
QoS-Aware Matching of Edge Computing Services
to Internet of Things

Nafiseh Sharghivand12, Farnaz Derakhshan1, Lena Mashayekhy2

1Department of Computer Engineering, University of Tabriz, Tabriz, Iran
{n.sharghivand, derakhshan}@tabrizu.ac.ir

2Department of Computer and Information Sciences, University of Delaware, Newark, DE 19716
mlena@udel.edu

Abstract—Edge computing is a new paradigm of computing,
which aims at enhancing user experience by bringing computing
resources closer to where data is produced by Internet of Things
(IoT). Cloudlets, additional infrastructure components nearby
users, facilitate edge services to decrease latency and network
traffic. IoT users require edge services for their applications
meeting a strict quality of service (QoS). A key challenge is
how to efficiently match cloudlets to IoT applications to enable
a convenient any-time access to edge computing services. In
this paper, we address this problem by proposing novel two-
sided matching solutions for edge services considering QoS
requirements in terms of service response time. The matching
mechanisms enhance the quality of experience of the users. In
addition, we determine dynamic pricing of the edge services based
on preferences and incentives of cloudlets, IoT users, and the
system. The proposed matchings are Pareto-efficient, incentive
compatible, weakly budget balanced, and computationally effi-
cient. We perform a comprehensive assessment through extensive
performance analysis experiments to evaluate our proposed
matching and pricing solutions.

Index Terms—edge computing, cloudlet, Internet of Things,
two-sided matching

I. INTRODUCTION

The number of Internet-connected devices (such as wear-
able devices, connected vehicles, and drones) is estimated
to reach 50 billion by 2020. These smart devices, so-called
Internet of Things (IoT), are restricted by weight, size, bat-
tery life, and heat dissipation imposing limitations on their
computing capabilities to execute applications. To empower
the resource shortage of IoT devices, cloud computing offers
many services, which allows these devices to offload their
tasks to a more powerful computing infrastructure. However,
these devices require heterogeneous quality of service (QoS)
depending on their applications [1], and offloading to a con-
ventional centralized cloud is infeasible for applications man-
dating low-latency communications and real-time responses
due to physical distance between the cloud and IoT users.

Edge computing is a new computing paradigm that enhances
cloud computing for IoT applications by extending cloud
services closer to the users through an additional infrastructure
component, called cloudlet (near or colocated with the wireless
access point). Cloudlets are small-sized edge clouds, which
reside between the IoT device and the centralized data center,
and they can provision their resources in the form of Virtual
Machines (VMs) [2], [3]. However, to enable a convenient

any-time access to edge computing resources, a key challenge
is how to efficiently match cloudlets to IoT applications for
providing edge services.

A cloudlet has limited amount of available resources, and
it can guarantee a service response time for the provided
edge services. On the other hand, an IoT user has specific
resource requirements for its application and may need a
strict guarantee for the service response time. IoT requests
are distributed among cloudlets, and they are matched to a set
of cloudlets to cooperatively fulfill them leading to significant
decrease in data communications over WANs and in response
time. In this paper, we model the interactions of IoT users and
cloudlets and design QoS-aware matching algorithms to give
incentives to them to participate. We formulate this problem
as a two-sided matching game between the IoT devices and
the cloudlets.

A two-sided matching game is an assignment problem
between the sets of devices and cloudlets (players), where
the players of each set have preferences over the players
of the other set. The preference relations allow every IoT
device/cloudlet to be best matched for the edge services
while maximizing its own benefit in the system. Finding
the best matching of a two-sided matching game is an NP-
hard problem. In this paper, we propose two novel matching
solutions that are computationally efficient. We also demon-
strate how our solutions improve quality of experience and
user satisfaction by considering QoS metrics in the matching
mechanisms.

Our Contribution. We model the cloudlet-IoT user matching
as an Integer Programming model, and propose a novel two-
sided matching, QMECS, for edge services that is Pareto-
efficient, incentive compatible, weakly budget balanced, and
computationally efficient. Our proposed two-sided matching is
multi attributes that considers QoS requirements of IoT users
and QoS guarantees of cloudlets in addition to their pricing
preferences. We extend our proposed two-sided matching by
proposing Modified QMECS (M-QMECS) to augment social
welfare and avoid zero budget surplus. QMECS and M-
QMECS improve users’ satisfaction and quality of experience
by considering QoS metrics in the matchings. In addition, our
mechanisms avoid user service rejection after their assign-
ment due to unacceptable quality of experience. We provide

a comprehensive assessment through extensive performance
analysis experiments and compare the solutions obtained with
the optimal solutions.

Related Work. Traditional cloud computing solutions rely on
centralized or semi-centralized (i.e., in-site distributed) VM
provisioning, allocation, and placement approaches [4]–[6].
However, they require global information and often centralized
controllers, yielding significant overhead and complexity espe-
cially when dealing with combinatorial integer programming
problems to be solved. In addition, they do not consider the
possibility of interactions among clouds and/or users, and thus
they employ optimization techniques without considering users
and clouds as decision makers. These limitations of optimiza-
tion have led to an interesting body of literature dealing with
the use of game theory in cloud resource management [7], [8].

Most of game-theoretical studies in cloud computing focus
on only one side of the market [7], [9], where users interact
with only one provider. Main stream cloud provider power-
houses such as Amazon have been offering cloud services
in a one-sided auction market (Amazon Spot Market) for
several years [10]. In our previous studies [11]–[14], we
proposed truthful offline and online one-sided mechanisms for
allocation and pricing of VMs with heterogeneous resources in
clouds. Several researchers have studied resource management
in cloud federations to facilitate big data processing [15],
[16]. However, these studies only focus on interactions among
a group of cloud providers to provide a single big data
processing service, and they are not suitable to be adapted in
edge computing environment. Efficient resource management
mechanisms need to consider both supply and demand sides
together. Several studies focused on designing double-auction
mechanisms for cloud computing [17]–[19]. Nallur and Bah-
soon [20] proposed market-based heuristic algorithms using
a continuous double-auction to allow applications to decide
which services to choose. Garg et al. [21] identified the various
technical and market requirements and challenges in designing
such an exchange market for cloud computing environment.

Most existing cloud-based solutions rely on conventional
Internet for connectivity to the cloud. These solutions do
not address the challenges of “being at the edge”, and are
not appropriate for edge computing [22]. Edge computing
leverages cloud computing infrastructure and provides fully
distributed services, while the proximity of cloudlets to end
users is a crucial property of edge computing [2], [23]. The
new emerging challenges in IoT and how edge computing
provides effective ways to address these challenges are dis-
cussed in [24], [25]. Also, Jutila et al. [26] proposed adaptive
edge computing solutions for IoT networking to optimize and
control traffic flows and network resources. Most studies in
edge computing focus on decisions on efficient caching [27],
[28] and computation offloading (fully or partially) to cloudlets
considering one user application [29] or multiple applica-
tions [30]. However, the main goal of edge computing is
to satisfy the service time requirements of users by bringing
cloud resources close to them. To the best of our knowledge,

this is the first work that models QoS in the matchings of edge
services to guarantee service time requirements. Moreover,
the current level of understanding of analysis of interactions
among IoT users and cloudlets is very limited. We model
preferences and interactions of these decision makers using
game theory and matching theory, and design novel QoS-aware
matchings.

II. SYSTEM MODEL

In this section, we describe the system model, where J
is the set of cloudlets and I is the set of IoT users. Each
user requests an indivisible bundle of VMs (one or several
VMs) for her IoT application requiring some QoS metrics
to be satisfied. Each cloudlet offers a set of VMs that can
be allocated to different users, and it guarantees several QoS
metrics for the offered services. The vector L defines the QoS
metrics including Average Response Time (ART), Maximum
Response Time (MRT), and Response Time Failure (RTF). All
these QoS metrics are defined as quantified metrics to quantify
service response time [31], where they can be simply declared
in numeric values. Vector L can be expanded to include other
quantified QoS metrics.

More specifically, each cloudlet j ∈ J declares its number
of available VMs, Mj , the reserve price pcj for providing a VM
instance, and the service response time it guarantees denoted
by (RT c

jl)l∈L. Hence, the specification of each cloudlet is
denoted by Bc

j = (Mj , p
c
j , (RT

c
jl)l∈L). For example, for a

typical cloudlet j with twenty VMs available, the reserve price
of $2 for each instance, and guarantees of ART = 1.5 ms,
MRT = 2 ms, and RTF = 0.01%, its specification is
Bc

j = (20, $2, [1.5ms, 2ms, 0.01%]). The superscript c refers
to cloudlets in all the notations.

Each IoT device requests several VM instances of the
same type, sets a suggested price for the requested bundle,
and specifies QoS requirements for the requested edge ser-
vice. Hence, the specification of each IoT request of a user
consists of three parts. First, Ni represents the number of
requested VMs for device i. Second, pdi represents bided
price for the whole requested bundle, that is the maximum
price user i is willing to pay for the requested bundle of
VMs Ni. Finally, (RT d

il)l∈L denotes the QoS requirements
of device i, where RT d

il for any l ∈ L is an upper bound
for the QoS metric l. These QoS values suggest the least
acceptable service response time qualities for the edge services
requested by IoT device i. As a result, each IoT request
is denoted by Bd

i = (Ni, p
d
i , (RT

d
il)l∈L). The superscript d

refers to users in all the notations. For instance, the bid of
user i, who is willing to pay upto $8 for two VMs with
ART = 2 ms, MRT = 2.5 ms, and RTF = 0.05% is denoted
by Bd

i = (2, $8, [2ms, 2.5ms, 0.05%]). Figure 1 shows the
supply and demand sides of the edge computing system.

To find the best matching of the services between IoT users
and cloudlets, we formulate the problem as an integer program
(IP). First, we define the decision variables as follows: αij is
the number of allocated VMs by cloudlet j to IoT user i;
xi ∈ {0, 1} shows whether IoT user i has received his/her

Fig. 1: System Model.

requested bundle or not; and yj is the number of VMs allocated
by cloudlet j. In addition, we define Z(i, j) = ~RT

d

iL � ~RT
c

jL

as the indicator function for the match between cloudlet j
and user i based on the offered and requested QoS, which
returns 1 if RT d

il ≥ RT c
jl,∀l ∈ L, that is the offered QoS by

cloudlet j meets the requirements of user i, and 0 otherwise.
The value of Z(i, j) indicates the feasibility of matching VMs
provided by cloudlet j to IoT user i. In the above example,
cloudlet j with Bc

j = (20, $2, [1.5ms, 2ms, 0.01%]) is qual-
ified to provide the requested service by user i with Bd

i =
(2, $8, [2ms, 2.5ms, 0.05%]), since it guarantees a better ser-
vice response time; in this case Z(~RT

d

iL � ~RT
c

jL) = 1. We
now formulate the problem as a mixed IP as follows:

Matching(I,J) : Max V (I, J) =
∑
i∈I

pdi xi −
∑
j∈J

pcjyj (1)

Subject to:∑
j∈J

αij = Nixi,∀i ∈ I, (1a)

∑
i∈I

αij = yj ,∀j ∈ J, (1b)

0 ≤ αij ≤Mj Z(i, j),∀i ∈ I, ∀j ∈ J, (1c)
xi ∈ {0, 1},∀i ∈ I, (1d)
yj ∈ {0, . . . ,Mj},∀j ∈ J. (1e)

The objective function is to maximize the social func-
tion V (I, J) defined by (1). Constraints (1a) ensure that each
IoT user receives his/her whole requested bundle or nothing.
Constraints (1b) guarantee that each cloudlet supplies VMs
based on the availability of them. Constraints (1c) ensure that
each cloudlet can serve an IoT user if only it can provide the
requested VMs and meet the QoS requirements of that user.
Constraints (1d) and (1e) restrict the allocated VMs under
required and available VMs for users and cloudlets, respec-
tively. Once a cloudlet is matched to an edge application(s),
it allocated VMs according to the requested VMs of the IoT
application(s).

III. PROPOSED TWO-SIDED MATCHING MECHANISMS

Cloudlets and IoT users are self-interested and rational,
meaning that their objectives are to maximize their own
utilities. To promote the transactions and attract both users
and cloudlets, we design QoS-aware matching and pricing
solutions (QMECS and M-QMECS) that maximize the social
welfare, i.e., the summation of the broker’s payoff and each
participant’s utility.

To find the best matching of cloudlets and IoT users, our
proposed mechanisms first add a phantom IoT user with a
specific request and unlimited budget to the system, and then
determine a selected set of users. The introduction of the
phantom user creates an imbalance between VM availability
and demand, and it provides an efficient way to improve
market price equilibrium, which leads to a budget surplus.
Then, our mechanisms find a mapping between the selected
set of users and the original set of cloudlets. Finally, the
transaction prices for both sides (users and cloudlets) are
determined. The main difference between QMECS and M-
QMECS is the introduction of VCG prices in M-QMECS. This
way, we modify the matching and pricing steps to augment
social welfare and avoid zero budget surplus.

In order to have a computationally efficient mechanism, the
matching and pricing decisions are determined based on the
obtained linear program solutions described in the following
subsections.

A. QoS-aware Matching of Edge Computing Services
(QMECS)

Our proposed QMECS mechanism is defined as follows:
Step 1: Preference submission. Collect one sealed bid/ask

preference from each IoT user/cloudlet.
Step 2: User set reduction. Solve the following linear pro-

gram SELECT(I, J), with IoT set I and cloudlet set J :

SELECT(I, J) : Max Ṽ (I, J) =
∑
i∈I

pdi xi −
∑
j∈J

pcjyj

Subject to:∑
j∈J

αij = Nixi,∀i ∈ I,

∑
i∈I

αij = yj ,∀j ∈ J,

0 ≤ αij ≤Mj Z(i, j),∀i ∈ I, ∀j ∈ J,
0 ≤ xi ≤ 1,∀i ∈ I,
0 ≤ yj ≤Mj ,∀j ∈ J.

For any IoT user i ∈ I , if xi = 1, then i remains for
the matching. All other users which could not acquire their
whole requested bundles are eliminated. Let Ĩ denote the set
of remaining IoT users at this step.

Step 3: Setting padding. We define a padding q equal to the
highest amount of supply, that means q = maxj∈J(Mj). Then,
for each selected user u ∈ Ĩ , we define a padding vector Qu

of size |Ĩ| such that Qi
u = q if i = u; otherwise Qi

u = 0.
The padding for IoT user u can be viewed as a phantom user

with unlimited budget, same constraints as user u, and q units
demand.

Step 4: Matching. For selected users in Ĩ , we solve the
following linear program PADDING(Ĩ , J,Qu) to determine
the final set of IoT users to be matched for the edge services:

PADDING(Ĩ , J,Qu) :

Max V̂ (Ĩ , J,Qu) =
∑
i∈Ĩ

pdi xi −
∑
j∈J

pcjyj

Subject to:∑
j∈J

αij = Nixi +Qi
u,∀i ∈ Ĩ ,

∑
i∈Ĩ

αij = yj ,∀j ∈ J,

0 ≤ αij ≤MjZ,∀i ∈ Ĩ , ∀j ∈ J,
0 ≤ xi ≤ 1,∀i ∈ Ĩ ,
0 ≤ yj ≤Mj ,∀j ∈ J.

For any IoT user u ∈ Ĩ , if xu = 1, then u is considered as one
of final matched users. Let Î denote the set of users selected
in this step. Then, we solve SELECT(Î , J) to determine the
set of matching cloudlets and their allocation of edge services
considering the trading set of IoT users Î .

Step 5: Determining payment. The buying price of edge
services for a matched user u ∈ Î is equal to πd

u, that is
the minimum bid price such that xu = 1 in the optimal
solution to PADDING(Ĩ , J,Qu). This price can be viewed
as a shadow price and can be calculated through sensitivity
analysis. The revenue for each cloudlet is the VCG payment,
πc
j = pcjyj + Ṽ (Î , J)− Ṽ (Î , J/{j}).
The QMECS mechanism is given in Algorithm 1. It has

two inputs: the preferences of IoT users and cloudlets, and it
returns the matching solution and payments as outputs. The
matching solution α shows the number of allocated VMs by
each cloudlet to each IoT user. The set Πd = {πd

i |i ∈ Î}
determines the buying prices for the matched IoT users.
Finally, the last output is the selling prices of the matched
cloudlets, i.e., Πc = {πc

j |j ∈ J}.
1) Example: We provide an example to demonstrate how

our proposed mechanism works. Consider six cloudets and
three IoT users with the preferences shown in Tables I and II,
respectively. All cloudlets are qualified to provide the services
to the users since the QoS requirements are satisfied.

After collecting the preferences, SELECT(I, J) is solved,
where user 1 acquires his/her whole requested bundle, user 2
acquires 3/4 of his/her bundle, and user 3 acquires nothing.
Therefore, Ĩ = {i1}. In the next step, for each user u ∈ Ĩ , we
solve PADDING(I, J,Qu), where Qi

u = 2, i.e., the maximum
supply, if i = u, and Qi

u = 0 if i 6= u.
User 1 is in the optimal solution to PADDING(I, J,Q1).

Therefore, user 1 is determined as a winning user, and it is
matched to the most efficient cloudlets based on the optimal
solution to SELECT(Î , J). The results show that user 1
receives his/her requested VMs from cloudlets 1 to 4. The

Algorithm 1 QMECS Mechanism

/*Step 1: Preference submission*/
Input: Bd

i = (Ni, p
d
i , (RT

d
il)l∈L); ∀i ∈ I

Input: Bc
j = (Mj , p

c
j , (RT

c
jl)l∈L); ∀j ∈ J

/*Step 2: User set reduction*/
Ĩ = {i|i ∈ I, xi = 1 in the optimal solution to
SELECT(I, J)}
/*Step 3: Setting padding*/
for all u ∈ Ĩ do

if i = u then
Qi

u = q {q = max{Mj |j ∈ J}}
else if i 6= u then
Qi

u = 0
/*Step 4: Matching*/
for all u ∈ Ĩ do
Î = {u|u ∈ Ĩ , xu = 1 in the optimal solution to
PADDING(I, J,Qu)} {Î is the set of matched IoT users}

Solve SELECT(Î , J) to determine α, where
α = {αij |∀i ∈ Î , ∀j ∈ J}
/*Step 5: Determining payment*/
Πd = {πd

u : min price in PADDING(Ĩ , J,Qu),where u
is selected|∀u ∈ Î}
Πc = {πc

j = pcjyj + Ṽ (Î , J)− Ṽ (Î , J/j)|∀j ∈ J}
Output: α; Πd; Πc

TABLE I: Ask Preferences of 6 Cloudlets

Cloudlets No. of Unit Guaranteed QoS
VMs price ($) ART MRT RTF

c1 2 3 1.5 1.6 0.01
c2 1 3 1.1 1.5 0.01
c3 2 3 1.0 1.9 0.01
c4 2 3 1.8 2.1 0.02
c5 1 3 1.8 2.0 0.02
c6 2 3 1.5 2.1 0.03

TABLE II: Bid Preferences of 3 IoT Users

Asked bundle Asked QoS
IoT users No. of VMs price ART MRT RTF

u1 7 77 2.2 2.5 0.05
u2 4 38 2.0 2.3 0.05
u3 4 36 1.9 2.2 0.04

buying price for user 1 is equal to $3 and the selling price for
each cloudlet 1 to 4 is $3. This means $21 is received from
user 1 and it is distributed as follows: $6 to cloudlet 1, 3, and
4, and $3 to cloudlet 2.

2) Discussion: The proposed QMECS mechanism demon-
strates the properties of Incentive Compatibility (IC), Indi-
vidual Rationality (IR), and weakly Budged Balance (BB), if
q+ 1 > max{Mj |j ∈ J}. These properties are critical for the
mechanism in order to be practical in real world. Furthermore,
the QMECS mechanism is Computationally Efficient (CE),
as it only requires to solve linear programs to determine
matchings, allocations, and payments.

In the QMECS mechanism, allocations of VMs are based
on the lexicographic order of users and cloudlets. That is, a
user has a higher chance to be matched if it submits a higher

maximum price. Conversely, the lower prices cloudlets offer,
the higher chance for them to be matched.

However, the QMECS mechanism may result in a non-
optimal social welfare and zero budget surplus. Frequent
occurrence of zero budget for the system may lead to losing
incentives for the broker to continue running the mechanism.
This is due to the fact that the cost of running the QMECS
mechanism is not compensated with the zero payoff in the
long-term. In the following, we propose M-QMECS mecha-
nism to augment social welfare and avoid zero budget surplus.

B. Modeifed QoS-aware Matching of Edge Computing Ser-
vices (M-QMECS)

In the M-QMECS mechanism, we define the VCG price for
each IoT user i as πd

i = pdi − (Ṽ (I, J)− Ṽ (I/{i}, J)), where
Ṽ (I/{i}, J) is the social welfare when user i is absent (does
not participate). The procedure of M-QMECS mechanism is
as follows:

Step 1: Preference submission. Collect one sealed bid/ask
preference from each IoT user/cloudlet.

Step 2: VCG price calculation. For each IoT user i ∈ I ,
we calculate its VCG-based payment πd

i . We then eliminate
all users with pdi < πd

i . Let I ′ denote the updated user set.
Step 3: User set reduction. Solve the linear program

SELECT(I ′, J) with user set I ′ and cloudlet set J . Let Ĩ ′
denote the set of remaining users i ∈ I ′, where xi = 1 in the
optimal solution to SELECT(I ′, J).

Step 4: Setting padding. For each user u ∈ Ĩ ′, we set the
padding vector Qu the same as Step 3 in QMECS mechanism.

Step 5: Matching. For each user u ∈ Ĩ ′, we solve the
PADDING(Ĩ ′, J,Qu) to obtain the final IoT user set Î ′ that
will receive the edge services. Then, we solve SELECT(Î ′, J)
to determine the matching and allocations. Next, we compare
Ṽ (Î ′, J) with Ṽ (Î , J) in QMECS mechanism. If Ṽ (Î ′, J) <
Ṽ (Î , J), we follow the matching in QMECS mechanism
(Steps 2-4 in QMECS), and then the payment determination
in M-QMECS (Step 6). Otherwise, if Ṽ (Î ′, J) > Ṽ (Î , J), we
follow the steps in M-QMECS.

Step 6: Determining payment. The buying price for each
matched user u ∈ Î obtained from PADDING(Ĩ ′, J,Qu) is de-
noted by π̂d∗

u . If pdi ≥ πd
i , then π̂d∗

u = max{π̂d
c , π

d
i }, otherwise

π̂d∗
u = π̂d

u. Similar to QMECS, the revenue for each cloudlet j
is the VCG payment, πc

j = pcjyj + Ṽ (Î ′, J)− Ṽ (Î ′, J/{j}).
The M-QMECS mechanism is given in Algorithm 2. The

mechanism receives the bids of users and the asks of cloudlets
as inputs, and it returns α,Πd,Πc as outputs.

1) Example: To demonstrate the procedure of M-QMECS
mechanism, consider the example in Section III-A1. After
collecting the preferences, the VCG payments for IoT users
are calculated. The VCG payment for users 1 to 3 is equal to
$71, $38, and $36, respectively. Therefore, I ′ = {2, 3}. Then,
SELECT(I ′, J) is solved, and users {2, 3} remain in Ĩ ′. The
padding is set to q = 2. Based on the matching step, all users
in Ĩ ′ receive their requested VMs such that, user 2 acquires
his/her VMs from cloudlets 1 to 3 and user 3 acquires his/her
VMs from cloudlets 3 to 5.

Algorithm 2 M-QMECS Mechanism

/*Step 1: Preference submission*/
Input: Bd

i = (Ni, p
d
i , (RT

d
il)l∈L); ∀i ∈ I

Input: Bc
j = (Mj , p

c
j , (RT

c
jl)l∈L); ∀j ∈ J

/*Step 2: VCG-based payment calculation*/
for all i ∈ I do
πd
i = pdi − (Ṽ (I, J)− Ṽ (I/{i}, J))

I ′ = {i|i ∈ I, πd
i ≥ pdi }

/*Step 3: User set reduction*/
Ĩ ′ = {i|i ∈ I ′, xi = 1 in the optimal solution to
SELECT(I ′, J)}
/*Step 4: Setting padding*/
for all u ∈ Ĩ ′ do

if i = u then
Qi

u = q {q = max{Mj |j ∈ J}}
else if i 6= u then
Qi

u = 0
/*Step 5: Matching*/
for all u ∈ Ĩ ′ do
Î ′ = {u|u ∈ Ĩ ′, xu = 1 in the optimal solution to
PADDING(I ′, J,Qu)} {Î ′ is the set of matched IoT
users}

Solve SELECT(Î ′, J) to determine α, where
α = {αij |∀i ∈ Î ′,∀j ∈ J}
if Ṽ (Î ′, J) ≤ Ṽ (Î , J) then

Follow steps 2-4 in QMECS, then step 6 in M-QMECS
else if Ṽ (Î ′, J) > Ṽ (Î , J) then

Follow the steps in M-QMECS
/*Step 6: Determining payment*/
for all i ∈ I do

if pdi ≥ πd
i then

π̂d∗
c = max{π̂d

c , π
d
i }

else if pdi < πd
i then

π̂d∗
u = π̂d

u

Πd ← Πd
⋃
π̂d∗
c

Πc = {πc
j = pcjyj + Ṽ (Î ′, J)− Ṽ (Î ′, J/j)|∀j ∈ J}

Output: α; Πd; Πc

Since Ṽ (Î ′, J) = $50 and is higher than Ṽ (Î , J) = $49, the
final payments are calculated based on Step 6 of M-QMECS.
The payments of users 2 and 3 are equal to $9.5 and $9,
respectively. Each cloudlet 1 to 4 receives $3. The system
receives a total of $74 from the selected users and pays $24
to the matched cloudlets ($6 to each cloudlet 1, 3, and 4, and
$3 to cloudlets 2 and 5). Therefore, the system’s payoff is $50,
which is equal to the optimal social welfare.

2) Discussion: Our proposed M-QMECS mechanism is IC,
IR, and BB, if q + 1 > max{Mj |j ∈ J}. The mechanism
is also CE. Unlike QMECS mechanism, the matching in M-
QMECS mechanism is not based on the lexicographic order of
users and cloudlets. However, compared to QMECS mecha-
nism, the M-QMECS mechanism augments social welfare and
avoid zero budget surplus. In the above example, the maximum
social welfare and a higher budget surplus are realized by
adopting M-QMECS mechanism.

TABLE III: Statistics of Datasets with different workloads.

Dataset # of users # of cloudlets # of asked VMs
by each user

of offered VMs
by each cloudlet Description

Dataset-0 [5,10] [40,45] [1,10] [1,10] Very high supply
Dataset-1 [15,20] [35,40] [1,10] [1,10] High supply
Dataset-2 [40,45] [5,10] [1,10] [1,10] Very high demand
Dataset-3 [35,40] [15,20] [1,10] [1,10] High demand
Dataset-4 25 50 [2,10] [1,5] Moderate supply-demand ratio with a small padding size
Dataset-5 25 10 [2,10] [5,25] Moderate supply-demand ratio with a medium padding size
Dataset-6 25 5 [2,10] [10,50] Moderate supply-demand ratio with a high padding size

TABLE IV: Statistics of Datasets with different QoS requirements and guarantees.

asked by each user guaranteed by each cloudlet
Dataset ART MRT RTF ART MRT RTF Description
Dataset-7 [2,7] [4,9] [0.2%,0.4%] [3,8] [5,10] [0.3%,0.5%] Lower QoS guarantees than requirements
Dataset-8 [3,8] [5,10] [0.3%,0.5%] [3,8] [5,10] [0.3%,0.5%] Similar QoS requirements and guarantees
Dataset-9 [3,8] [5,10] [0.3%,0.5%] [2,7] [4,9] [0.2%,0.4%] Higher QoS guarantees than requirements

C. Properties

We now prove how M-QMECS mechanism improves social
welfare and budget surplus compared to the results of QMECS.

Theorem 1. M-QMECS mechanism can augment the social
welfare compared to that of QMECS mechanism.

Proof. We consider the following two possible cases be-
tween pdi and πd

i for user i:
Case 1: Assume pdi ≥ πd

i and i ∈ I ′. According to πd
i =

pdi −(Ṽ (I, J)− Ṽ (I/{i}, J)), and given that pdi ≥ πd
i , we can

conclude Ṽ (I, J) ≥ Ṽ (I/{i}, J). Therefore, if user i receives
the edge services, the obtained social welfare is the highest
compared with all other schemes without user i.

Case 2: Assume pdi < πd
i and i ∈ I ′. According to πd

i =
pdi −(Ṽ (I, J)− Ṽ (I/{i}, J)), and given that pdi < πd

i , we can
conclude Ṽ (I, J) < Ṽ (I/{i}, J). Therefore, if user i receives
the edge services, the obtained social welfare is not the highest
compared with all other schemes without user i. However, by
eliminating all users with pdi < πd

i from the matching in Step
2 of M-QMECS mechanism, we can avoid this case compared
to QMECS mechanism.

Lemma 1. The social welfare obtained by M-QMECS mech-
anism is not less than that of QMECS mechanism.

Proof. We consider the following two cases:
Case 1: If all users are constrained by pdi ≥ πd

i , then the
final matching results will be the same for both mechanisms
leading to the same social welfare.

Case 2: If more than one user is constrained by pdi < πd
i ,

then let I ′−i(I
′
−i ⊆ I ′) denote the set of users who can be

selected because of the absence of user i. Then, according
to πd

i = pdi − (Ṽ (I, J) − Ṽ (I/{i}, J)) and given pdi < πd
i ,

we can conclude Ṽ (I, J) < Ṽ (I/{i}, J) and subsequently
pdi xi <

∑
i′∈I′−i

pdi′xi′ . Since the matching sequence of
users follows the lexicographic order from high to low, the
users in I ′−i must have the lowest bid prices among the
user set Ĩ ′. If all users in I ′−i are in the optimal solution
to PADDING(Ĩ ′, J,Qi′)(i

′ ∈ I ′−i), then the obtained so-
cial welfare by M-QMECS mechanism is higher than that
of QMECS mechanism. Since either Ṽ (Î ′, J) < Ṽ (Î , J)

or Ṽ (Î ′, J) > Ṽ (Î , J), M-QMECS mechanism selects the
matching that leads to a higher social welfare.

To sum up, the obtained social welfare by M-QMECS
mechanism is higher than or equal to the social welfare
obtained by QMECS mechanism.

Theorem 2. The obtained budget surplus by M-QMECS
mechanism is not less than that of QMECS mechanism.

Proof. In the M-QMECS mechanism, the payment of each
user u is p̂d∗u = max{p̂du(Ĩ ′, J,Qu), πd

i }. As a result, the user
payments in M-QMECS mechanism are not less than those
induced by the QMECS mechanism. Moreover, in M-QMECS
mechanism each cloudlet owns the same utility as QMECS
mechanism since both mechanisms use the same payment
function for the cloudlets. Therefore, using Lemma 1, we can
conclude that the budget surplus of M-QMECS mechanism
is higher than or equal to the surplus obtained by QMECS
mechanism.

IV. EXPERIMENTAL RESULTS

Our proposed QMECS and M-QMECS mechanisms are IC,
IR, BB, and CE. In addition, we perform extensive experi-
ments to evaluate the performance of the two mechanisms.

Experimental setup. We used Java and ILOG Concert Tech-
nology to simulate the mechanisms, and we created sev-
eral datasets, each with specific features, to evaluate the
mechanisms under different workloads (Table 3) and QoS
requirements and guarantees (Table 4). We generated the bid
and ask prices of each VM instance based on Amazon EC2
pricing from the uniform distributions on [3.5, 5.5] and [2, 4],
respectively.

Analysis of Results. Figure 2a shows the realized social welfare
by both mechanisms and also the optimal social welfare. The
results show when supply is higher than demand, both mech-
anisms can obtain the optimal social welfare. Conversely, for
the datasets with lower supply to demand ratio, the difference
between obtained social welfare by the mechanisms and the
optimum welfare increases. For the datasets with moderate
supply-demand ratio, as the padding size increases a higher

 0

 50

 100

 150

 200

 250

 300

 350

D
ataset-0

D
ataset-1

D
ataset-2

D
ataset-3

D
ataset-4

D
ataset-5

D
ataset-6

S
o
c
ia

l
W

e
lf
a
re

QMECS
M-QMECS

Optimal

(a) Social welfare

0%

20%

40%

60%

80%

100%

D
ataset-0

D
ataset-1

D
ataset-2

D
ataset-3

D
ataset-4

D
ataset-5

D
ataset-6

S
e
rv

e
d
 u

s
e
rs

QMECS
M-QMECS

Optimal

(b) Percentage of matched users

0%

20%

40%

60%

80%

100%

D
ataset-0

D
ataset-1

D
ataset-2

D
ataset-3

D
ataset-4

D
ataset-5

D
ataset-6

In
v
o
lv

e
d
 c

lo
u
d
le

ts

QMECS
M-QMECS

Optimal

(c) Percentage of matched cloudlets

 0

 100

 200

 300

 400

 500

 600

D
ataset-0

D
ataset-1

D
ataset-2

D
ataset-3

D
ataset-4

D
ataset-5

D
ataset-6

T
o
ta

l
p
a
y
m

e
n
t
o
f
u
s
e
rs

QMECS
M-QMECS

(d) Users’ payments

 0

 100

 200

 300

 400

 500

D
ataset-0

D
ataset-1

D
ataset-2

D
ataset-3

D
ataset-4

D
ataset-5

D
ataset-6

T
o
ta

l
p
ro

fi
t
o
f
c
lo

u
d
le

ts

QMECS
M-QMECS

(e) Cloudlets’ profit

 0

 10

 20

 30

 40

 50

 60

D
ataset-0

D
ataset-1

D
ataset-2

D
ataset-3

D
ataset-4

D
ataset-5

D
ataset-6

P
ro

fi
t
o
f
b
ro

k
e
r

QMECS
M-QMECS

(f) Broker’s profit

Fig. 2: Comparison of the matching mechanisms under variant supply-demand ratios

proportion of users are eliminated in the matching step. This
in turn results in a lower social welfare. For all datasets, the
social welfare of M-QMECS mechanism is slightly higher than
or equal to that of QMECS mechanism, which is consistent
with Lemma 1.

According to Figure 2b, as supply to demand ratio increases,
users have higher chances to acquire their requested services.
However, for the datasets with the same supply-demand ratio,
the percentage of successful users strongly depends on the
padding size. This is quite obvious in the results for Datasets
4-6, where higher padding size has resulted in lower success
rate for users. As mentioned above, this is due to the fact
that a high number of users are eliminated in the matching
phase. Here again the results for M-QMECS are slightly higher
compared to QMECS.

Figure 2c demonstrates the involvement percentage of
cloudlets in serving user requests. The results show that in
Datasets 1-2 the involvement rate is the lowest since the
demand is really low such that a small number of cloudlets are
sufficient to fulfill their needs. As the demand increases, more
coudlets succeed to allocate their resources in the matching.
When the padding size increases, lower number of users
remain for the matching phase and as a result the chances
for cloudlets in order to allocate their resources decrease.
This in turn causes a reduction in the percentage of cloudlets’
involvement in the matching. The cloudlets involvement rate
for M-QMECS is slightly higher than or equal to QMECS.

According to Figure 2d, the total payments from users in M-
QMECS is higher than that of QMECS. Note that according to
the payment step of M-QMECS, each user’s payment is either

higher than or equal to its payment in QMECS. Moreover, a
slightly higher success rate in M-QMECS leads to a higher
total payments in M-QMECS. Similarly, as it is illustrated
in Figure 2e, the higher involvement rate of cloudlets in the
matching step of M-QMECS leads to a higher total profit for
the cloudlets.

Figure 2f illustrates the broker’s utility under various work-
loads. The results show that the broker’s utility is always
higher in M-QMECS, which is expected based on Theorem 2.

To sum up, both mechanisms show a better performance
as the number of cloudlets increases and the padding size
decreases. Nonetheless, M-QMECS outperforms QMECS in
all the cases, and more specifically, it brings a higher budget
surplus leading to a higher profit for the broker of the system.
This makes M-QMECS a more attractive choice for the broker.
However, M-QMECS does not follow the lexicographic order
of users in the matchings and requires more computations.

Figure 3 shows the efficiency of our proposed mechanisms
in edge computing due to considering QoS metrics in the
matchings. For comparison, we use MECS and M-MECS
based on QMECS and M-QMECS mechanisms, respectively.
MECS and M-MECS apply the matchings without considering
QoS requirements and guarantees, while maximizing the social
welfare. By the end of matchings, there may be users whose
QoS requirements are not satisfied by the matched cloudlets.
The results show that the consideration of QoS metrics in
the matchings of our proposed mechanisms improves user
satisfaction and quality of experience.

We conclude that QMECS and M-QMECS are suitable two-
sided matching mechanisms for edge computing environment

0%

20%

40%

60%

80%

100%

120%

D
ataset-7

D
ataset-8

D
ataset-9

S
e
rv

e
d
 u

s
e
rs

QMECS
M-QMECS

MECS
M-MECS

Fig. 3: User served after matching.

that consider incentives, preferences, and QoS requirements of
the IoT users, the cloudlets, and the system broker.

V. CONCLUSION

With rapid changes in the quality-of-service requirements
of Internet-of-Things and emerging new paradigms such as
edge computing, efficient QoS-aware matching algorithms are
needed to match cloudlets to IoT applications when providing
edge computing services. In this paper, we addressed this
challenge by proposing novel two-sided matching solutions,
QMECS and M-QMECS, for edge services considering QoS
requirements in terms of service response time. In addition,
we proposed payment determination solutions considering
preferences and incentives of cloudlets, IoT users, and the
system. The proposed matchings are Pareto-efficient, incentive
compatible, weakly budget balanced, and computationally
efficient. The experimental results showed that the mechanisms
are suitable for edge computing services by providing close to
optimal matching, efficient pricing, and guaranteed QoS. For
future work, we plan to extend the mechanisms considering
mobility of the IoT devices and cloudlets.

Acknowledgment. This research was supported in part by NSF
grant CNS-1755913.

REFERENCES

[1] E. Balevi and R. D. Gitlin, “Unsupervised machine learning in 5g
networks for low latency communications,” in Proc. of the 36th IEEE
International Performance Computing and Communications Conference,
2017, pp. 1–2.

[2] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[3] W. Shi and S. Dustdar, “The promise of edge computing,” Computer,
vol. 49, no. 5, pp. 78–81, 2016.

[4] S. Singh and I. Chana, “QoS-aware autonomic resource management
in cloud computing: a systematic review,” ACM Computing Surveys,
vol. 48, no. 3, p. 42, 2016.

[5] G. Portaluri, D. Adami, A. Gabbrielli, S. Giordano, and M. Pagano,
“Power consumption-aware virtual machine placement in cloud data
center,” IEEE Transactions on Green Communications and Networking,
vol. 1, no. 4, pp. 541–550, 2017.

[6] M. Li, Y.-E. Sun, H. Huang, J. Yuan, Y. Du, Y. Bao, and Y. Luo, “Profit
maximization resource allocation in cloud computing with performance
guarantee,” in Proc. of the 36th IEEE International Performance Com-
puting and Communications Conference, 2017, pp. 1–2.

[7] H. Zhang, H. Jiang, B. Li, F. Liu, A. V. Vasilakos, and J. Liu,
“A framework for truthful online auctions in cloud computing with
heterogeneous user demands,” IEEE Transactions on Computers, vol. 65,
no. 3, pp. 805–818, 2016.

[8] W. Shi, L. Zhang, C. Wu, Z. Li, F. Lau, W. Shi, L. Zhang, C. Wu, Z. Li,
and F. Lau, “An online auction framework for dynamic resource provi-
sioning in cloud computing,” IEEE/ACM Transactions on Networking,
vol. 24, no. 4, pp. 2060–2073, 2016.

[9] L. Zhang, Z. Li, and C. Wu, “Dynamic resource provisioning in
cloud computing: A randomized auction approach,” in Proc. of IEEE
INFOCOM, 2014, pp. 433–441.

[10] Amazon EC2 Spot Instances. [Online]. Available:
https://aws.amazon.com/ec2/spot/pricing/

[11] L. Mashayekhy, M. Nejad, and D. Grosu, “A PTAS mechanism for
provisioning and allocation of heterogeneous cloud resources,” IEEE
Transactions on Parallel and Distributed Systems, vol. 26, no. 9, pp.
2386–2399, 2015.

[12] ——, “Physical machine resource management in clouds: A mechanism
design approach,” IEEE Transactions on Cloud Computing, vol. 3, no. 3,
pp. 247–260, 2015.

[13] M. Nejad, L. Mashayekhy, and D. Grosu, “Truthful greedy mechanisms
for dynamic virtual machine provisioning and allocation in clouds,”
IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 2,
pp. 594 – 603, 2015.

[14] L. Mashayekhy, M. M. Nejad, D. Grosu, and A. V. Vasilakos, “An
online mechanism for resource allocation and pricing in clouds,” IEEE
transactions on computers, vol. 65, no. 4, pp. 1172–1184, 2016.

[15] Z. Ma, Z. Sheng, and L. Gu, “DVM: A big virtual machine for cloud
computing,” IEEE Transactions on Computers, 2013.

[16] L. Mashayekhy, M. M. Nejad, and D. Grosu, “Cloud federations in the
sky: Formation game and mechanism,” IEEE Transactions on Cloud
Computing, vol. 3, no. 1, pp. 14–27, 2015.

[17] D. Kumar, G. Baranwal, Z. Raza, and D. P. Vidyarthi, “A systematic
study of double auction mechanisms in cloud computing,” Journal of
Systems and Software, vol. 125, pp. 234–255, 2017.

[18] B. Shi, J. Wang, Z. Wang, and Y. Huang, “Trading web services in a
double auction-based cloud platform: A game theoretic analysis,” in
Proc. of the IEEE International Conference on Services Computing,
2017, pp. 76–83.

[19] L. Mashayekhy, M. Nejad, and D. Grosu, “A two-sided market mecha-
nism for trading big data computing commodities,” in Proc. of the IEEE
International Conference on Big Data, 2014, pp. 153–158.

[20] V. Nallur and R. Bahsoon, “A decentralized self-adaptation mechanism
for service-based applications in the cloud,” IEEE Transactions on
Software Engineering, vol. 39, no. 5, pp. 591–612, 2013.

[21] S. K. Garg, C. Vecchiola, and R. Buyya, “Mandi: a market exchange
for trading utility and cloud computing services,” The Journal of
Supercomputing, vol. 64, no. 3, pp. 1153–1174, 2013.

[22] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[23] M. N. Islam, V. C. Patil, and S. Kundu, “Determining proximal geolo-
cation of IoT edge devices via covert channel,” in Proc. of the 18th Intl.
Symposium on Quality Electronic Design, 2017, pp. 196–202.

[24] M. Chiang and T. Zhang, “Fog and IoT: An overview of research
opportunities,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 854–
864, 2016.

[25] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[26] M. Jutila, “An adaptive edge router enabling internet of things,” IEEE
Internet of Things Journal, vol. 3, no. 6, pp. 1061–1069, 2016.

[27] W. Li, Y. Li, W. Wang, Y. Xin, and T. Lin, “A dominating-set-based and
popularity-driven caching scheme in edge ccn,” in Proc. of the 34th IEEE
International Performance Computing and Communications Conference,
2015, pp. 1–2.

[28] K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang, “Cooperative
content caching in 5g networks with mobile edge computing,” IEEE
Wireless Communications, vol. 25, no. 3, 2018.

[29] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation
task scheduling for mobile-edge computing systems,” in Proc. of the
IEEE Intl. Symposium on Information Theory, 2016, pp. 1451–1455.

[30] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, no. 5, pp. 2795–2808, 2016.

[31] S. K. Garg, S. Versteeg, and R. Buyya, “A framework for ranking
of cloud computing services,” Future Generation Computer Systems,
vol. 29, no. 4, pp. 1012–1023, 2013.

