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Abstract—Executing large scale application programs in grids a coalitional game where GSPs decide to form VOs in such
requires resources from several Grid Service Providers (GSPs). a way that each GSP maximizes its own profit, the difference
These providers form Virtual Organizations (VOs) by pooling - patween revenue and costs. A GSP will choose to participate
their resources together to provide the required capabilities . o . ) .
to execute the application. We model the VO formation in In-a VO_ if its profit is not negative. The V(_)S prowde the_
grids using concepts from coalitional game theory and design COMposite resource needed to execute applications. A VO is
a mechanism for VO formation. The mechanism enables the traditionally conceived for the sharing of resources, buagin
GSPs to organize into VOs reducing the cost of execution and also represent a business model [5]. In this work, a VO is
guaranteeing maximum profit for the GSPs. Furthermore, the 4 coajition of GSPs who desire to maximize their individual
mechanism guarantees that the VOs are stable, that is, the . .

GSPs do not have incentives to break away from the current proﬂts and are Iargely indifferent .about the global welfahée

VO and join some other VO. We perform extensive simulations design a VO formation mechanism based on concepts from
to characterize the properties of the proposed mechanism. The coalitional game theory. The model that we consider cossist
results show that the mechanism produces VOs that are stable of a set of GSPs and a grid user that submits a program and a
yielding high revenue for the participating GSPs. specification consisting of a deadline and payment. A sulfset
GSPs will form a VO in order to execute the program before
its deadline. The objective of each GSP is to form a VO that

Grid computing systems enable efficient collaboratioyields the highest individual profit.
among researchers and provide essential support for con-
ducting cutting-edge science and engineering researatselhRelated WorkResource management in open distributed com-
systems are composed of geographically distributed ressurputing systems that span multiple administrative domairs a
(computers, storage etc.) owned by autonomous organigaticorganizations has been studied extensively. Several mecha
Resource management in such open distributed environmanitins and systems for resource management have been de-
is a very complex problem which if solved leads to efficienteloped, examples include GRAM [1], SNAP [2], Condor-
utilization of resources and faster execution of applwai G [3], AppLeS [6], Nimrod/G [7], and Legion [4]. These
The existent grid resource management systems [1], [2], [Bjechanisms and systems do not explicitly take into account
[4] do not explicitly address the formation and managemént the autonomy of the resource owners and their incentives
Virtual Organizations (VO) [5]. We argue that incentive® arto contribute resources. Several economic-based moddls an
the main driving forces in the formation of VOs in grids, andystems for resource management in open distributed sgstem
thus, it is imperative to take them into account when desigini that address this issue have been proposed in the litef&fre
VO formation mechanisms. To provide better performance af@}, [10]. They do not explicitly address the problem of VO
increase the efficiency it is essential to develop mechanisformation and management which is one of the key issues that
for VO formation that take into account the behavior of thaeed to be solved in large scale computing systems in order to
participants and provide incentives to contribute resesirc  facilitate collaboration among patrticipating organiaas. The

The life-cycle of a VO can be divided into four phasesiequirements for establishing and managing dynamic VOs in
identification, formation, operation, and dissolution.ribg grids are discussed in [11]. One of the most important requir
the initiation phase the possible partners and the VO’s oiments identified by the authors is the interoperability ef&im-
jective are identified. In the formation phase, the poténtigironment. This is usually satisfied in the current gridottgh
partners negotiate the exact terms, the goal, and the darattommon protocols for establishing and managing sharing
of collaboration. Once the VO is formed it enters the operati relationships. Globus Toolkit [12] supports the operatiom
phase in which the members of the VO collaborate in solvinganagement of VOs by providing basic middleware for VO
a specific task. Once the VO completes the task, it dissolvgelicy specification and enforcement, resource management
This paper focuses on designing mechanisms for the secamdvisioning, and discovery. The toolkit does not provide
phase, the formation of VOs. We model the VO formation amechanisms for VO formation and tools for VO management

I. INTRODUCTION



and analysis. Dynamic VO formation among autonomous the available set of grid service providers by a given dead
agents and the management of VOs are examined in [13]. Time d. Application programs consisting of several independent
VO formation problem can be viewed as a coalition formatiotasks are representative for a wide range of problems inceie
problem. Research on coalition formation has been conducend engineering [19], [20], [21]. Each tagke 7 composing
in the multi-agent systems community for problems such #se application program is characterized by its workladd’),
allocating a task [14] and service composition [15]. which can be defined as the amount of instructions required
To the best of our knowledge, the closest work to ours By the task. Executing the application program requires
presented in [16] which describes the mechanisms for V@large number of resources which cannot be provided by a
formation used in the CONOISE-G project. The mechanismségle GSP. Thus, several GSPs pool their resources tagethe
used in CONOISE-G are based on Constraint Satisfaction Pto-execute the application. We consider that a set:d&SPs,
gramming (CSP) techniques [17] while our proposed mec- = {G1,Go,...,G,,}, are available and are willing to
anism is based on coalitional game models and techniqupgvide resources for executing programs. Here, we assume
We believe that coalitional game theory is a powerful todghat the GSPs are driven by incentives in the sense that they
for modeling VO formation among autonomous organizationgill execute a task only if they make some profit out of it.
providing more efficient and scalable mechanisms comparkltbre specifically, the GSPs are assumed to be self-intefeste
to CSP. CSP techniques do not facilitate the stability amihd welfare-maximizing entities. Each service providee G
robustness analysis of the VO formation process, while thigvns several computational resources which are abstrasted
is intrinsic and represents one of the strengths of condifio a single machine with speedG). The speed(G) gives the
game theory. Furthermore, the CONOISE-G project does natmber of instructions per second that can be executed by
address the issues of scheduling the applications witten t8SPG. Therefore, the execution time of tagkat GSPG is
VO, while our proposed framework addresses this issue agisten by the execution time function: 7 x G — R, where
provides a mechanism for application scheduling within VO$(T, G) = f’(—g) We also assume that once a task is assigned
In our previous work [18], we developed a VO formatiorio a GSP, the task is neither preempted nor migrated.
framework based on extensive form games. The approach wé GSP incurs cost for executing a task. The cost incurred
use here is based on coalitional games and merge-and-9pfitGSPG € G when executing tas’ € 7 is given by the
operations which, unlike the one used in [18], guarantees ttost function,c : 7 x G — RT. Furthermore we assume that
stability of the VOs formed by the proposed mechanism ardGSP has zero fixed costs and its variable costs are given by
is more computationally efficient. the functione. A user is willing to pay a price® less than her

Our Contribution.We address the problem of VO formation ir@vailable budges3 if the program is executed to completion
grids by designing a mechanism that allows the GSPs to mdRedeadlined. If the program execution exceedsthe user is
their own decision to participate in VOs. In this mechanisnfiot Willing to pay any amount that is? = 0.

coalitions of GSPs decide to merge and split in order to form aSince a single GSP does not have the required resources
VO that maximizes the individual payoffs of the participati for executing a program, GSPs form VOs in order to have
GSPs. The mechanism provides a stable VO structure, tH necessary resources to execute the program and more
is, none of the GSPs has incentives to merge to another V@pPortantly, to maximize their profits. The profit is simply

or split from a VO to form another VO. We propose thélefined as the difference between the payment received by a
use of a selfish split rule in order to find the optimal VO if>SP and its execution costs. If the profit is negative. (a

the VO structure. We analyze the properties of our proposk$s). the GSP will choose not to participate.

VO formation mechanism and perform extensive simulation We model the VO formation problem as a coalitional game.

experiments to investigate its properties. A coalitional game[22] is defined by the paitN, v), where

Organization. This paper is organized as follows. In Seczv Is the set of players and is a real-valued function called

tion 1l, we describe the VO formation problem and the Syste%]?%ala;zn?g; iug Cf:?ggre :,']r;edif?é g|aNef;J ;?etphaéve:sps
model we consider. In Section lll, we describe the ga Ce N =Q) 1t}hat %rn.1 \VOs which ére ch:aIi)':ions of GSPs. In
theoretic framework used to design the proposed VO forma:irg. v N '
mechanism. Then, we present the proposed mechanism o work, we use the terms VO and coalition interchangeably
characterize its properties. In Section IV, we evaluate the ach subsef C ¢ is a coalition If all the players form

mechanism by extensive simulation experiments. In SeMiona coalition, it is called thegrand coalition A coalition has a

we summarize our results and present possible directians Yﬁlue given by. the characteristic function(S) reprgsentlng
future research the profit obtained when the members of a coalition work as

a group. For each coalition of GSPs C G, there exists a
Il. VO FORMATION AS A COALITIONAL GAME mappingrs : 7 — S, which assigns task’ € 7 to service
providerG € S. The costs incurred for executing the program
In this section, we model the VO formation in grids as & on S under mappingrs is given by
coalitional game. We first describe the system model which
considers that a user wants to execute a large-scale ajpiica C(7,9) = Z Z os(T,G)c(T,G), 1)
program? consisting ofn independent task&l, Ts, ..., Ty, } TeT GeS



where TABLE I: The program settings.

1 if mg(T) =G, cost | speed| time
T,G) = 2
os(T>G) {0 if ms(T) # G. @ T T | s |T|T
Gi| 3 4 8 3 |45
The execution time of the program is given by iitkespan G2 | 3 | 4 6 4 | 6
(i.e, completion time) as induced by the mapping. The Gs| 4|5 | 12 | 2]3
execution time is given by
B(T,5) = max > os(T,GHT,G). 3) TABLE II: The mappings for each coalition.
T
e S Mapping v(S)
where {G1} NOT FEASIBLE 0
w(T {G2} NOT FEASIBLE 0
HT,G) = s((G)) (4) {G3} T, Ty — G3 1
{G1,G2} Ty — G1; Ty — Go 3
We define the following characteristic function for our {G1,G3} Ti — G1; T2 — Gs 2
proposed VO formation game: (G2, Gs} | T1 = Gos To =G 2
{G17G27G3} T — G, T — Ge 3
0 if |[S|=0o0rE(7,S)>d,
o(8) = it]5] (7,5) 5)
P—-C(T,S) if|S|>0andE(T,S) <d,

where|S| is the cardinality ofS. Note thatv(5) satisfies the the core. In order to define the core we need to introduce
constraintu()) = 0. first the concept of imputation. Aimputationis a payoff
The objective of each GSP is to determine the membersifigctor such thatrg(G) > v(G) for all GSPsG € G, and
in a coalition that gives the highest share of profit. Theee ar-ceg #c(9) = v(G). The first condition says that by forming
different ways to divide the profit(S) earned by coalition the grand coalition the profit obtained by each member
S among its members. Traditionally, ti&hapley valug23] Participating in the_ grand coalition is not less _than the one
would be employed, but computing the Shapley value requirggtained when acting alone. The second condition says that
iterating over every partition of a coalition, an exponehtime the entire profit of the grand coalition should be divided
endeavor. Another rule for payoff division égjual sharingof @mong its members. Theore is a set of imputations such
the profit among members. Equal sharing provides a tractaBlét>_ccs ©a(9) = v(5),¥S € ¢, i.e., for all coalitions, the
way to determine the shares and has been successfully useB@y@ff of any coalition is not greater than the sum of payoffs
an allocation rule in other systems where tractability iicai  ©f its members in the grand coalition. The core contains fiayo
(e.g, [14]). For this reason we adopt here the equal shariM ctors_that make the players want_to form the grand coalitio
of the profit as the payoff division rule. e existence Qf a payoff vector in the core .s.hqws'thlat the
Due to their welfare-maximizing behavior, the GSPs preféfand coalition is stable. Therefore, a payoff divisionrighie
to form a low profit coalition if their profit divisions are tigr ~COre if no player has an incentive to leave the grand coalitio
than those obtained by participating in a high profit coaiti 0 JOIn another coalltlor_1 in order to obtain higher profit.€Th
Therefore, a service providé# determines its preferred coali-core of the VO formation game can be empty. If the grand

tion S by solving: coaligofn does not form, independent and disjoint coaisio
would form.
max P-C(T,5) (6) To show that the core of the proposed VO formation game
(5) 5] can be empty we consider an example with three GSPs

subject to: ()E(7, S) < d, and (i) G € S. The first constraint ¢ = {G1,G2,Gs} and a two-task prograr = {71, 75}
specifies that the program is completed before the deadliéereT: andT; workloads are 24 and 36 million instructions,
while the second constraint says th@tis a member of the respectively. In Table |, we give the cost of executing eash t

coalition. on each GSP, the speed of each GSP, and the execution time
The payoff or the share of GSP G part of coalition S, ©Of each task on each GSP. As an examplg,incurs 3 units
denoted byz(S) is given by of cost to executd’ and 4 units of cost to executg,. The

speed ofG, is 8 MIPS. Based on the definition of the time
= U(S), (7) function, the execution time of task, and7; are 3 and 4.5

|51 seconds, respectively.
Thus, the payoff vectox(G) = (z¢,(G), - ,2q,,(G)) gives If G1, G2 and G5 execute the entire program separately,
the payoff divisions of the grand coalition. A solution cept then the program completes ih5, 10 and 5 units of time,
for coalitional games is a payoff vector that allocates thespectively. We assume that the user has specified a deadlin
payoff among the players in some fair way. The primary = 5 and a paymen® = 10. The mapping and(S) are
concern for any coalition game is the stability. One of thgiven in Table Il. Sincezrg,(G) + z¢,(G) > v({G1,G2}),
solution concepts used to asses the stability of coalitiensz¢,(G) > v(G3), and zg,(G) + 2¢,(G) + z¢,(G) =

xg(S)



v({G1, G, G3)) are not satisfied, there is no payoff vector in -~ {51, -+ » Sk} >sS <= {3j <k, VG, € SN S;;

the core, and thus, the core of the game is empty. More than z;(S;) > x;(S) and )

this, since we are using equal sharing, the profitefand G, 3G, € S ;z,.(S;) > . (5)}
in coalition {G1, G2} is 1.5 while the profit of each GSP in

the grand coalition isl. Thus, {G;,G>} have an incentive Equation (8).implies that coalitions Is prefgrred over
to deviate from the grand coalition, an@s; can not be a {51,---, S}, if at least one playeG: is able to improve its

- ; payoff without decreasing other players’ payoffs. Equa({®)
tmhgrgtr):;rgl;nthe coalition. As a resulf, &>} will execute implies that collection{S;,---, Sk} is preferred overs, if

In this paper, we assume that if a GSP does not participéattek':'alSt one ¢ oalitiord; is able t9 keep the pe_lyoffs of its
. . members while at least one of its membérs is able to
to perform a task, it should receive zero as a payoff. If thelrr% rove its payoff regardless of the effect on the other gia
are some GSPs that do not participate in performing any taos side ofSp y 9 y
of the program, they should not be considered as members gr>'c 7T . .
sing the defined comparison relations, we propose a VO

the VO. formation mechanism involving two types of merge and split
l1l. VO FORMATION MECHANISM rules as follows [24]: N
) ] ) . Merge Rule:Merge any set of coalition$sSy, - -, Sk},
In this section, we introduce few concepts from coalitional where{U*_, S}, {51, -+ , S}
. . Jj= m 9 ) C A'
?haemne izzgrn); ?r?(:(:r?gc:woagies?}f“be the proposed mechanism and Split Rule: Split any coalitionS = {Uf;:lsj}, where
P ' (S1,+, Slea{URL, ;).
A. Coalition Formation Framework Coalitions decide to merge only if at least one GSP is able

- _ _ o to strictly improve its individual payoff through the merge
_ Coalition formation[24] is the partitioning of the players e without decreasing the other GSPs’ payoffs. Therefore
into disjoint sets. A coalition structu@S = {51, 52,...,5k}  the merge rule by the individual order is an agreement among
forms a partition such that each player is @ member of exacilye GSpPs to operate together if it is beneficial for them.
one coalition,i.e, S; N S; = 0 for all i and j where  Ag e mentioned before, one of the formed coalitions, final
i # j and Ug,ces Si = N. In the VO formation game cogjition, performs the program, thus, the formation ofrébst
defined in the previous section only one of the coalitions i the coalitions is not important. The reason for that isrthe
the coalition structure is selected to execute the apicat of the GSPs which are not in the final coalition can parti@pat
program. The selected coalition is the one that yields thgain in another coalition formation process for perforgnin
highest individual payoff for all of its members. The coalts  4nother assigned application. Therefore, a coalition deci
that cannot complete the program within the deadline witl ngy spjit only if there is at least one subcoalition that slyic
be considered since the payoff for such coalitions is zero. improves the individual payoffs of its constituent GSPsdein
The following concepts are used in the design of the Ve split rule, the individual payoffs of the other subctalis
formation mechanism. may decrease. The split rule can be seen as the implementatio
Definition 1 (Collection):A collectionin the grand coali- of a selfishdecision by a coalition, which does not take into
tion N, is defined as the sét = {5y, , Sk} of mutually account the effect of the split on the other coalitions.
disjoint coalitions. Ifulesj = N, the collectionC is called Two coalitions S; and S; decide to merge based on the
a partition of V. merge comparison defined by (8) where all of GSPS;in S,
Definition 2 (Comparison):A collection comparison> is are able to keep or improve their individual payoffs. A GSP
defined to compare two collectionsand B that are partitions individual payoff is computed based on (6) while satisfying
of the same subset C N. A B implies that the wayA the deadline constraint. As a result, the merge occurs if the

partitions S is preferred to the way3 partitions.S. following two inequalities are satisfied.
In the proposed VO formation game, a welfare-maximizing B _ _ B _
GSP will determine its coalition by considering the profit it P C;,(T’ gz U S;) > P C:SST’ 5:) (10)
earns and not the coalition value. Thus, comparison relgtio |5: U ;| |Sil
among collections are defined based on the GSPs’ individual P - C(T,5:U5;) > P- C(T,5) (11)

payoffs. These comparison relations correspond to the energ |S; U S; B 151

and split rules which will be defined later in this section. Wejnce|s; US;| > |Si| and|S; U S;| > |S;|, in order to a GSP
consider two collectionss = {U}_,S;} and {S1,---, Sk} in S; to keep or improve its payoffP — C(T,S; U S;) >
from the same subset. We define two comparison relations, (7, S;), and it should be the same for a GSRSin Thus,
the merge comparison,,, and thesplit comparison>,, based (7 5, U S;) < C(T,S;) and C(T,S; U S;) < C(T,S;).
on the individual payoffs as follows: That means that coalitions can only merge when the cost of
A . A the formed coalition by merge is less than their cost.
Som{St, 8} = {¥j <k, VG € 5055 For the split rule, a coalitiort decides to split into two
i(5) 2 xi(Sf)Aand A<k, C) coalitions S; and S; based on the split comparison defined
3Gy € 55 ;0(S) > wr(55)} by (9) where all GSPs ii$;, S;, or both are able to keep or



improve their individual payoffs. Thus§ splits if at least one Algorithm 1 Merge-and-Split VO Formation Mechanism (MSVOF)

of the following inequalities is satisfied.

1: ¢S ={{G1}, -

{Gm}}

2: Map program? on eachS; € CS

P—CA(T,S) < P-C(T,S;) 1w

3] 51 :

_ S - ; 6

P CA(T7S) < P—-C(T,5)) a3 o

K 151 8

That means that the individual payoff of each GSP in at leas¥

one of the splitted coalitionss; or 57, should be higher than 12
or equal to its individual payoff ir5.

The stability of the resulting coalition structure is chara 12:
terized using the concept of defection functibn24]. 13:

Definition 3 (Defection function)A defection functiof is 1:
a function which associates with each partitidrof N a group 16:
of collections inN. A partition P is D-stable if no group of ;7.
players is interested in leavirg. Thus, the players can only 18:
form the collections allowed bip. 19:
A defection functionDp is discussed in [24] which allows 20
formation of all partitions of the grand coalitiofp-stability ..
is defined based on this functioip allows any group of »3.
players to leave the partitioR of N through merge-and-split 24:
rules to create another partition i¥i. Therefore D p-stability ~ 25:
means no coalition has an incentive to merge or split. :

In order to clarify the above concepts, let us consider t%
example in section Il with three GSBs= {G1,G2,G3s} and  2g:
a two-task program¥ = {Ty,T>}. G; andG, cannot perform

the program by acting alone since the deadline is exceedéd,

thus they receive zerds; receivesl by acting alone. Consider 31_
that G3 communicates withG, in order to merge. Based 33;
on the values in Table I{G2, Gs} >y, {{G2},{G3}}, since za:
G, improves its payoff whileG3 keeps its original payoff. 35:
Thus, the merge is optimal. Now, there are two coalition#:
{G1} and {G3,G3}. G; communicates with{G2,G3} in 38:
order to merge and singgx1, G2, G3} > {{G1},{G2,G3}}, 30
the merge occurs. In this cas@; improves its payoff while
G5 and G5 keep their previous payoff. NowfG1, Go2, Gs}

tries to split. The only subcoalition that can split{i&;, G2}

3: repeat

stop < T'rue
for all S;,S; € CS,i# j do
visited[S;][S;] «— False
end for
{Merge process staris:
repeat
flag — True
Randomly select;, S; € CS for which
visited[S;][S;] = False,i # j
visited[S;][S;] « True
Map programZ on S; U S; using GAP
if S;US;>pm{S:,S;} then
S; — S; U Sj {mergeSi and SJ}
S; «— 0 {S; is removed fronCS}
for all S, € CS,k # i do
visited[S;][Sk] < False
end for
end if
for all S;,S; € CS,i# j do
if notvisited[S;][S;] then
flag — False
end if
end for
until (|ICS| =1) or (flag = True)
{Split process startk:
for all S; € CS where|S;| > 1 do
for all partitions{S;, S} of S;,
whereS; = S; U Sk, S; NS, =0 do
Map program7 on S; using GAP
Map program7 on Sy using GAP
if {S;,Sk}>sS: then
S; «— S; {thatisC§ =CS\ S;}
CS =CSJ Sk
stop «— False
Break (one split occurs; no need to check other splits)
end if
end for
end for

40: until stop = True
41: Find k = argmaxg,ecs {v(
42: Map and execute program on VO S,

Si)/|S:i}

since {{G17G2}, {G3}} >y {Gl,GQ,Gg}, ie., G1 and Go
improve their payoff by splitting. None af/; and G2 wants

to split from the coalition{G1, G2}. There are no coalitions of scheduling parallel machines with cost. In this paper, we
to be able to merge or split any further. Even if GSPs tnyse the GAP algorithm described in [25]. This algorithm sslv

different order to merge, at the end of the merge step thiee LP relaxation of the problem and performs rounding by
grand coalition forms, and thefG;, G} splits. As a result, building a bipartite graph based on the relaxed solutiore Th

partition {{G1, G2}, {G3}} is Dp-stable.

integer solution is obtained by finding an integer matchihg o

the bipartite graph. Other mapping algorithms can also bd us

B. Merge-and-Split VO Formation Mechanism (MSVOF)

by the coalitions to decide on the mapping.

The proposed VO formation mechanism is given in Al- When MSVOF starts, all tasks are considered to be assigned
gorithm 1. The mechanism is executed by a trusted patty each of the GSPs. Then(S;) is computed based on the
that also facilitates the communication among VOs/GSPalocation. MSVOF uses a matrixisited for checking if all
MSVOF starts with a coalition structuréS consisting of pairs of coalitions inCS are visited for merge or not. By
every singletonG; € N as a coalitionS; in CS. MSVOF using this matrix, all possible combinations of two coaliis

executes the mapping algorithm for each coalitone CS

in CS are visited during the merge step. The merge process

to find an allocation for the application prografnon GSPs starts every time by choosing two non-visited coalitiongdh

in S;.

The mapping algorithm solves a variant of the generedndomly, e.g.S; and.S;. The mapping algorithm is called to

assignment problem (GAP) that can be viewed as the probléimd an allocation for the application prografmon S; U.S;. If



S; US> {S;, S5}, then coalitionsS; and.S; decide to merge. TABLE IlI: Simulation Parameters

Therefore, all the members receive higher profit by merging®aram.| Description Value(s)
due to using of the equal sharing of profft, U S; is saved ™ “Emgg 8; gglfss [1560 225]
in S;, ande'ls deleted fromCS. SlnceSi' is changed, it can s GSP's speedsif x 1 vector) 159 x[1,2m] GIPS
be selected in next merge steps. Thuisited[S;][S)] for all Tasks’ workload £ x 1 vector) | [20,000, 320,000] Gl
Sk € CS, k # i is set to false. The merge process tries tot Execution time matrixsp x n) | % seconds
find another pair of non-visited coalitions for merge. Ifhié ¢ Cost matrix {n x n) (1, 9 x ¢r]
coalitions are tested and a merge does not occur, or the grafd Deadline 10,000 seconds

P Payment 20,000 units

coalition forms, the merge process ends. 5 Maximum baseline value 100
The coalition structur€’S obtained by the merge process Maximum row multiplier 10

is then subject to splits. In the split process, all coaliio

that have more than one member are subject for splitting. The

mechanism tries to splif; that has more than one member in ) o )

two disjoint coalitionsS; and S whereS; U S, = S;. The small as pqssMIe. AS,‘? result, the spl|t.|_s reasonable mger

mapping algorithm is called twice to find an allocation $ of complexity. In add|t|on, once a coalition decides to tspli

and an allocation oi), for application7". Since the split is a the search for further splits is not needed.

selfish decision, the splitting occurs even if one of the mersb

of coalition S; or S, can improve its individual value. As a

result, the coalition with the higher individual payoff ieet ~ We perform a set of simulation experiments which allows

decision maker for the split. us to investigate how effective the MSVOF mechanism is in
If one or more coalitions split, then the merging procegietermining the stable VOs.

starts again. To do so, thetop flag is set to false. Multiple ) )

successive merge-and-split operations are repeated thatil A Simulation Parameters

mechanism terminates. That means there are no choices faWe consider 16 GSPs. Since each GSP is a provider not

merge or split for all existing coalitions iS. Let's consider an abstract machine, considering this number of GSPs is

CS rinai as the final coalition structure. The mechanism seleaggasonable. We performed runs for eight different appbeat

one of the coalitions in th&Sy;,, that has the highest program sizes, ranging from 50 to 225 tasks. The simulation

individual value for its members. The selected coalitiofl wiparameters and their values are listed in Table Ill. The litead

IV. EXPERIMENTAL RESULTS

perform the progran? . and payment are kept the same in all the experiments. The
Theorem 1:Every partition resulting from our proposed VOvalues for deadline and payment are large enough to make
formation isD p-stable. sure that there is a feasible solution in each experiment.

Proof: (Sketch) Since the merge and split operations are The speed vector is generated relative to the fastest current
based on the comparison relations and >, the resulting Intel processor, Intel Core i7 Extreme Edition 990x which ca
partition after each merge or split is more preferred thanperform 159 GIPS. Each GSP has a speed chosen within the
previous partition. As a result, there is no cycle of pastif in  range [159, Z2mx159] GIPS. The reason is that each GSP
any sequence of merge and split operations. Since the numtem have several nodes capable of performing 159 GIPS. Each
of different partitions is finite, the merge-and-split #gons task has a workload expressed in Giga Instructions, randoml
terminate. The final partition cannot be subject to any fnthselected from [20000, 320000]. The workload vectar,
merge or split. As a result, the final partitionlis--stable. m  contains the workload of each task of the application pnogra

The time complexity of the mechanism is determined bBased on the speed vector and the workload vector, the
the number of attempts for merge and split. In the worst casgecution time of each task; on each GSR; is obtained
scenario, each coalition needs to make a merge attempt wiling equation (4). The execution time matrix is consistent
all the other coalitions irfS. The total worst case number ofif a GSP G; that executes any task; faster than GSRyy,
merge attempts for all coalitions is i?(m?). However, the executes all tasks faster than G&R. [26]. The generated
merge process requires a significantly less number of ateemfime matrix is consistent due to the fact thatT;) is fixed
since once a coalition is found for merge and the merge occuiar 7); € 7, thus, for any task; if t(7};,G;) < t(T;,Gy) is
it does not always require to go through all the merge attemptrue, then we have(G;) > s(Gy) which means5; is faster
In the worst case scenario, splitting a coalitiiiis in O(2/°1)  thanGy.. As a resultt(T,, Gy) > t(T,, G;) is satisfied for all
which involves finding all the possible partitions of sizeotw tasksT, € 7.
of the participating GSPs in that coalition. In practiceisth Each cost matrix is generated using the method described
split operation is restricted to the formed coalitionsd® in [26]. First, a baseline vector of size is generated where
and is not performed over all GSPs ¢h That means, the each elementis a random uniform number withing,]. Then,
complexity of the split operation depends on the size of thke rows of the cost matrix are generated based on the baselin
coalitions inCS and not on the total numbern of GSPs. vector. Each elemenj in row i of the matrix, ¢(i,7), is
The coalitions inCS are small sets specially since we applgenerated by the elementof the baseline vector multiplied
selfish split decisions that keep the size of the coalitiois by a uniform random number withifi, ¢..], a row multiplier.
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Therefore, one row requires. different row multipliers. As of the individual GSP’s payoff in the final VO, as a function
a result, each element in the cost matrix is within the ran@g the number of tasks. The figure shows that the MSVOF
(1,6 % &7]. provides the highest individual payoff for GSPs in the fina@ V
We consider that the costs of GSPs are unrelated dmong all four mechanisms. Since the equal sharing method
each other, i.e., ifs(G;) > s(Gy), for any taskT}, either s used, in the GVOF mechanism where the number of GSPs
c(Tj, Gs) < c(Ty,Gy) or (T}, Gy) < c(Tj,G;) is true. This in the VO is the highest, GSPs get the smallest payoff. The
is due to GSPs policies. However, we consider that the costgnificant differences between the MSVOF and the SSVOF
are related to the workload of the tasks, i.e., for two tdBks shows the importance of decisions to merge and split to form
andT;, wherew(Tj) > w(T,), we havec(T};, G;) > c(Ty, Gi)  the best VO. As the number of tasks increases, the individual
for all G; € G. A task with the smallest workload has thepayoff decreases, this is due to the fact that we consider the

cheapest cost on all GSPs. same payment in all experiments. Thus, increasing the numbe
] of tasks increases the cost. For example for 75 tasks, MSVOF
B. Analysis of Results obtains a payoff of 5025 while RVOF, GVOF and SSVOF

We compare the performance of our VO formation mech@btain 2512.2, 1005.12 and 2699, respectively. On average,
nism, MSVOF, with that of three other mechanisms: Grarifie individual payoff of MSVOF is 2.32, 3.26 and 1.53 times
Coalition VO Formation (GVOF), Random VO Formatiorpetter than RVOF, GVOF and SSVOF, respectively.

(RVOF), and Same-Size VO Formation (SSVOF). The GVOF In Fig. 1b, we show the size of the final VO obtained

mechanism maps the application program on all GSPs, tlyt MSVOF. This figure shows that as the number of tasks

is, the grand coalition forms as a VO to perform the prograrincreases the VO size increases. It means that the more tasks

In the RVOF mechanism all tasks are mapped to a randdhe more GSPs pool their resources to form a VO in order to

size VO where GSPs are randomly selected to be part of tlexecute the program. In this figure, we also show the size of

VO. The SSVO mechanism maps all tasks to a VO with tlibe VO determined by RVOF.

same size as the VO formed by MSVOF. However, in this In Fig. 1c, we compare the total payoff obtained by MSVOF

case, GSPs are selected randomly to be part of the coalitiand the other three mechanisms. These results show that GSPs

All the mechanisms use the GAP algorithm to map the taspsefer smaller VOs (shown in Fig. 1b) in order to obtain highe

to GSPs. This allows us to focus on the VO formation and niptdividual profits. As a result, the VO resulting from MSVOF

on the choice of the mapping algorithms. may not provide the highest total payoff. For example, for 75
In Fig. 1a, we show the performance of MSVOF, in termtiasks, MSVOF obtains a total payoff of 5,025 for the final



VO, while RVOF, GVOF and SSVOF obtain a total payoff of [7]
12,561, 16,082 and 2,699 for their final VOs of size 5, 16,
and 1, respectively.

In Fig. 2, we show the total number of merge and splifg]
operations performed by MSVOF. For example for 75 tasks,
11 merge and 3 split operations are performed in order to form
a stable coalition structure, but a VO with size one is sek&ct [9]
among all coalitions in the coalition structure to perforine t
tasks because it provides the highest individual payoff.

Fig. 3 shows the execution time of MSVOF. The MSVOF'$10]
execution time is reasonable given that the applicatiogamm
would require several hours to execute. The reason fomgetti
higher execution times for 200 and 225 tasks is that the VQsg]
explored by the mechanism are larger in size. As a result,
the split operation takes more time to test the possiblescas&z
The execution times of the other mechanisms are negligilpis]
compared to that of MSVOF, and thus, we chose not to present
them in the figure. [14]

From the above results, we conclude that the proposed VO
formation mechanism is able to form stable VOs that ensure
the program is completed before its deadline and provide i
highest individual payoff for the GSPs.

V. CONCLUSION (el

Simulation results showed that the VO obtained by MSVOF
maximizes the individual payoffs of the participating GSIs
addition, most of the time MSVOF determines the final VQL7]
with the the smallest number of participating GSPs. The me rlmg]
anism’s execution time is reasonable given that applinatio
programs would require several hours to execute. We believe
that this research will encourage grid service providers !
adopt VO formation mechanisms for allocating their resesrc
in order to execute application programs. In future work, we
would like to incorporate the trust relationships among &S
in our VO formation model and desigh new mechanisms for
VO formation that take them into account. [21]
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