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Abstract—Effective en route guidance for vehicles can play
an important role in alleviating the negative impats of ever-
growing congestion. As network traffic conditions bange due
to recurrent and non-recurrent congestion, the optinal route
can change, and updated directions should be giveto the
driver in real-time. However, the task of exploiting real-time
traffic information for optimal routing is computat ionally
challenging. On the other hand, simplistic schemege.g.,
assuming constant speeds for different network arcacross all
hours of the day) lead only to poor travel time peiormance and
driver dissatisfaction. Hence, there is need for eopact yet
effective representations of traffic network dynames for
supporting routing algorithms. In this paper, we propose two
state space reduction approaches employing knowleelg
discovery and data mining (KDD) methods and mathentical
programming (MP) to strike an effective balance beteen
accuracy and state space reduction (i.e., compacs®). In doing
so, they exploit historical data from ITS systems.We
demonstrate the performance of the proposed appro&es using
actual road network data from Southeast Michigan.

I. INTRODUCTION

HE primary concern in intelligent transportation

systems (ITS) is using real-time traffic informatio
while a vehicle is en route. Effective en routedguice for
vehicles can play an important role in alleviatitige
negative impacts of ever-growing congestion. Riaét
traffic information can be used to develop effeetive-
routing policies in order to avoid or reduce thepaut of
congestion, promising reduced travel times as agltost.
The cost of congestion has been growing rapidighenUS,
increasing from $63.1 billion in 2000 to $87.2 ioifl in
2007 [1]. While road transportation network capadst not
growing fast enough to cope with increasing denfahdhe

quickly expanding ITS coverage in the US can beeg k

enabler for reducing or controlling traffic congest

Not only can congestion be recurrent, which deelbpe
to high volume of traffic seen during peak commgtitours,
but it also can be non-recurrent due to such faces
accidents, vehicle breakdowns, bad weather, womegzo
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lane closures, special events, etc. The locatiehsaverity
of non-recurrent congestion is unpredictable. Tioeee
getting informed about this type of congestion rezpireal-
time traffic information.

Real-time and historical traffic information can be
gathered from embedded sensors. These sensors
transportation networks are hardware devices that c
continuously track speed, density, and other taffi
information of vehicles passing through each lane.
Embedded sensors provide a source of massiveimsakind
historical traffic data that can support the depeient of
effective data mining algorithms to predict recuatre
congestion in the network by time of day.

In addition to recurrent congestion, two major dast
change the optimal route while a vehicle is eneout

« Non-recurrent congestion, which changes the state o

the network

« Changes in the driver's route choice, e.g. avoiding

passing through high crime areas at night
With these potential changes in the optimal roufelated
directions should be given to the driver in reaidi To
obtain this updated direction, it is critical tovieacompact
yet reliable information about the “state of thetwurk”,
while a vehicle is in-route [2, 3].

Current state-of-the-art dynamic routing algorithan®e
incapable of computing these updated directionsam
acceptable time as the network size increases. Ehis
particularly true for algorithms that attempt tocacnt for
the non-stationary and stochastic aspects of ¢raifitwork
dynamics (fluctuations in traffic speeds/densiie®r time
and/or explicit treatment of congestion states).n&wic
programming methods (both deterministic and stdat)as
are prevalent and suffer from curse of dimensityah
dealing with the scale and complexity of transporte
networks in urban areas and require unacceptabl¢imes
for computing routing policies and offering reragioptions
once the vehicle is en route. Naive policies thttrarily
limit the degree of “look ahead” to few links aheafdthe
vehicle can on the other hand lead to inferior grenince
(of reducing travel times and/or cost).

The state space can be quite large when the sitbeof
transportation network increases, and this makiesfahe
above-mentioned challenges more complicated. Using
simplistic schemes such as adopting constant spimds
different arcs across all hours of the day lead @alpoor

in



travel performance and driver dissatisfaction. @@ other
hand, wanting to capture traffic dynamics of evarg at a
one minute resolution (being required/promoted byne
recent dynamic routing methods that rely on ITSajat
become extremely unwieldy when dealing with differes
in traffic dynamics across days of the week, wedken
months, holidays, significant events, and uncolzbbdé¢
factors such as weather. What is necessary is paxttnyet
effective representation of path and network sigteamics.
Vast majority of the current literature still revek around
deterministic routing models and are yet to dematstany
resemblance of a practical real-world algorithmt toan
support the realities of current day transportati@twork
dynamics. Overcoming these challenges mostly depend

In this study, the authors focus on state spacectish in
modeling traffic network dynamics. Since real-tirdata
does not have information about look ahead dynanfitkse
network, using historical traffic data along withadyzing
real-time traffic data can provide a practical pcgdn of the
behavior of the look ahead network dynamics. Te #md,
we propose a Knowledge-Discovery and Data Mining
(KDD) approach and a Mathematical Programing (MP)
approach. We use the raw empirical real-time waffata
from a road network in Southeast Michigan to derans
the performance of the proposed methods. Througtidsit
paper, we use the terms “link” and “arc” interchaally.

The rest of the study is organized as follows. iSach
presents the proposed KDD approach. In section dll,

effectiveness of algorithms to both extract valeablmathematical model is developed for the MP approach

information from large scale transportation datalsam a
timely fashion and reducing the run time perforneard
effective routing algorithms [4].

A few studies have focused on reducing the “stptes’
of routing algorithms by finding unnecessary nolitdss
and eliminating them. Kinet al. [4] proposed a two-step
procedure for state space reduction leading todrgments
in run time performance. In the first step, the qadure
eliminates redundant links that would not be tragdr by
any optimal route. The second step uses a priduatéon on
the state space by deleting unnecessary linkseasehicle
passes through the network. In [5], a hierarchicaiting
algorithm is proposed to reduce the state spaceguasi

Experimental results and evaluation of both prodose
approaches are presented in section IV througlsa swudy
on a Southeast Michigan road network. In section V,
conclusions and future research directions areidisd.

Il. KNOWLEDGE DISCOVERY & DATA MINING APPROACH

ITS data (such as the traffic speed and numbeebicles
passing through the different links of the netwargorded
on an ongoing basis yields large databases suittle
Knowledge Discovery & Data Mining (KDD). Given that
most ITS systems collect traffic data at one minute
resolution from their sensors, they vyield for thetire
network 24x60 = 1,440 network traffic state obstora

heuristic “node promotion” technique. This techmquectors each day. The size of the vector (for eattute) is

reduces the number of route computations in hibreat
routing algorithms and  improves

the number of sensors monitoring the different dim€ the

computationahenyork. While there could be multiple sensorsefach link

performance. Song and Wang [6] applied graph-basgflq they often record multiple pieces of informatispeed,
hierarchical community detection algorithms to ieste a density etc.), we aggregate the information frohsahsors
road network structure. Moreover, they proposed gonitoring a link and rely only on traffic speeddrmation
h|elrarch|cal routing algorlthm. based on the grapbdeh throughout the rest of the paper (future work Wil to
which could compute optimal routes for betweengypoit other information being collected by theS)T
community node pairs on large-scale road ne_tworks. _ This section proposes a KDD approach to cluster the
Chenet al. [7] employed three data reduction algorithmsyerwork traffic state vectors based on similarifipe KDD
to cut down the computing time, decrease the memsjage, jpyolves data cleaning, data integration, datacsiele, data
and speed up the train positioning. These algosthrovide  ransformation, data mining, pattern evaluation,d an
a simpler re_presentatlon of the train tracks byaeexmg a  knowledge presentation [11]. Throughout this paper,use
few data points from the large amount of GPS daiats. |ink and arc interchangeably. In addition, unlegglieitly
Chabini and Yadappanavar [8] proposed a bit-streagiated otherwise, the analysis is carried out by afaveek
_represe_r_ltatl(_)n for discrete-time dynamic data. Tmed (holidays and special event days can be handlearatety).
its positive impacts on storage. However, theirppsed peaning, we allow network traffic dynamics to charigy
representation does not capture the behavior dfiterical day of week (seasonal fluctuations can be handigd b
traffic data. In [9], the sets of traffic d_a_lta \{vwanizgd into regularly updating and limiting the learning dataséo
four basic classes, and a classification algoritwas reasonable time spans surrounding the month(sjtefeist).
proposed to assign these sets into their class@se final output of the KDD approach is predictionthe
automatlcally._ Juleet al. [_10] used real_—tlme and historical yaffic speed for every link in the network, by dafyweek,
data to predict travel times on a link. They depeld pased on time windows derived from the clusterer@tare
methodologies to estimate the arrival times atrthees of a phases to this approach. The goal in the fiinstse is to
stochastic and dynamic network. However, knowledggentify the network links that experience congestiluring
dlscove_zry from traffic data_ and state space reductny_ any part of the day. Given the broader objective of
extracting network dynamics and compacting the timgeveloping a state space reduction method for mguti
windows is still missing. algorithms, we exclude these stable links from Hert



consideration during the second phase. The goathén
second phase is to partition network traffic stagetors
(excluding the stable links) into distinct but dgabus time
partitions/windows, where the network traffic dyriasnare
similar within a partition but are different acroadjacent
partitions (two non-adjacent partitions can be pHrtthe
same cluster). We explain these two phases indlienfing

subsections. The case study section presents
preprocessing step and the results from experirhstudy
to evaluate the performance of the proposed KDDaaah.

A. Phase-1: Identification of links experiencing
congestion

It is typical for some links in the network not to

experience any congestion during the day, yieldiegy
“stable” traffic speeds all through the day; white other
links, congestion could occur during peak traveies and
such. We propose a clustering algorithm to identife
stable links of the network.

The procedure involves applying kameans clustering
algorithm to traffic data for each link over theucse of the
day (e.g., Mondays). To find the appropriate number

the%
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Fig. 1. Network traffic speeds (mph) for links fiocSoutheast Michigan
spanning all 116 arcs and all 24 hours of a Monda§/18/2010).
Left: Original preprocessed data. Right: Speeds aftistering.
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Similar states consist of multiple time partitiomsidows in
which dynamics of the network are relatively thensa A
centroid gives a deterministic prediction of speéaisall

clusters k), we rely on the finite mixture model proposed ininks in the network in its time partition. As astdt, instead

[12] for each link. Fig. 1 shows an illustrativea@xple of
results from applying this procedure for traffictaldrom a
Monday for all 116 ITS links of the Southeast Migdun
network. The traffic data used for clustering confiesn
several consecutive Mondays. While Fig. 1 (leftpwh the
preprocessed links speeds (mph) for all links a&ctbe full

of having a database containing all 24x60 time wwsl for
the day, phase two reduces the state space in imgdel
traffic network dynamics t& clustered states.

The output of phase two analysis for Monday
(10/18/2010) is shown in Fig. 3 where we compare th
results of two proposed approaches. While statie are

24 hours of this Monday, Fig. 1 (right) reports theéXcluded from the input of phase two, we did nahilate

discretized clustered states for the same linkex &ftneans
clustering. It is apparent from Fig. 1 (right) tleasignificant
number of the links do not experience more tharingle
state. In fact, 60 out of 116 links have one state.the links
with one cluster, their centroids show the stegubed for a
whole day.

The state space reduction method need not congiéer
that are stable across the day. Hence, only linkkling

the stable arcs in Fig. 3 to maintain format cstesicy with
Fig. 1. The arcs are also presented in the sanes tvdease
of comparison.

. MATHEMATICAL PROGRAMMINGAPPROACH

In the mathematical programming (MP) approach, s& u
the preprocessed ITS traffic data, explained infefiewing
section, as an input. Similar to the proposed Kppraach

more than one cluster are considered for state espa® Section Il, the desired output of MP approach ieduced

reduction, the second phase of the KDD approach.

B. Phase 2: Segmentation of network traffic over the
course of the day into partitions with similar traffic states

As stated earlier, the goal here is to partitiotwoek
traffic state vectors (i.e., the one-minute netwidffic state
columns of Fig. 1 (left) excluding the stable lihkisito
distinct but contiguous time partitions/windows, ex the
network traffic dynamics are similar within a pédn but
different across adjacent partitions (two non-aeljeic
partitions can be part of the same cluster). Tdeaehthis,

state space of the network. The following notai®nsed in
the mathematical programming formulation:

TW  Set of time windows {1,...,T}, indexed kyr
L Set of links, indexed bly

M Large number
Vit Average observed velocity on lithlat timet
Q: Binary indicator variable;
Q.= {1' ifVierr — Viel 2 @
' 0, otherwise
Py Integer variable, partition number for time

windowt

we once again employ themeans clustering algorithm. The  \y/e once again seek to consolidate as many consecuti

data points for clustering are made up of colurmomfFig.
1 (right) after excluding the stable links. To firthe

time windows as possible into larger partitions tfee entire
network in order to reduce the state space. Howewer

appropriate number of clusteig,(we once again rely on the hoed to ensure the following: 1) The range of spewithin

finite mixture model proposed in [12]. Each clusteludes
similar network states with its representative omdt

a partition for each link should be bounded (desiétand is
user defined) and 2) There should not be any sogmf



abrupt changes in speed between two consecutive tim

windows within the same partition (threshold is otexd 8
and is user defined). The full mathematical forrtiata is
as follows: e
Min Z = Py (6] =
s.t. @
P, <P, Vt;t=1toT — 1 2
——10/04/2010
WViesr = Viel S @+ M * Qe vIEL ©) o
Vt, t — 1 tO T — 1 o ——10/25/2010 . . . . . .
Time (h)
Wierr = Vil Za =M+ (1 - Q) vielL, (4) @)
Vt;t=1toT -1
AP _ 5
z |Vl,t+1 - Vltl Ql,t _,Bz Ql,t vt LtoT -1 ( ) or
LeL lEL 60| B
SM+ Py —P) o AUV A i o e st N
Wiy = Viel S8+ M= (P~ Py) vieL (6)
vt,r;t,r il
=1toT—-1;,r>t
P,>20,P, =1 vteltoT (7 ol e

Constraint (2) requires the partition numbers to be T
assigned to all time windows in a non-descendindeior (b)
Constraints (3)-(4) determine the value of the tyinariable Fig. 2. Traffic speed data from four consecutiveridays for two
. . . particular arcs in Southeast-Michigan. (a) Arc witbngestion (b) Arc
Qit- In other words, they determine the links thafedifin |00 0 congestion.
speed between two consecutive time windows by riae

a thresholdz. Constraint (5) requires that the average ofhe network has 116 observed links. The raw speed d
differences in speed for those links not to excgedrom was aggregated at a resolution of 5-minute intefval
time windowt and time windowt+1. Constraint (5) is the yielding 60/5%x24x31 (minutes/5 x hours x days) daints

linearized form of the following statement for each link of the network.
p = p . ohelVieeVielQue g 2 Data selection: In the traffic data selection step, it is
t t+1 Y — 13 ( ) . . .
teL Que vitally important to note the date and time of #tedy. For

We introduce constraints (3)-(5) to ensure thataerage

) i “ example, there is a significant difference in iaffow from
differences between speeds of all consecutive timeows

) ) ) rush hour in the morning to midnight. One shouldoal
with difference more tham do not excee in the same cqngjder seasonal effects depending on the arseletion.
partition. And finally, equation (6) ensures thiaé range of \ye select the data from a whole month (October 2ad0
speeds within a partition for each link is lessntha Since encompass the changes between different time wisdfw

the output of MP approach relatively depends on thgys and the differences between days (weekdays and

threshold parametersx,(3,5), we present the sensitivity weekends) while making sure the data is not corsidg
analysis on these parameters in section V. distorted by seasonal effect.

The output for the mathematical programming apio8¢ 3y pata cleaning: In the data cleaning step, noise and
the estimated speed for every link in all optimaigyrtitioned  jnconsistent data are removed from the traffic biasa. For

time windows. example, some technical problems might occur with a
sensor, and it reports some impractical data (eap.,
IV. SOUTHEASTMICHIGAN CASESTUDY unrealistic number of vehicles passing throughre lm a

We use real traffic data from a road network intBeast minute). In addition, in case of a defective senfor a
Michigan. We explain preprocessing step first. Thexe specific lane in a link, we eliminate that sensataa and
present the experimental results for both the pgeddKDD consider the remaining sensors of that link.

approach and the MP approach. 4) Data transformation: In the data transformation step,
data is transformed or consolidated into forms appate
A. Traffic data preprocessing for traffic data mining. Since the traffic flow @ny link

depends on all of its lanes, we set the averagedspethe
different lanes as the speed of the link. This dedd
reducing the reported speeds in one day from 133140
35,217.

1) Data integration: In the data integration step, multiple
data sources may be combined. In our study, nea-traffic
data from Michigan Intelligent Transportation Syste
(MITS) and Traffic.com for a road network in Soudlse
Michigan are integrated. The case study road nétwovers
major freeways and highways in and around the Metro
metropolitan area for the month of October 2010.

B. Preliminary analysis of network traffic data

Review of ITS network data does confirm that tkaffi
speed patterns over the course of the day tence tquide



similar for individual arcs given a day of the wefdarring
long-term shifts due to seasonality and incidentspr
example, Fig. 2 shows the similarity traffic spesghatures
for two particular arcs over four consecutive Moyslan
October 2010. Fig. 2(a) shows an arc experienciath b
morning and afternoon rush hour congestion white E{b)
shows an arc with stable traffic speeds all throdgk for
the selected Mondays.

C. Resultsfrom formal experiments

To test the efficiency of the proposed methodssetep a
series of experiments.

First set of experiments apply the proposed state space

reduction methods on data from a particular dayg. e.
Monday (Sunday), and test the effectiveness ofdlalting
partitions on other Mondays (Sundays) from adjaoeeks.
The performance measure here is root-mean-square-e
(RMSE) in mph, calculated by estimating the differes
between actual speeds recorded and the speedsatestifar
the partitions by the proposed methods and aggrddat
the entire network over the full day.

Link
Link

100

110

i 0
18:00  24:008peed

06:00 06:00

12:00
Time

18:00  24:00 12:00

Time

rFlg 3. Output from applying KDD approach (leéthd MP approach

(right) to data from a Monday (10/18/2010). Vertilsaes denote partitions.
Colors denote the estimated link speeds (mph) sfitée space reduction.

TABLE |
PERFORMANCE STABILITY OFMP PARTITIONS FOR FORECASTING

. Experiment Mondays RMSE (mph)
Table | reports the results from applying the MRthw 1 (baseline) 10/04/2010 1.43
parameter setting ofxr =3, § =6,and § = 15, to data 10/11/2010 151
from a particular Monday (10/04/2010) and thenintgsthe i igggggig 13&
resulting partitions on three future Mondays. Thecpss is Experiment Sundays RMSE (mph)
also replicated for Sundays and the results aerajgorted 1 (baseline) 10/03/2010 1.33
in Table I. The low RMSEs (< 2mph) and their cotesisy 2 10/10/2010 1.95
. : 3 10/17/2010 1.31
across baseline days and corresponding future qﬂarys 4 10/24/2010 132
confirm that the proposed methodology holds goainise
for traffic data modeling and forecasting. It isodoto see TABLE Il
that the RMSE for the fourth Monday (Sunday) isslésan , PERFZ_RMchNCE OFKDDI_AF’F’ROACH _
the RMSE of the baseline itself, suggesting thatttseline Experiment Przgge Baseline  RMSE >7'g;nph
partitions are quite robust. Given stochastic \alitg in 1Sunday  10/03/2010 10/03/2010 1.29 0.019
traffic conditions, we naturally expect some RMSE | 2Sunday  10/10/2010 4.19 0.03
i ; ; 3 Sunday 10/17/2010 3.52 0.028
fluctuations frpm day to day, an_d henc_e, testingS&\being 2 Sunday 1012412010 304 0.041
Iowe_r than training data RMSE is no_thmg unusual. 5Monday  10/04/2010 10/04/2010 1.38 0.024
Fig. 3 reports the output of applying KDD appro#letit) 6 Monday  10/11/2010 4.56 0.046
and MP approach (right) to network data from Monday| 7Monday  10/18/2010 4.63 0.049
8 Monday 10/25/2010 4.62 0.053

(10/18/2010). The vertical lines on the plots idfgnthe
resulting partitions. The plots also reveal thenested link
speeds for different partitions at different tinwfsthe day.
The plots clearly reveal that MP approach has deecy to
produce more partitions in comparison to KDD apploa

Although the performance of the MP approach
dependent on the parameter settings and differettings
will lead to different results, all parameter segs tried for
the MP approach in Table Il produce more partgidhan
the KDD approach.

Second set of experiments not only apply the partitions
resulting from the proposed methods but also ekt
resulting partition speed estimates for forecastapgeds
from corresponding future days. The following sews
report results from applying both the KDD approacil the
MP approach and also compare them.

1) KDD approach: In analyzing the baseline Monday
10/4/2010 data, the finite mixture model identifidkde

optimal number of clustersc) to be 7, which produced 19
partitions for the whole day. Table Il reports thesults
achieved from testing the KDD approach correspandin
future Mondays. Once again, the process is repglicdor

%undays and the results are also reported in Tlablevo

measures are reported. The first measure (RMSENsho
root mean square error between predicted speed)(ofph
Mondays (Sundays) and original speed (mph) of #e=lne
Monday (Sunday). The second measure (Diff) shoves th
percentage of predicted speeds which do differ ntbam
7.5 mph from the actual reported speed.

2) Mathematical programming approach: Since the
output of MP approach relatively depends on thestold
parametersd|, 8, §), we first start with a sensitivity analysis
on the parameters. Fig. 4 reports the impact ohgés in
a,B,6 on the number of partitions created by the MP
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TABLE llI
IMPACT OF THRESHOLD PARAMETERS OIMP APPROACH PERFORMANCE

Thresholds | Monday 10/18/2010 Sunday 10/03/2010
# of RMSE # of RMSE
a | B | & | partitions | (mph) | partitions (mph)
1 2 12 160 0.604 91 0.849
15 158 0.748 85 0.947
18 157 0.767 83 0.993
21 157 0.767 83 0.993
24 157 0.767 82 1.011
2 4 12 91 1.146 46 1.286
15 80 1.511 30 1.697
18 65 1.951 21 2.350
21 64 2.021 18 2.601
24 60 2.110 16 2.637
3 6 12 87 1.196 46 1.281
15 71 1.661 32 1.665
18 53 2.152 22 2.168
21 51 2.233 19 2.423
24 48 2.341 19 2.510
4 8 12 89 1.183 50 1.295
15 70 1.690 36 1.623
18 51 2.192 28 2.153
21 49 2.298 26 2.394
24 42 2.496 25 2.474
TABLE IV
PERFORMANCE OFMP APPROACH(a = 3, 8 = 6,8=15)
Experiment  Predicted Baseline RMSE pjf> £.7.5
date z
mph
1Sunday 10/03/2010 10/3/201  1.33 0.025
2 Sunday  10/10/2010 4.26 0.032
3 Sunday 10/17/2010 3.61 0.030
4 Sunday 10/24/2010 4.02 0.046
5Monday 10/04/2010 10/4/201  1.43 0.024
6 Monday  10/11/2010 4381 0.055
7 Monday 10/18/2010 491 0.058
8 Monday 10/25/2010 491 0.064

approach. As we increase,fS,or §, i.e., increasing the [12]

feasible region, the number of partitions decreasea
somewhat non-linear fashion. Table Il reports gty
analysis results when changing the threshold pasame

to provide drivers with increasingly accurate rixale data
regarding traffic conditions. In support of dynamauting
algorithms, we proposed two approaches for modeling
traffic network dynamics. The primarily goals am@mpact
representation and accurate estimation of speede T
methods are distinct and rely on KDD techniquesvels as
formal optimization techniques based on mathemhatica
programming. Results from testing the proposed austion
actual road network data from Southeast Michiganvary
promising.

Future work will focus on the development of rogtin
algorithms that exploit the results from the pragabs
methods.
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V. CONCLUSION

Transportation networks are becoming more congested

particular, in urban areas. Fortunately, ITS systamd their
coverage are growing in the US and other partb@fiorld



