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Abstract

The development of efficient algorithms for vehicle routing on time-dependent networks is one

of the major challenges in routing under Intelligent Transportation Systems. Existing vehicle

routing navigation systems, whether built-in or portable, lack the ability to rely on online

servers. Such systems must compute the route in a stand-alone mode with limited hardware

processing/memory capacity given an origin/destination pair and departure time. In this paper,

we propose a computationally efficient yet effective hierarchical algorithm to solve the time-

dependent shortest path (TDSP) problem. Our proposed algorithm exploits community-based

hierarchical representations of road networks, and it recursively reduces the search space in each

level of the hierarchy by using our proposed search strategy algorithm. Our proposed algorithm

is efficient in terms of finding shortest paths in milliseconds for large-scale road networks while

eliminating the need to store preprocessed shortest paths, shortcuts, lower bounds, etc. We

demonstrate the performance of the proposed algorithm using data from Detroit, New York,

and San Francisco road networks.
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1 Introduction

The quickly expanding Intelligent Transportation Systems (ITS) coverage around the world can be

a key enabler for efficient vehicle route planning and for reducing the effects of traffic congestion on

travel times. ITS provides valuable information for a time-dependent road network, such as time-

varying travel times for traversing road segments at high resolution (Nejad et al., 2011). Routing

algorithms must exploit these traffic information feeds efficiently, both to plan the route in ad-

vance and to update it en route. In general, an efficient routing algorithm should strike a balance

among preprocessing time, query time, optimality gap, and storage/processor memory require-

ments. In addition, the scalability of the routing algorithm for handling large-scale road networks

while maintaining reasonable response times is an important property. Depending on the form of

implementation of the routing application, however, some of the aforementioned features may be

prioritized over others. In this paper, we focus on large-scale deterministic time-dependent trans-

portation networks. The need for fast responses to ITS information puts the speed-up techniques

for shortest path problems (SPP) on time-dependent networks at the heart of computational needs

for routing. In addition, a vast majority of vehicle routing navigation systems, whether built-in or

portable, lack the ability to rely on online servers and must compute the route in a stand-alone

mode with limited hardware processing/memory capacity. This last aspect is the primary focus

of this paper to design computationally efficient yet effective hierarchical search strategies and

algorithms to solve the time-dependent shortest path problem (TDSP).

Definition 1 (Time-Dependent Shortest Path (TDSP)) Given a time-dependent network,

an origin O, a destination D, and a start time, the time-dependent shortest path is a path with

the minimum travel time among all paths from O to D starting at the specified starting time.

The TDSP problem is an adaptation of SPP to time-dependent networks. Cooke and Halsey

(1966) first studied the TDSP problem using dynamic programming. Dreyfus (1969) studied the

generalization of Dijkstra’s algorithm for determining TDSP with the same time complexity as

the SPP problem. Ahn and Shin (1991) and Kaufman and Smith (1993) proved that the TDSP

problem is polynomially solvable. See Foschini et al. (2011) for a recent study on the complexity

of the TDSP problem.
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Dynamic programming methods are prevalent in the literature for the TDSP problem. Such

methods suffer from the curse of dimensionality in dealing with the scale and complexity of trans-

portation networks. They require overly long query times for computing the route and for offering

rerouting options once the vehicle is en route. On the other hand, näıve algorithms that arbitrarily

limit the degree of ITS “look ahead” to a small neighborhood ahead of the vehicle to reduce the

state space can lead to a higher optimality gap.

An approach to speeding up the computation of shortest paths is pre-computing the optimal

paths, short-cuts, or lower bounds for all OD pairs or a subset at different time windows (Bierlaire

and Crittin, 2004; Song and Wang, 2011). Methods based on ALT (A*, Landmarks, Triangle

inequality) employ landmarks to find lower bounds in order to direct the search in a reduced search

space (Goldberg and Harrelson, 2005; Goldberg et al., 2007, 2009). Bidirectional ALT further

reduces the search space by adding a backward search from the destination to reduce the search

space that has to be explored by the forward search (Nannicini et al., 2008; Goldberg et al.,

2009). In ALT-based methods, there is a tradeoff between choosing well-positioned landmarks

and preprocessing time. These methods, however, require large memory space, rendering them

ineffective for large road networks as well as for vehicles not relying on online routing services.

There are extensive studies on designing routing algorithms for stochastic networks, which each

road segment has stochastic traversal times. There are two versions of the shortest path problem

on stochastic networks, the expected shortest path problem (Gao and Chabini, 2006), where all

information on the arc weights is available before starting the trip; and the shortest path with

recourse problem (SPR) (Provan, 2003; Waller and Ziliaskopoulos, 2002), where only local traffic

information is available. SPR is more realistic in routing applications since in reality all information

on traffic network dynamics is not available. While it is desirable to consider the stochastic nature

of the traffic networks, solving stochastic routing problems is generally complex and prohibitive for

real-time routing on large-scale road networks. Hence, we focus on large-scale deterministic and

time-dependent transportation networks.

In this paper, we propose an algorithm capable of solving TDSP in milliseconds on large-scale

dynamic road networks without the need for storing memory-intensive precomputed paths, short-

cuts, or bounds. In particular, we propose new search strategies that exploit the hierarchical

structure of efficient road network representations.
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Hierarchical approaches have been used in routing algorithms for large road networks, and have

proven to be effective on both static networks (Fernández-Madrigal and González, 2002; Jagadeesh

et al., 2002; Jung and Pramanik, 2002; Fu et al., 2006; Bauer and Delling, 2009; Rajagopalan et al.,

2008; Hilger et al., 2009; Bauer et al., 2010; Song and Wang, 2011) and dynamic networks (Chou

et al., 1998; Schultes, 2008; Buriol et al., 2008; Geisberger et al., 2012; Delling and Nannicini, 2012).

A hierarchical search can dramatically reduce the search space. This is due to the fact that the

search will take place predominantly at higher levels of network representations that tend to be

sparse, with far fewer nodes and arcs. These methods mostly employ hierarchical representations

based on the fixed topology and functional classification of road networks. Functional classification

categorizes streets and highways into classes based on the character of service they are intended

to provide. The classification is rooted in the road network design and helps determine the speed

category and travel time of passing through the road under free-flow conditions. One issue inherited

with a majority of hierarchical routing algorithms in the literature is enforcing the vehicle to

travel over higher-level arcs (e.g., highways) without considering the traffic state of those arcs.

Although the speed limit is higher at higher levels, and the optimal route might pass through higher

levels under free-flow conditions, this route may not necessarily be optimal under different traffic

conditions. Therefore, incorporating just the fixed topology of road networks and its functional

classes may not be adequate for efficient hierarchical routing.

Instead of a functional class representation, we employ an emerging concept in analyzing com-

plex networks called “community structure detection” (Clauset et al., 2008; Newman, 2011) to form

hierarchical community-based representations of road networks efficiently (Newman, 2004; Blon-

del et al., 2008). We present a model of the hierarchical representation to aid the computational

performance of our proposed algorithm for TDSP. While it has been shown that the community

detection methods are effective for path-finding in static networks (Song and Wang, 2011), there

are no studies for time-dependent networks. Our proposed algorithm for solving TDSP employs

new hierarchical search strategies to reduce the state space without compromising optimality gap.

1.1 Our Contribution

We propose a hierarchical time-dependent shortest path algorithm (HTNGD) to solve the de-

terministic TDSP problem on large-scale networks. HTNGD uses community-based hierarchical
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representations of road networks, and it recursively reduces the search space in each level of the

hierarchy by using our proposed search strategy algorithm, TNGD. We perform extensive experi-

ments in order to investigate the performance of HTNGD. We use time-dependent A* (TA*) as a

benchmark when we investigate the performance of HTNGD, and we compare HTNGD with the

most successful speedup techniques in the literature. The results show that the overhead memory

requirement and the pre-processing time of HTNGD are the lowest, and its query time is in terms

milliseconds. These properties make HTNGD suitable for deployment in vehicle routing navigation

systems that do not rely on online servers.

1.2 Organization

The rest of the paper is organized as follows. We explain hierarchical community-based repre-

sentation of road networks in section 2. Section 3 describes the proposed algorithms for solving

TDSP. Section 4 presents experimental results from applying the proposed algorithm on Detroit,

New York, and San Francisco road networks. Finally, section 5 offers some concluding remarks and

directions for future research.

2 Hierarchical Representation of Road Networks

Complex networks have attracted a great deal of attention across many fields of science (Guimera

and Amaral, 2005; Palla et al., 2005, 2007). A recently proposed concept in analyzing complex

networks is their “community structure” (Newman and Girvan, 2004; Clauset et al., 2008). Many

networks can be decomposed into communities such that the densely connected subsets of nodes

form communities with only sparser connections between them. A wide variety of methods have

been lately developed for detecting communities in networks (see Fortunato (2010) for a recent

review).

Road networks are commonly represented by directed graphs where streets form the arcs, and

intersections are considered as nodes. To capture the dynamics of road networks, arc traverse times

can be considered as arc “weight.” Community detection methods can be employed to decompose

the weighted road network to effectively represent the network structure and its connectivity (Nejad

et al., 2012). Hierarchical search strategies can exploit this community structure for solving the
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TDSP problem.

There are two approaches to build hierarchical representations of networks in the literature (For-

tunato, 2010): agglomerative and divisive. In agglomerative, a bottom-up approach, the de-

tected communities in a network become an input to another iteration of community detection

method (Pons and Latapy, 2005). In divisive, a top-down approach, all nodes are considered as one

community, then it splits into communities in lower levels of the hierarchy (Radicchi et al., 2004).

In both approaches, each hierarchy forms a directed graph itself with fewer arcs and nodes as we

go up the levels. These higher levels are abstractions of their lower-level graphs.

To model each level of the hierarchy, we consider the graph in level h as Gh(V h, Ah,W h) where

V h is a set of nodes, Ah is a set of arcs, andW h is a set of arc weights. Suppose thatGh is partitioned

into kh communities Chi (V h
i , A

h
i ,W

h
i ), where i = 1, . . . , kh with the following properties:


⋃kh

i=1 V
h
i = V h,⋃kh

i=1A
h
i ⊆ Ah

(1)

where ∀p, q, V h
p ∩V h

q = ∅ , Ahp ∩Ahq = ∅, 1 ≤ p, q ≤ kh, and p 6= q. In the rest of the paper, we refer

to community Chi (V h
i , A

h
i ,W

h
i ) as Chi .

In each community Chi , a subset of Ah, Ahi , connects its nodes, V h
i such that Ahi represents

intra-community arcs. In addition to these arcs, Ah /
⋃kh

i=1A
h
i is a subset of arcs representing the

intercommunity arcs, which connect pairs of communities in level h. For each arc in Ah /
⋃kh

i=1A
h
i

that connects two communities Chp and Chq , we define wh
Ch

pC
h
q

as the travel time between centers

of those communities. We set a virtual vertex as the center of a community. In the case of

road networks, the coordinates of the center is the average of coordinates of all vertices within

the projection of that community to the lowest level. Therefore, we set travel time wh
Ch

pC
h
q

as the

distance between the virtual vertices divided by the maximum speed limit. Note that the projection

of each community Chi to the lowest level covers a subset of nodes in G1.

Each community in level h−1 is represented by a node in level h. That means each community

Ch−1p , 1 ≤ p ≤ kh−1, is represented by a node v ∈ V h. If v is a vertex (v ∈ V h
q ) that belongs to

Chq , 1 ≤ q ≤ kh, then Chq is a super-community of Ch−1p and Ch−1p is a sub-community of Chq . In

each level, a node represents a sub-community. In general,
⋃kh−1

i=1 Ch−1i = V h. Thus, there is a
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Figure 1: Illustrative example for the hierarchical representation of a network

one-to-one correspondence between V h+1 and Ch, where Ch =
⋃kh

i=1C
h
i .

In all levels of the hierarchy, V h is the set of communities of level h− 1, where h 6= 1. If h = 1,

G1 represents the actual road network, where V 1, A1 and W 1 represent sets of road intersections

as communities, road segments, and road segment travel times, respectively. In our proposed time-

dependent model of the road network, we denote wtij as the travel time of the arc (i, j) ∈ A1

connecting i ∈ V 1 to j ∈ V 1, where t is the arrival time at node i.

Fig. 1 shows a highly stylized example to illustrate the hierarchical representation of an undi-

rected and an unweighted network with three levels of hierarchy. The graph in level 3 (i.e., G3)

consists of 10 nodes that are partitioned into two communities C3
O and C3

D. Each node in this level

is a community in level 2. For example, C2
4 is represented as a node in level h = 3 which along with

four other nodes forms community C3
O in level 3. Therefore, community C3

O is its super-community.

In addition, (C2
O, C

2
4 ) is an intra-community arc within community C3

O, and (C2
4 , C

2
6 ) is intercom-

munity arc that connects two communities C3
O and C3

D. Community C2
4 in level 2 consists of 8

nodes (sub-communities), C1
1 , . . . , C

1
8 . For example, C1

1 is a sub-community of C2
4 . We show the

projection of community C1
7 in level 1, which is a part of the actual graph G1.

7



A modularity measure was first introduced by Newman and Girvan (2004) to measure the

strength of partition of a network into communities. This measure gives a value, ψ, between -1 and

1 for a partition based on the density of arcs inside communities in comparison with the density of

arcs between communities. A higher value of ψ indicates a better partitioning of the network. ψ is

a property of a network and a specific partition of the network into communities. For simplicity,

we assume nodes i and j belong to communities Ci and Cj , respectively. In the case of weighted

directed networks, the modularity measure for all arc (i, j) and a given partition is defined as

follows:

ψ =
1

m

∑
(i,j)

[
bij −

dini d
out
j

m

]
δ(Ci, Cj) (2)

δ(Ci, Cj) =


1 if Ci = Cj

0 otherwise

(3)

m =
∑
(i,j)

bij (4)

where bij represents the closeness weight of the arc between i and j, and dini (doutj ) is the sum

of the incoming (outgoing) arc closeness weights attached to vertex i (j). It is worth mentioning

that bij indicates closeness or similarity between nodes i and j that can give useful information

about communities. Not all weights on network arcs are necessarily appropriate for determining

community structure. In traffic networks, the inverse of travel time between nodes i and j can be

used as the value for bij in order to find densely connected subsets of nodes as communities. For

example, if the travel time between two nodes is long, it does not mean that these nodes are similar

so they may be assigned to different communities.

We employ the Louvain method (Blondel et al., 2008), which is an agglomerative approach for

constructing hierarchical representation of the network. This method not only extracts a hierar-

chical community structure, but exhibits excellent computational performance even for large-scale

directed networks. The Louvain method is a heuristic method based on the gain in modularity,
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∆ψi, by adding (removing) a vertex i into (from) a community C in each iteration of their proposed

method. The gain in modularity, ∆ψi, for directed and weighted networks is defined as follows:

∆ψi =

[∑
j, k∈C bjk +

∑
j∈C bij +

∑
j∈C bji

m
−

(∑
j∈C, k /∈C bjk + douti

m

)(∑
j∈C, k /∈C bkj + dini

m

)]

−

[∑
j, k∈C bjk

m
−

(
∑

j∈C, k /∈C bjk)(
∑

j∈C, k /∈C bkj)

m2
− dini d

out
i

m2

]
(5)

where
∑

j, k∈C bjk is the sum of the weights of intra-community arcs of C,
∑

j∈C, k /∈C bjk is the

sum of the weights of the arcs incident to vertices in C, and
∑

j∈C bij is the sum of the weights of

the arcs from i to vertices in C. Each vertex i is added to one of its neighboring communities that

has the highest modularity gain.

Our proposed algorithm is not limited to any specific community structure detection methods;

other community structure detection or graph partitioning methods can be applied. In the next

section, we propose our hierarchical search method using the proposed hierarchical graph model.

3 Hierarchical Time-Dependent Shortest Paths

We propose a new hierarchical search algorithm for solving the TDSP problem on dynamic road

networks with discrete and deterministic time-varying travel time. The algorithm exploits the

hierarchical representation of the road network, as outlined in section 2.

We first introduce a Time-dependent Neighborhood Goal Directed (TNGD) search algorithm.

The task of TNGD is to determine a spectrum of promising communities for exploration in each

level of the hierarchy. We then propose a Hierarchical Time-dependent Neighborhood Goal Di-

rected (HTNGD) algorithm that recursively employs TNGD to solve the TDSP problem. HTNGD

efficiently searches over the entire hierarchical representation of the road network.

3.1 Time-dependent Neighborhood Goal Directed (TNGD) Search Algorithm

We consider a graph Gh(V h, Ah,W h) as described in section 2 to find a spectrum of communities

between ChO and ChD in level h, where ChO and ChD are the communities containing O and D,
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Table 1: Notation

tO Trip start time
Ch

O Origin community in level h
Ch

D Destination community in level h
α Spectrum control parameter
fv Estimated minimum total travel time

among all paths passing through commu-
nity v from Ch

O to Ch
D

gv Minimum arrival time from Ch
O to com-

munity v starting at time tO
e(v, Ch

D, gv) Lower bound estimate on travel time to go
from v to Ch

D assuming the arrival time to
v is gv

S Set of visited communities
N Set of nominated communities for the se-

lection of the next community

CSh
OD Core set in level h

Qh Spectrum of communities in level h

respectively. We define a spectrum Qh as follows.

Definition 2 (Spectrum) A spectrum Qh is a set of communities in level h such that the projec-

tion of that spectrum to the lowest level of the hierarchy structure contains at least one path from

O to D.

In this subsection, we describe how TNGD finds Qh. The likelihood of obtaining the shortest path

in the spectrum can be increased by increasing the size of the spectrum.

TNGD algorithm is designed in a way that it returns a spectrum of communities connected

through intercommunity arcs. It finds a set of connected communities, the core set CShOD, con-

necting ChO and ChD with the shortest path through the community centers with the condition that

there is at least one intercommunity arc for every consecutive pair of communities on the path.

Note that this shortest path is at a particular level h, and the communities along this path identify

the candidate communities for exploration at the lower level. Communities in the core set CShOD

build a spectrum Qh.

To increase the likelihood of finding the shortest path on the actual road network represented

by G1, TNGD can extend the initial spectrum Qh by adding neighbor communities of the core

set CShOD. However, this comes at a cost of increasing run time. Hence, TNGD employs a param-

eter α to strike a good balance between efficiency (search cost) and effectiveness (path optimality).
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If α = 1, TNGD includes all additional communities with a direct intercommunity arc to the core

set, leading to a spectrum of communities Qhα=1. If α = 2, TNGD extends the spectrum Qhα=1 by

including once again all additional communities with a direct intercommunity arc to the current

spectrum. This recursive procedure can be applied for any particular integer α ≥ 1. If α = 0,

TNGD returns just the core set. At the lowest level of the hierarchical representation, there is no

need to build a spectrum; hence, α is set to zero.

We define a set of notations assuming a time-dependent network in Table 1. The proposed

TNGD algorithm is given in Algorithm 1. The description of the TNGD algorithm is as follows:

TNGD starts with Gh, ChO, C
h
D, h, and α as input parameters. The objective of TNGD is

to find a spectrum of communities in the level h using the parameter α. The algorithm uses S

and N to store a set of visited communities and a set of communities to visit in the next iteration,

respectively. TNGD initializes S = ∅, N = ChO, fCh
O

= ∞, and the core set CShOD = {ChO, ChD}

(line 1). It also initializes gCh
O

to departure time tO, and gu to infinity for all communities u in

level h except for ChO (line 2). TNGD updates gu to minimum arrival time from ChO to community u

(lines 3-22). Note that if tO = 0, gu is minimum travel time. TNGD selects a community v from N

with minimum total travel time (line 4). Estimated minimum total travel time fv is the sum of

the minimum travel time from ChO to community v and the heuristic estimate of lower bound on

travel time to go from an intermediate community v to the destination community ChD, assuming

the arrival time to v is gv (i.e., fv ≥ gv + e(v, ChD, gv)). Then, it removes v from the nominated

set N and adds it to the visited set S (lines 6-7). TNGD updates N , gu, and fu for each neighbor

community u of community v (i.e., with a direct intercommunity arc) where either u is not in the

nominated set or there is a shorter path using v to reach to u (lines 12-16). If the travel time from

the origin community to reach the neighbor community u passing through v, gv + wgvvu, is smaller

than the current travel time of the neighbor gu, TNGD updates the travel time to the smaller time

(lines 12-14). Note that wgvvu is the time-dependent travel time of the arc (v, u), where the arrival

time to v is gv. Then, TNGD updates the nominated set N (line 13) by adding community u to

N . TNGD computes e(u,ChD, gu), which is a lower-bound estimate on travel time to go from u

to ChD, assuming the arrival time to u is gu, and then updates fu (lines 14-15). TNGD can use any

lower-bound function to calculate the value of e(u,ChD, gu), for example, travel time from u to ChD

under free-flow condition can be used as a lower bound (e.g., a vehicle cannot travel from u to ChD
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Algorithm 1 Time-dependent Neighborhood Goal Directed (TNGD) Algorithm

(TNGD(Gh,Ch
O,C

h
D,h, α))

1: v ← ChO, S = ∅, N = {v}, fv =∞, CShOD = {ChO, ChD}
2: gv = tO, gu = ∞, ∀u ∈ V h, u 6= v
3: while N 6= ∅ do
4: v ← arg minn∈N fn
5: if v 6= ChD then
6: N ← N\{v}
7: S ← S ∪ {v}
8: for all u where (v, u) ∈ Ah do
9: if u ∈ S then

10: Continue;
11: else
12: if u /∈ N or gv + wgvvu < gu then
13: N ← N ∪ {u}
14: gu ← gv + wgvvu
15: fu ← gu + e(u,ChD, gu)
16: end if
17: end if
18: end for
19: else
20: Break;
21: end if
22: end while
23: Construct CShOD
24: {Build a spectrum}
25: Qh ← CShOD
26: y ← CShOD
27: while α > 0 do
28: for all v ∈ y do
29: for all u where (v, u) ∈ Ah do
30: if u /∈ Qh then
31: Qh ← Qh ∪ u
32: end if
33: end for
34: end for
35: y ← Qh\y
36: α← α− 1
37: end while
38: Output: CShOD, Q

h

faster than when it is under free flow condition). While it is desirable to use a tight lower bound

such as minimum travel time, calculating such a tight lower bound increases the execution time

of the algorithm. If such bounds are calculated offline, the algorithm requires large memory space

to save such lower bounds, which is not in alignment with our goal to decrease the need to store
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preprocessed shortest paths, shortcuts, lower bounds, etc.

TNGD stores communities forming the minimum total travel time path from ChO to ChD as a core

set CShOD (line 23). The core set CShOD only contains communities in the level h. TNGD initializes

the spectrum Qh by the obtained core set (line 25). To avoid removing some promising communities,

the algorithm extends the search space by adding neighbor communities to the selected communities

in the core set (lines 27-37), yielding spectrum Qh of the core set CShOD. In doing so, TNGD uses

a temporary set y initialized with the core set (line 26). For each community in y, TNGD adds to

the spectrum its neighbor communities which do not belong to the spectrum (lines 28-34). Then,

TNGD updates y to the set of newly added communities to the spectrum (line 35) and decrements

α (line 36). Using y decreases the amount of computation to build the spectrum since TNGD does

not need to consider communities that are already belong to the spectrum. The output parameters

of TNGD are the core set and the spectrum.

TNGD always finds the shortest path in each level as long as the estimated travel time obtained

by the heuristic function is a lower bound of the actual travel time. The goal of proposing TNGD

is to reduce the search space in each level of hierarchy by eliminating communities that would not

be traversed by the optimal path. In the case of the lowest level where h = 1, α is always set to 0.

As a result, TNGD in the lowest level becomes a time-dependent goal directed algorithm exploring

only a subset of nodes selected by the projection of higher spectrums instead of the whole actual

network.

3.2 Hierarchical Time-dependent Neighborhood Goal Directed (HTNGD) Al-

gorithm

We now propose the Hierarchical Time-dependent Neighborhood Goal Directed (HTNGD) algo-

rithm that incorporates a new hierarchical search strategy. HTNGD recursively employs TNGD,

starting with the highest level of the hierarchy in which O and D fall into two distinct commu-

nities. The spectrum of communities resulting from TNGD is recursively projected to the level

below, identifying the collection of communities to be searched at the level below. The process

terminates at the lowest level, with TNGD identifying the shortest path.

The proposed HTNGD algorithm is given in Algorithm 2. The full details of HTNGD are

outlined below. The algorithm receives an OD pair and α as input parameters. It finds the
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Algorithm 2 Hierarchical Time-dependent Neighborhood Goal Directed Algorithm (HTNGD(O,D, α))

1: for all levels h from top to bottom do
2: Find community ChO containing O in Gh

3: Find community ChD containing D in Gh

4: if ChO = ChD then
5: {in the same community}
6: Continue; {go to the lower level}
7: else
8: {in different communities}
9: if h = 1 then

10: (CS1
OD, Q

1) = TNGD(G1, C1
O, C

1
D, 1, 0)

11: else
12: (CShOD, Q

h) = TNGD(Gh, ChO, C
h
D, h, α)

13: {changes in the lower level graph}
14: for all communities Chi ∈ Qh do
15: for all sub-communities Ch−1j of Chi do

16: for all Ch−1p where Ch−1j Ch−1p ∈ Ah−1 do

17: Chq ← super-community Ch−1p in Gh

18: if Chq /∈ Qh then

19: Update wCh−1
j Ch−1

p
to ∞ in Gh−1

20: end if
21: end for
22: end for
23: end for
24: end if
25: end if
26: end for
27: Output: Shortest path CS1

OD

communities ChO and ChD in the highest level of hierarchy (lines 2-3). If O and D are located within

the same community at this level, the algorithm proceeds to the next lower level for the route

search (lines 4-6). This procedure continues until O and D fall into different communities. Then,

the algorithm executes the TNGD on Gh to find the spectrum Qh (lines 8- 12).

To eliminate communities that do not belong to the current spectrum from the search space, we

set the weights of the intercommunity arcs going out of the spectrum Qh to infinity (lines 13-23).

To do so, for each community in the current spectrum, the algorithm first finds communities that

fall into the projection of that community at the lower-level denoted sub-communities. Then, for

the selected sub-communities, it finds their neighbor communities with direct intercommunity arc

(line 16). If the communities of these neighbors at the level above (denoted super-communities) are

not in the spectrum, the algorithm sets the weight of their intercommunity arcs to infinity (line 19).
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Figure 2: Illustrative example for HTNGD

These changes are tracked in Gh−1.

The algorithm then proceeds to the lower level and repeats the process until it reaches the

lowest level of the hierarchical graph that is the actual road network. However, instead of finding

the optimal path in the whole road network, it only searches nodes that are part of the projection

of spectrum from level h = 2. At this lowest level, HTNGD sets α to zero and employs TNGD to

find the optimal path from O to D within the reduced search space.

We consider a highly stylized example to illustrate how HTNGD works with α = 1. Fig. 2

shows three levels of hierarchy, where the top level only has two nodes. We consider O and D to

fall into C2
O and C2

D, respectively. All sub-communities of these two communities are shown in the

second level, h = 2. In this level, O and D fall into C1
O and C1

D, respectively. HTNGD calls TNGD

to find the core set, CS1
OD = {C1

O, C
1
4 , C

1
5 , C

1
D}. Since α is set to one, the spectrum Q1 contains the

immediate neighbor communities of CS1
OD. Therefore, Q1 = {C1

O, C
1
3 , C

1
4 , C

1
5 , C

1
6 , C

1
D}. HTNGD

eliminates communities not included in Q1 from further search space, C1
1 , C

1
2 , C

1
7 , C

1
8 , and C1

9 . Then,

HTNGD projects Q1 onto the lowest level of the hierarchy, G1. Finally, HTNGD finds the shortest

path between O and D using the reduced search space at this lowest level, h = 1. The optimal
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Figure 3: Metro Detroit road network, 465,938 road segments (arcs), 168,806 cross sections (nodes)

shortest path is shown by a bold line in Fig. 2.

4 Experimental Results

We study the performance of our proposed algorithm on the road networks of metropolitan Detroit,

New York, and San Francisco. We use two sources for extracting their directed graphs. The first

source is NAVTEQ (NAVTEQ, 2013) for Metro Detroit. It consists of coordinates of intersections,

road segment distances, and speed limits. We extract the graph with its features using ArcGIS

Desktop 10. Fig. 3 shows the full road network of Metro Detroit. The second source is the center

for Discrete Mathematics and Theoretical Computer Science (DIMACS) at Rutgers University

(DIMACS, 2013). It consists of coordinates of intersections, distance graph, and travel time graph

for New York and San Francisco. Table 2 shows the number of nodes and arcs of these three road

networks. All algorithms are implemented in C++. Experiments are conducted on an Intel 2.53

GHz with 3GB RAM Linux platform.
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Table 2: Properties of selected road networks

No. of nodes No. of arcs

Detroit 168,806 465,938
New York 264,346 733,846
San Francisco 321,270 800,172

4.1 Generating Time-Dependent Networks

Given the unavailability of time-dependent arc travel times for all arcs of the road networks under

study (e.g., ITS coverage is mostly limited to highways), we adopt the following procedure for gen-

erating such data. Many transportation studies (e.g., Nannicini et al. (2008); Delling and Nannicini

(2012)) have also employed similar artificially generated time-dependent travel time datasets.

Given that the travel time index (TTI) varies by time of day, we rely on the latest TTI as

reported by the Texas Transportation Institute for the cities under study to calibrate the traffic

speeds for individual arcs at one-minute resolutions for a typical weekday (Schrank and Lomax.,

2012). TTI corresponds to the ratio of travel time in a particular period to the travel time at

free-flow condition. For example, a value of 1.3 for a certain time of day indicates that a 20-minute

trip under free-flow condition takes an average of 20 × 1.3=26 minutes in that period. Note that

a TTI of 1 corresponds to the free-flow of traffic without any congestion. Therefore, we equate

this to posted speed limits for individual arcs. During rush hours, TTI significantly exceeds 1 and

corresponds to reduced traffic speeds. For instance, for the Metro Detroit region the TTI is 1.2 and

1.28 during morning and afternoon rush hours, respectively. Fig. 4 shows the TTI for the Metro

Detroit region in more detail. We adjusted the traffic speeds for every arc of the network, as a

function of time of day, to match the average TTI profile at a one-minute resolution. To generate

a representative time dependent travel network, we employed the following approach. We selected

coordinates for ten stationary congestion spots covering the Detroit Metro network. Based on the

distance proximity between the nearest congestion spot and the mid-point of each arc, the travel

time index profile for the arcs (at a one-minute resolution) is generated as follows:

wtij(1 + (TTIt − 1)
1

0.25λij + 1
) (6)

17



1

1.05

1.1

1.15

1.2

1.25

1.3

 0  200  400  600  800  1000  1200  1400  1600

T
T

I

Minutes

Figure 4: Travel time index (TTI)

where λij is the distance proximity between the nearest congestion spot and the mid-point of the

arc from i to j. As designed, different arcs of the network exhibit different travel time index profiles

based on their proximity to the congestion spots (nearby arcs will experience the full impact of

recurrent congestion and distant arcs will mostly maintain free flow travel conditions). Note that

the intention here is not to mimic real-world traffic dynamics but to generate a time dependent

network to objectively evaluate the proposed algorithm.

4.2 Experimental Setup

We construct the hierarchical representation using travel times under free-flow. Table 3 reports the

number of communities identified in each level of the hierarchy using the hierarchical community

detection algorithm. Louvain’s community detection algorithm establishes the same number of

hierarchy levels in New York and San Francisco while extracting one more level for Detroit. This

is because the Metro Detroit network is sparser than the other two networks. In the first level

(h = 1), each community contains just a single node from the network. As the level increases

in the hierarchy, more nodes are merged to construct each community. Therefore, there are fewer

communities at the higher levels. This algorithm finds the hierarchical communities for each studied

road network in less than a second.

For all levels of the hierarchy, we build the hierarchical representation Gh(V h, Ah,W h) as
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Table 3: Number of communities in each level revealed by the community detection algorithm

h Detroit New York San Francisco

1 168,806 264,347 321,271
2 67,136 79,261 93,100
3 21,508 18,968 23,104
4 5,833 4,007 5,085
5 1,453 952 1244
6 457 438 672
7 368 - -

explained in section 2. At the lowest level, wh
Ch

i C
h
j
(t) = wtij , where wtij is the time-dependent

travel time of going from node i to node j and t is the arrival time at node i. However, in our

experiments, for the higher levels, wh
Ch

i C
h
j
(t) is the estimated lower bound of travel time from Chi to

Chj based on the straight-line distance between centers of those communities and the speed limit.

These estimates can be replaced with more precise information when available, and they may lead

to further improvements in computational efficiency. The fixed topology of road networks gives

routing algorithms for vehicular networks the benefit of using coordinates; other networks may not

have such a privilege. We employ a haversine distance to estimate the distance between any given

pair of nodes or communities. Haversine distance d of two vertices i and j is computed using the

following formula:

a =sin2

(
lati − latj

2

)
+

cos (lati) cos (latj) sin2

(
longi − longj

2

)
(7)

c = 2 atan2(
√
a,
√

1− a) (8)

d = R c (9)

where R is earth’s radius (3,961 miles).

We set up an extensive experimental evaluation of our proposed routing algorithm. To analyze
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effects of OD pairs distance on the proposed algorithm, our tests are executed on five different

classes of OD pairs distance: less than 5 miles, 5 to 10 miles, 10 to 20 miles, 20 to 30 miles, and

30 to 40 miles.

We first evaluate the HTNGD using 1,000 randomly selected OD pairs in each class from the

road networks of Detroit, New York, and San Francisco, resulting in a total of 15,000 OD pairs

(i.e., 1000 × 5 classes × 3 cities). We randomly select trip start times throughout the day from

1,440 (i.e., 24 hours × 60 minutes/hour) time windows. We also perform sensitivity analysis for the

spectrum control parameter α over five different values of α for the Detroit dataset. The selected

values for α are as follows: 1, 2, 3, L − h, and 2(L − h), where L is the number of levels and h

is the level of hierarchy in the algorithm. To analyze the performance of HTNGD under different

traffic conditions, we only consider the Detroit dataset. We choose two distinct traffic conditions:

free-flow (early morning) and high traffic (afternoon rush-hour).

4.3 Evaluation of HTNGD

As noted earlier, vehicle routing navigation systems, whether built-in or portable, lack the ability to

rely on online servers and have to compute the route, given an origin/destination pair and departure

time, in a stand-alone mode with limited hardware processing/memory capacity. This mostly ren-

ders methods that store preprocessed shortest paths, shortcuts, and lower bounds impractical due

to their massive memory requirements. The proposed HTNGD algorithms are explicitly designed

to overcome these limitations.

In this subsection, we evaluate the performance of the proposed HTNGD algorithms in time-

dependent road networks generated for Detroit, New York, and San Francisco. We compare the

results of HTNGD to an adaptation of A* algorithm for time-dependent networks. The reader is

referred to (Chabini and Lan, 2002) for such adaptations. Time-dependent A* algorithms do not

require storage of preprocessed shortest paths, shortcuts, or lower bounds, and hence, qualify for

fair comparison with the proposed HTNGD algorithms.

TNGD(G1, O,D, h = 1, α = 0) works as an adaptation of A* on the time-dependent network

G1. This means that TNGD with α = 0 on the whole network is a time-dependent A* algorithm

(TA*). However, HTNGD on the lowest level calls TNGD with α = 0 on the reduced search space.

Therefore, for fair analysis of the performance of HTNGD, we compare HTNGD with TA*. Note
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Figure 5: Average number of nodes visited by TA* compared to HTNGD during search
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Figure 6: Speedup factor for HTNGD vs TA*

that TA* always finds the optimal shortest path as long as the estimated travel time obtained by

the heuristic function is a lower bound of the actual travel time. This is always the case in our

proposed TA*.

The ratio of the number of visited nodes in HTNGD compared to TA* on the described test

sets are presented in Fig. 5. With an increase in the distance between OD pairs, both HTNGD and

TA* explore more nodes to find the path. However, as shown in the figure, HTNGD visits many

fewer nodes than TA*. This is primarily attributable to the hierarchical search and projection

strategy of HTNGD. For example, for the OD distance class of 10-20 miles and α = L − h, TA*
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Figure 7: Average travel time of the path provided by HTNGD compared to TA*

explores 14.92 times more nodes than HTNGD. This ratio goes upto 89.21 in the case of α = 1 for

the same OD class.

Fig. 6 compares the computational time differences of HTNGD over TA*. The results show

significant computational efficiency of HTNGD over TA*. For the case of α = L−h, HTNGD is 9.0

times faster than TA* for the OD distance class of 10-20 miles, and is over 15.70 times faster for

longer distances. In the case of α = 1, HTNGD is 26.27 times faster than TA* for longer distances.

The results of Fig. 5 and Fig. 6 show that the decrease in the number of visited nodes leads to a

faster execution time of the HTNGD. This is due to the fact that the decrease in the number of

visited nodes reduces the search space leading to a faster execution time.

In addition, we study the optimality of the path identified by HTNGD. We compare the total

travel time of the paths obtained by HTNGD and TA* in Fig. 7. The results vary based on different

values of α. As noted earlier, proper selection of α is critical in the tradeoff between computation

time and optimality gap. The optimality gap is the difference between the travel time of the optimal

path and the path obtained by HTNGD. Fig. 7 shows the ratio of travel time of HTNGD to TA*.

HTNGD with α = (L − h) results in a trip travel time that is 3.0% more than that of TA* for

the OD distance class of 10-20 miles. If needed, one can further decrease the optimality gap by

increasing the value of parameter α, but at the cost of increasing the execution time.

Figs. 8-10 describe the results with α = 2(L− h) for the Detroit dataset in more detail. These

figures present the distribution of the results with minimum, 10 percentile, average, 90 percentile,
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Figure 8: Number of visited nodes of HTNGD (α = 2(L− h)) and TA*
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Figure 9: Computation time of HTNGD (α = 2(L− h)) and TA*

and maximum values. Fig. 8 presents the distributions of the number of nodes visited during the

search. TA* on average visits 6.04 times more nodes than HTNGD. Fig. 9 shows the distributions

of the computation time of HTNGD compared to TA*. The computation time of HTNGD over all

selected OD pairs is on average 4.85 times faster than that of TA*. Clearly, our proposed algorithm

performs even better than TA* for longer OD distances (i.e., 6.05 times faster). The distributions

of the obtained results for the total travel time are shown in Fig. 10. HTNGD results in a total

travel time that is on average 1.1% longer than those of TA* for all classes of OD pairs. For all

the selected OD pairs in the classes of 1-5 and 5-10 miles, HTNGD with α = 2(L − h) finds the
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Figure 10: Travel time of HTNGD (α = 2(L− h)) and TA*
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Figure 11: Average travel time of HTNGD (α = 2(L− h)) and TA* in early morning vs afternoon
rush-hour

optimal paths.

To investigate the impact of traffic conditions on the performance of our proposed routing

algorithm, we now compare the performance of HTNGD with the 5,000 selected OD pairs from

the Detroit road network under two distinct traffic conditions: trip start times of midnight (closer

to free-flow) versus 6:30PM (experiencing significant recurrent congestion). We study the effects of

traffic conditions on our proposed algorithm with α = 2(L− h).

Fig. 11 presents the average travel time of HTNGD and TA*. As expected, the results show
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Figure 12: Average computation time of HTNGD (α = 2(L − h)) and TA* in early morning vs.
afternoon rush-hour

that the average travel time increases for both methods during rush-hour.

Fig. 12 shows the average computation time of HTNGD and TA* under free-flow and evening

rush-hour. The results show that HTNGD in both test cases performs almost the same. In addition,

TA* in both test cases has almost the same computation time. This is due to the fact that the

complexity of both algorithms is independent of arc weights, here interpreted as the road segment

travel time (with or without congestion). As a result, there are no significant changes in the

performance of each algorithm in terms of computation time regarding the traffic congestion.

We compare HTNGD with the most successful speedup techniques in Table 4. The reader is

referred to (Bauer et al., 2010; Geisberger et al., 2012) for information on other relevant algo-

rithms. We analyze data from several papers, and compare pre-processing time, additional storage

requirement based on byte per node, and query time. We also present the hardware used in each

of the selected studies in the footnote of the table. TNR has the lowest query time, however, it re-

quires 2,760 seconds for pre-processing, and 193 Bytes/node for additional storage space. HTNGD

requires the least amount of pre-processing time and storage except than Dijkstra. In addition,

query time of HTNGD is reasonable, and it is in terms of milliseconds. In this table, we present the

average query time of HTNGD with α = 2(L− h). The query time of HTNGD can be reduced by

choosing lower values for α. Note that the query time of all the algorithms is less than one second.

From all these results, we conclude that HTNGD not only provides accurate route guidance,
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Table 4: Comparison of various methods.

Pre-processing Storage requirement Query

Method Data from Time (s) (Byte/node) Time (ms)

Dijkstra1 Bauer et al. (2010) 0 0 5,591.6

TNR4 Geisberger et al. (2012) 2,760 193 0.0033

AF3 Hilger et al. (2009) 129,360 25 1.1

SHARC1 Bauer and Delling (2009) 4,860 14.5 0.29

HH Schultes (2008) 780 48 0.61

CALT1 Bauer et al. (2010) 660 15.4 1.34

ALT2 Goldberg et al. (2009) 780 70 120.1

TDCALT1 Delling and Nannicini (2012) 1,680 256 188.2

HTNGD5 this paper 0.98 10 141.3

12.6 GHz AMD Opteron, SuSE Linux 10.2, 16GB RAM
22.4 GHz AMD Opteron, Windows Server 2003, 16GB RAM
32.2 GHz AMD Opteron, SuSE Linux 9.1, 4GB RAM
42.0 GHz AMD Opteron, SuSE Linux 10.3, 8GB RAM
52.53 GHz Intel, Fedora Linux 12, 3GB RAM

but also offers significant computational efficiency over other methods without large memory re-

quirements.

5 Conclusion

The expanding coverage of Intelligent Transportation Systems is necessitating the development of

real-time algorithms for vehicle routing on time-dependent networks. This paper provides a new

approach for solving the time-dependent shortest path (TDSP) problem on large-scale dynamic

networks with deterministic time-varying travel time. In particular, we proposed a hierarchical

time-dependent shortest path algorithm to solve the TDSP problem that can utilize community-

based hierarchical representations of road networks. The proposed algorithm (HTNGD) generates

routes in real-time in terms of milliseconds on large-scale networks without having to store a

large number of pre-calculated shortest paths and lower bounds. A key property of the proposed

algorithm is its low memory requirements. The significant reduction in memory requirements of

HTNGD compared to that of other current methods makes HTNGD suitable to be incorporated in

vehicle routing navigation systems. Extensive experimental evaluations of the proposed approach
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on Detroit, New York, and San Francisco road networks demonstrate the computational efficiency

and accuracy of the proposed method. We plan to extend this research to energy-efficient routing

of plug-in hybrid and pure electric vehicles.
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