we conclude that hierarchical 

community structure works to provide efficient 

representation of large-scale road networks with time-

varying arc weights. Also, efficiency of such representation 

is promising for developing hierarchical search strategies in 

dynamic routing algorithms using real-time ITS data.  
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V. CONCLUSION  

In this paper, we explained how an emerging concept in 

DQDO\]LQJ� FRPSOH[� QHWZRUNV� FDOOHG� ³FRPPXQLW\� structure 

GHWHFWLRQ´� FDQ� EH� XVHG� to efficiently represent traffic 

networks with time-varying arc weights. We also 

demonstrate the computational efficiency of these 

community detection methods for road networks. We then 

investigated the effects of traffic network dynamics on the 

detected hierarchical communities. The resulting 

hierarchical community representation and their evolution 

over varying traffic conditions with time can aid the 

computational performance of real-time routing algorithms. 

We plan to incorporate the achieved results from this study 

in developing real-time routing algorithms under ITS in our 

next study. 
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