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Abstract

We design strategy-proof online scheduling and pricing mechanisms for electric vehicle (EV)

charging in a competitive environment. EV drivers submit their requests for charging services

dynamically over time, and they can name their own price on the charging services. The

mechanisms schedule EV charging and determine charging prices considering the incentives

of both EV drivers and power providers. In addition, our proposed online mechanisms do

not assume availability of information about future demand. Our charging mechanisms are

preemption-aware allowing flexibility on when charging takes place. This is in alignment with

power providers’ load balancing goals. We perform extensive experiments to investigate the

performance of our proposed mechanisms compared to that of the optimal offline mechanism.

We analyze the various properties of our proposed mechanisms, in particular, we prove that they

are strategy-proof, that is, truthful reporting of price and amount of charging is a dominant

strategy for self-interested EV drivers.

Keywords: Electric vehicles, online charging, pricing, strategy-proofness, mechanism design.

1 Introduction

Electric vehicles promise to enable diversification of transportation energy feedstocks, reduce the

dependency on fossil fuels, improve public health by lessening greenhouse gas emissions, and stim-

ulate economic growth through the development of new technologies and industries. Widespread
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adoption of electric vehicles is in alignment with sustainable transportation goals in their social,

economic, and environmental aspects. Automotive companies are being challenged by environmen-

tally conscious consumers and governments to produce affordable electric vehicles (Huang et al.,

2013). Several companies from around the world have accepted the challenge, and more models of

plug-in EVs (plug-in hybrid electric vehicles and pure battery electric vehicles) that can be charged

from the electric grid are being introduced (Hybrid Vehicle Timeline, 2012). Unlike standard hy-

brid vehicles, plug-in hybrid EVs (PHEVs) also offer the ability to be recharged from an external

electrical outlet. While pure battery electric vehicles (BEVs) currently offer limited driving range,

PHEVs have an internal combustion engine besides an electric motor to overcome driving range

issues.

Achieving large-scale adoption of EVs presents a number of challenges resulting from a current

lack of supporting technologies/infrastructures and difficulties in overcoming technological barriers.

Currently, EV drivers face long vehicle charging cycle times. In addition, they may also face long

waiting times and uncertainty over availability of charging facilities. As EV usage for daily commute

increases, enabling the ability to recharge these vehicles both in and away from base locations (e.g.,

residential locations) becomes more important. For example, some EV drivers may want to recharge

their EVs at their destination locations such as workplaces, where their vehicles are parked for an

extended duration. On the other hand, high electricity consumption of EVs is a major concern for

electric utility companies making the load management of micro grids a challenge. EV consumption

rates can be several times more than the average household consumption rate which can overload

micro grids (Fairley, 2010). The impact on the grid is especially critical during peak grid demand

hours. The existing electricity infrastructure may not be capable of providing the power to satisfy

the surge in power demand under these situations.

While the utility companies will in the long-run work to address capacity shortages, they can

significantly benefit from the development of scheduling and pricing mechanisms for EV charging

that are cost effective while providing good services. They seek to deploy mechanisms that lead

to balanced network load over time. One way to reach a better load balance is dynamic and

preemption-aware scheduling. However, the problem of efficient scheduling and fair pricing of EV

charging services is challenging, especially as both EV drivers and power providers can be seen

as self-interested parties. EV drivers are interested in minimizing their costs and maximizing
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convenience, whereas utility companies would like to maximize their profits. When an EV is

available for charging over an extended period (e.g., 8 AM to 4 PM), charging mechanisms can

service that request (i.e., provide the charge) either in one continuous time slot, or in several

discrete shorter time slots. A charging interruption may occur due to arrival of other urgent

requests or the need for grid load balancing and necessitates preemption of scheduled requests.

Electric utility companies can also choose to sell their unallocated capacity in an auction plat-

form. This is a win-win scenario for both providers and users, which allows providers to increase

revenues while users can obtain charging units at lower prices. Such auction platforms will be of

particular interest for PHEV users since they are not faced with range anxiety associated with pure

BEVs (i.e., fear that a vehicle will run out of battery charge enroute). When the battery within

a PHEV is depleted, the internal combustion engine works as a backup, providing a driving range

comparable to conventional internal combustion engine vehicles. Moreover, EV drivers that are not

in urgent need of charging but looking for bargains can also benefit from the auction-based plat-

form. In the rest of this paper, we use the term EVs for electric vehicles whose users are interested

in participating in this platform. EV users in urgent need for charging who are not willing to risk

preemption can either bid high on the platform or use a conventional charging platform.

In this paper, we propose the first preemption-aware online mechanisms for scheduling and

pricing EV charging in an auction-based platform. Users represent EV drivers whose charging

requests arrive dynamically over time, at which point they name their own price (place their bids)

to receive a certain amount of charging units by their departure. Our goal is to ensure that the

micro grid capacity constraints are not exceeded, and those users who value the electricity the most

are allocated and scheduled.

We consider a competitive environment where EV drivers compete for the limited supply of the

electricity provider. These EV drivers are strategic users who are self-interested, meaning that they

are interested in maximizing their own utility. Different users may have different time constraints

and willingness to pay for charging services. Since users act strategically to maximize their own

utility, they may misreport their preferences if it is in their best interest. Declaring lower bids

than users’ actual valuations may negatively affect other users and also lead to profit losses for

the provider. Our goal is to design model-free mechanisms (i.e., we make no assumptions about

future demand) that incentivises users to reveal their true preferences. Our proposed mechanisms
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consist of a scheduling algorithm and a dynamic pricing scheme for charging management of EVs

considering their realtime demand.

1.1 Our Contribution

We introduce the problem of preemption-aware online scheduling and pricing (OSAP) for EV

charging. The OSAP problem, given uncertainty about future arrivals, involves realtime scheduling

and pricing of requests released over time (i.e., EVs that require a certain amount of charging by

their departure) that share a scarce and perishable resource (i.e., electricity that is limited). We

first propose an integer program to find the optimal schedule for the offline version of the problem,

where all information about future supply and demand is known to the scheduler. We then propose

an optimal offline mechanism using the proposed off-line scheduler and the VCG (Vickrey-Clarke-

Groves) pricing scheme. In addition, we design a family of online mechanisms that solve the OSAP

problem, where the requests arrive dynamically over time. The mechanisms are model-free, making

no assumption about future demand, and they are invoked when a user places a new request or

additional electricity capacity becomes available. We prove that all our proposed mechanisms are

strategy-proof. This property incentivizes the EV users to report their preferences truthfully. We

perform extensive experiments and show that our proposed online mechanisms are able to find near

optimal solutions while satisfying the strategy-proofness property.

1.2 Related Work

Research on different decision problems related to EVs has attracted a great deal of attention

in the past few years. Such research includes forecasting the EV market share (Glerum et al.,

2014), designing energy-efficient routing of PHEVs (Nejad et al., 2016; Schneider et al., 2014),

and proposing battery-swapping polices (Mak et al., 2013; Almuhtady et al., 2014). Kieckhäfer

et al. (2014) proposed a hybrid simulation approach to estimate the evolution of EV market shares.

Chocteau et al. (2011) investigated the impact of collaboration on the adoption of EVs among

commercial fleets using concepts from cooperative game theory. Lin (2014) proposed a framework

for optimizing the driving range by minimizing the sum of battery price, electricity cost, and range

limitation cost as a measurement of range anxiety. Stüdli et al. (2014) studied the problem of

returning electrical load to the grid, known as vehicle-to-grid, to reduce stress on the grid during
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peak times by injecting power back into the grid.

Automatic scheduling of EV charging has been studied from different points of view and con-

sidered different applications. Clement et al. (2009) proposed a coordinated charging scheduler in

order to minimize the power losses and to maximize the grid load factor. Sundstrom and Binding

(2012) proposed a load flow method for the problem of charging multiple EVs. However, strategic

behavior of users (i.e., systematic manipulation of the system to gain unfair advantage) remains

possible in their settings, where users misreport their preferences in order to receive preferential

charging, leading to inefficient schedules that are not based on true users’ requests. Gan et al.

(2013) proposed a decentralized algorithm to optimally schedule EV charging by exploiting the

elasticity of EV loads to fill the valleys in electric load profiles. Jin et al. (2013) investigated of-

fline and online EV charging scheduling problems from a user’s perspective by jointly considering

the aggregator’s revenue and users’ demands and costs. Vasirani and Ossowski (2012) proposed

a lottery-based solution for EV scheduling in order to ensure a level of fairness in the resulting

scheduling in which a lottery system decides whether to charge a vehicle or not. However, none of

these studies considered strategic users. In addition, they did not consider pricing.

Pricing EV charging is another line of research. Sioshansi (2012) investigates the incentives of

EV drivers in making charging decisions with different electricity tariffs. In addition, he compares

the cost and emissions impacts of these charging patterns to the ideal case of charging controlled

by the system operator. Wei and Guan (2014) developed optimal electricity storage control policies

to manage charging and discharging activities for PHEVs. Their proposed models capture the

impact of the charging and discharging activities on real-time electricity prices. Flath et al. (2014)

proposed a charging coordination model considering a spatial price component in order to analyze

the loads from price-based EV fleet charging while at the same time accounting for distribution

grid constraints. Misra et al. (2015) proposed a distributed dynamic pricing mechanism for the

charging of PHEVs in a smart grid architecture. Once again, none of the above mentioned studies

considered strategic users.

There is an extensive body of literature on mechanism design for scheduling that considers

strategic users; the reader is referred to Heydenreich et al. (2007) for a survey. Mechanism de-

sign theory has been employed in designing strategy-proof mechanisms in several areas including

spectrum auctions and cloud computing. In spectrum auctions, a government or a primary li-
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cense holder sells the right to use a specific frequency band in a specific area using auction-based

mechanisms (e.g., Zhou et al. (2008); Kasbekar and Sarkar (2010)). In cloud computing, a cloud

provider offers computing services as commodities. Amazon Elastic Compute Cloud (Amazon EC2)

offers auction-based cloud services through its spot instance, where users can bid on spare Amazon

EC2 virtual machine instances. Several mechanisms have been designed for cloud auction markets

(e.g., Mashayekhy et al. (2015b,a); Nejad et al. (2015)). Problems arising from each area have their

own specific characteristics leading to fundamentally different problems. The characteristics of EV

charging brings about new challenges in designing market mechanisms. Due to the unique com-

bination of preemption-aware scheduling, strategy-proof pricing, multi-unit capacity and demand,

multi-parameter requests, and limited information in our online setting, the existing mechanisms

fail when applied to the EV charging problem. In this section, we will discuss the existing mecha-

nisms, their settings, and limitations.

One of the open problems in mechanism design is designing optimal mechanisms in which the

goal of the mechanism designer is profit maximization. This is a problem even for the case for

just two items and two bidders in an auction (Sandholm and Likhodedov, 2015). Myerson (1981)

proposed the design of strategy-proof revenue maximizing mechanisms for single item auctions in a

single parameter setting. However, even for this simple case, the mechanism is not detail-free (i.e.,

it requires the seller to incorporate information about the bidders valuations and their distribu-

tions in the design of the mechanism). Hartline and Karlin (2007) discussed revenue-maximizing

mechanism design in single parameter settings, where only one parameter of the user is private

information. The problem of finding a revenue-maximizing combinatorial auction is NP-complete

(Conitzer and Sandholm, 2004). The existence of detail-free revenue-maximizing auctions in gen-

eral is unlikely (Conitzer and Sandholm, 2004; Chawla et al., 2013). In the absence of revenue

maximizing auctions, several researchers resort to designing randomized optimal mechanisms (Celis

et al., 2014; Dughmi and Roughgarden, 2014). Such randomized mechanisms are truthful in expec-

tation, which is a weaker notion of truthfulness (strategy-proofness). The more common approach

is designing strategy-proof mechanisms that implement social welfare maximization and yield high

revenue. In this study, we consider multi-parameter settings, and our goal is to design strategy-

proof mechanisms. In addition, to improve the revenue of the provider, we consider reserve prices.

These reserve prices ensure the provider that the users bid at least that much in order to win. Our
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proposed mechanisms yield significantly higher revenue than the Vickrey-Clarke-Groves (VCG)

mechanisms.

We focus on studies on online mechanism design, where users arrive dynamically over time.

Online mechanism design is an important topic in the multi-agent and economics literature. The

reader is referred to Parkes (2007) for an introduction to online mechanisms. One line of research

in designing online mechanisms is to develop online variants of Vickrey-Clarke-Groves (VCG)

mechanisms (Gershkov and Moldovanu, 2010; Parkes and Singh, 2003). These studies focus on

Bayesian-Nash strategy-proofness. However, the focus of this paper is on the stronger concept of

strategy-proof dominant-strategies. In addition, these studies are model based, and they rely on a

model of future availability of supply and demand, while our proposed mechanisms are model-free.

Hajiaghayi et al. (2005) and Porter (2004) considered model-free settings. Porter (2004) proposed

a strategy-proof mechanism for online scheduling of jobs on a single machine. Hajiaghayi et al.

(2005) studied the problem of online scheduling of a single, re-usable resource over a finite time

period. They proved the strategy-proofness of their proposed mechanisms and derived lower bound

competitive ratios. Lavi and Nisan (2004) considered multi-unit demand, and proposed an online

auction model. In their model, however, the auctioneer must respond to each request immediately

before considering other requests.

A number of studies have considered scheduling of EV charging with strategic users. Stein

et al. (2012) proposed a model based online mechanism for pure electric vehicle charging. They

introduced the use of pre-commitment in order to guarantee strategy-proofness of their proposed

mechanism. In such a setting, when a mechanism precommits to a request, the request is nei-

ther preempted nor canceled. Gerding et al. (2011) proposed an online auction protocol for EV

charging. In order to satisfy the strategy-proofness property, their mechanism allows burning of

allocated electricity to some PHEVs. They showed that their proposed mechanism provides higher

allocative efficiency than a fixed price system. Robu et al. (2012) proposed an online mechanism

with strategic EV drivers allowing burning units. Robu et al. (2013) proposed an online mechanism

for multi-unit demand and studied its application for charging PHEVs. They proposed two truthful

allocation algorithms based on a greedy online assignment algorithm. Their allocation algorithms

also allow occasional burning of allocated electricity to some PHEVs in order for their mechanisms

to be strategy-proof. Gerding et al. (2013) proposed a two-sided online mechanism for advance
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reservations of charging, where EV users and providers can specify their preferences on time slots

and number of units per time slot. Overall, our setting is more complex in comparison with the

above-mentioned studies by jointly considering strategic users, allowing preemptions, and being

model-free. The proposed preemption-aware scheduling and pricing mechanisms are also compat-

ible with the load balancing objectives of utility providers. All these properties of the proposed

mechanisms make them more compatible with the real-world settings.

2 Online Scheduling and Pricing Problem

In this section, we model the online scheduling and pricing (OSAP) problem for an electric utility

provider that is providing charging service for EV users in a competitive environment. The utility

provider is assumed to carry a limited electricity capacity Ct for EV charging during a discrete

interval (of arbitrary choice) but the capacity might vary randomly from interval to interval by

time of the day, t ∈ T . Users compete for this limited supply while arriving dynamically over time

at discrete intervals. User i requests li units of charge over a specified discrete interval [ai, di] and is

willing to pay a maximum price of vi if the service is completed on time. In this study, we consider

that one unit of charging requires a unit of time, thus, users are requesting the charging units in

terms of the amount of time that their EVs require to be charged. User i’s bid (request) is denoted

by βi = (ai, li, di, vi). For example, bid (2, 1, 7, $15) represents a user requesting 1 unit of charging,

where the request arrives at time 2, expires at time 7, and her maximum price for the charging

service is $15.

The utility provider is able to (re)schedule the charging services for the different users at the

arrival of any new user bid and/or change in available capacity.

We denote by XN×T the charging schedule for all N users in the set U of users and T number

of time intervals in the problem horizon, where xti is 1 if user i’s EV is scheduled for charging at

time t, and 0, otherwise. Vector Xi = (x0
i , . . . , x

T
i ) represents the charging schedule for user i over

time. Since the preemption of service is allowed, user i’s charging might be completed over different

intervals with interruptions. There have been some studies investigating the impact of different

factors such as overcharging (too close to maximum battery capacity), temperature, and how

frequently the charging services occur on the performance and lifespan of battery packs (Yilmaz and
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Krein, 2013; Bashash et al., 2011; Cao et al., 2008). These factors can adversely affect the battery

lifespan. Preemption may also have some negative impacts associated with battery longevity, which

can translate into additional cost. To reduce such cost, the mechanisms can limit the number of

preemptions occurring for each request. However, considering such factors that cause battery

degradation is beyond the scope of this paper.

Each user i is characterized by a valuation function Vi defined as follows:

Vi(Xi) =

 vi if
∑di

t=ai
xti ≥ li,

0 otherwise,
(1)

where Xi is the charging schedule of user i. We denote by W the social welfare, which is defined as

the sum of users’ valuations (i.e., the set of users with active service requests): W =
∑

i∈U Vi(Xi).

Given this setting, the problem of online scheduling and pricing of EV charging is to find a

charging schedule and charging prices for users such that the total social welfare is maximized.

We denote by β = (β1, . . . , βN ) the vector of requests of all N users, and by β−i the vector of

all requests except user i’s request (i.e., β−i = (β1, . . . , βi−1, βi+1, . . . , βN )). We denote by Πi user

i’s payment for receiving the charging service. We quantify user i’s benefit through a quasi-linear

utility function defined as the difference between the value she receives and the payment charged

to her:

Ui(β) = Vi(Xi)−Πi (2)

The users are self-interested, that is, they want to maximize their own utility. It may be

beneficial for them to manipulate the service system and gain unfair advantage through untruthful

reporting. A user can declare a higher value in the hope to increase the likelihood of obtaining

her requested charging service. Strategic behaviors of such users may hinder other qualified users,

leading to reduced revenue and reputation of the provider. With the increase in the number of EVs

requiring charging, the potential for systematic manipulation will become a significant concern for

utility providers. Our goal is to design strategy-proof mechanisms that solve the OSAP problem

and discourage users from gaming the system through untruthful reporting.

The utility provider is also self-interested and wants to maximize its profit. In this setting, our

goal is to give incentives to the utility provider to fulfill the entire request of a user rather than a
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partial allocation. In doing so, the utility provider receives payment from a user only if it provides

her entire requested charging units. Note that in the absence of such setting, the utility provider

can maximize its profit by greedily allocating charging units only to the users with the highest value

per unit of charging at any time leading to the fractional OSAP problem (i.e., users are willing

to pay for any fraction of their received request). Although, such strategy would result in higher

profit for the utility provider, it does not consider the incentives of the users who want their entire

requested charging units.

In an online setting, where complete information about future demand and supply is not avail-

able, designing an optimal mechanism is not possible. However, in an offline setting of the OSAP

problem (SAP problem), we assume that such information is available, and thus, designing an op-

timal mechanism is possible. In the next section, we propose an optimal offline mechanism for the

SAP problem that is used as a benchmark for evaluating the performance of our proposed online

mechanisms.

3 Optimal Offline Mechanism

In this section, we propose an optimal offline strategy-proof mechanism for SAP, which considers

that the information on all the future requests as well as supply is known a priori. A set U of N

users submit their requests for the planning horizon of interest. We denote by β̂i = (âi, l̂i, d̂i, v̂i)

user i’s declared request and valuation. Note that βi = (ai, li, di, vi) is user i’s request and true

valuation. Users are rational in the sense that they do not want to pay more than their valuation for

their requests. A well-designed mechanism should incentivize users to participate. Such a property

of a mechanism is called individual rationality and is defined as follows:

Definition 1 (Individual rationality). A mechanism is individually-rational if for every user i with

true request βi and the set of other requests β−i, we have Ui(βi,β−i) ≥ 0.

In other words, a mechanism is individually-rational if a user can always achieve as much utility

from participation as without participation. However, such mechanisms do not always incentivize

users to report their requests truthfully. Our goal is to design a mechanism that is strategy-proof,

i.e., a mechanism that incentivizes users to reveal their true requests.
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Definition 2 (Strategy-proofness (Parkes, 2007)). A mechanism is strategy-proof (or incentive

compatible) if ∀i ∈ U with a true request declaration βi and any other declaration β̂i, and ∀β̂−i, we

have that Ui(βi, β̂−i) ≥ Ui(β̂i, β̂−i).

The strategy-proofness property implies that truthful reporting is a dominant strategy for the

users. As a result, it never pays off for any user to deviate from reporting her true request,

irrespective of the actions of the others.

Our first proposed strategy-proof mechanism is optimal, and is based on the Vickrey-Clarke-

Groves (VCG) mechanism. An optimal schedule with VCG payments provides a strategy-proof

mechanism (Vickrey, 1961; Clarke, 1971; Groves, 1973). We define our proposed optimal VCG-

based mechanism for SAP as follows:

Definition 3 (VCG-SAP mechanism). The VCG-SAP mechanism consists of a scheduling func-

tion S and a payment function Π, where

i) S is an optimal scheduling function maximizing the social welfare, such that Xi = Si(β̂), and

ii) Πi(β̂) =
∑

j∈U\{i}

Vj(Sj(β̂−i))−
∑

j∈U\{i}

Vj(Sj(β̂)),

such that
∑

j∈U\{i} Vj(Sj(β̂−i)) is the optimal social welfare obtained when user i is excluded from

participation, and
∑

j∈U\{i} Vj(Sj(β̂)) is the sum of all users’ valuations in the optimal solution

except user i’s value.

Overall, we first identify the winning users and their optimal charging schedules. The prices

are then determined based on the VCG pricing scheme.

In order to find the optimal scheduling function, we propose an Integer Program (IP) and define

the decision variables over time t ∈ T as follows:

xti =


1 if a charging unit is allocated to user i at t,

0 otherwise.

(3)

yi =


1 if any charging unit is allocated to user i,

0 otherwise.

(4)
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In addition, we define indicator parameters as follows:

δti =


1 if ai ≤ t ≤ di,

0 otherwise.

(5)

To maintain optimality, the solution should either fully service any particular request or not provide

any service. The feasibility of the schedule to user i is indicated by δti . This indicator parameter

ensures that the requested units are scheduled within time window [ai, di], if we choose to service

the request.

The problem that needs to be solved to identify the winning bids and their optimal charging

schedule can be formulated as an integer program (called SAP-IP), as follows:

Maximize
∑
i∈U

vi · [(
∑
t∈T

δtix
t
i)− (li − 1)yi] (6)

Subject to:∑
t∈T

xti ≤ li, ∀i ∈ U (7)

∑
i∈U

δtix
t
i ≤ Ct, ∀t ∈ T (8)

xti ≤ yi, ∀i ∈ U , ∀t ∈ T (9)

xti = {0, 1},∀i ∈ U , ∀t ∈ T (10)

yi = {0, 1},∀i ∈ U (11)

δti = {0, 1},∀i ∈ U , ∀t ∈ T (12)

The objective function is to maximize the sum of all N users valuations. Only the values of the users

who receive their complete charging requests are considered in the objective function. However,

their allocation might be completed over different intervals (with interruptions) as long as they

are within their requested time interval. Constraints (7) ensure that each user is serviced at most

the requested amount. Constraints (8) guarantee that the allocation does not exceed the available

capacity for any given time. Constraints (10) and (12) represent the integrality requirements for

the decision variables and indicator parameters.
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Once solved, SAP-IP finds the winning bids and their optimal charging schedule. Even though,

the utility provider selects the same sets of users as winners using SAP-IP, it can incorporate

different payment functions for pricing.

The utility provider can charge each winning user a price equal to her bid, meaning that, a

winning user i will be charged Πi = vi. Such a mechanism is called first price mechanism. In

this case, SAP-IP is a revenue maximization model since the objective is to maximize the total

payment of the winning users. This is an upper bound on the revenue that the utility provider

could extract from the users (Balcan et al., 2008). However, under such pricing, it is clear that

users do not have incentives to bid their true values. If they bid their true values, they would obtain

zero utility, Ui = 0. By bidding below their true values, they can potentially obtain positive utility.

Therefore, the users need to strategize on how to bid and win, and they need to study the market

and historical bids in order to lower their payments. As a result, by biding below their values, the

provider experiences revenue losses. The drawback of the first price mechanism is that it is not

strategy-proof, and the revenue of the provider is negatively impacted by users’ strategic behavior.

On the other hand, the utility provider can adopt a different payment function in order to not

put the burden of calculating and analyzing other users behaviors and bidding strategies on the

users. According to the Revenue Equivalence Principle from auction theory, if the provider employs

different mechanisms that select the same outcome (i.e., the same set of users as winners), these

mechanisms lead to the same revenue in expectation (Nisan, 2007). In our case, the provider uses

SAP-IP to determine the winning users and it charges them based on the VCG pricing scheme.

As a result, following the Revenue Equivalence Principle, VCG-SAP provides the same expected

revenue as the first price mechanism while guaranteeing strategyproofness. The charging prices are

determined based on the VCG pricing scheme that also employs SAP-IP as a subroutine.

The execution time of VCG-SAP becomes prohibitive for large instances of the SAP problem.

However, in an online setting, we do not have information about future bid requests or the capac-

ity fluctuations, and thus, we resort to designing fast online mechanisms providing approximate

solutions for the OSAP problem. Our goal is to design such online strategy-proof mechanisms that

solve the OSAP problem effectively. The VCG-SAP mechanism will be used in our experiments

purely as a benchmark for assessing the performance of the proposed online mechanisms.
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4 Strategy-proof Online Mechanisms

In this section, we propose strategy-proof mechanisms (called MOSAP) for the OSAP problem. The

goal of the mechanisms is to compute an efficient schedule even if β̂i 6= βi and calculate payments

that incentivize users to report their true requests. We start by defining explicitly the required

properties that our proposed mechanisms need to satisfy in order to guarantee strategy-proofness.

Definition 4 (Strategy-proof mechanism (Mu’Alem and Nisan, 2008)). A mechanism is strategy-

proof if it satisfies the following two properties:

i) Monotonicity: the scheduling function S must be monotone, and

ii) Critical payment: the payment function Π must be based on the critical payment.

We define monotonicity in terms of the following preference relation � on the set of requests.

A request β̂′i = (â′i, l̂
′
i, d̂
′
i, v̂
′
i) is more preferred (i.e., β̂′i � β̂i ) if â′i ≤ âi, l̂

′
i ≤ l̂i, d̂

′
i ≥ d̂i, and v̂′i ≥ v̂i

for user i. That means the request β̂′i is more preferred than β̂i if user i requests fewer charging

units, submits an earlier request, a later deadline, and a higher value. In our setting, for obvious

reasons, users have no incentive to report an earlier arrival (i.e., âi ≤ ai) or a later deadline (i.e.,

d̂i ≥ di) than their true arrival time and true deadline.

The monotonicity property indicates that any winning user who receives her requested charging

units by declaring a request β̂i will still be a winner if she requests a more preferred request. A user

is a winner if her charging request is accepted and scheduled within her specified time interval. In

the following, we describe the monotonicity property.

Definition 5 (Monotonicity). A scheduling function S is monotone if it selects user i with β̂i as

her declared request, then it also selects user i with a more preferred request β̂′i, i.e., β̂′i � β̂i.

In addition to a monotone scheduling function S, any strategy-proof mechanism has a payment

rule Π satisfying the critical payment property such that the payment of any user i, must be

independent of her request. In the following, we describe the critical payment property.

Definition 6 (Critical payment). Let S be a monotone scheduling function, then for every β̂i, there

exists a unique value vci , called critical payment, such that ∀β̂′i � (âi, l̂i, d̂i, v
c
i ), β̂

′
i is a winning

declaration, and ∀β̂′i ≺ (âi, l̂i, d̂i, v
c
i ) is a losing declaration. Πi = vci if user i wins, and Πi = 0,

otherwise.
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Algorithm 1 MOSAP-X(Event, X,Π)

1: t← Current time
2: Qt ← {β̂i|i ∈ U , i’s request has not completed yet}
3: Ht ← {β̂i|i ∈ U , i’s request can be completed at t}
4: if Qt = ∅ or Ct = 0 then
5: return
6: end if
7: Xt ← MOSAP-X-SCH(X, t,Qt, Ct)
8: X ← X ∪Xt

9: Π = Π ∪ {v̂i|xti = 1}
10: Π← MOSAP-X-PAY(t,Ht, Xt,Π, Ct)
11: return X,Π

In the following, we propose three different mechanisms for the OSAP problem. Since the three

mechanisms are similar in structure, we present them as variants of a generic mechanism, called

MOSAP-X, where X will be replaced with I, II and III to specify each of the three mechanisms.

We define our proposed MOSAP-X mechanism as follows:

Definition 7 (MOSAP-X mechanism). The MOSAP-X mechanism consists of the scheduling al-

gorithm MOSAP-X-SCH and the payment function MOSAP-X-PAY.

The mechanisms in MOSAP-X prioritize users with different metrics such that in each mech-

anism the selection of the winning users and their schedule and payment might be different than

those obtained by other mechanisms based on their given priority. MOSAP-I gives higher priority

to users with higher values. However, MOSAP-II gives higher priority to users with higher value

per unit of charge, while MOSAP-III determines the priority by taking into account both the value

and the partial allocation.

MOSAP-X is an event handler, that is, it is invoked when a new user request arrives or available

charging capacity changes. MOSAP-X finds the schedule of winning users by calling MOSAP-X-

SCH and their payments by calling MOSAP-X-PAY. MOSAP-X is given in Algorithm 1. Our

proposed mechanisms take as input an event, the current schedule set X, and the payment set Π.

MOSAP-X uses the following four variables defined as:

λti =
∑

âi≤τ<t x
τ
i ; allocated amount to user i before time t

Qt: the set of feasible requests of the users that have not been scheduled completely yet

(active requests). Formally, Qt ← {β̂i|i ∈ U , [t ≤ d̂i] ∧ [λti < l̂i] ∧ [l̂i − λti ≤ d̂i − t]}, where ∧

is the logical conjunctive operator.
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Algorithm 2 MOSAP-X-SCH(X, t,Qt, Ct)
1: Xt ← ∅
2: for all i|β̂i ∈ Qt do
3: λti =

∑
âi≤τ<t x

τ
i

4: fi = v̂i, for MOSAP-I-SCH; or
fi = v̂i

l̂i
, for MOSAP-II-SCH; or

fi =
(λt

i+1)v̂i

l̂i
, for MOSAP-III-SCH

5: end for
6: Sort all β̂i ∈ Qt in non-increasing order of fi
7: for all β̂i ∈ Qt in non-increasing order of fi do
8: if Ct > 0 then
9: Ct = Ct − 1

10: xti = 1
11: else
12: break;
13: end if
14: end for
15: if Ct = 0 then
16: for all β̂i ∈ Qt for which xt−1

i = 1 and xti = 0 do
17: Preempt user i’s request
18: end for
19: end if
20: Xt ← (xt0, . . . , x

t
N )

21: Output: Xt

Ht: the set of requests that can be completed at time t. Formally, Ht ← {β̂i|i ∈ U , [t ≤

d̂i] ∧ [λti < l̂i] ∧ [λti + 1 ≥ l̂i]}

Ct: the available charging capacity at time t

Considering Qt, if the mechanism finds a better request than a current allocated request, it will

preempt the allocated request with the intention of resuming its allocation at a later time. As a

result, all active requests are in set Qt.

In lines 1 to 3, MOSAP-X sets the current time to t and initializes Qt and Ht. Then, it proceeds

only if new resources and/or requests are available. MOSAP-X determines the scheduling by calling

MOSAP-X-SCH. The scheduling function MOSAP-X-SCH returns Xt, the set of users who would

receive their requested charging units at time t (line 7). The mechanism then updates the overall

scheduling set X using the newly determined set Xt (line 8). Then, the mechanism initializes the

payment of users in Xt by their submitted values (line 9). The mechanism updates the overall

payment set Π by calling the payment function MOSAP-X-PAY (line 10). Finally, the mechanism

returns the schedule and payment sets.
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MOSAP-X-SCH is a dynamic scheduling function that considers the current capacity of the

provider, and it finds the winning users in order to maximize the social welfare. MOSAP-X-SCH

does not have prior information about the dynamics of users’ arrivals, which is the case in online

settings. However, it considers the feasibility of a schedule with Qt based on the availability of

the EVs for charging services. Our proposed scheduling algorithm MOSAP-X-SCH is given in

Algorithm 2. We consider three algorithm variants for scheduling, MOSAP-I-SCH, MOSAP-II-

SCH, and MOSAP-III-SCH. We define a metric called the priority metric for each algorithm.

MOSAP-X-SCH algorithm allocates the charging capacity to users in decreasing order of their

priority metrics. We define the priority metrics of MOSAP-X-SCH as follows:

1) MOSAP-I-SCH: fi = v̂i; 2) MOSAP-II-SCH: fi = v̂i
l̂i

; and 3) MOSAP-III-SCH: fi =
(λti+1)v̂i

l̂i
.

The priority metric for MOSAP-I-SCH gives higher priority to users with higher values. MOSAP-

II-SCH considers the value per unit of charge as the priority metric. MOSAP-III-SCH gives higher

priority to the users who have already received a partial allocation of their charging requests.

MOSAP-X-SCH sorts all requests in non-increasing order of priority metrics, fi (line 6). Then

the algorithm schedules the units requested by the sorted users in Qt while resources last (lines 7-

14). The mechanism uses this ordering for scheduling since the provider is interested in users who

want to pay more. MOSAP-X-SCH tries to maximize the sum of the reported values of the users

who get their charging units. By allowing preemption, MOSAP-X-SCH allocates charging units to

users with higher priority while interrupting the allocation of users who are already allocated and

have lower priority than the selected requests at the current time. The lower-priority request is

suspended and is resumed as soon as possible (lines 15-19). Such a request is resumed when the

value of its priority metric compared to those of other active requests is high enough to be selected.

Since such a request has already received a part of the requested charging units, the mechanisms

only need to provide the remaining units of the request in order to complete the request and receive

the payment. Finally, MOSAP-X-SCH returns the set Xt of users who are scheduled at time t.

MOSAP-X-PAY finds the payment of each user by removing the user from the market and

finding another schedule excluding that user. The critical payment of that user is calculated based

on the bid of a user (i.e., user q) who wins the resources in the new schedule, but the user did not

win them in the original schedule. In MOSAP-X-PAY, q represents the user who did not win in

the current schedule, but could have won if user i had been excluded from the market. By doing
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Algorithm 3 MOSAP-X-PAY(t,Ht, Xt, Ct)

1: Wt ← {β̂i|i ∈ U , i’s request is allocated and it is active at t}
2: for all β̂i ∈ Ht ∪Wt do
3: λti =

∑
âi≤τ<t x

τ
i

4: fi = v̂i, for MOSAP-I-PAY; or
fi = v̂i

l̂i
, for MOSAP-II-PAY; or

fi =
(λt

i+1)v̂i

l̂i
, for MOSAP-III-PAY

5: end for
6: for all [[β̂i ∈ Ht] ∧ [xti = 1]] ∨ [β̂i ∈ Wt] in non-increasing order of fi do
7: q = −1;
8: X̄ ← MOSAP-X-SCH(t,Ht ∪Wt \ β̂i, Ct + 1)

9: for all β̂j |[x̄tj = 1] ∧ [xtj = 0] in non-increasing
order of fj , where fj < fi do

10: q = j;
11: break;
12: end for
13: if q ≥ 0 then
14: Πi ← min (Πi, fq), for MOSAP-I-PAY and MOSAP-III-PAY; or

Πi ← min (Πi, fq l̂i), for MOSAP-II-PAY
15: else
16: Πi ← r
17: end if
18: end for
19: for all β̂i|[λti < l̂i] ∧ [t > d̂i] do
20: Πi = 0
21: end for
22: Output: Π = (Π1, . . . ,ΠN )

so, MOSAP-X-PAY bills each user i the minimum amount that she must declare to receive her

request. Any user i’s bid lower than this amount (i.e., vci ) would have led to the new schedule and

selection of user q instead of user i while user i’s request would have not been entertained.

The payment function MOSAP-X-PAY is given in Algorithm 3. This function calculates the

critical payment of each user i if her EV is scheduled for charging at t. The critical payment of

user i is the minimum value that she must report to receive the charging units at time t. MOSAP-

X-PAY uses the set Ht of requests of users who are allocated or not allocated at t. This set does

not include requests of users who are scheduled completely before t. MOSAP-X-PAY finds the

set Wt containing the users who have been scheduled to receive their requests before t but their

deadlines have not passed yet. Formally, Wt ← {β̂i|i ∈ U , [t ≤ d̂i] ∧ [λti = l̂i]}. MOSAP-X-PAY

calculates fi for all users in Ht andWt (lines 2-5). Then, MOSAP-X-PAY determines the payment

for all users that have been scheduled at time t (i.e., xti = 1) and will obtain their full requested

charge by t. In addition, it updates the payment for all users that have been scheduled before
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time t who could have been scheduled at time t (i.e., users in Wt). By doing so, MOSAP-X-PAY

ensures that the critical payments of users are calculated. MOSAP-X-PAY calls the scheduling

algorithm, MOSAP-X-SCH, without considering the participation of user i and with a capacity

of Ct + 1 (i.e., the capacity before scheduling user i) (line 8). MOSAP-X-SCH returns the set of

users X̄ who would receive their requested charging at time t without user i’s participation. Then,

MOSAP-X-PAY tries to find a user j who had not been scheduled at t when user i participated

(i.e., xtj = 0), and would have been scheduled at t if user i did not participate (i.e., x̄tj = 1)

(line 9). If MOSAP-X-PAY finds such a user, it stores her index q (line 10), and it determines

the payment of user i based on the priority metric of user q (line 14); otherwise user i pays a

reserve price r ≥ 0 (line 16). In other words, the payment of user i is calculated based on the

requests of losing users (i.e., that of user q), who would win if user i would not participate. This is

the minimum value that needs to be reported by user i to obtain her request. Since the provider

wants to guarantee a minimum revenue from each unit sold, the mechanism includes a reserve

price. If this minimum price is set the same for all units and at all time points, this would not

affect the properties of our proposed mechanisms. MOSAP-X-PAY keeps updating Π, and formally

it calculates Πi = arg minΠt
i≥0[β̂′i = (âi, l̂i, d̂i,Π

t
i) ∈ Si(β̂′i, β̂−i)]. In addition, users who were not

allocated any charging units pay zero (lines 19-21). Finally, the set Π is returned to the mechanism.

Under MOSAP-X, some of the users may not receive all their requested charging units. Even

though these units are a few, MOSAP-X can adjust the allocation under well specified conditions.

There are two possible ways to handle these partial allocations: burning and on-departure discharge.

In burning, units are simply left allocated. For those allocated units, the provider does not receive

any payment. In on-departure discharge, on departure of the user’s EV, any allocated units are

discharged from the battery. The model with on-departure discharge is more efficient in terms

of resource utilization from the power provider’s perspective, but it is not realistic to expect that

we can discharge the partially allocated units from a car’s battery on its departure. As a result,

MOSAP-X uses burning in the case of partial allocation. The concept of burning has been used in

the design of charging mechanisms in the literature (e.g., Robu et al. (2013)), and it is proven to

be effective in terms of strategy-proofness of the mechanisms.

In addition, preemption allows our mechanisms to be flexible on when the charging takes place.

Power providers can utilize such a feature of our mechanisms to shift some charging from peak grid
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β̂i âi l̂i d̂i v̂i
EV1 β̂1 0 3 6 5

EV2 β̂2 0 4 7 4

EV3 β̂3 1 3 6 7

EV4 β̂4 3 6 10 10

EV5 β̂5 3 4 10 8

Table 1: User bids

MOSAP-I fi MOSAP-II fi MOSAP-III fi
t = 0 t = 1 t = 2 t = 3

EV1 5 1.6 1.6 3.3 5.0
EV2 4 1.0 1.0 1.0 1.0
EV3 7 2.3 2.3 2.3 2.3
EV4 10 1.6 1.6
EV5 8 2.0 2.0

S {β̂4} {β̂3, β̂5} {β̂1, β̂3, β̂5}
W 10 7+8 = 15 5+7+8=20

Table 2: Execution of MOSAP-X

4 6 8 103 5 7 90 21

EV5

EV3

EV1

EV2

EV4

(a)

4 6 8 103 5 7 90 21

EV5

EV3

EV1

EV2

EV4

(b)

Figure 1: (a) MOSAP-I-SCH; (b) MOSAP-II-SCH.

demand hours to reduce stress on the grid during peak times.

Example 1. We show the execution of the mechanism by considering a setting with one unit

of capacity available at each time slot and five users, denoted by EVi, i = 1, . . . , 5, as shown in

Table 1. For example, user 1’s bid β̂1 contains the following information: her request is submitted at

time 0, with a deadline 6; she requests 3 units of charging with a bidding price 5. Table 2 show the

execution of all three MOSAP-X-SCH mechanisms. In each column, the value of priority metrics,

the set of winning users S, and the obtained social welfare W are shown. For example, column f Ii

shows the priority metrics in MOSAP-I-SCH, the winning request is β̂4, and the obtained social

welfare is 10. Figs 1-2 show the resulting schedules of the users obtained by the three mechanisms.

Using MOSAP-I-SCH, EV1 is selected at time 0, and then interrupted at time 1, when EV3 is

selected. At time 3, EV4 is selected because of its highest priority, thus, EV3 is interrupted. None

of other users has higher priority than EV4 until her EV receives all the requested charging units.

At time 9, none of the users are active to receive a charging unit. This scheduling process by

MOSAP-I-SCH is shown in Fig. 1.
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Figure 2: MOSAP-III-SCH

5 Properties of MOSAP

In this section, we investigate the properties of MOSAP-X. We first discuss the time complexity

of the mechanisms, and then we show that the mechanisms are individually rational (i.e., truthful

users will never incur a loss). We prove several lemmas in order to prove the strategy-proofness of

MOSAP-X. At the end, we also present an example to analyze the effect of untruthful reporting

on the users and the mechanisms.

The time complexity of MOSAP-X-SCH is O(N logN). This is because sorting the requests

requires O(N logN), while checking the feasibility of the schedule for each user requires O(1). The

time complexity of MOSAP-X-PAY is O(N2 logN) since it calls MOSAP-X-SCH that requires

O(N logN) for each winning user. As a result, the time complexity of MOSAP-X mechanism is

polynomial in the number of users.

Theorem 1. MOSAP-X mechanisms are individually rational.

Proof. We consider user i as a winning user. We need to prove that if user i reports her true

request then her utility is non-negative. This can be easily seen from the structure of the MOSAP-

X mechanisms. In line 14 of Algorithm 3, the payment for user i is set to Πi = fq for MOSAP-I-PAY

and MOSAP-III-PAY, and Πi = fqli for MOSAP-II-PAY, where user q is the user who would have

won if user i did not participate. Since user q appears after user i in the decreasing order of the

priority metric in each of the selected mechanism, we have, fq ≤ fi, thus, for each payment function,

we have:

MOSAP-I-PAY: Πi ≤ vi because vq ≤ vi;

MOSAP-II-PAY: Since fq ≤ fi, we have fqli ≤ fili. Therefore, Πi ≤ fili. In addition, we have

fi = vi
li

. By substituting fi, we have Πi ≤ vi
li
li, and thus Πi ≤ vi;

MOSAP-III-PAY: In the last iteration of finding the priority metric to determine user i’s payment,
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we have λti = li − 1. In addition, fi =
(λti+1)vi

li
. By replacing λti, we have fi = vi. In addition,

fq ≤ fi, thus we have vq ≤ vi. As a result, Πi ≤ vi.

MOSAP-X-PAY always computes a payment Πi ≤ vi. As a result, the utility of user i (i.e.,

Ui(βi) = vi −Πi ≥ 0) is non-negative, and she never incurs a loss. In addition, a truthful user who

does not win, is not incurring a loss since she obtains 0 utility. This proves the individual-rationality

of MOSAP-X mechanisms.

According to Definition 4, to obtain a strategy-proof mechanism, the scheduling function must

be monotone, and the payment function must be based on the critical payment. We now prove

the following lemmas and use them to prove that MOSAP-X mechanisms are strategy-proof. In

order to prove that the mechanisms are strategy-proof, we need to prove that MOSAP-X-SCH is

monotone, and MOSAP-X-PAY is based on the critical payment.

Lemma 1. Let Γi be the space of possible requests user i may report to the MOSAP-X mechanisms.

The scheduling algorithm MOSAP-X-SCH is monotone, for each β̂′i, β̂i ∈ Γi, β̂
′
i � β̂i, if user i wins

by S(β̂i, β̂−i) then she wins by S(β̂′i, β̂−i). In other words, if user i wins by bidding β̂i, then she

will also win if she reports a more preferable bid β̂′i.

Proof. Request β̂′i is more preferred than β̂i if user i requests fewer charging units, submits an

earlier request, a later deadline, and a higher value. It is only beneficial for the user to misreport

âi ≥ ai and d̂i ≤ di. These cases of misreports do not represent more preferable bids, and thus, we

will focus on misreports of vi and li.

If user i reports v̂′i ≥ v̂i, her priority metric increases in all the MOSAP-X mechanisms (i.e.,

f ′i ≥ fi). As a result, bid β̂′i will be selected as a winner by the MOSAP-X mechanisms if β̂i is also

selected as a winner.

Similarly, if a user is selected as a winner when reporting l̂i, she will also be selected when

reporting l̂′i ≤ l̂i. This is due to the fact that her priority metric either increases in case of MOSAP-

II-SCH (i.e., f ′i ≥ fi), or remains the same in the cases of MOSAP-I-SCH and MOSAP-III-SCH (i.e.,

f ′i = fi). In either cases, user i will be selected as a winner by the MOSAP-X mechanisms.

Lemma 2. The payment function implemented by MOSAP-X-PAY is based on the critical payment.
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Proof. We need to show that Πi determined by MOSAP-X-PAY is the minimum value that user i

must report to get the complete charging service. User i’s payment is Πi = fq for MOSAP-I-PAY

and MOSAP-III-PAY, and Πi = fq l̂i for MOSAP-II-PAY (line 14), where q is the index of user q

appearing after user i based on the non-increasing order of the priority metrics (line 4), and she

would have won if user i did not participate.

If user i submits a lower value v̂′i < Πi, user i’s new priority metrics are decreased. We consider

the following cases:

MOSAP-I-PAY: f ′i = v̂′i. Since v̂′i < Πi and Πi = fq, we have f ′i < fq

MOSAP-II-PAY: f ′i =
v̂′i
l̂i

. Since v̂′i < Πi, f
′
i <

Πi

l̂i
. Since Πi = fq l̂i, we have f ′i <

fq ·l̂i
l̂i

. Thus, f ′i < fq

MOSAP-III-PAY: f ′i = v̂′i. Since v̂′i < Πi and Πi = fq, we have f ′i < fq

As a result, we have f ′i < fq in all cases. This means that by submitting this lower bid, user i

will appear after user q, who did not win. MOSAP-X-PAY will select user q instead of user i.

As a result, if user i reports a bid below the minimum value (i.e., Πi), she loses; otherwise, she

wins. This unique value is the critical payment for user i. This, together with the fact that losing

users pay zero, prove that the payment function implemented by MOSAP-X-PAY is the critical

payment.

Theorem 2. MOSAP-X mechanisms are strategy-proof.

Proof. Lemma 1 proves that the MOSAP-X-SCH is monotone. Lemma 2 proves that the MOSAP-

X-PAY implements the critical payment. It follows from Parkes (2007) that MOSAP-X are strategy-

proof.

MOSAP-X-SCH is monotone since when a user submits a more preferred bid, her chances of

winning do not decrease. For our monotone scheduling function, MOSAP-X-PAY satisfies the

critical payment such that for every user, there is a critical value in which the user switches from

winning to losing. In addition, MOSAP-X-PAY determines the price of each user independent

of her bid. In doing so, the mechanism excludes that user and calculates the critical payment.

Therefore, strategic behavior of that user cannot affect the outcome of the mechanism.

We show that our proposed mechanisms are robust against manipulation by users through

the following example. To analyze the effect of untruthful reporting on the utility of the users

participating in the MOSAP-II mechanism, we consider three users EV1, EV2 and EV3, whose true
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βi âi l̂i d̂i v̂i
EV1 β1 0 3 6 5
EV2 β2 1 3 6 6
EV3 β3 2 2 4 4

Table 3: Users’ true requests

4 63 50 21

EV3

EV1

EV2

Figure 3: Example MOSAP-II-SCH

Table 4: Different scenarios for user EV3’s request declaration

Case β̂3 Scenario Status Payment Utility

I < 2, 2, 4, 4 > v̂3 = v3 W 3.3 0.7
II < 2, 2, 4, 5 > v̂3 > v3 W 3.3 0.7
III < 2, 2, 4, 3.5 > v̂3 < v3 W 3.3 0.7
IV < 2, 2, 4, 3 > v̂3 < v3 L 0 0

V < 2, 3, 4, 4 > l̂3 > l3 L 0 0

VI < 2, 1, 4, 4 > l̂3 < l3 W 3.3 0.7
VII < 3, 2, 4, 4 > â3 > a3 L 0 0

VIII < 2, 2, 3, 4 > d̂3 < d3 L 0 0

requests are shown in Table 3. We consider the electricity capacity of C = 2 units. MOSAP-II-

SCH schedules these users as shown in Fig 3, where all users declare their true requests. User EV2

and EV3 are selected as winners, and the payments of the winning users based on MOSAP-II-PAY

are 5 and 3.3, respectively.

We assume that user EV3 reports a different request, β̂3, from her true request β3 =< 2, 2, 4, 4 >.

As shown in Table 4, we analyze different scenarios, where user EV3 submits different requests. In

addition, we present the payment and utility of the user for all the cases.

In case I, user EV3 submits her true request, that is, β3 = β̂3. In this case, user EV3 wins, and

receives the requested charging units. The mechanism charges her $3.3, and her utility is 4-3.3=0.7.

In case II, user EV3 submits a request with a higher bid v̂3 = 5. In this case, user EV3 is still a

winner and the mechanism determines the same payment for her as in case I, leading to a utility

of 0.7. In case III, she submits a request with a lower bid v̂3 = 3.5, which is not less than the price

determined by our mechanism (i.e., $3.3). Thus, user EV3 is still winning, and the mechanism

charges her the same amount as in case I. However, if user EV3 submits a request with a bid below

the critical payment, she will not obtain her requested charging units, leading to zero utility. This

is shown in case IV, where user EV3 submits a bid v̂3 = 3. We now investigate scenarios in which

user EV3 requests a different amount of charging units than her true request. In case V, she requests
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more units of charging, l̂3 = 3, instead of 2 units in the case of her true request, case I. In this case,

user EV3 is not selected, leading to zero utility. In case VI, the user requests fewer charging units.

In this case, user EV3 is still a winner and the mechanism determines the same payment for her as

in case I. This is due to the fact that the user declared a more preferable request than her actual

request. The user does not gain more utility by such declarations. In case VII, the user submits her

request with a later arrival, which makes the allocation unfeasible. In case VIII, user EV3 submits

her request with an earlier deadline, which makes the allocation unfeasible leading to zero utility

for the user. We showed that if a user submits a request untruthfully, she can not increase her

utility.

6 Experimental Results

We perform extensive experiments in order to investigate the properties of the proposed mecha-

nisms, MOSAP-X. We compare the performance of MOSAP-X with that of VCG-SAP and FIXED,

where VCG-SAP solves optimally the offline version of the problem, and FIXED is a fixed-price

mechanism. In the FIXED mechanism, each unit of charging is allocated to a user chosen ran-

domly. If a user receives her total requested units in the FIXED mechanism, she pays the reserve

price. We rely on the VCG-SAP and FIXED results as benchmarks for our experiments. All al-

gorithms are implemented in C++. SAP-IP is implemented using APIs provided by IBM ILOG

CPLEX Optimization Studio Multiplatform Multilingual eAssembly. In this section, we describe

the experimental setup and analyze the experimental results.

6.1 Experimental Setup

We design the experimental setup based on publicly available data on an EV in production (Tesla

Model S, 2015). Following Robu et al. (2013), we consider a general synthetic setting, in which we

generate users and their requests from simple distributions. The main reason for this setup is to

generate results that are easily reproducible. Our experiments run with a variable number of EV

charging requests over a 24-hour period. For each user i, we sample the EV arrival time ai from the

discrete uniform distribution on {0, 1, 2, . . . , 23} and the EV departure time from {ai, ai+1, . . . , 23}.

We assume that electricity is allocated in hourly time slots, where each unit corresponds to 10 kWh
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which is the approximate energy obtained through a Tesla Model S Single Charger for an hour of

charging (Teslamotors, 2015). We sample the number of required units li uniformly at random from

{1, 2, . . . , 5}, where 5 units of 10 kWh represent the maximum of 50 kWh charging requests. This

amount is about 70% of the Model S maximum battery capacity (i.e., 70 kWh), which adds 150 miles

to the range of the EV. The reason we choose upto 70% of the capacity (50 kWh out of 70 kWh) as

the maximum amount of charging requests is that EV drivers participating in our proposed market

are less sensitive to not receiving their requests than the EV drivers in the fixed price market

who may need charging services immediately. Finally, we generate vi from f(x) = 10e−x, where

e−x is an exponential distribution with rate 1. We note that one hour to five hours of charging

in a fixed price market costs between $1.2 and $6 based on the US national average of $0.12 per

kWh. However, in an auction setting, users bid in a wider range depending on their preferences.

In our setting, a few users bid higher than the fixed price market to ensure receiving their charging

requests (and without preemption) while they will be charged less than their bids based on the

market demand. Most users, however, bid bellow the fixed price to reduce their charging cost. In

addition, we consider 0.5 as the reserve price to guarantee a minimum profit for the utility provider.

6.2 Analysis of Results

We analyze three sets of experiments: small-scale, large-scale, and sensitivity analysis on capacity.

We compare the performance of MOSAP-X, VCG-SAP, and FIXED for different number of users

and amount of capacity. In the small-scale and large-scale setups, we fix the amount of available

capacity while varying the number of arriving users. In the sensitivity analysis, we fix the number

of users while we analyze effects of changes in the amount of available capacity on the performance

of both mechanisms. We will show that VCG-SAP cannot find the optimal solution in feasible time

for all instances of the SAP problem in the large-scale and sensitivity analysis cases. In order to

have a comparison for all instances of the SAP problem, we present the results of the small-scale

experiments, where VCG-SAP is able to find the optimal solution for all instances. We record the

welfare, the revenue, the execution time, the total number of served users, and the total allocated

units with payment for each mechanism.
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Figure 4: Small-scale experiments with 1 unit capacity: (a) Welfare; (b) Revenue.

6.2.1 Small-scale experiments

We analyze the performance of MOSAP-X, VCG-SAP, and FIXED, where the available capacity

is 1 unit of 10 kWh. In this case, the number of users that arrive every hour is between 2 and 10.

Fig. 4a shows the welfare obtained by the mechanisms. These results show that MOSAP-II and

MOSAP-III obtain a welfare very close to that obtained by the optimal VCG-SAP mechanism.

Such results are very promising given the fact that MOSAP-X is an online mechanism which does

not have any information about future demand. However, VCG-SAP is an offline mechanism and

has all the information available a priori. However, the welfare obtained by MOSAP-I is not close

to the optimal results because it does not consider the amount of requested charging units by users

in its scheduling function. As expected, since FIXED randomly allocates the unit to users, its

obtained welfare is far from the optimal results. Each obtained welfare by the mechanisms is an

upper bound on the revenue of the utility provider in that case. This is due to the fact that if the

provider employs the first price mechanism (Πi = vi for winning user i), the welfare is equivalent to

the revenue of the provider. For example, the maximum revenue that MOSAP-I can obtain with

two users per hour is $11.12.

Fig. 4b shows the revenue achieved by the provider when using the mechanisms. Note that the

VCG-SAP is optimal in terms of welfare and not the revenue. The results show that MOSAP-

II obtains the highest revenue among all the mechanisms. By employing our proposed payment

functions, the mechanisms obtain high revenue for the provider. Note that if the provider employs
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Figure 5: Small-scale experiments with 1 unit capacity: (a) Execution time; (b) Total served users.
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Figure 6: Small-scale experiments with 1 unit capacity: Total allocated units with payment

the first price mechanism, the maximum revenue shown in Fig. 4a cannot be guaranteed. This is

due to the fact that the users would not bid their true values and by lowering their bids, the revenue

of the provider would decrease. As discussed in Section 3, the expected revenue in our proposed

mechanisms and their respective first price versions is the same, while our proposed mechanisms

are strategy-proof.

Fig. 5a shows the execution times of the mechanisms on a logarithmic scale. As we expected,

the execution time of MOSAP-X and FIXED are very small. This is due to the fact that the time

complexity of MOSAP-X and FIXED is polynomial in the size of input. The results show that

MOSAP-X is suitable for providing charging services in realtime. Note that small execution time

of online charging mechanisms is a must have property in such settings. However, the execution

time of VCG-SAP, is more than five orders of magnitude greater than that of MOSAP-X.
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Figure 7: Large-scale experiments: (a) Welfare; (b) Revenue.
(*VCG-SAP was not able to determine the allocation for the number of users higher than 100 in feasible

time, and thus, there are no bars in the plots for the remaining cases)

Fig. 5b shows the average number of served users for the mechanisms. These users are the ones

who have their requested charging units fully scheduled. MOSAP-II, MOSAP-III, and VCG-SAP

serve more users than MOSAP-I and FIXED. This is due to the fact that the solution determined

by MOSAP-II and MOSAP-III are closer to the optimal solution (as it is shown in Fig. 4a). Note

that the requested amount of charging by a user can be more than 1 unit.

Fig. 6 shows total allocated units with payment obtained by the mechanisms. The results show

that VCG-SAP allocates almost all the available units during the 24 hours to users who receive

their entire requests. MOSAP-X is also capable of allocating the entire requests of users close to

that of optimal solution. The remaining units are allocated to some users who do not receive their

entire requests due to preemption. However, the results obtained by FIXED are far from that of

optimal despite the fact that all the units are allocated to users while these users are not necessarily

receiving their entire requests.

6.2.2 Large-scale experiments

We analyze the performance of MOSAP-X, VCG-SAP, and FIXED, where the available capacity

is 50 units of 10 kWh. In this case, the number of users that arrive every hour is between 50 and

250. For the instance of the problem with more than 100 users in every hour, VCG-SAP was not

able to find the optimal solution even after one hour, which is the entire time interval. This is due

to fact that the execution time of VCG-SAP becomes prohibitive for large instances of the problem.
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Figure 8: Large-scale experiments: (a) Execution time; (b) Total served users.
(*see Fig.7 note on VCG-SAP)

Note that in this online setting, the mechanisms are expected to respond in realtime. As a result,

we did not capture the solutions obtained after one hour of execution of the mechanisms.

Fig. 7a shows the welfare obtained by the mechanisms. The results show that MOSAP-II and

MOSAP-III obtain a welfare very close to the optimal (obtained by VCG-SAP) in cases with 50

and 100 users. For the remaining cases, MOSAP-II and MOSAP-III obtain the highest welfare

among all the mechanisms. Similar to the welfare obtained by the mechanisms in the small-scale

experiments presented in Fig 4a, MOSAP-II and MOSAP-III obtain higher welfare than those

obtained by MOSAP-I and FIXED mechanisms. As in the case of the small-scale experiments, the

welfare obtained by MOSAP-I is not close to the optimal results because it does not consider the

amount of requested charging units by users in its scheduling function. FIXED also obtains welfare

far from the other mechanisms. Fig. 7b shows the revenue obtained by the provider when using

the mechanisms. Note that the VCG-SAP is optimal in terms of welfare and not the revenue. The

results show that MOSAP-II obtains the highest revenue among all the mechanisms in most cases.

These results are in agreement with the results presented in Fig 4b.

Fig. 8a shows the execution times of the mechanisms on a logarithmic scale. The execution time

of MOSAP-X and FIXED are very small, in the order of milliseconds. However, the execution time

of VCG-SAP, is more than five orders of magnitude greater than that of MOSAP-X in the first

two cases. A comparison of the execution time of VCG-SAP between small-scale and large-scale

experiments shows that the execution time of VCG-SAP grows exponentially when the available
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Figure 9: Large-scale experiments: Total allocated units with payment
(*see Fig.7 note on VCG-SAP)

charging capacity and the number of users increase. The fact that the execution time of MOSAP-X

even for large-scale experiments is in terms of milliseconds make it suitable to be incorporated in

online charging settings. Fig. 8b shows the average number of served users whose entire requests

are scheduled by the mechanisms. MOSAP-II, MOSAP-III, and VCG-SAP serve more users than

MOSAP-I and FIXED. MOSAP-I selects the users only based on their values with no consideration

for the requested amount of charging units. This prevents MOSAP-I to serve a higher number of

users than MOSAP-II and MOSAP-III, given the limited amount of charging capacity.

Fig. 9 shows total allocated units with payment obtained by the mechanisms. These results

show that VCG-SAP allocates almost all the available units during the 24 hours to users who

receive their entire requests. MOSAP-X is also capable of allocating the entire requests of users

close to that of optimal solution. The remaining units are allocated to some users who do not

receive their entire requests due to preemption. However, the results obtained by FIXED are far

from the optimal despite the fact that all the units are allocated to users while these users are not

necessarily receiving their entire requests.

From the results of these experiments we can conclude that MOSAP-II obtains on average

higher revenue than the other mechanisms, while at the same time finds solutions close to the

optimal solutions obtained by VCG-SAP. MOSAP-X finds the charging schedule and payment of

users much faster than VCG-SAP. From the results of these experiments we can conclude that

MOSAP-X is very suitable for utility providers, since it allows them to make decisions in real-time.
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Figure 10: Sensitivity analysis of available capacity: (a) Welfare; (b) Revenue.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

20 40 60 80

E
x
e

c
u

ti
o

n
 t

im
e

 (
S

e
c
o

n
d

s
)

Capacity

MOSAP-I
MOSAP-II
MOSAP-III

FIXED
VCG-SAP

(a)

 0

 200

 400

 600

 800

 1000

20 40 60 80

U
s
e

rs
 s

e
rv

e
d

 i
n

 2
4

 h
o

u
rs

Capacity

MOSAP-I
MOSAP-II
MOSAP-III

FIXED
VCG-SAP

(b)

Figure 11: Sensitivity analysis of available capacity: (a) Execution time; (b) Total served users.

6.2.3 Sensitivity analysis on capacity

To show the effects of change in capacity on the performance of MOSAP-X, we perform sensitivity

analysis with respect to capacity. For this set of experiments, the number of users that arrive

every hour is 100, while the capacity per hour is varied between 20 and 80 units. In this setting,

VCG-SAP could not find the optimal solution in one hour when the capacity is 80. As a result,

there is no bar for VCG-SAP in Fig. 10-Fig. 12 for the case of 80 units.

Fig. 10a shows the welfare obtained by the mechanisms. The results show that MOSAP-II

and MOSAP-III obtain a welfare very close to optimal (obtained by VCG-SAP). By increasing the

capacity, the obtained welfare by all the mechanisms increases since more users can be served.

Fig. 10b shows the revenue obtained by the provider, where MOSAP-II obtains the highest
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revenue among all the mechanisms. By increasing the capacity from 20 to 60, the revenue obtained

by the provider increases for all the mechanisms. However, when the capacity is 80 units, we do

not observe such increase in the revenue. This is due to the fact that when the supply is high,

and the mechanisms may be able to fulfill more requests, the price of charging units can decrease

leading to a lower revenue.

Fig. 11a shows the execution times of the mechanisms on a logarithmic scale. The execution time

of MOSAP-X and FIXED are very small. The execution time of VCG-SAP does not necessarily

increase with the increase in capacity since finding optimal solutions for the problem instances

with lower capacity may need more time. Fig. 11b shows the average number of served users whose

entire requests are scheduled by the mechanisms. The results show that the number of served

users increases by all the mechanisms with the increase in capacity. Fig. 12 shows total allocated

units with payment obtained by the mechanisms. These results show that MOSAP-X is capable of

allocating the entire requests of users close to that of optimal solution.

In real world settings, both the capacity of the utility provider and the arrival rate of charging

requests can vary over time. We design our experiments to analyze both of these scenarios. In

the small-scale and large-scale experiments, the number of requests changes while we choose a

fixed amount of capacity. We also perform a sensitivity analysis on capacity while the request

arrival rate is fixed. From all experiments, we conclude that MOSAP-X is capable of providing

online scheduling and pricing services in real world settings. These results show that, MOSAP-X

also provides these services obtaining high revenue, close to optimal welfare, small execution time,

while at the same time, users do not need to strategize to interact with the mechanism.
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7 Conclusion

The dynamics of charging requests and the fact that utility providers need to consider load balancing

necessitates designing preemption-aware online mechanisms for EV charging. In this paper, we

proposed a framework for EV charging considering the incentives of both utility providers and EV

drivers. Our proposed framework brings about a win-win situation in which EV drivers can receive

their charging requests at lower prices, and utility providers can sell their unused capacity while

considering their load balancing objectives. We introduced the problem of online scheduling and

pricing for EV charging, and designed a family of online mechanisms, MOSAP-X. We proved that

our proposed mechanisms are strategy-proof, where truthful reporting is a dominant strategy for

users. We performed extensive experiments that showed that the proposed mechanisms are not only

capable of finding close to optimal solutions, but are also very fast and obtain high revenue. The

promising results make MOSAP-X suitable for scheduling and pricing EV charging in real-time.

For future work, we plan to design and investigate new online mechanisms in presence of multiple

utility providers.
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