
A Merge-and-Split Mechanism for Dynamic Virtual
Organization Formation in Grids

Lena Mashayekhy
Department of Computer Science

Wayne State University
Detroit, MI 48202, USA

Email: mlena@wayne.edu

Daniel Grosu
Department of Computer Science

Wayne State University
Detroit, MI 48202, USA

Email: dgrosu@wayne.edu

Abstract—Executing large scale application programs in grids
requires resources from several Grid Service Providers (GSPs).
These providers form Virtual Organizations (VOs) by pooling
their resources together to provide the required capabilities
to execute the application. We model the VO formation in
grids using concepts from coalitional game theory and design
a mechanism for VO formation. The mechanism enables the
GSPs to organize into VOs reducing the cost of execution and
guaranteeing maximum profit for the GSPs. Furthermore, the
mechanism guarantees that the VOs are stable, that is, the
GSPs do not have incentives to break away from the current
VO and join some other VO. We perform extensive simulations
to characterize the properties of the proposed mechanism. The
results show that the mechanism produces VOs that are stable
yielding high revenue for the participating GSPs.

I. I NTRODUCTION

Grid computing systems enable efficient collaboration
among researchers and provide essential support for con-
ducting cutting-edge science and engineering research. These
systems are composed of geographically distributed resources
(computers, storage etc.) owned by autonomous organizations.
Resource management in such open distributed environments
is a very complex problem which if solved leads to efficient
utilization of resources and faster execution of applications.
The existent grid resource management systems [1], [2], [3],
[4] do not explicitly address the formation and management of
Virtual Organizations (VO) [5]. We argue that incentives are
the main driving forces in the formation of VOs in grids, and
thus, it is imperative to take them into account when designing
VO formation mechanisms. To provide better performance and
increase the efficiency it is essential to develop mechanisms
for VO formation that take into account the behavior of the
participants and provide incentives to contribute resources.

The life-cycle of a VO can be divided into four phases:
identification, formation, operation, and dissolution. During
the initiation phase the possible partners and the VO’s ob-
jective are identified. In the formation phase, the potential
partners negotiate the exact terms, the goal, and the duration
of collaboration. Once the VO is formed it enters the operation
phase in which the members of the VO collaborate in solving
a specific task. Once the VO completes the task, it dissolves.
This paper focuses on designing mechanisms for the second
phase, the formation of VOs. We model the VO formation as

a coalitional game where GSPs decide to form VOs in such
a way that each GSP maximizes its own profit, the difference
between revenue and costs. A GSP will choose to participate
in a VO if its profit is not negative. The VOs provide the
composite resource needed to execute applications. A VO is
traditionally conceived for the sharing of resources, but it can
also represent a business model [5]. In this work, a VO is
a coalition of GSPs who desire to maximize their individual
profits and are largely indifferent about the global welfare. We
design a VO formation mechanism based on concepts from
coalitional game theory. The model that we consider consists
of a set of GSPs and a grid user that submits a program and a
specification consisting of a deadline and payment. A subsetof
GSPs will form a VO in order to execute the program before
its deadline. The objective of each GSP is to form a VO that
yields the highest individual profit.

Related Work.Resource management in open distributed com-
puting systems that span multiple administrative domains and
organizations has been studied extensively. Several mecha-
nisms and systems for resource management have been de-
veloped, examples include GRAM [1], SNAP [2], Condor-
G [3], AppLeS [6], Nimrod/G [7], and Legion [4]. These
mechanisms and systems do not explicitly take into account
the autonomy of the resource owners and their incentives
to contribute resources. Several economic-based models and
systems for resource management in open distributed systems
that address this issue have been proposed in the literature[8],
[9], [10]. They do not explicitly address the problem of VO
formation and management which is one of the key issues that
need to be solved in large scale computing systems in order to
facilitate collaboration among participating organizations. The
requirements for establishing and managing dynamic VOs in
grids are discussed in [11]. One of the most important require-
ments identified by the authors is the interoperability of the en-
vironment. This is usually satisfied in the current grids through
common protocols for establishing and managing sharing
relationships. Globus Toolkit [12] supports the operationand
management of VOs by providing basic middleware for VO
policy specification and enforcement, resource management,
provisioning, and discovery. The toolkit does not provide
mechanisms for VO formation and tools for VO management



and analysis. Dynamic VO formation among autonomous
agents and the management of VOs are examined in [13]. The
VO formation problem can be viewed as a coalition formation
problem. Research on coalition formation has been conducted
in the multi-agent systems community for problems such as
allocating a task [14] and service composition [15].

To the best of our knowledge, the closest work to ours is
presented in [16] which describes the mechanisms for VO
formation used in the CONOISE-G project. The mechanisms
used in CONOISE-G are based on Constraint Satisfaction Pro-
gramming (CSP) techniques [17] while our proposed mech-
anism is based on coalitional game models and techniques.
We believe that coalitional game theory is a powerful tool
for modeling VO formation among autonomous organizations
providing more efficient and scalable mechanisms compared
to CSP. CSP techniques do not facilitate the stability and
robustness analysis of the VO formation process, while this
is intrinsic and represents one of the strengths of coalitional
game theory. Furthermore, the CONOISE-G project does not
address the issues of scheduling the applications within the
VO, while our proposed framework addresses this issue and
provides a mechanism for application scheduling within VOs.
In our previous work [18], we developed a VO formation
framework based on extensive form games. The approach we
use here is based on coalitional games and merge-and-split
operations which, unlike the one used in [18], guarantees the
stability of the VOs formed by the proposed mechanism and
is more computationally efficient.

Our Contribution.We address the problem of VO formation in
grids by designing a mechanism that allows the GSPs to make
their own decision to participate in VOs. In this mechanism,
coalitions of GSPs decide to merge and split in order to form a
VO that maximizes the individual payoffs of the participating
GSPs. The mechanism provides a stable VO structure, that
is, none of the GSPs has incentives to merge to another VO
or split from a VO to form another VO. We propose the
use of a selfish split rule in order to find the optimal VO in
the VO structure. We analyze the properties of our proposed
VO formation mechanism and perform extensive simulation
experiments to investigate its properties.

Organization. This paper is organized as follows. In Sec-
tion II, we describe the VO formation problem and the system
model we consider. In Section III, we describe the game
theoretic framework used to design the proposed VO formation
mechanism. Then, we present the proposed mechanism and
characterize its properties. In Section IV, we evaluate the
mechanism by extensive simulation experiments. In SectionV,
we summarize our results and present possible directions for
future research.

II. VO FORMATION AS A COALITIONAL GAME

In this section, we model the VO formation in grids as a
coalitional game. We first describe the system model which
considers that a user wants to execute a large-scale application
programT consisting ofn independent tasks{T1, T2, . . . , Tn}

on the available set of grid service providers by a given dead-
line d. Application programs consisting of several independent
tasks are representative for a wide range of problems in science
and engineering [19], [20], [21]. Each taskT ∈ T composing
the application program is characterized by its workloadw(T ),
which can be defined as the amount of instructions required
by the task. Executing the application programT requires
a large number of resources which cannot be provided by a
single GSP. Thus, several GSPs pool their resources together
to execute the application. We consider that a set ofm GSPs,
G = {G1, G2, . . . , Gm}, are available and are willing to
provide resources for executing programs. Here, we assume
that the GSPs are driven by incentives in the sense that they
will execute a task only if they make some profit out of it.
More specifically, the GSPs are assumed to be self-interested
and welfare-maximizing entities. Each service providerG ∈ G
owns several computational resources which are abstractedas
a single machine with speeds(G). The speeds(G) gives the
number of instructions per second that can be executed by
GSPG. Therefore, the execution time of taskT at GSPG is
given by the execution time functiont : T × G → R

+, where
t(T,G) = w(T )

s(G) . We also assume that once a task is assigned
to a GSP, the task is neither preempted nor migrated.

A GSP incurs cost for executing a task. The cost incurred
by GSPG ∈ G when executing taskT ∈ T is given by the
cost function,c : T × G → R

+. Furthermore we assume that
a GSP has zero fixed costs and its variable costs are given by
the functionc. A user is willing to pay a priceP less than her
available budgetB if the program is executed to completion
by deadlined. If the program execution exceedsd, the user is
not willing to pay any amount that is,P = 0.

Since a single GSP does not have the required resources
for executing a program, GSPs form VOs in order to have
the necessary resources to execute the program and more
importantly, to maximize their profits. The profit is simply
defined as the difference between the payment received by a
GSP and its execution costs. If the profit is negative (i.e., a
loss), the GSP will choose not to participate.

We model the VO formation problem as a coalitional game.
A coalitional game[22] is defined by the pair(N, v), where
N is the set of players andv is a real-valued function called
the characteristic function, defined onS ⊆ N such thatv :
S → R

+ andv(∅) = 0. In our model, the players are the GSPs
(i.e., N = G) that form VOs which are coalitions of GSPs. In
this work, we use the terms VO and coalition interchangeably.

Each subsetS ⊆ G is a coalition. If all the players form
a coalition, it is called thegrand coalition. A coalition has a
value given by the characteristic functionv(S) representing
the profit obtained when the members of a coalition work as
a group. For each coalition of GSPsS ⊆ G, there exists a
mappingπS : T → S, which assigns taskT ∈ T to service
providerG ∈ S. The costs incurred for executing the program
T on S under mappingπS is given by

C(T , S) =
∑

T∈T

∑

G∈S

σS(T,G)c(T,G), (1)



where

σS(T,G) =

{

1 if πS(T ) = G,

0 if πS(T ) 6= G.
(2)

The execution time of the program is given by itsmakespan
(i.e., completion time) as induced by the mappingπS . The
execution time is given by

E(T , S) = max
G∈S

∑

T∈T

σS(T,G)t(T,G). (3)

where

t(T,G) =
w(T )

s(G)
(4)

We define the following characteristic function for our
proposed VO formation game:

v(S) =

{

0 if |S| = 0 or E(T , S) > d,

P − C(T , S) if |S| > 0 andE(T , S) ≤ d,
(5)

where|S| is the cardinality ofS. Note thatv(S) satisfies the
constraintv(∅) = 0.

The objective of each GSP is to determine the membership
in a coalition that gives the highest share of profit. There are
different ways to divide the profitv(S) earned by coalition
S among its members. Traditionally, theShapley value[23]
would be employed, but computing the Shapley value requires
iterating over every partition of a coalition, an exponential time
endeavor. Another rule for payoff division isequal sharingof
the profit among members. Equal sharing provides a tractable
way to determine the shares and has been successfully used as
an allocation rule in other systems where tractability is critical
(e.g., [14]). For this reason we adopt here the equal sharing
of the profit as the payoff division rule.

Due to their welfare-maximizing behavior, the GSPs prefer
to form a low profit coalition if their profit divisions are higher
than those obtained by participating in a high profit coalition.
Therefore, a service providerG determines its preferred coali-
tion S by solving:

max
(S)

P − C(T , S)

|S|
(6)

subject to: (i)E(T , S) ≤ d, and (ii)G ∈ S. The first constraint
specifies that the program is completed before the deadline,
while the second constraint says thatG is a member of the
coalition.

The payoff or the share of GSP G part of coalition S,
denoted byxG(S) is given by

xG(S) =
v(S)

|S|
. (7)

Thus, the payoff vectorx(G) = (xG1
(G), · · · , xGm

(G)) gives
the payoff divisions of the grand coalition. A solution concept
for coalitional games is a payoff vector that allocates the
payoff among the players in some fair way. The primary
concern for any coalition game is the stability. One of the
solution concepts used to asses the stability of coalitionsis

TABLE I: The program settings.

cost speed time
T1 T2 s T1 T2

G1 3 4 8 3 4.5
G2 3 4 6 4 6
G3 4 5 12 2 3

TABLE II: The mappings for each coalition.

S Mapping v(S)
{G1} NOT FEASIBLE 0
{G2} NOT FEASIBLE 0
{G3} T1, T2 → G3 1
{G1, G2} T2 → G1; T1 → G2 3
{G1, G3} T1 → G1; T2 → G3 2
{G2, G3} T1 → G2; T2 → G3 2
{G1, G2, G3} T2 → G1; T1 → G2 3

the core. In order to define the core we need to introduce
first the concept of imputation. Animputation is a payoff
vector such thatxG(G) ≥ v(G) for all GSPsG ∈ G, and
∑

G∈G xG(G) = v(G). The first condition says that by forming
the grand coalition the profit obtained by each memberG

participating in the grand coalition is not less than the one
obtained when acting alone. The second condition says that
the entire profit of the grand coalition should be divided
among its members. Thecore is a set of imputations such
that

∑

G∈S xG(G) ≥ v(S),∀S ⊆ G, i.e., for all coalitions, the
payoff of any coalition is not greater than the sum of payoffs
of its members in the grand coalition. The core contains payoff
vectors that make the players want to form the grand coalition.
The existence of a payoff vector in the core shows that the
grand coalition is stable. Therefore, a payoff division is in the
core if no player has an incentive to leave the grand coalition
to join another coalition in order to obtain higher profit. The
core of the VO formation game can be empty. If the grand
coalition does not form, independent and disjoint coalitions
would form.

To show that the core of the proposed VO formation game
can be empty we consider an example with three GSPs
G = {G1, G2, G3} and a two-task programT = {T1, T2}
whereT1 andT2 workloads are 24 and 36 million instructions,
respectively. In Table I, we give the cost of executing each task
on each GSP, the speed of each GSP, and the execution time
of each task on each GSP. As an example,G1 incurs 3 units
of cost to executeT1 and 4 units of cost to executeT2. The
speed ofG1 is 8 MIPS. Based on the definition of the time
function, the execution time of taskT1 andT2 are 3 and 4.5
seconds, respectively.

If G1, G2 and G3 execute the entire program separately,
then the program completes in7.5, 10 and 5 units of time,
respectively. We assume that the user has specified a deadline
d = 5 and a paymentP = 10. The mapping andv(S) are
given in Table II. SincexG1

(G) + xG2
(G) ≥ v({G1, G2}),

xG3
(G) ≥ v(G3), and xG1

(G) + xG2
(G) + xG3

(G) =



v({G1, G2, G3}) are not satisfied, there is no payoff vector in
the core, and thus, the core of the game is empty. More than
this, since we are using equal sharing, the profit ofG1 andG2

in coalition {G1, G2} is 1.5 while the profit of each GSP in
the grand coalition is1. Thus, {G1, G2} have an incentive
to deviate from the grand coalition, andG3 can not be a
member of the coalition. As a result,{G1, G2} will execute
the program.

In this paper, we assume that if a GSP does not participate
to perform a task, it should receive zero as a payoff. If there
are some GSPs that do not participate in performing any task
of the program, they should not be considered as members of
the VO.

III. VO F ORMATION MECHANISM

In this section, we introduce few concepts from coalitional
game theory needed to describe the proposed mechanism and
then present the mechanism.

A. Coalition Formation Framework

Coalition formation[24] is the partitioning of the players
into disjoint sets. A coalition structureCS = {S1, S2, . . . , Sh}
forms a partition such that each player is a member of exactly
one coalition, i.e., Si ∩ Sj = ∅ for all i and j where
i 6= j and

⋃

Si∈CS Si = N . In the VO formation game
defined in the previous section only one of the coalitions in
the coalition structure is selected to execute the application
program. The selected coalition is the one that yields the
highest individual payoff for all of its members. The coalitions
that cannot complete the program within the deadline will not
be considered since the payoff for such coalitions is zero.

The following concepts are used in the design of the VO
formation mechanism.

Definition 1 (Collection):A collection in the grand coali-
tion N , is defined as the setC = {S1, · · · , Sk} of mutually
disjoint coalitions. If∪k

j=1Sj = N , the collectionC is called
a partition of N .

Definition 2 (Comparison):A collection comparison⊲ is
defined to compare two collectionsA andB that are partitions
of the same subsetS ⊆ N . A ⊲ B implies that the wayA
partitionsS is preferred to the wayB partitionsS.

In the proposed VO formation game, a welfare-maximizing
GSP will determine its coalition by considering the profit it
earns and not the coalition value. Thus, comparison relations
among collections are defined based on the GSPs’ individual
payoffs. These comparison relations correspond to the merge
and split rules which will be defined later in this section. We
consider two collectionŝS = {∪k

j=1Sj} and {S1, · · · , Sk}
from the same subset. We define two comparison relations,
the merge comparison⊲m and thesplit comparison⊲s, based
on the individual payoffs as follows:

Ŝ ⊲m{S1, · · · , Sk} ⇐⇒ {∀j ≤ k, ∀Gi ∈ Ŝ ∩ Sj ;

xi(Ŝ) ≥ xi(Sj) and∃j ≤ k,
∃Gr ∈ Sj ;xr(Ŝ) > xr(Sj)}

(8)

{S1, · · · , Sk} ⊲sŜ ⇐⇒ {∃j ≤ k, ∀Gi ∈ Ŝ ∩ Sj ;

xi(Sj) ≥ xi(Ŝ) and
∃Gr ∈ Sj ;xr(Sj) > xr(Ŝ)}

(9)

Equation (8) implies that coalitionŜ is preferred over
{S1, · · · , Sk}, if at least one playerGr is able to improve its
payoff without decreasing other players’ payoffs. Equation (9)
implies that collection{S1, · · · , Sk} is preferred overŜ, if
at least one coalitionSj is able to keep the payoffs of its
members while at least one of its membersGr is able to
improve its payoff regardless of the effect on the other players
outside ofSj .

Using the defined comparison relations, we propose a VO
formation mechanism involving two types of merge and split
rules as follows [24]:

Merge Rule:Merge any set of coalitions{S1, · · · , Sk},
where{∪k

j=1Sj}⊲m{S1, · · · , Sk}.
Split Rule: Split any coalition Ŝ = {∪k

j=1Sj}, where
{S1, · · · , Sk}⊲s{∪

k
j=1Sj}.

Coalitions decide to merge only if at least one GSP is able
to strictly improve its individual payoff through the merge
rule without decreasing the other GSPs’ payoffs. Therefore,
the merge rule by the individual order is an agreement among
the GSPs to operate together if it is beneficial for them.

As we mentioned before, one of the formed coalitions, final
coalition, performs the program, thus, the formation of therest
of the coalitions is not important. The reason for that is therest
of the GSPs which are not in the final coalition can participate
again in another coalition formation process for performing
another assigned application. Therefore, a coalition decides
to split only if there is at least one subcoalition that strictly
improves the individual payoffs of its constituent GSPs. Under
the split rule, the individual payoffs of the other subcoalitions
may decrease. The split rule can be seen as the implementation
of a selfishdecision by a coalition, which does not take into
account the effect of the split on the other coalitions.

Two coalitionsSi and Sj decide to merge based on the
merge comparison defined by (8) where all of GSPs inSi∪Sj

are able to keep or improve their individual payoffs. A GSP
individual payoff is computed based on (6) while satisfying
the deadline constraint. As a result, the merge occurs if the
following two inequalities are satisfied.

P − C(T , Si ∪ Sj)

|Si ∪ Sj |
≥

P − C(T , Si)

|Si|
(10)

P − C(T , Si ∪ Sj)

|Si ∪ Sj |
≥

P − C(T , Sj)

|Sj |
(11)

Since|Si ∪Sj | > |Si| and |Si ∪Sj | > |Sj |, in order to a GSP
in Si to keep or improve its payoff,P − C(T , Si ∪ Sj) ≥
P−C(T , Si), and it should be the same for a GSP inSj . Thus,
C(T , Si ∪ Sj) ≤ C(T , Si) and C(T , Si ∪ Sj) ≤ C(T , Sj).
That means that coalitions can only merge when the cost of
the formed coalition by merge is less than their cost.

For the split rule, a coalition̂S decides to split into two
coalitions Si and Sj based on the split comparison defined
by (9) where all GSPs inSi, Sj , or both are able to keep or



improve their individual payoffs. Thus,̂S splits if at least one
of the following inequalities is satisfied.

P − C(T , Ŝ)

|Ŝ|
≤

P − C(T , Si)

|Si|
(12)

P − C(T , Ŝ)

|Ŝ|
≤

P − C(T , Sj)

|Sj |
(13)

That means that the individual payoff of each GSP in at least
one of the splitted coalitions,Si or Sj , should be higher than
or equal to its individual payoff in̂S.

The stability of the resulting coalition structure is charac-
terized using the concept of defection functionD [24].

Definition 3 (Defection function):A defection functionD is
a function which associates with each partitionP of N a group
of collections inN . A partition P is D-stable if no group of
players is interested in leavingP. Thus, the players can only
form the collections allowed byD.
A defection functionDP is discussed in [24] which allows
formation of all partitions of the grand coalition.DP -stability
is defined based on this function.DP allows any group of
players to leave the partitionP of N through merge-and-split
rules to create another partition inN . Therefore,DP -stability
means no coalition has an incentive to merge or split.

In order to clarify the above concepts, let us consider the
example in section II with three GSPsG = {G1, G2, G3} and
a two-task programT = {T1, T2}. G1 andG2 cannot perform
the program by acting alone since the deadline is exceeded,
thus they receive zero.G3 receives1 by acting alone. Consider
that G3 communicates withG2 in order to merge. Based
on the values in Table II,{G2, G3} ⊲m {{G2}, {G3}}, since
G2 improves its payoff whileG3 keeps its original payoff.
Thus, the merge is optimal. Now, there are two coalitions
{G1} and {G2, G3}. G1 communicates with{G2, G3} in
order to merge and since{G1, G2, G3}⊲m {{G1}, {G2, G3}},
the merge occurs. In this case,G1 improves its payoff while
G2 and G3 keep their previous payoff. Now,{G1, G2, G3}
tries to split. The only subcoalition that can split is{G1, G2}
since {{G1, G2}, {G3}} ⊲s {G1, G2, G3}, i.e., G1 and G2

improve their payoff by splitting. None ofG1 andG2 wants
to split from the coalition{G1, G2}. There are no coalitions
to be able to merge or split any further. Even if GSPs try
different order to merge, at the end of the merge step the
grand coalition forms, and then{G1, G2} splits. As a result,
partition {{G1, G2}, {G3}} is DP -stable.

B. Merge-and-Split VO Formation Mechanism (MSVOF)

The proposed VO formation mechanism is given in Al-
gorithm 1. The mechanism is executed by a trusted party
that also facilitates the communication among VOs/GSPs.
MSVOF starts with a coalition structureCS consisting of
every singletonGi ∈ N as a coalitionSi in CS. MSVOF
executes the mapping algorithm for each coalitionSi ∈ CS
to find an allocation for the application programT on GSPs
in Si. The mapping algorithm solves a variant of the general
assignment problem (GAP) that can be viewed as the problem

Algorithm 1 Merge-and-Split VO Formation Mechanism (MSVOF)

1: CS = {{G1}, · · · , {Gm}}
2: Map programT on eachSi ∈ CS
3: repeat
4: stop← True
5: for all Si, Sj ∈ CS, i 6= j do
6: visited[Si][Sj ]← False
7: end for
8: {Merge process starts:}
9: repeat

10: flag ← True
11: Randomly selectSi, Sj ∈ CS for which

visited[Si][Sj ] = False, i 6= j
12: visited[Si][Sj ]← True
13: Map programT on Si ∪ Sj using GAP
14: if Si ∪ Sj⊲m{Si, Sj} then
15: Si ← Si ∪ Sj {mergeSi andSj}
16: Sj ← ∅ {Sj is removed fromCS}
17: for all Sk ∈ CS, k 6= i do
18: visited[Si][Sk]← False
19: end for
20: end if
21: for all Si, Sj ∈ CS, i 6= j do
22: if not visited[Si][Sj ] then
23: flag ← False
24: end if
25: end for
26: until (|CS| = 1) or (flag = True)
27: {Split process starts:}
28: for all Si ∈ CS where|Si| > 1 do
29: for all partitions{Sj , Sk} of Si,

whereSi = Sj ∪ Sk, Sj ∩ Sk = ∅ do
30: Map programT on Sj using GAP
31: Map programT on Sk using GAP
32: if {Sj , Sk}⊲sSi then
33: Si ← Sj {that isCS = CS \ Si}
34: CS = CS

⋃

Sk

35: stop← False
36: Break (one split occurs; no need to check other splits)
37: end if
38: end for
39: end for
40: until stop = True
41: Find k = arg maxSi∈CS {v(Si)/|Si|}
42: Map and execute programT on VO Sk

of scheduling parallel machines with cost. In this paper, we
use the GAP algorithm described in [25]. This algorithm solves
the LP relaxation of the problem and performs rounding by
building a bipartite graph based on the relaxed solution. The
integer solution is obtained by finding an integer matching of
the bipartite graph. Other mapping algorithms can also be used
by the coalitions to decide on the mapping.

When MSVOF starts, all tasks are considered to be assigned
to each of the GSPs. Then,v(Si) is computed based on the
allocation. MSVOF uses a matrixvisited for checking if all
pairs of coalitions inCS are visited for merge or not. By
using this matrix, all possible combinations of two coalitions
in CS are visited during the merge step. The merge process
starts every time by choosing two non-visited coalitions inCS
randomly, e.g.,Si andSj . The mapping algorithm is called to
find an allocation for the application programT on Si∪Sj . If



Si∪Sj⊲m{Si, Sj}, then coalitionsSi andSj decide to merge.
Therefore, all the members receive higher profit by merging
due to using of the equal sharing of profit.Si ∪ Sj is saved
in Si, andSj is deleted fromCS. SinceSi is changed, it can
be selected in next merge steps. Thus,visited[Si][Sk] for all
Sk ∈ CS, k 6= i is set to false. The merge process tries to
find another pair of non-visited coalitions for merge. If allthe
coalitions are tested and a merge does not occur, or the grand
coalition forms, the merge process ends.

The coalition structureCS obtained by the merge process
is then subject to splits. In the split process, all coalitions
that have more than one member are subject for splitting. The
mechanism tries to splitSi that has more than one member in
two disjoint coalitionsSj and Sk whereSj ∪ Sk = Si. The
mapping algorithm is called twice to find an allocation onSj

and an allocation onSk for applicationT . Since the split is a
selfish decision, the splitting occurs even if one of the members
of coalition Sj or Sk can improve its individual value. As a
result, the coalition with the higher individual payoff is the
decision maker for the split.

If one or more coalitions split, then the merging process
starts again. To do so, thestop flag is set to false. Multiple
successive merge-and-split operations are repeated untilthe
mechanism terminates. That means there are no choices for
merge or split for all existing coalitions inCS. Let’s consider
CSfinal as the final coalition structure. The mechanism selects
one of the coalitions in theCSfinal that has the highest
individual value for its members. The selected coalition will
perform the programT .

Theorem 1:Every partition resulting from our proposed VO
formation isDP -stable.

Proof: (Sketch) Since the merge and split operations are
based on the comparison relations⊲m and ⊲s, the resulting
partition after each merge or split is more preferred than a
previous partition. As a result, there is no cycle of partitions in
any sequence of merge and split operations. Since the number
of different partitions is finite, the merge-and-split iterations
terminate. The final partition cannot be subject to any further
merge or split. As a result, the final partition isDP -stable.

The time complexity of the mechanism is determined by
the number of attempts for merge and split. In the worst case
scenario, each coalition needs to make a merge attempt with
all the other coalitions inCS. The total worst case number of
merge attempts for all coalitions is inO(m2). However, the
merge process requires a significantly less number of attempts
since once a coalition is found for merge and the merge occurs,
it does not always require to go through all the merge attempts.
In the worst case scenario, splitting a coalitionS is in O(2|S|)
which involves finding all the possible partitions of size two
of the participating GSPs in that coalition. In practice, this
split operation is restricted to the formed coalitions inCS
and is not performed over all GSPs inG. That means, the
complexity of the split operation depends on the size of the
coalitions in CS and not on the total numberm of GSPs.
The coalitions inCS are small sets specially since we apply
selfish split decisions that keep the size of the coalitions as

TABLE III: Simulation Parameters
Param. Description Value(s)
m Number of GSPs 16
n Number of tasks [50, 225]
s GSP’s speeds (m× 1 vector) 159×[1, 2m] GIPS
w Tasks’ workload (n× 1 vector) [20,000, 320,000] GI
t Execution time matrix (m× n) w

s
seconds

c Cost matrix (m× n) [1, φb × φr]
d Deadline 10,000 seconds
P Payment 20,000 units
φb Maximum baseline value 100
φr Maximum row multiplier 10

small as possible. As a result, the split is reasonable in terms
of complexity. In addition, once a coalition decides to split,
the search for further splits is not needed.

IV. EXPERIMENTAL RESULTS

We perform a set of simulation experiments which allows
us to investigate how effective the MSVOF mechanism is in
determining the stable VOs.

A. Simulation Parameters

We consider 16 GSPs. Since each GSP is a provider not
an abstract machine, considering this number of GSPs is
reasonable. We performed runs for eight different application
program sizes, ranging from 50 to 225 tasks. The simulation
parameters and their values are listed in Table III. The deadline
and payment are kept the same in all the experiments. The
values for deadline and payment are large enough to make
sure that there is a feasible solution in each experiment.

The speed vectors is generated relative to the fastest current
Intel processor, Intel Core i7 Extreme Edition 990x which can
perform 159 GIPS. Each GSP has a speed chosen within the
range [159, 2×m×159] GIPS. The reason is that each GSP
can have several nodes capable of performing 159 GIPS. Each
task has a workload expressed in Giga Instructions, randomly
selected from [20000, 320000]. The workload vector,w,
contains the workload of each task of the application program.
Based on the speed vector and the workload vector, the
execution time of each taskTj on each GSPGi is obtained
using equation (4). The execution time matrix is consistent
if a GSPGi that executes any taskTj faster than GSPGk,
executes all tasks faster than GSPGk [26]. The generated
time matrix is consistent due to the fact thatw(Tj) is fixed
for Tj ∈ T , thus, for any taskTj if t(Tj , Gi) < t(Tj , Gk) is
true, then we haves(Gi) > s(Gk) which meansGi is faster
thanGk. As a result,t(Tq, Gk) > t(Tq, Gi) is satisfied for all
tasksTq ∈ T .

Each cost matrixc is generated using the method described
in [26]. First, a baseline vector of sizen is generated where
each element is a random uniform number within[1, φb]. Then,
the rows of the cost matrix are generated based on the baseline
vector. Each elementj in row i of the matrix, c(i, j), is
generated by the elementi of the baseline vector multiplied
by a uniform random number within[1, φr], a row multiplier.



 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

50 75 100
125

150
175

200
225

In
di

vi
du

al
 p

ay
of

f

Number of tasks

MSVOF
RVOF
GVOF

SSVOF

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

50 75 100
125

150
175

200
225

N
um

be
r 

of
 G

S
P

s 
in

 th
e 

V
O

Number of tasks

MSVOF
RVOF

(b)

 0

 5000

 10000

 15000

 20000

50 75 100
125

150
175

200
225

250

V
O

’s
 to

ta
l p

ay
of

f

Number of tasks

MSVOF
RVOF
GVOF

SSVOF

(c)

Fig. 1: (a) GSPs Individual Payoff; (b) Size of Final VO; (c) Total Payoff of the Final VO.

 0

 2

 4

 6

 8

 10

 12

 14

 16

50 75 100
125

150
175

200
225

N
um

be
r 

of
 m

er
ge

/s
pl

it

Number of tasks

Number of merges
Number of splits

Fig. 2: Total Number of Merge and Split Operations

Therefore, one row requiresm different row multipliers. As
a result, each element in the cost matrix is within the range
[1, φb × φr].

We consider that the costs of GSPs are unrelated to
each other, i.e., ifs(Gi) > s(Gk), for any taskTj , either
c(Tj , Gi) ≤ c(Tj , Gk) or c(Tj , Gk) ≤ c(Tj , Gi) is true. This
is due to GSPs policies. However, we consider that the costs
are related to the workload of the tasks, i.e., for two tasksTj

andTq wherew(Tj) > w(Tq), we havec(Tj , Gi) > c(Tq, Gi)
for all Gi ∈ G. A task with the smallest workload has the
cheapest cost on all GSPs.

B. Analysis of Results

We compare the performance of our VO formation mecha-
nism, MSVOF, with that of three other mechanisms: Grand
Coalition VO Formation (GVOF), Random VO Formation
(RVOF), and Same-Size VO Formation (SSVOF). The GVOF
mechanism maps the application program on all GSPs, that
is, the grand coalition forms as a VO to perform the program.
In the RVOF mechanism all tasks are mapped to a random
size VO where GSPs are randomly selected to be part of that
VO. The SSVO mechanism maps all tasks to a VO with the
same size as the VO formed by MSVOF. However, in this
case, GSPs are selected randomly to be part of the coalition.
All the mechanisms use the GAP algorithm to map the tasks
to GSPs. This allows us to focus on the VO formation and not
on the choice of the mapping algorithms.

In Fig. 1a, we show the performance of MSVOF, in terms

 0

 20

 40

 60

 80

 100

 120

 140

50 75 100
125

150
175

200
225

E
xe

cu
tio

n 
tim

e 
(S

ec
on

ds
)

Number of tasks

Fig. 3: MSVOF’s Execution Time

of the individual GSP’s payoff in the final VO, as a function
of the number of tasks. The figure shows that the MSVOF
provides the highest individual payoff for GSPs in the final VO
among all four mechanisms. Since the equal sharing method
is used, in the GVOF mechanism where the number of GSPs
in the VO is the highest, GSPs get the smallest payoff. The
significant differences between the MSVOF and the SSVOF
shows the importance of decisions to merge and split to form
the best VO. As the number of tasks increases, the individual
payoff decreases, this is due to the fact that we consider the
same payment in all experiments. Thus, increasing the number
of tasks increases the cost. For example for 75 tasks, MSVOF
obtains a payoff of 5025 while RVOF, GVOF and SSVOF
obtain 2512.2, 1005.12 and 2699, respectively. On average,
the individual payoff of MSVOF is 2.32, 3.26 and 1.53 times
better than RVOF, GVOF and SSVOF, respectively.

In Fig. 1b, we show the size of the final VO obtained
by MSVOF. This figure shows that as the number of tasks
increases the VO size increases. It means that the more tasks
the more GSPs pool their resources to form a VO in order to
execute the program. In this figure, we also show the size of
the VO determined by RVOF.

In Fig. 1c, we compare the total payoff obtained by MSVOF
and the other three mechanisms. These results show that GSPs
prefer smaller VOs (shown in Fig. 1b) in order to obtain higher
individual profits. As a result, the VO resulting from MSVOF
may not provide the highest total payoff. For example, for 75
tasks, MSVOF obtains a total payoff of 5,025 for the final



VO, while RVOF, GVOF and SSVOF obtain a total payoff of
12,561, 16,082 and 2,699 for their final VOs of size 5, 16,
and 1, respectively.

In Fig. 2, we show the total number of merge and split
operations performed by MSVOF. For example for 75 tasks,
11 merge and 3 split operations are performed in order to form
a stable coalition structure, but a VO with size one is selected
among all coalitions in the coalition structure to perform the
tasks because it provides the highest individual payoff.

Fig. 3 shows the execution time of MSVOF. The MSVOF’s
execution time is reasonable given that the application program
would require several hours to execute. The reason for getting
higher execution times for 200 and 225 tasks is that the VOs
explored by the mechanism are larger in size. As a result,
the split operation takes more time to test the possible cases.
The execution times of the other mechanisms are negligible
compared to that of MSVOF, and thus, we chose not to present
them in the figure.

From the above results, we conclude that the proposed VO
formation mechanism is able to form stable VOs that ensure
the program is completed before its deadline and provide the
highest individual payoff for the GSPs.

V. CONCLUSION

Simulation results showed that the VO obtained by MSVOF
maximizes the individual payoffs of the participating GSPs. In
addition, most of the time MSVOF determines the final VO
with the the smallest number of participating GSPs. The mech-
anism’s execution time is reasonable given that applications
programs would require several hours to execute. We believe
that this research will encourage grid service providers to
adopt VO formation mechanisms for allocating their resources
in order to execute application programs. In future work, we
would like to incorporate the trust relationships among GSPs
in our VO formation model and design new mechanisms for
VO formation that take them into account.

ACKNOWLEDGMENT

This work was partially supported by NSF grants DGE-
0654014 and CNS-1116787.

REFERENCES

[1] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith,
and S. Tuecke, “A resource management architecture for metacomputing
systems,” inProc. of the Workshop on Job Scheduling Strategies for
Parallel Processing, 1998, pp. 62–82.

[2] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, and S. Tuecke,
“SNAP: A protocol for negotiating service level agreements and coordi-
nating resource management in distributed systems,” inProc. of the 8th
Workshop on Job Scheduling Strategies for Parallel Processing, 2002,
pp. 153–183.

[3] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke,“Condor-g:
A computation management agent for multi-institutional grids,” Cluster
Computing, vol. 5, no. 3, pp. 237–246, 2002.

[4] A. S. Grimshaw and W. A. Wulf, “The legion vision of a worldwide
virtual computer,”Commun. ACM, vol. 40, no. 1, January 1997.

[5] I. Foster and C. Kesselman,The grid: blueprint for a new computing
infrastructure. Morgan Kaufmann, 2004.

[6] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman, “Heuristics
for scheduling parameter sweep applications in grid environments,” in
Proc. of the 9th Heterogeneous Computing Workshop, April 2000, pp.
349–363.

[7] R. Buyya, D. Abramson, and J. Giddy, “Nimrod/g: An architecture for a
resource management and scheduling system in a global computational
grid,” in Proc. of the 4th Intl. Conf. on High Performance Computing
in Asia-Pacific Region, May 2000.

[8] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger, “Economic models
for resource allocation and scheduling in grid computing,”Concurrency
and Computation: Practice and Experience, vol. 14, no. 13-15, pp.
1507–1542, 2002.

[9] L. Kang and D. Parkes, “A decentralized auction frameworkto promote
efficient resource allocation in open computational grids,”in Proc. of the
Joint Workshop on The Economics of Networked Systems and Incentive-
Based Computing (NetEcon+IBC 2007), June 2007.

[10] R. Wolski, J. S. Plank, J. Brevik, and T. Bryan, “Analyzing market-based
resource allocation strategies for the computational grid,” International
Journal of High Performance Computing Applications, vol. 15, no. 3,
pp. 258–281, Aug. 2001.

[11] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of thegrid:
Enabling scalable virtual organizations,”Int. J. Supercomputer Appli-
cations, vol. 15, no. 3, pp. 200–222, 2001.

[12] Globus, “http://www.globus.org.”
[13] I. Foster, N. R. Jennings, and C. Kesselman, “Brain meets brawn: Why

grid and agents need each other,” inProc. of the 3rd Intl. Joint Conf.
on Autonomous Agents and Multiagent Systems, 2004, pp. 8–15.

[14] O. Shehory and S. Kraus, “Task allocation via coalitionformation
among autonomous agents,” inProc. of Intl. Joint Conf. on Artificial
Intelligence, vol. 14, 1995, pp. 655–661.

[15] I. Müller, R. Kowalczyk, and P. Braun, “Towards agent-based coalition
formation for service composition,” inProc. of the IEEE/WIC/ACM Intl.
Conf. on Intelligent Agent Technology, Dec. 2006, pp. 73–80.

[16] J. Patel, W. T. L. Teacy, N. R. Jennings, M. Luck, S. Chalmers, N. Oren,
T. J. Norman, A. Preece, P. M. D. Gray, G. Shercliff, P. J. Stockreisser,
J. Shao, W. A. Gray, N. J. Fiddian, and S. Thompson, “Agent-based
virtual organisations for the grid,”Multiagent Grid Syst., vol. 1, no. 4,
pp. 237–249, 2005.

[17] K. Apt, Principles of Constraint Programming. New York, USA:
Cambridge University Press, 2003.

[18] T. E. Carroll and D. Grosu, “Formation of virtual organizations in grids:
A game-theoretic approach,”Concurrency and Computation: Practice
and Experience, vol. 22, no. 14, pp. 1972–1989, 2010.

[19] W. Cirne, D. Paranhos, L. Costa, E. Santos-Neto, F. Brasileiro, J. Sauv́e,
F. Silva, C. Barros, and C. Silveira, “Running bag-of-tasksapplications
on computational grids: The mygrid approach,” inProc of the Intl. Conf.
on Parallel Processing, 2003, pp. 407–416.

[20] C. Weng and X. Lu, “Heuristic scheduling for bag-of-tasks applications
in combination with QoS in the computational grid,”Future Generation
Computer Systems, vol. 21, no. 2, pp. 271–280, 2005.

[21] F. da Silva, S. Carvalho, and E. Hruschka, “A schedulingalgorithm for
running bag-of-tasks data mining applications on the grid,”in Euro-Par
2004 Parallel Processing. Springer, 2004, pp. 254–262.

[22] G. Owen,Game Theory, 3rd ed. New York, NY, USA: Academic Press,
1995.

[23] L. Shapley, “A Value for n-person Games,” inContributions to the
Theory of Games, H. Kuhn and A. Tucker, Eds. Princeton University
Press, 1953, vol. II, pp. 307–317.

[24] K. Apt and A. Witzel, “A generic approach to coalition formation,”
International Game Theory Review, vol. 11, no. 3, pp. 347–367, 2009.

[25] D. Shmoys and́E. Tardos, “An approximation algorithm for the gener-
alized assignment problem,”Mathematical Programming, vol. 62, no. 1,
pp. 461–474, 1993.

[26] T. Braun, H. Siegel, N. Beck, L. Boloni, M. Maheswaran, A. Reuther,
J. Robertson, M. Theys, B. Yao, D. Hensgenet al., “A comparison
of eleven static heuristics for mapping a class of independent tasks
onto heterogeneous distributed computing systems,”J. of Parallel and
Distributed Computing, vol. 61, no. 6, pp. 810–837, 2001.


