
 
 

 

  

Abstract—Effective en route guidance for vehicles can play 
an important role in alleviating the negative impacts of ever-
growing congestion. As network traffic conditions change due 
to recurrent and non-recurrent congestion, the optimal route 
can change, and updated directions should be given to the 
driver in real-time. However, the task of exploiting real-time 
traffic information for optimal routing is computat ionally 
challenging. On the other hand, simplistic schemes (e.g., 
assuming constant speeds for different network arcs across all 
hours of the day) lead only to poor travel time performance and 
driver dissatisfaction. Hence, there is need for compact yet 
effective representations of traffic network dynamics for 
supporting routing algorithms. In this paper, we propose two 
state space reduction approaches employing knowledge 
discovery and data mining (KDD) methods and mathematical 
programming (MP) to strike an effective balance between 
accuracy and state space reduction (i.e., compactness). In doing 
so, they exploit historical data from ITS systems. We 
demonstrate the performance of the proposed approaches using 
actual road network data from Southeast Michigan. 

I. INTRODUCTION 

HE primary concern in intelligent transportation 
systems (ITS) is using real-time traffic information 

while a vehicle is en route. Effective en route guidance for 
vehicles can play an important role in alleviating the 
negative impacts of ever-growing congestion. Real-time 
traffic information can be used to develop effective re-
routing policies in order to avoid or reduce the impact of 
congestion, promising reduced travel times as well as cost. 
The cost of congestion has been growing rapidly in the US, 
increasing from $63.1 billion in 2000 to $87.2 billion in 
2007 [1]. While road transportation network capacity is not 
growing fast enough to cope with increasing demand [1], the 
quickly expanding ITS coverage in the US can be a key 
enabler for reducing or controlling traffic congestion.  

Not only can congestion be recurrent, which develops due 
to high volume of traffic seen during peak commuting hours, 
but it also can be non-recurrent due to such factors as 
accidents, vehicle breakdowns, bad weather, work zones, 
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lane closures, special events, etc. The location and severity 
of non-recurrent congestion is unpredictable. Therefore, 
getting informed about this type of congestion requires real-
time traffic information.  

Real-time and historical traffic information can be 
gathered from embedded sensors. These sensors in 
transportation networks are hardware devices that can 
continuously track speed, density, and other traffic 
information of vehicles passing through each lane. 
Embedded sensors provide a source of massive real-time and 
historical traffic data that can support the development of 
effective data mining algorithms to predict recurrent 
congestion in the network by time of day. 

In addition to recurrent congestion, two major factors 
change the optimal route while a vehicle is en route: 

• Non-recurrent congestion, which changes the state of 
the network  

• Changes in the driver’s route choice, e.g. avoiding 
passing through high crime areas at night 

With these potential changes in the optimal route, updated 
directions should be given to the driver in real-time. To 
obtain this updated direction, it is critical to have compact 
yet reliable information about the “state of the network”, 
while a vehicle is in-route [2, 3]. 

Current state-of-the-art dynamic routing algorithms are 
incapable of computing these updated directions in an 
acceptable time as the network size increases. This is 
particularly true for algorithms that attempt to account for 
the non-stationary and stochastic aspects of traffic network 
dynamics (fluctuations in traffic speeds/densities over time 
and/or explicit treatment of congestion states). Dynamic 
programming methods (both deterministic and stochastic) 
are prevalent and suffer from curse of dimensionality in 
dealing with the scale and complexity of transportation 
networks in urban areas and require unacceptable run times 
for computing routing policies and offering rerouting options 
once the vehicle is en route. Naïve policies that arbitrarily 
limit the degree of “look ahead” to few links ahead of the 
vehicle can on the other hand lead to inferior performance 
(of reducing travel times and/or cost).  

The state space can be quite large when the size of the 
transportation network increases, and this makes all of the 
above-mentioned challenges more complicated. Using 
simplistic schemes such as adopting constant speeds for 
different arcs across all hours of the day lead only to poor 
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travel performance and driver dissatisfaction. On the other 
hand, wanting to capture traffic dynamics of every arc at a 
one minute resolution (being required/promoted by some 
recent dynamic routing methods that rely on ITS data), 
become extremely unwieldy when dealing with differences 
in traffic dynamics across days of the week, weekends, 
months, holidays, significant events, and uncontrollable 
factors such as weather. What is necessary is a compact yet 
effective representation of path and network state dynamics. 

Vast majority of the current literature still revolves around 
deterministic routing models and are yet to demonstrate any 
resemblance of a practical real-world algorithm that can 
support the realities of current day transportation network 
dynamics. Overcoming these challenges mostly depends on 
effectiveness of algorithms to both extract valuable 
information from large scale transportation databases in a 
timely fashion and reducing the run time performance of 
effective routing algorithms [4].  

A few studies have focused on reducing the “state space” 
of routing algorithms by finding unnecessary nodes/links 
and eliminating them. Kim et al. [4] proposed a two-step 
procedure for state space reduction leading to improvements 
in run time performance. In the first step, the procedure 
eliminates redundant links that would not be traversed by 
any optimal route. The second step uses a priori reduction on 
the state space by deleting unnecessary links as the vehicle 
passes through the network. In [5], a hierarchical routing 
algorithm is proposed to reduce the state space using a 
heuristic “node promotion” technique. This technique 
reduces the number of route computations in hierarchical 
routing algorithms and improves computational 
performance. Song and Wang [6] applied graph-based 
hierarchical community detection algorithms to retrieve a 
road network structure. Moreover, they proposed a 
hierarchical routing algorithm based on the graph model 
which could compute optimal routes for between-
community node pairs on large-scale road networks.   

Chen et al. [7] employed three data reduction algorithms 
to cut down the computing time, decrease the memory space, 
and speed up the train positioning. These algorithms provide 
a simpler representation of the train tracks by extracting a 
few data points from the large amount of GPS data points. 
Chabini and Yadappanavar [8] proposed a bit-stream 
representation for discrete-time dynamic data. They showed 
its positive impacts on storage. However, their proposed 
representation does not capture the behavior of the historical 
traffic data. In [9], the sets of traffic data were organized into 
four basic classes, and a classification algorithm was 
proposed to assign these sets into their classes, 
automatically. Jula et al. [10] used real-time and historical 
data to predict travel times on a link. They developed 
methodologies to estimate the arrival times at the nodes of a 
stochastic and dynamic network. However, knowledge 
discovery from traffic data and state space reduction by 
extracting network dynamics and compacting the time 
windows is still missing.  

In this study, the authors focus on state space reduction in 
modeling traffic network dynamics. Since real-time data 
does not have information about look ahead dynamics of the 
network, using historical traffic data along with analyzing 
real-time traffic data can provide a practical prediction of the 
behavior of the look ahead network dynamics. To this end, 
we propose a Knowledge-Discovery and Data Mining 
(KDD) approach and a Mathematical Programing (MP) 
approach. We use the raw empirical real-time traffic data 
from a road network in Southeast Michigan to demonstrate 
the performance of the proposed methods. Throughout this 
paper, we use the terms “link” and “arc” interchangeably. 

The rest of the study is organized as follows. Section II 
presents the proposed KDD approach. In section III, a 
mathematical model is developed for the MP approach.  
Experimental results and evaluation of both proposed 
approaches are presented in section IV through a case study 
on a Southeast Michigan road network. In section V, 
conclusions and future research directions are discussed.  

II. KNOWLEDGE DISCOVERY & DATA MINING APPROACH 

ITS data (such as the traffic speed and number of vehicles 
passing through the different links of the network) recorded 
on an ongoing basis yields large databases suitable for 
Knowledge Discovery & Data Mining (KDD). Given that 
most ITS systems collect traffic data at one minute 
resolution from their sensors, they yield for the entire 
network 24×60 = 1,440 network traffic state observation 
vectors each day. The size of the vector (for each minute) is 
the number of sensors monitoring the different links of the 
network. While there could be multiple sensors for each link 
and they often record multiple pieces of information (speed, 
density etc.), we aggregate the information from all sensors 
monitoring a link and rely only on traffic speed information 
throughout the rest of the paper (future work will try to 
exploit other information being collected by the ITS).  

This section proposes a KDD approach to cluster the 
network traffic state vectors based on similarity. The KDD 
involves data cleaning, data integration, data selection, data 
transformation, data mining, pattern evaluation, and 
knowledge presentation [11]. Throughout this paper, we use 
link and arc interchangeably. In addition, unless explicitly 
stated otherwise, the analysis is carried out by day of week 
(holidays and special event days can be handled separately). 
Meaning, we allow network traffic dynamics to change by 
day of week (seasonal fluctuations can be handled by 
regularly updating and limiting the learning datasets to 
reasonable time spans surrounding the month(s) of interest). 
The final output of the KDD approach is prediction of the 
traffic speed for every link in the network, by day of week, 
based on time windows derived from the clusters. There are 
two phases to this approach. The goal in the first phase is to 
identify the network links that experience congestion during 
any part of the day. Given the broader objective of 
developing a state space reduction method for routing 
algorithms, we exclude these stable links from further 



 
 

 

consideration during the second phase. The goal in the 
second phase is to partition network traffic state vectors 
(excluding the stable links) into distinct but contiguous time 
partitions/windows, where the network traffic dynamics are 
similar within a partition but are different across adjacent 
partitions (two non-adjacent partitions can be part of the 
same cluster). We explain these two phases in the following 
subsections. The case study section presents the 
preprocessing step and the results from experimental study 
to evaluate the performance of the proposed KDD approach. 

A. Phase-1: Identification of links experiencing 
congestion 

It is typical for some links in the network not to 
experience any congestion during the day, yielding very 
“stable” traffic speeds all through the day; while in other 
links, congestion could occur during peak travel times and 
such. We propose a clustering algorithm to identify the 
stable links of the network. 

The procedure involves applying a k-means clustering 
algorithm to traffic data for each link over the course of the 
day (e.g., Mondays). To find the appropriate number of 
clusters (k), we rely on the finite mixture model proposed in 
[12] for each link. Fig. 1 shows an illustrative example of 
results from applying this procedure for traffic data from a 
Monday for all 116 ITS links of the Southeast Michigan 
network. The traffic data used for clustering comes from 
several consecutive Mondays. While Fig. 1 (left) shows the 
preprocessed links speeds (mph) for all links across the full 
24 hours of this Monday, Fig. 1 (right) reports the 
discretized clustered states for the same links after k-means 
clustering. It is apparent from Fig. 1 (right) that a significant 
number of the links do not experience more than a single 
state. In fact, 60 out of 116 links have one state. For the links 
with one cluster, their centroids show the steady speed for a 
whole day.  

The state space reduction method need not consider links 
that are stable across the day. Hence, only links yielding 
more than one cluster are considered for state space 
reduction, the second phase of the KDD approach. 
 

B. Phase 2: Segmentation of network traffic over the 
course of the day into partitions with similar traffic states 

As stated earlier, the goal here is to partition network 
traffic state vectors (i.e., the one-minute network traffic state 
columns of Fig. 1 (left) excluding the stable links) into 
distinct but contiguous time partitions/windows, where the 
network traffic dynamics are similar within a partition but 
different across adjacent partitions (two non-adjacent 
partitions can be part of the same cluster). To achieve this, 
we once again employ the k-means clustering algorithm. The 
data points for clustering are made up of columns from Fig. 
1 (right) after excluding the stable links. To find the 
appropriate number of clusters (k), we once again rely on the 
finite mixture model proposed in [12]. Each cluster includes 
similar network states with its representative centroid.  

 
Fig. 1.  Network traffic speeds (mph) for links from Southeast Michigan 
spanning all 116 arcs and all 24 hours of a Monday (10/18/2010). 
Left: Original preprocessed data. Right: Speeds after clustering. 
 
Similar states consist of multiple time partitions/windows in 
which dynamics of the network are relatively the same. A 
centroid gives a deterministic prediction of speeds for all 
links in the network in its time partition. As a result, instead 
of having a database containing all 24×60 time windows for 
the day, phase two reduces the state space in modeling 
traffic network dynamics to k clustered states.  

The output of phase two analysis for Monday 
(10/18/2010) is shown in Fig. 3 where we compare the 
results of two proposed approaches.  While stable arcs are 
excluded from the input of phase two, we did not eliminate 
the stable arcs in Fig. 3 to maintain  format consistency with 
Fig. 1. The arcs are also presented in the same order for ease 
of comparison. 

III.  MATHEMATICAL  PROGRAMMING APPROACH 

In the mathematical programming (MP) approach, we use 
the preprocessed ITS traffic data, explained in the following 
section, as an input. Similar to the proposed KDD approach 
of Section II, the desired output of MP approach is a reduced 
state space of the network. The following notation is used in 
the mathematical programming formulation:  

 

TW Set of time windows {1,…,T}, indexed by t, r 
L Set of links, indexed by l 
M Large number 
Vl,t Average observed velocity on link l at time t 
Ql,t Binary indicator variable; 

Ql,t = �1, if |	
,��  −  	
,�|  ≥ �
0, otherwise �   

Pt Integer variable, partition number for time 
window t 

 

We once again seek to consolidate as many consecutive 
time windows as possible into larger partitions for the entire 
network in order to reduce the state space. However, we 
need to ensure the following: 1) The range of speeds within 
a partition for each link should be bounded (denoted � and is 
user defined) and 2) There should not be any significant 



 
 

 

abrupt changes in speed between two consecutive time 
windows within the same partition (threshold is denoted � 
and is user defined). The full mathematical formulation is 
as follows: 

���  � =   ! (1) 

s.t.  
 � ≤  �� ∀$; $ = 1 $& ' − 1 (2) 
   

|	
,�� − 	
,�| ≤ � + � ∗ *
,� ∀+ ∈ -,  
∀$; $ = 1 $& ' − 1 

(3) 

   

|	
,�� − 	
,�| ≥ � − � ∗ (1 − *
,�) ∀+ ∈ -,  
∀$; $ = 1 $& ' − 1 

(4) 

   

0 |	
,�� − 	
,�|. *
,� −

∈2

� 0 *
,�

∈2≤ � ∗ ( �� −  �) 

∀$; $ = 1 $& ' − 1 (5) 

   

|	
,3 − 	
,�| ≤ � + � ∗ ( 3 −  �) ∀+ ∈ -,  
∀$, 4; $, 4 
= 1 $& ' − 1;  4 ≥ $ 

(6) 

   

 � ≥ 0,   = 1 ∀$ ∈ 1 $& ' (7) 
   

Constraint (2) requires the partition numbers to be 
assigned to all time windows in a non-descending order. 
Constraints (3)-(4) determine the value of the binary variable 
Ql,t. In other words, they determine the links that differ in 
speed between two consecutive time windows by more than 
a threshold �. Constraint (5) requires that the average of 
differences in speed for those links not to exceed  �, from 
time window t and time window t+1. Constraint (5) is the 
linearized form of the following statement: 

    � =   �� ⇒∑ 789,:;<=89,:7.>9,:9∈?
∑ >9,:9∈?

≤  �                                      (8) 

We introduce constraints (3)-(5) to ensure that the average 
differences between speeds of all consecutive time windows 
with difference more than � do not exceed � in the same 
partition. And finally, equation (6) ensures that the range of 
speeds within a partition for each link is less than �. Since 
the output of MP approach relatively depends on the 
threshold parameters (�, �, �), we present the sensitivity 
analysis on these parameters in section IV. 

The output for the mathematical programming approach is 
the estimated speed for every link in all optimally partitioned 
time windows. 

IV.  SOUTHEAST MICHIGAN  CASE STUDY 

We use real traffic data from a road network in Southeast 
Michigan. We explain preprocessing step first. Then, we 
present the experimental results for both the proposed KDD 
approach and the MP approach.  
 

A. Traffic data preprocessing 

1) Data integration: In the data integration step, multiple 
data sources may be combined. In our study, real-time traffic 
data from Michigan Intelligent Transportation System 
(MITS) and Traffic.com for a road network in Southeast 
Michigan are integrated. The case study road network covers 
major freeways and highways in and around the Detroit 
metropolitan area for the month of October 2010. 

 
(a) 

 
(b) 

Fig. 2.  Traffic speed data from four consecutive Mondays for two 
particular arcs in Southeast-Michigan. (a) Arc with congestion (b) Arc 
without congestion. 

 
The network has 116 observed links. The raw speed data 
was aggregated at a resolution of 5-minute intervals, 
yielding 60/5×24×31 (minutes/5 × hours × days) data points 
for each link of the network.  

2) Data selection: In the traffic data selection step, it is 
vitally important to note the date and time of the study. For 
example, there is a significant difference in traffic flow from 
rush hour in the morning to midnight. One should also 
consider seasonal effects depending on the area of selection. 
We select the data from a whole month (October 2010) to 
encompass the changes between different time windows of 
days and the differences between days (weekdays and 
weekends) while making sure the data is not considerably 
distorted by seasonal effect. 

3) Data cleaning: In the data cleaning step, noise and 
inconsistent data are removed from the traffic database. For 
example, some technical problems might occur with a 
sensor, and it reports some impractical data (e.g., an 
unrealistic number of vehicles passing through a lane in a 
minute). In addition, in case of a defective sensor for a 
specific lane in a link, we eliminate that sensor’s data and 
consider the remaining sensors of that link.  

4) Data transformation: In the data transformation step, 
data is transformed or consolidated into forms appropriate 
for traffic data mining. Since the traffic flow of any link 
depends on all of its lanes, we set the average speed of the 
different lanes as the speed of the link. This leads to 
reducing the reported speeds in one day from 123,408 to 
35,217.  

   

B. Preliminary analysis of network traffic data 

Review of ITS network data does confirm that traffic 
speed patterns over the course of the day tend to be quite 
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similar for individual arcs given a day of the week (barring 
long-term shifts due to seasonality and incidents). For 
example, Fig. 2 shows the similarity traffic speed signatures 
for two particular arcs over four consecutive Mondays in 
October 2010. Fig. 2(a) shows an arc experiencing both 
morning and afternoon rush hour congestion while Fig. 2(b) 
shows an arc with stable traffic speeds all through day for 
the selected Mondays. 
 

C. Results from formal experiments 

To test the efficiency of the proposed methods, we setup a 
series of experiments.  

First set of experiments apply the proposed state space 
reduction methods on data from a particular day, e.g. 
Monday (Sunday), and test the effectiveness of the resulting 
partitions on other Mondays (Sundays) from adjacent weeks. 
The performance measure here is root-mean-square-error 
(RMSE) in mph, calculated by estimating the differences 
between actual speeds recorded and the speeds estimated for 
the partitions by the proposed methods and aggregated for 
the entire network over the full day.  

Table I reports the results from applying the MP, with 
parameter setting of � = 3, � = 6, and � = 15, to data 
from a particular Monday (10/04/2010) and then testing the 
resulting partitions on three future Mondays. The process is 
also replicated for Sundays and the results are also reported 
in Table I. The low RMSEs (< 2mph) and their consistency 
across baseline days and corresponding future days do 
confirm that the proposed methodology holds good promise 
for traffic data modeling and forecasting. It is good to see 
that the RMSE for the fourth Monday (Sunday) is less than 
the RMSE of the baseline itself, suggesting that the baseline 
partitions are quite robust. Given stochastic variability in 
traffic conditions, we naturally expect some RMSE 
fluctuations from day to day, and hence, testing RMSE being 
lower than training data RMSE is nothing unusual.  

 Fig. 3 reports the output of applying KDD approach (left) 
and MP approach (right) to network data from Monday 
(10/18/2010). The vertical lines on the plots identify the 
resulting partitions. The plots also reveal the estimated link 
speeds for different partitions at different times of the day. 
The plots clearly reveal that MP approach has a tendency to 
produce more partitions in comparison to KDD approach. 

Although the performance of the MP approach is 
dependent on the parameter settings and different settings 
will lead to different results, all parameter settings tried for 
the MP approach in Table III produce more partitions than 
the KDD approach. 

Second set of experiments not only apply the partitions 
resulting from the proposed methods but also exploit the 
resulting partition speed estimates for forecasting speeds 
from corresponding future days. The following sections 
report results from applying both the KDD approach and the 
MP approach and also compare them. 

1) KDD approach: In analyzing the baseline Monday 
10/4/2010 data, the finite mixture model identified the 

 
Fig.  3.  Output from applying KDD approach (left) and MP approach 
(right) to data from a Monday (10/18/2010). Vertical lines denote partitions. 
Colors denote the estimated link speeds (mph) after state space reduction.  

 
TABLE I 

PERFORMANCE STABILITY OF MP PARTITIONS FOR FORECASTING 
Experiment  Mondays RMSE (mph) 
1 (baseline) 10/04/2010 1.43 

2 10/11/2010 1.51 
3 10/18/2010 1.73 
4 10/25/2010 1.41 

Experiment Sundays RMSE (mph) 
1 (baseline) 10/03/2010 1.33 

2 10/10/2010 1.95 
3 10/17/2010 1.31 
4 10/24/2010 1.32 

 
TABLE II 

PERFORMANCE OF KDD APPROACH 
Experiment Predicted 

date 
Baseline RMSE Diff 

>7.5mph 
1 Sunday 
2 Sunday 

10/03/2010 
10/10/2010 

10/03/2010 1.29 
4.19 

0.019 
0.03 

3 Sunday 10/17/2010 3.52 0.028 
4 Sunday 10/24/2010 3.94 0.041 
5 Monday 
6 Monday 

10/04/2010 
10/11/2010 

10/04/2010 1.38 
4.56 

0.024 
0.046 

7 Monday 10/18/2010 4.63 0.049 
8 Monday 10/25/2010 4.62 0.053 

 
optimal number of clusters (F) to be 7, which produced 19 
partitions for the whole day. Table II reports the results 
achieved from testing the KDD approach corresponding 
future Mondays. Once again, the process is replicated for 
Sundays and the results are also reported in Table II. Two 
measures are reported. The first measure (RMSE) shows 
root mean square error between predicted speed (mph) of 
Mondays (Sundays) and original speed (mph) of the baseline 
Monday (Sunday). The second measure (Diff) shows the 
percentage of predicted speeds which do differ more than 
7.5 mph from the actual reported speed. 

2) Mathematical programming approach: Since the 
output of MP approach relatively depends on the threshold 
parameters (�, �, �), we first start with a sensitivity analysis 
on the parameters. Fig. 4 reports the impact of changes in 
�, �, � on the number of partitions created by the MP  
 



 
 

 

 
Fig. 4.  Effects of changes in � on number of MP partitions. 

 
TABLE III 

IMPACT OF THRESHOLD PARAMETERS ON MP APPROACH PERFORMANCE 
Thresholds Monday 10/18/2010 Sunday 10/03/2010 

G H I 
# of 

partitions 
RMSE 
(mph) 

#  of 
partitions 

RMSE 
(mph) 

1 2 12 160 0.604 91 0.849 
  15 158 0.748 85 0.947 
  18 157 0.767 83 0.993 
  21 157 0.767 83 0.993 
  24 157 0.767 82 1.011 
2 4 12 91 1.146 46 1.286 
  15 80 1.511 30 1.697 
  18 65 1.951 21 2.350 
  21 64 2.021 18 2.601 
  24 60 2.110 16 2.637 
3 6 12 87 1.196 46 1.281 
  15 71 1.661 32 1.665 
  18 53 2.152 22 2.168 
  21 51 2.233 19 2.423 
  24 48 2.341 19 2.510 
4 8 12 89 1.183 50 1.295 
  15 70 1.690 36 1.623 
  18 51 2.192 28 2.153 
  21 49 2.298 26 2.394 
  24 42 2.496 25 2.474 

 
TABLE IV 

 PERFORMANCE OF MP APPROACH (G = J, H = K, I=15) 
Experiment Predicted 

date 
Baseline RMSE Diff> 

I
L : N. O

mph 
1 Sunday 
2 Sunday 

10/03/2010 
10/10/2010 

10/3/201 1.33 
4.26 

0.025 
0.032 

3 Sunday 10/17/2010 3.61 0.030 
4 Sunday 10/24/2010 4.02 0.046 
5 Monday 
6 Monday 

10/04/2010 
10/11/2010 

10/4/201 1.43 
4.81 

0.024 
0.055 

7 Monday 10/18/2010 4.91 0.058 
8 Monday 10/25/2010 4.91 0.064 

 

approach. As we increase �, �,or �, i.e., increasing the 
feasible region, the number of partitions decrease in a 
somewhat non-linear fashion. Table III reports sensitivity 
analysis results when changing the threshold parameters.  

Table IV reports more detailed results regarding the 
performance of the MP approach when the threshold 
parameters are set as follows: � = 3, � = 6, and �=15. 

V. CONCLUSION  

Transportation networks are becoming more congested, in 
particular, in urban areas. Fortunately, ITS systems and their 
coverage are growing in the US and other parts of the world 

to provide drivers with increasingly accurate real-time data 
regarding traffic conditions. In support of dynamic routing 
algorithms, we proposed two approaches for modeling 
traffic network dynamics. The primarily goals are compact 
representation and accurate estimation of speeds. The 
methods are distinct and rely on KDD techniques as well as 
formal optimization techniques based on mathematical 
programming. Results from testing the proposed methods on 
actual road network data from Southeast Michigan are very 
promising. 

Future work will focus on the development of routing 
algorithms that exploit the results from the proposed 
methods. 
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