

Abstract—Effective en route guidance for vehicles can play
an important role in alleviating the negative impacts of ever-
growing congestion. As network traffic conditions change due
to recurrent and non-recurrent congestion, the optimal route
can change, and updated directions should be given to the
driver in real-time. However, the task of exploiting real-time
traffic information for optimal routing is computat ionally
challenging. On the other hand, simplistic schemes (e.g.,
assuming constant speeds for different network arcs across all
hours of the day) lead only to poor travel time performance and
driver dissatisfaction. Hence, there is need for compact yet
effective representations of traffic network dynamics for
supporting routing algorithms. In this paper, we propose two
state space reduction approaches employing knowledge
discovery and data mining (KDD) methods and mathematical
programming (MP) to strike an effective balance between
accuracy and state space reduction (i.e., compactness). In doing
so, they exploit historical data from ITS systems. We
demonstrate the performance of the proposed approaches using
actual road network data from Southeast Michigan.

I. INTRODUCTION

HE primary concern in intelligent transportation
systems (ITS) is using real-time traffic information

while a vehicle is en route. Effective en route guidance for
vehicles can play an important role in alleviating the
negative impacts of ever-growing congestion. Real-time
traffic information can be used to develop effective re-
routing policies in order to avoid or reduce the impact of
congestion, promising reduced travel times as well as cost.
The cost of congestion has been growing rapidly in the US,
increasing from $63.1 billion in 2000 to $87.2 billion in
2007 [1]. While road transportation network capacity is not
growing fast enough to cope with increasing demand [1], the
quickly expanding ITS coverage in the US can be a key
enabler for reducing or controlling traffic congestion.

Not only can congestion be recurrent, which develops due
to high volume of traffic seen during peak commuting hours,
but it also can be non-recurrent due to such factors as
accidents, vehicle breakdowns, bad weather, work zones,

Manuscript received April 10, 2011.
M. M. Nejad, A. Taghavi, and R. B. Chinnam are with the Industrial and

Systems Engineering Department, Wayne State University, Detroit, MI
48202 USA (email: mahyar@wayne.edu (corresponding author);
taghavi@wayne.edu; r_chinnam@wayne.edu).

L. Mashayekhy is with the Computer Science Department, Wayne State
University, Detroit, MI 48202 USA (e-mail: mlena@wayne.edu).

lane closures, special events, etc. The location and severity
of non-recurrent congestion is unpredictable. Therefore,
getting informed about this type of congestion requires real-
time traffic information.

Real-time and historical traffic information can be
gathered from embedded sensors. These sensors in
transportation networks are hardware devices that can
continuously track speed, density, and other traffic
information of vehicles passing through each lane.
Embedded sensors provide a source of massive real-time and
historical traffic data that can support the development of
effective data mining algorithms to predict recurrent
congestion in the network by time of day.

In addition to recurrent congestion, two major factors
change the optimal route while a vehicle is en route:

• Non-recurrent congestion, which changes the state of
the network

• Changes in the driver’s route choice, e.g. avoiding
passing through high crime areas at night

With these potential changes in the optimal route, updated
directions should be given to the driver in real-time. To
obtain this updated direction, it is critical to have compact
yet reliable information about the “state of the network”,
while a vehicle is in-route [2, 3].

Current state-of-the-art dynamic routing algorithms are
incapable of computing these updated directions in an
acceptable time as the network size increases. This is
particularly true for algorithms that attempt to account for
the non-stationary and stochastic aspects of traffic network
dynamics (fluctuations in traffic speeds/densities over time
and/or explicit treatment of congestion states). Dynamic
programming methods (both deterministic and stochastic)
are prevalent and suffer from curse of dimensionality in
dealing with the scale and complexity of transportation
networks in urban areas and require unacceptable run times
for computing routing policies and offering rerouting options
once the vehicle is en route. Naïve policies that arbitrarily
limit the degree of “look ahead” to few links ahead of the
vehicle can on the other hand lead to inferior performance
(of reducing travel times and/or cost).

The state space can be quite large when the size of the
transportation network increases, and this makes all of the
above-mentioned challenges more complicated. Using
simplistic schemes such as adopting constant speeds for
different arcs across all hours of the day lead only to poor

State Space Reduction in Modeling Traffic Network Dynamics
for Dynamic Routing under ITS

Mahyar Movahed Nejad, Student Member, IEEE, Lena Mashayekhy, Student Member, IEEE,
Ali Taghavi, and Ratna Babu Chinnam

T

travel performance and driver dissatisfaction. On the other
hand, wanting to capture traffic dynamics of every arc at a
one minute resolution (being required/promoted by some
recent dynamic routing methods that rely on ITS data),
become extremely unwieldy when dealing with differences
in traffic dynamics across days of the week, weekends,
months, holidays, significant events, and uncontrollable
factors such as weather. What is necessary is a compact yet
effective representation of path and network state dynamics.

Vast majority of the current literature still revolves around
deterministic routing models and are yet to demonstrate any
resemblance of a practical real-world algorithm that can
support the realities of current day transportation network
dynamics. Overcoming these challenges mostly depends on
effectiveness of algorithms to both extract valuable
information from large scale transportation databases in a
timely fashion and reducing the run time performance of
effective routing algorithms [4].

A few studies have focused on reducing the “state space”
of routing algorithms by finding unnecessary nodes/links
and eliminating them. Kim et al. [4] proposed a two-step
procedure for state space reduction leading to improvements
in run time performance. In the first step, the procedure
eliminates redundant links that would not be traversed by
any optimal route. The second step uses a priori reduction on
the state space by deleting unnecessary links as the vehicle
passes through the network. In [5], a hierarchical routing
algorithm is proposed to reduce the state space using a
heuristic “node promotion” technique. This technique
reduces the number of route computations in hierarchical
routing algorithms and improves computational
performance. Song and Wang [6] applied graph-based
hierarchical community detection algorithms to retrieve a
road network structure. Moreover, they proposed a
hierarchical routing algorithm based on the graph model
which could compute optimal routes for between-
community node pairs on large-scale road networks.

Chen et al. [7] employed three data reduction algorithms
to cut down the computing time, decrease the memory space,
and speed up the train positioning. These algorithms provide
a simpler representation of the train tracks by extracting a
few data points from the large amount of GPS data points.
Chabini and Yadappanavar [8] proposed a bit-stream
representation for discrete-time dynamic data. They showed
its positive impacts on storage. However, their proposed
representation does not capture the behavior of the historical
traffic data. In [9], the sets of traffic data were organized into
four basic classes, and a classification algorithm was
proposed to assign these sets into their classes,
automatically. Jula et al. [10] used real-time and historical
data to predict travel times on a link. They developed
methodologies to estimate the arrival times at the nodes of a
stochastic and dynamic network. However, knowledge
discovery from traffic data and state space reduction by
extracting network dynamics and compacting the time
windows is still missing.

In this study, the authors focus on state space reduction in
modeling traffic network dynamics. Since real-time data
does not have information about look ahead dynamics of the
network, using historical traffic data along with analyzing
real-time traffic data can provide a practical prediction of the
behavior of the look ahead network dynamics. To this end,
we propose a Knowledge-Discovery and Data Mining
(KDD) approach and a Mathematical Programing (MP)
approach. We use the raw empirical real-time traffic data
from a road network in Southeast Michigan to demonstrate
the performance of the proposed methods. Throughout this
paper, we use the terms “link” and “arc” interchangeably.

The rest of the study is organized as follows. Section II
presents the proposed KDD approach. In section III, a
mathematical model is developed for the MP approach.
Experimental results and evaluation of both proposed
approaches are presented in section IV through a case study
on a Southeast Michigan road network. In section V,
conclusions and future research directions are discussed.

II. KNOWLEDGE DISCOVERY & DATA MINING APPROACH

ITS data (such as the traffic speed and number of vehicles
passing through the different links of the network) recorded
on an ongoing basis yields large databases suitable for
Knowledge Discovery & Data Mining (KDD). Given that
most ITS systems collect traffic data at one minute
resolution from their sensors, they yield for the entire
network 24×60 = 1,440 network traffic state observation
vectors each day. The size of the vector (for each minute) is
the number of sensors monitoring the different links of the
network. While there could be multiple sensors for each link
and they often record multiple pieces of information (speed,
density etc.), we aggregate the information from all sensors
monitoring a link and rely only on traffic speed information
throughout the rest of the paper (future work will try to
exploit other information being collected by the ITS).

This section proposes a KDD approach to cluster the
network traffic state vectors based on similarity. The KDD
involves data cleaning, data integration, data selection, data
transformation, data mining, pattern evaluation, and
knowledge presentation [11]. Throughout this paper, we use
link and arc interchangeably. In addition, unless explicitly
stated otherwise, the analysis is carried out by day of week
(holidays and special event days can be handled separately).
Meaning, we allow network traffic dynamics to change by
day of week (seasonal fluctuations can be handled by
regularly updating and limiting the learning datasets to
reasonable time spans surrounding the month(s) of interest).
The final output of the KDD approach is prediction of the
traffic speed for every link in the network, by day of week,
based on time windows derived from the clusters. There are
two phases to this approach. The goal in the first phase is to
identify the network links that experience congestion during
any part of the day. Given the broader objective of
developing a state space reduction method for routing
algorithms, we exclude these stable links from further

consideration during the second phase. The goal in the
second phase is to partition network traffic state vectors
(excluding the stable links) into distinct but contiguous time
partitions/windows, where the network traffic dynamics are
similar within a partition but are different across adjacent
partitions (two non-adjacent partitions can be part of the
same cluster). We explain these two phases in the following
subsections. The case study section presents the
preprocessing step and the results from experimental study
to evaluate the performance of the proposed KDD approach.

A. Phase-1: Identification of links experiencing
congestion

It is typical for some links in the network not to
experience any congestion during the day, yielding very
“stable” traffic speeds all through the day; while in other
links, congestion could occur during peak travel times and
such. We propose a clustering algorithm to identify the
stable links of the network.

The procedure involves applying a k-means clustering
algorithm to traffic data for each link over the course of the
day (e.g., Mondays). To find the appropriate number of
clusters (k), we rely on the finite mixture model proposed in
[12] for each link. Fig. 1 shows an illustrative example of
results from applying this procedure for traffic data from a
Monday for all 116 ITS links of the Southeast Michigan
network. The traffic data used for clustering comes from
several consecutive Mondays. While Fig. 1 (left) shows the
preprocessed links speeds (mph) for all links across the full
24 hours of this Monday, Fig. 1 (right) reports the
discretized clustered states for the same links after k-means
clustering. It is apparent from Fig. 1 (right) that a significant
number of the links do not experience more than a single
state. In fact, 60 out of 116 links have one state. For the links
with one cluster, their centroids show the steady speed for a
whole day.

The state space reduction method need not consider links
that are stable across the day. Hence, only links yielding
more than one cluster are considered for state space
reduction, the second phase of the KDD approach.

B. Phase 2: Segmentation of network traffic over the
course of the day into partitions with similar traffic states

As stated earlier, the goal here is to partition network
traffic state vectors (i.e., the one-minute network traffic state
columns of Fig. 1 (left) excluding the stable links) into
distinct but contiguous time partitions/windows, where the
network traffic dynamics are similar within a partition but
different across adjacent partitions (two non-adjacent
partitions can be part of the same cluster). To achieve this,
we once again employ the k-means clustering algorithm. The
data points for clustering are made up of columns from Fig.
1 (right) after excluding the stable links. To find the
appropriate number of clusters (k), we once again rely on the
finite mixture model proposed in [12]. Each cluster includes
similar network states with its representative centroid.

Fig. 1. Network traffic speeds (mph) for links from Southeast Michigan
spanning all 116 arcs and all 24 hours of a Monday (10/18/2010).
Left: Original preprocessed data. Right: Speeds after clustering.

Similar states consist of multiple time partitions/windows in
which dynamics of the network are relatively the same. A
centroid gives a deterministic prediction of speeds for all
links in the network in its time partition. As a result, instead
of having a database containing all 24×60 time windows for
the day, phase two reduces the state space in modeling
traffic network dynamics to k clustered states.

The output of phase two analysis for Monday
(10/18/2010) is shown in Fig. 3 where we compare the
results of two proposed approaches. While stable arcs are
excluded from the input of phase two, we did not eliminate
the stable arcs in Fig. 3 to maintain format consistency with
Fig. 1. The arcs are also presented in the same order for ease
of comparison.

III. MATHEMATICAL PROGRAMMING APPROACH

In the mathematical programming (MP) approach, we use
the preprocessed ITS traffic data, explained in the following
section, as an input. Similar to the proposed KDD approach
of Section II, the desired output of MP approach is a reduced
state space of the network. The following notation is used in
the mathematical programming formulation:

TW Set of time windows {1,…,T}, indexed by t, r
L Set of links, indexed by l
M Large number
Vl,t Average observed velocity on link l at time t
Ql,t Binary indicator variable;

Ql,t = �1, if |	
,�� − 	
,�| ≥ �
0, otherwise �

Pt Integer variable, partition number for time
window t

We once again seek to consolidate as many consecutive
time windows as possible into larger partitions for the entire
network in order to reduce the state space. However, we
need to ensure the following: 1) The range of speeds within
a partition for each link should be bounded (denoted � and is
user defined) and 2) There should not be any significant

abrupt changes in speed between two consecutive time
windows within the same partition (threshold is denoted �
and is user defined). The full mathematical formulation is
as follows:

��� � = ! (1)

s.t.
 � ≤ �� ∀$; $ = 1 $& ' − 1 (2)

|	
,�� − 	
,�| ≤ � + � ∗ *
,� ∀+ ∈ -,
∀$; $ = 1 $& ' − 1

(3)

|	
,�� − 	
,�| ≥ � − � ∗ (1 − *
,�) ∀+ ∈ -,
∀$; $ = 1 $& ' − 1

(4)

0 |	
,�� − 	
,�|. *
,� −

∈2

� 0 *
,�

∈2≤ � ∗ (�� − �)

∀$; $ = 1 $& ' − 1 (5)

|	
,3 − 	
,�| ≤ � + � ∗ (3 − �) ∀+ ∈ -,
∀$, 4; $, 4
= 1 $& ' − 1; 4 ≥ $

(6)

 � ≥ 0, = 1 ∀$ ∈ 1 $& ' (7)

Constraint (2) requires the partition numbers to be
assigned to all time windows in a non-descending order.
Constraints (3)-(4) determine the value of the binary variable
Ql,t. In other words, they determine the links that differ in
speed between two consecutive time windows by more than
a threshold �. Constraint (5) requires that the average of
differences in speed for those links not to exceed �, from
time window t and time window t+1. Constraint (5) is the
linearized form of the following statement:

 � = �� ⇒∑ 789,:;<=89,:7.>9,:9∈?
∑ >9,:9∈?

≤ � (8)

We introduce constraints (3)-(5) to ensure that the average
differences between speeds of all consecutive time windows
with difference more than � do not exceed � in the same
partition. And finally, equation (6) ensures that the range of
speeds within a partition for each link is less than �. Since
the output of MP approach relatively depends on the
threshold parameters (�, �, �), we present the sensitivity
analysis on these parameters in section IV.

The output for the mathematical programming approach is
the estimated speed for every link in all optimally partitioned
time windows.

IV. SOUTHEAST MICHIGAN CASE STUDY

We use real traffic data from a road network in Southeast
Michigan. We explain preprocessing step first. Then, we
present the experimental results for both the proposed KDD
approach and the MP approach.

A. Traffic data preprocessing

1) Data integration: In the data integration step, multiple
data sources may be combined. In our study, real-time traffic
data from Michigan Intelligent Transportation System
(MITS) and Traffic.com for a road network in Southeast
Michigan are integrated. The case study road network covers
major freeways and highways in and around the Detroit
metropolitan area for the month of October 2010.

(a)

(b)

Fig. 2. Traffic speed data from four consecutive Mondays for two
particular arcs in Southeast-Michigan. (a) Arc with congestion (b) Arc
without congestion.

The network has 116 observed links. The raw speed data
was aggregated at a resolution of 5-minute intervals,
yielding 60/5×24×31 (minutes/5 × hours × days) data points
for each link of the network.

2) Data selection: In the traffic data selection step, it is
vitally important to note the date and time of the study. For
example, there is a significant difference in traffic flow from
rush hour in the morning to midnight. One should also
consider seasonal effects depending on the area of selection.
We select the data from a whole month (October 2010) to
encompass the changes between different time windows of
days and the differences between days (weekdays and
weekends) while making sure the data is not considerably
distorted by seasonal effect.

3) Data cleaning: In the data cleaning step, noise and
inconsistent data are removed from the traffic database. For
example, some technical problems might occur with a
sensor, and it reports some impractical data (e.g., an
unrealistic number of vehicles passing through a lane in a
minute). In addition, in case of a defective sensor for a
specific lane in a link, we eliminate that sensor’s data and
consider the remaining sensors of that link.

4) Data transformation: In the data transformation step,
data is transformed or consolidated into forms appropriate
for traffic data mining. Since the traffic flow of any link
depends on all of its lanes, we set the average speed of the
different lanes as the speed of the link. This leads to
reducing the reported speeds in one day from 123,408 to
35,217.

B. Preliminary analysis of network traffic data

Review of ITS network data does confirm that traffic
speed patterns over the course of the day tend to be quite

0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 24:00
0

10

20

30

40

50

60

70

80

Time (h)

S
pe

ed
 (

m
ph

)

10/04/2010
10/11/2010
10/18/2010
10/25/2010

0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 24:00
0

10

20

30

40

50

60

70

80

S
pe

ed
 (

m
ph

)

Time (h)

10/04/2010
10/11/2010
10/18/2010
10/25/2010

similar for individual arcs given a day of the week (barring
long-term shifts due to seasonality and incidents). For
example, Fig. 2 shows the similarity traffic speed signatures
for two particular arcs over four consecutive Mondays in
October 2010. Fig. 2(a) shows an arc experiencing both
morning and afternoon rush hour congestion while Fig. 2(b)
shows an arc with stable traffic speeds all through day for
the selected Mondays.

C. Results from formal experiments

To test the efficiency of the proposed methods, we setup a
series of experiments.

First set of experiments apply the proposed state space
reduction methods on data from a particular day, e.g.
Monday (Sunday), and test the effectiveness of the resulting
partitions on other Mondays (Sundays) from adjacent weeks.
The performance measure here is root-mean-square-error
(RMSE) in mph, calculated by estimating the differences
between actual speeds recorded and the speeds estimated for
the partitions by the proposed methods and aggregated for
the entire network over the full day.

Table I reports the results from applying the MP, with
parameter setting of � = 3, � = 6, and � = 15, to data
from a particular Monday (10/04/2010) and then testing the
resulting partitions on three future Mondays. The process is
also replicated for Sundays and the results are also reported
in Table I. The low RMSEs (< 2mph) and their consistency
across baseline days and corresponding future days do
confirm that the proposed methodology holds good promise
for traffic data modeling and forecasting. It is good to see
that the RMSE for the fourth Monday (Sunday) is less than
the RMSE of the baseline itself, suggesting that the baseline
partitions are quite robust. Given stochastic variability in
traffic conditions, we naturally expect some RMSE
fluctuations from day to day, and hence, testing RMSE being
lower than training data RMSE is nothing unusual.

 Fig. 3 reports the output of applying KDD approach (left)
and MP approach (right) to network data from Monday
(10/18/2010). The vertical lines on the plots identify the
resulting partitions. The plots also reveal the estimated link
speeds for different partitions at different times of the day.
The plots clearly reveal that MP approach has a tendency to
produce more partitions in comparison to KDD approach.

Although the performance of the MP approach is
dependent on the parameter settings and different settings
will lead to different results, all parameter settings tried for
the MP approach in Table III produce more partitions than
the KDD approach.

Second set of experiments not only apply the partitions
resulting from the proposed methods but also exploit the
resulting partition speed estimates for forecasting speeds
from corresponding future days. The following sections
report results from applying both the KDD approach and the
MP approach and also compare them.

1) KDD approach: In analyzing the baseline Monday
10/4/2010 data, the finite mixture model identified the

Fig. 3. Output from applying KDD approach (left) and MP approach
(right) to data from a Monday (10/18/2010). Vertical lines denote partitions.
Colors denote the estimated link speeds (mph) after state space reduction.

TABLE I

PERFORMANCE STABILITY OF MP PARTITIONS FOR FORECASTING
Experiment Mondays RMSE (mph)
1 (baseline) 10/04/2010 1.43

2 10/11/2010 1.51
3 10/18/2010 1.73
4 10/25/2010 1.41

Experiment Sundays RMSE (mph)
1 (baseline) 10/03/2010 1.33

2 10/10/2010 1.95
3 10/17/2010 1.31
4 10/24/2010 1.32

TABLE II

PERFORMANCE OF KDD APPROACH
Experiment Predicted

date
Baseline RMSE Diff

>7.5mph
1 Sunday
2 Sunday

10/03/2010
10/10/2010

10/03/2010 1.29
4.19

0.019
0.03

3 Sunday 10/17/2010 3.52 0.028
4 Sunday 10/24/2010 3.94 0.041
5 Monday
6 Monday

10/04/2010
10/11/2010

10/04/2010 1.38
4.56

0.024
0.046

7 Monday 10/18/2010 4.63 0.049
8 Monday 10/25/2010 4.62 0.053

optimal number of clusters (F) to be 7, which produced 19
partitions for the whole day. Table II reports the results
achieved from testing the KDD approach corresponding
future Mondays. Once again, the process is replicated for
Sundays and the results are also reported in Table II. Two
measures are reported. The first measure (RMSE) shows
root mean square error between predicted speed (mph) of
Mondays (Sundays) and original speed (mph) of the baseline
Monday (Sunday). The second measure (Diff) shows the
percentage of predicted speeds which do differ more than
7.5 mph from the actual reported speed.

2) Mathematical programming approach: Since the
output of MP approach relatively depends on the threshold
parameters (�, �, �), we first start with a sensitivity analysis
on the parameters. Fig. 4 reports the impact of changes in
�, �, � on the number of partitions created by the MP

Fig. 4. Effects of changes in � on number of MP partitions.

TABLE III

IMPACT OF THRESHOLD PARAMETERS ON MP APPROACH PERFORMANCE
Thresholds Monday 10/18/2010 Sunday 10/03/2010

G H I
of

partitions
RMSE
(mph)

of
partitions

RMSE
(mph)

1 2 12 160 0.604 91 0.849
 15 158 0.748 85 0.947
 18 157 0.767 83 0.993
 21 157 0.767 83 0.993
 24 157 0.767 82 1.011
2 4 12 91 1.146 46 1.286
 15 80 1.511 30 1.697
 18 65 1.951 21 2.350
 21 64 2.021 18 2.601
 24 60 2.110 16 2.637
3 6 12 87 1.196 46 1.281
 15 71 1.661 32 1.665
 18 53 2.152 22 2.168
 21 51 2.233 19 2.423
 24 48 2.341 19 2.510
4 8 12 89 1.183 50 1.295
 15 70 1.690 36 1.623
 18 51 2.192 28 2.153
 21 49 2.298 26 2.394
 24 42 2.496 25 2.474

TABLE IV

 PERFORMANCE OF MP APPROACH (G = J, H = K, I=15)
Experiment Predicted

date
Baseline RMSE Diff>

I
L : N. O

mph
1 Sunday
2 Sunday

10/03/2010
10/10/2010

10/3/201 1.33
4.26

0.025
0.032

3 Sunday 10/17/2010 3.61 0.030
4 Sunday 10/24/2010 4.02 0.046
5 Monday
6 Monday

10/04/2010
10/11/2010

10/4/201 1.43
4.81

0.024
0.055

7 Monday 10/18/2010 4.91 0.058
8 Monday 10/25/2010 4.91 0.064

approach. As we increase �, �,or �, i.e., increasing the
feasible region, the number of partitions decrease in a
somewhat non-linear fashion. Table III reports sensitivity
analysis results when changing the threshold parameters.

Table IV reports more detailed results regarding the
performance of the MP approach when the threshold
parameters are set as follows: � = 3, � = 6, and �=15.

V. CONCLUSION

Transportation networks are becoming more congested, in
particular, in urban areas. Fortunately, ITS systems and their
coverage are growing in the US and other parts of the world

to provide drivers with increasingly accurate real-time data
regarding traffic conditions. In support of dynamic routing
algorithms, we proposed two approaches for modeling
traffic network dynamics. The primarily goals are compact
representation and accurate estimation of speeds. The
methods are distinct and rely on KDD techniques as well as
formal optimization techniques based on mathematical
programming. Results from testing the proposed methods on
actual road network data from Southeast Michigan are very
promising.

Future work will focus on the development of routing
algorithms that exploit the results from the proposed
methods.

REFERENCES
[1] D. Schrank and T. Lomax, "2009 urban mobility report, " Texas

Transp. Inst., Texas A&M Univ. Syst., College Station, TX, 2009.
[2] I. Chabini and S. Lan, "Adaptations of the A* algorithm for the

computation of fastest paths in deterministic discrete-time dynamic
networks," Intelligent Transportation Systems, IEEE Transactions on,
vol. 3, pp. 60-74, 2002.

[3] M. M. Nejad and L. Mashayekhy, "Compact Representation of Traffic
Network Dynamics Using an Efficient Knowledge Based Discovery
Approach," in Proc. Industrial Engineering Research Conference,
Reno, NV, May 2011.

[4] S. Kim, M. E. Lewis, and C. C. White III, "State space reduction for
nonstationary stochastic shortest path problems with real-time traffic
information," Intelligent Transportation Systems, IEEE Transactions
on, vol. 6, pp. 273-284, 2005.

[5] G. Jagadeesh, T. Srikanthan, and K. Quek, "Heuristic techniques for
accelerating hierarchical routing on road networks," Intelligent
Transportation Systems, IEEE Transactions on, vol. 3, pp. 301-309,
2002.

[6] Q. Song and X. Wang, "Efficient Routing on Large Road Networks
Using Hierarchical Communities," Intelligent Transportation Systems,
IEEE Transactions on, pp. 1-9.

[7] D. Chen, Y. S. Fu, B. Cai, and Y. X. Yuan, "Modeling and Algorithms
of GPS Data Reduction for the Qinghai–Tibet Railway," Intelligent
Transportation Systems, IEEE Transactions on, vol. 11, pp. 753-758,
2010.

[8] I. Chabini and V. Yadappanavar, "Advances in discrete-time dynamic
data representation with applications to intelligent transportation
systems," Transportation Research Record: Journal of the
Transportation Research Board, vol. 1771, pp. 209-218, 2001.

[9] R. Chrobok, O. Kaumann, J. Wahle, and M. Schreckenberg,
"Different methods of traffic forecast based on real data," European
Journal of Operational Research, vol. 155, pp. 558-568, 2004.

[10] H. Jula, M. Dessouky, and P. A. Ioannou, "Real-time estimation of
travel times along the arcs and arrival times at the nodes of dynamic
stochastic networks," Intelligent Transportation Systems, IEEE
Transactions on, vol. 9, pp. 97-110, 2008.

[11] J. Han and M. Kamber, Data mining: concepts and techniques:
Morgan Kaufmann, 2006.

[12] M. A. T. Figueiredo and A. K. Jain, "Unsupervised learning of finite
mixture models," IEEE Transactions on pattern analysis and machine
intelligence, pp. 381-396, 2002.

12 14 16 18 20 22 24
40

50

60

70

80

90

100

δ

N
um

be
r

of
 P

ar
tit

io
ns

α = 2, β = 4
α = 3, β = 6
α = 4, β = 8

