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Abstract—One of the benefits of cloud computing is that
a cloud provider can dynamically scale-up its resource ca-
pabilities by forming a cloud federation with other cloud
providers. Forming cloud federations requires taking the data
privacy and security concerns into account, which is critical in
satisfying the Service Level Agreements (SLAs). The nature of
privacy and security challenges in clouds requires that cloud
providers design data protection mechanisms that work to-
gether with their resource management systems. In this paper,
we consider the privacy requirements when outsourcing data
and computation within a federation of clouds, and propose
a framework for minimizing the cost of outsourcing while
considering two key data protection restrictions, the trust and
disclosure restrictions. We model these restrictions as conflict
graphs, and formulate the problem as an integer program. In
the absence of computationally tractable optimal algorithms for
solving this problem, we design a fast heuristic algorithm. We
analyze the performance of our proposed algorithm through
extensive experiments.

Keywords-data protection; federation formation; virtual ma-
chine placement; cloud computing.

I. INTRODUCTION

dgr osu}@wayne. edu

One of the major challenges is that a federation formation
mechanism needs to address the data protection concerns
that arise from outsourcing computations [2]. A key aspect
of cloud federations, however, is that their infrastruetis
shared among cloud providers and it is off the premises of
a single cloud provider. Therefore, there exists a significa
threat to data privacy and security associated with remote
storage and processing of data.

In this paper, we consider the privacy requirements when
outsourcing data and computation within a federation of
clouds. We design a data protection framework for cloud
federations that minimizes the cost of outsourcing. The
benefits of employing our framework on a cloud federation
are threefold. First, it helps align the cloud services whit&
users’ concerns regarding their data protection. Secdnd, i
reduces the cost of upgrading the system software to support
future data protection needs. Third, it avoids future casté
penalties resulting from leakage of sensitive data.

Virtualization is a major breakthrough enabling cloud
providers to abstract the physical infrastructure, and to

In recent years, many companies have been migratingide the complexity of underlying resources. On the other

or building their business into clouds. One of the majorhand, the ever-growing demand for cloud computing services
concerns for such companies and potential individual userplaces the virtual machine (VM) management at the heart of
in adopting cloud services is their data protection. Treeef cloud providers decision making process. The cloud pravide
widespread adoption of cloud services depends on severafeates a pool of virtualized resources which are offered
technological challenges such as guaranteeing data privad¢o clients as VM instances. When the demand exceeds the
and security. Given the importance of data privacy, cus<apacity of available resources, the cloud provider catesca
tomers’ fear of sensitive data leakage should be the primaryp by forming a cloud federation with other cloud providers,
concern when providing cloud services. and flexibly mapping and moving VMs (using VM migra-
Privacy regulations such as the Fair Information Prin-tion technologies [3]) to the other cloud providers. In this
ciples [1] are applicable to cloud services. In addition,study, we focus on data protection when the computation is
users project their expectations of confidentiality andiedn outsourced to other cloud providers within the federation
in the Service Level Agreements (SLAs). However, cloudvia such VM migrations, and propose a framework to
providers are accountable for meeting the privacy expecminimize the total cost of outsourcing while consideringptw
tations of the users, and cloud providers should limit therestrictions, as follows. First, there are several linmtasg for
access to individuals’ confidential data and to companiesa cloud provider in assigning VMs to other cloud providers.
commercially sensitive data. Such limitations could be due to trust and reliability issue
One of the benefits of clouds is the possibility of dy- or due to the geographical location of the other cloud
namically enhancing their resource capabilities by fognin provider. The location of a cloud provider can arise privacy
federations with other cloud providers in order to rapidly and security issues since transferring a VM over to specific
scale-up when required. However, forming cloud federation regions (e.g., crossing national boundaries), raisesl| lega
presents a host of new challenges resulting from the currerdoncerns. Therefore, we consider such restrictions, ctalle
lack of efficient cloud federation formation mechanisms.trust restrictions during the VM assignment and migration.



The trust restrictions specify the VMs that should not beregulate capacity sharing in a cloud federation, where each
assigned to specific cloud providers. Second, if severgbrovider aims at maximizing its profit. Bruneo [10] proposed
VMs are co-located on the same cloud provider they carmperformance evaluation techniques based on stochastic re-
reveal sensitive information. However, the user or the @¢lou ward nets for federated clouds to predict and quantify the
customer requires through agreements that such informatiocost-benefit of a strategy portfolio and the corresponding
be accessible only to the main cloud provider and not tqquality of service (QoS) experienced by users. None of
others. The cloud provider is accountable for protectingthe above mentioned studies considered the data protection
such information, and revealing it is against the agreementonstraints in a federation of clouds. VM allocation in asu
Therefore, we consider such restrictions on co-locatingsVM has been studied extensively. Bin et al. [11] proposed a
called disclosure restrictionsThese disclosure restrictions, VM placement approach considering multiple data privacy
specify which VMs can never be co-located on the sameonstraints without considering the cost of outsourcing.
cloud provider when outsourcing the cloud services. Thidn our previous studies [12], [13], we proposed truthful
represents another level of data protection (after theypacr mechanisms for VM allocation in clouds such that their
tion level) which subsequently reduces the need to encryptrofit is maximized and the resources are utilized efficientl
all data. Although these studies considered the cost when allocating
o the VM, they did not consider the data protection constsaint
A. Our Contribution Existing approaches to preserve privacy of stored dat-set
We propose a framework for data protection in a federyin clouds are mainly based on encryption and anonymiza-
ation of clouds that considers the data privacy and securityion. Data anonymization refers to hiding the privacy-
restrictions while minimizing the cost of outsourcing the sensitive information such as identities. Zhou et al. [14]
computation to the cloud service providers that are parproposed a framework called Prometheus, that automaticall
of the federation. We model the two key data privacyseparates sensitive data from nonsensitive data independe
restrictions in cloud federations as two conflict graphs on of the specific applications. They proved that Prometheus
graph representing the conflicts between VMs and cloudjuarantees the privacy-preserving feature. Dou et al. [15]
providers, while the other, representing the conflicts agnon proposed a privacy-aware cross-cloud service composition
VMs. We then formulate the data protection problem inmethod that protects the privacy such that a cloud is
cloud federations as an integer program. In the absence @iot required to unveil all of its transaction records. Their
computationally tractable optimal algorithms for solvitigs ~~ method uses history records associated with a service'’s
problem, we design a fast heuristic algorithm. Our proposegbast transactions. Zhang et al. [16] proposed a method for
algorithm incorporates a novel VM placement strategy inprotecting the data privacy in hybrid clouds, called Sedic.
order to find close to optimal solutions, minimizing the Sedic automatically partitions a MapReduce computing job
cost of outsourcing while satisfying the data protectionin terms of data security levels, and then assigns nongensit
constraints. We provide a comprehensive assessment througata to a public cloud. Encrypting all data-sets in clouds
extensive performance analysis experiments and compare tis not only time consuming but also very costly. Zhang et
obtained solutions with the optimal solutions. al. [17] proposed a privacy leakage upper bound constraint-
based approach to identify intermediate data-sets that nee
B. Related Work encrypting. Zhang et al. [18] proposed a scalable two-phase
A cloud architecture that allows a cloud to build a approach to anonymize large-scale data sets. In the first
federation with other clouds was introduced by Celesti epphase, original data-sets are partitioned into a group of
al. [4]. Their model considers that a cloud provider is urabl smaller data-sets, where they are anonymized in parallel,
to fulfill its users’ requests and forwards the requestshent producing intermediate results. In the second phase, the
clouds. Mashayekhy and Grosu [5], addressed the probleimtermediate results are aggregated, and further anoegmiz
of federation formation in clouds and designed a coalitionato achieve consistency. Our proposed framework provides
game-based mechanism that enables the cloud provideas additional layer of data protection by implementing the
to dynamically form a cloud federation maximizing their restrictions related to data security and privacy and at the
profit. Mashayekhy and Grosu [6] investigated the problemsame time minimizes the cost of outsourcing.
of federating resources in grids by employing coalitional o
game theory. In addition, they studied the problem ofC: Organization
federating resources in grids considering trust relatigns The rest of the paper is organized as follows. In Section I,
among grid service providers [7]. Li et al. [8] investigated we describe the data protection problem in cloud federation
profit maximization strategies in cloud federations, whereln Section Ill, we present the proposed algorithm that solve
VMs are sold through auctions. They proposed a truthfuthe data protection problem in federations of clouds. In-Sec
mechanism for trading VMs within a federation. Samaan [9]tion IV, we evaluate the properties of the proposed algorith
proposed an economic model based on repeated games, g extensive experiments. In Section V, we summarize our



results and present possible directions for future researc provider that wants to outsourc® VMs to other cloud
Il. DATA PROTECTION IN CLOUD FEDERATIONS prov!der_s part _of the federation, in orde.r tq executg the
PROBLEM application of its users. The cloud provider's goal is to
) ) . minimize its cost while allocating VMs to participating
In this section, we describe the model of the system, andq,ds in the federation considering the trust and discosu
the data protection problem. restrictions, specified by the the conflict graphs defined in
A. System Model the previous section.
We first describe the system model considering that a Ve define an indicator variablg;, vi € V,vj € 7, that

cloud providerP, wants to outsource its workload consisting character!zes.the conflict be_tween Yhdnd cloud P“?V'der
of a pool of N' VMs to other cloud providers. We consider P;, and implicitly characterizes the trust restrictions, as

a federation of cloud provider§ = {Py, Py, Ps, ..., Py} [Olows:
that are available to provide services. Each cloud provider 1 if VM ; can be assigned tf&;,
P; € F has restricted computing capacity, denoted by i 0 otherwise (1)

available to provide to other cloud providers. Each provide

P; incurs cost when providing resources. For a cloudlf 6;; = 0, then it specifies that VM should never be
provider P;, we denote by:;, the cost associated with each assigned to cloud providef;.

VM instance executed oR;, and bym;, the cost associated =~ We define decision variables; andy; as follows:

with VM migration from P, to P;. . . .
Cloud provider P, does not ]have enough resources to Tij {1 i VMi_IS assigned ta, (2)
fulfill the requested VMs, and needs to outsource some of the 0  otherwise.
requested VMs to other cloud providers within the federatio
in order to execute the jobs and more importantly, to mini- 1 if there is a VM assigned t@;,
mize its cost while satisfying the data protection restits Yji = 0 otherwise. (3)

imposed by the users. Therefore, the outsourcing decisions
have to be made considering both data protection restictio  We formulate the DPCF problem as an Integer Program,
and cost minimization. As we mentioned in the introductioncalled IP-DPCF, as follows:

section, there are two data protection restrictions thae ha N M M
to be considered when outsourcing VMs within a federation Minimize Z Z Cjtij + Z m;y; (4)
of cloud providers: (i) therust restrictions specifying that =1 =1 =1

some VMs cannot be outsourced to specific cloud providers; Subject to:
and, (ii) the disclosure restrictions specifying that some N
VMs cannot be outsourced to the same cloud provider. We le < yR; Vie F\ P )
model these two restrictions as twonflict graphs e
To model the trust restrictions, we consider a graptv’ U

M
F,A), whereV and F are the sets of VMs and cloud Z%Iij =1, Vi=1,...,N (6)
providers, respectively, representing the vertices irgtiagh, =
and A is a set of edges< i,j > repre;entlng the conflict v tag <1, V<ik>eEj=1,...M (7)
betweenV’ M; € V and P; € F. If there is an edge between . )
a VM and a cloud provider, it specifies that the VM cannot Tij < Yis Vi=1l... N, VjeF\R (8
be assigned to that cloud provider. rij ={0,1}, Vi=1,...,N,VjeF\F (9)
To model the disclosure restrictions, we consider a y; = {0, 1}, Vje F\ P, (10)

graphG(V, E), whereV is a set of VMs representing the o )

vertices in the graph, and is a set of edges< i,j > Objective function (4) represents the total cost of outsour
representing the conflict betweerid; and V M, 76 V. ing all VMs to the federation. The total cost includes
If VM, and VM, cannot be assigned to the éame clougthe execution and migration costs of outsourced VMs.

z J . .

provider, we consider them as a conflicting pair of VMs. Constraints (5) ensure that the allocation of VMs to each
If there is no edge between two VMs, these VMs can pddrovider does not exceed the available capacity of that
assigned to the same provider. However, if there exists afloud provider. Constraints (6) guarantee that each VM
edge between two VMs, these two VMs should not be'S assigned to exactly one cloud provider that does not

assigned to the same provider. have any conflict with, according tp the trust restrictions.
. Constraints (7) ensure that VMs assigned to a cloud provider
B. Data Protection Problem do not have conflict, according to the disclosure restmgtio

We define the data protection in cloud federations (DPCF)Constraints (8) ensure that a cloud provider is a member of
problem as follows. We consider thd?, is the cloud the set of providers to which VMs are outsourced, that is,



there exists at least a VM that is assigned to that cloud\lgorithm 1 VMPA: VM Partitioning Algorithm
provider. Constraints (9) and (10) represent the integrali 1: Input: G'(V', E")

requirements for the decision variables. IP-DPCF detegmin 2: Create an empty max heap

the assignment of all VMs that cloud providét, wants 3 forall i€ V' do

. T . d; <« the number of connected VMs to VM
to outsource to the federation, minimizing the total cost 5. L;i_> 0 then

of outsourcing, while satisfying the trust and disclosure e: V.enqueue( d;)
restrictions. 7. else
8: So “— SO U {Z}
[1l. ALGORITHM FOR SOLVING DPCF 9: (i,d;) = V.extractMax()

10: S; = {i}
In this section, we introduce our proposed algorithm thatlgf KhT 1V is not v
solves the DPCF problem. We first describe our propose 3 W ('Z.ed‘)'ing e?(rt?géMoax()
VM partitioning algorithm, called VMPA, which uses the 7, f|a7gl<— FALSE

conflict graph of disclosure restrictions to determine ais: forall k=1,...,K do

partitioning of the VMs. We then describe our proposed1é: for all j,<i,j >€ E',j € Sk do
algorithm, called DPCFA, that solves the DPCF prob- 1;f gang TRUE
lem. DPCFA algorithm uses the VM partitioning algorithm 19 if ,rﬁ:g then
(_VMPA)_ in or(_jer fo minimize the cost of federation f_orma- 20: Sp — ), U {i}
tion while satisfying the trust and disclosure restriction 21 break
22: if flag then
A. VM Partitioning Algorithm 23: K=K+1
24: Sk = {i}
In this section, we propose the VM Partitioning Algorithm 25: Sort Sy, ..., Sk based on descending order of their size

(VMPA). VMPA partitions the VMs in a way that conflicting 26: Output: So, 51, ..., Sk

VMs are not assigned to the same cloud provider. VMPA

uses a conflict grapltz’(V’, E’) which is a subgraph of

the conflict graphG, G’ C G, as an input. The algorithm B. Algorithm for Solving DPCF

builds a max-heap’ to order the VMs inV"” based on their |, this section, we propose the Data Protection for Cloud
number of conflicting VMs, denoted by;. The max-heap  peqerations Algorithm, called DPCFA. DPCFA requires the
has two main functions associated with it: (i) enqueue@t th o confiict graphs as input. Firsg(V, E) represents the
inserts a VM along with its priority into the heap; and (ii) ¢qngiict graph for the disclosure restrictions, whéfés the
extractMax(), that extracts the VM with the highest prigrit  ¢ot of VMs andE is the set of conflict edges between two
A VM with the highest priority, i.e., with the most conflicts /15 |5 < i,j > exists, thenV M; and VM, € V cannot

is always at the top of the heap. The algorithm also creategg assigned to the same provider. Seco}ﬂV U F, A)

a subsets, of VMs that do not have any conflicts (i.e., represents the conflict graph for the trust restrictionsereth
d; = 0). ConsideringS, is critical for the algorithm in order v/, z i the set of vertices representing the VMs and cloud

to minimize cost. We will discuss this in more details in the providers, andA is the set of conflicting edge between a
next subsection. The algorithm extracts the VM with the\,\; 5nd a{cloud provider. I& i, j > exists, then/ M; € V
highest priority (i.e., with the highest number of conflicts -5, pe assigned t8; € F ’ ' ’

j :

and assigns it tog,l’ whereK.: 1 fracks the .number of " We define the cost metrig; for cloud providerP; based
current subsets without consideriitg. The assignment of 4, 15 M execution cost along with its average migration
the rest of the VMs inV based on their priorities is as <t as follows:

follows: For each of the current subsets, it checks if there s
exists any conflicting VMs. The algorithm assigns the VM Vi = ¢+ R—j
to the first subset that does not have any conflicting VMs. J
If there is no subset without conflict, it exists, and createsBesides the actual VM execution cost, the cost metric should
a new subset for that VM. The result of the partitioning consider the estimated migration cost. In doing so, our
of the VMs is Sy along with other subsetS;. Then, the proposed cost metric considers the average migration cost
algorithm sorts the partitioned VMs based on the numbefor each VM based on the available capadity of the cloud

of VMs in each subset such th&} is the largest subset. provider. This is due to the fact that when migrating a batch
Finally, the algorithm returns the sefs, which represent the of VMs, the cloud provider pays only once for the migration
partitioning of the set of VMs. The VMs that are part of a setcost. As a result, the average migration cost is a reasonable
S; do not conflict with each other, and can be assigned to thestimate.

same cloud provider. These sets will be used in our proposed DPCFA creates a min-hedp?, in order to keep the cloud
algorithm DPCFA, described in the next subsection. providers ordered based on their cost metsic, The min-

(11)



Algorlthm 2 DPCFA: Data Protection for Cloud Federations So Considering the updated remaining Capacities of the cloud

Algorithm

1: Input: Conflict graphsG(V, E) and H(V U F, A)
2: Create an empty min-heap*
3: forall j € .7-">LP0 do
V=c¢t g
F4.enqueuef, v;)
R; = R;
while V' is not emptydo
if 79 is emptythen
9: Infeasible solution
10: break
11: (3,7;) <« F.extractMin()

NG A

12:  G'(V',E") — non-conflicting VMs withP; based on

the updated graplif
13: {50, 51,..., Sk }=VMPA(G)
14:  if |S1| 4+ |So| > 0 then

15: Y = 1

16: else

17: continue

18: if R; — iS1| > 0 then

19: for all ¢ € S, do

20: Tij = 1

21: Removei's adjacent edges fromy
22: ‘A/ =V \ S1

23: Rj = Rij — iSli

24: while R; > 0 and|Sy| > 0 do

25: i—aVMe S,

26: I}'j = 1A

27: Ri=R; -1

28: So = So\ {i}

29: V=V\{i}

30: Removei's adjacent edges fromt
31  else

32: S « choose the firsk; VMs in Sy
33 for all ¢ € S do

34: Tij = 1

35: Removei’s adjacent edges from
36: V=V\S

37: R; =0

38: Output: z,y

provider. Note that VMs ir5y do not have conflicts with any
other VMs. This feature of our proposed algorithm makes
use of the remaining capacities of the cloud providers with
less cost. This novel VM placement leads to close to optimal
solutions for the DPCF problem since it tries to assign
as many VMs as possible to the cloud providers with the
lowest cost. Note that in each iteration, DPCFA credigs
specific to each cloud provider to make the most use of
VMs not having trust restrictions for that cloud provider,
while those VMs do not have any disclosure restrictions.
If cloud provider P; does not have enough capacity, the
algorithm assigns all capacity d@?; to the firstR; VMs in
S1, and removes them frorii. Note that assigning the first
R; VMs is critical in obtaining close to optimal solutions
since in VMPA the VMs are added to the subsets in order of
their number of conflicting VMs. That means, a VM with the
highest number of conflicts is considered first. Removing the
first R; VMs from the set of VMs makes the partitioning of
the remaining VMs effective. Finally, the algorithm retarn
the assignment of VMs to the cloud providers as an output.
The time complexity of DPCFA is polynomial in the
number of VMs, the number of cloud providers, and the
number of conflicts among VMs and between VMs and
cloud providers.

IV. EXPERIMENTAL RESULTS

We perform extensive experiments in order to investi-
gate the properties of the proposed algorithm, DPCFA. We
compare the performance of DPCFA with that of OPT,
where OPT obtains the optimal solution by solving IP-DPCF
(Equations (4) to (10)). We implemented OPT using IBM
ILOG CPLEX Optimization Studio Multiplatform Multilin-
gual eAssembly. Since IBM ILOG CPLEX could not find
solutions for DPCF instances with large numbers of VMs
and cloud providers, we present two classes of experiments,
small-scale and large-scale, to analyze the performance of
the proposed DPCFA algorithm. In the small-scale experi-

heap has two main functions associated with it: énqueue@hents, we compare the results of DPCFA and OPT for DPCF
and extractMin(), where the former inserts a cloud providefinstances with small number of cloud providers participati

along with its cost metric into the heap, and the latter ex¢ra

in the federation and small number of VMs that need to be

the cloud provider with the minimum cost metric. A cloud gytsourced. In the large-scale experiments, we compare the

heap.

number of cloud providers participating in the federation

The algorithm starts the assignment process of VMs tand large number of VMs that need to be outsourced.

cloud providers by choosing a cloud providBf with the
minimum value for the cost metrig;;. Then, it creates
G'(V',E'") based on non-conflicting VMs wittP; in H.

DPCFA and OPT algorithms are implemented in C++ and
the experiments are conducted on AMD 2.93GHz hexa-core
dual-processor systems with 90GB of RAM which are part

DPCFA calls the VMPA algorithm (described in the previous of the Wayne State Grid System. In this section, we describe

subsection) to partition the VMs Wi’ such that within each
subset there is no conflicting VMs. Note thé is always

the experimental setup and analyze the experimental sesult

the largest subset. If cloud provid@ has enough capacity A- Experimental Setup

to host the VMs inS;, the algorithm assign$; to P;, and
updates the current available capacityfyf DPCFA assigns

To analyze the performance of our proposed algorithm, we
use a random graph model, the BseRenyi model [19], for
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Figure 1: DPCFA vs OPT (small-scale experiments): (a) CdgbjsExecution time.

the conflict graphG. An Erddos-Renyi graph(m, p) is agraph  assigned to 3 out of the 8 cloud providers. For the largeescal
constructed by connecting nodes randomly, where the grapéxperiments, we create the conflict grafihby choosing a
hasm nodes. The probability of having an edge in the graphrandom number between 0 and 8 to represents the number
is p for any pair of nodes, and it is independent from everyof conflicts between a VM and the cloud providers.

other edge. That means, all graphs witmodes and edges )

have equal probability. Based on the parameter [0,1], B. Analysis of Results

the graph can be sparse or complete. Since théERnyi In the following, we analyze the results for each of the
graph is a connected graph, leading to a conflict graph withwo classes of experiments.

all VMs having conflicts, we generate a smaller graph for 1) Small-scale experiment§Ve analyze the performance
the conflicted VMs and add the rest of the VMs. For theof DPCFA and OPT by considering instances of DPCF with
small-scale experiments, we consider instances of DPCEB cloud providers and four small sets of VMs that need to
having the total number of VMsN = {50,70,90,110} be outsourced = 50, 70, 90, and 110).

and eight cloud providers, where = {30,50, 70,90} is Fig. 1a shows the total cost that the cloud provider incurs
the number of conflicted VMs for each case, respectivelyfor outsourcing all the VMs to the federation. As shown in
andp = 0.05. For the large-scale experiments, the numbethe figure, the cost achieved by using DPCFA is very close
of VMs are N = {1000, 2000, 3000, 4000}, the number of  to that achieved when using OPT. For example, for 70 VMs,
cloud providers is 32, wherer = 60% of the VMs have  the total cost obtained by OPT is $81.53 while the total cost
conflicts, andp = 0.05. The values of the execution costs gbtained by DPCFA is $86.59. This results in 6% optimality
and migration costs, are drawn from a uniform distributiongap.

over the Microsoft Azure prices [20]. In all cases, we Fig. 1b shows the execution time of the algorithms.
choose the extra large VM configurations of Microsoft Azure ppCFA is very fast, being three to four orders of magnitude
for our experiments, with 8 cores and 14 GB RAM. The faster than OPT, while obtaining close to optimal costs.
execution cost of a VM is betweef0.7, 1.1]$, while the We analyze the results of the smallest instance with
migration cost is betweef2, 8]$. The capacity of the cloud 50 vMs in more details. In Fig 2, we present the VM
prOViderS available within the federation are generatad?“a p|acement on each cloud provider and their cost for the
on the number of VMs. For the small-scale experimentscase of 50 VMs available for outsourcing. Fig. 2a shows
we use a uniform random distribution with variance 50 andihe cost that the cloud provider should pay to each cloud
mean 90, 90, 135, 180. For example, for an experimenprovider participating in the federation. Fig. 2b shows the
with 50 VMs, the cloud providers’ capacities are generatechumber of VMs allocated to the cloud providers participgtin
within the range[40, 140]. For the large-scale experiments, in the federation. Note that the cloud providers are sorted
we use a uniform random distribution with variance 160based on the cost metric on horizontal axisy i]@'is the
and mean 320, 640, 1280, and 2560, to generate the cloudoud provider with the smallest cost metric, whie is the
providers’ capacities. Note that the size of one VM is 8. Forprovider with the largest cost metric. As a result, DPCFA
the small-scale experiments, we create the conflict gfdph chooses all lowest cost cloud providers to assign the VMs
by choosing a random number between 0 and 3 to represenjth the exception ofP;, where the remaining set of VMs
the number of conflicts between a VM and cloud prOViderS.haS conflicts with it. Note that DPCFA and OPT choose
For example, a VM with 3 conflicts means that it cannot bethe same allocation to the first two cloud providers with the
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Figure 3: DPCFA vs OPT (large-scale experiments): @) Costgb) Execution time.
(*OPT was not able to determine the allocation when the numbe¥Ms are 2000, 3000, and 4000 in feasible time, and thus, tteeee no
bars in the plots for those cases)

lowest cost, and do not assign any VMs to the cloud providecandidate for deciding the outsourcing and placement of
with the highest cost. VMs within a federation of clouds.

2) Large-scale experiment©PT could not find the solu- V. CONCLUSION

tions even after 8 hours for DPCF instances with 2000, 3000, The benefits from using cloud services should not come

&t the cost of compromising the privacy and security of
users’ data. Data protection in terms of legal compliance
and user trust are major issues in clouds, and they should
F|g 3a shows the total cost of the VM placement. Forbe a top priority when designing cloud Systems_ On the
1000 VMs, OPT finds the optimal assignment of VMs with gther hand, the ever-growing demand for cloud services
total cost of $101089, while DPCFA obtains the total COStaiong with the demand dynamics require cloud providers to
of $1017.68. The results show that DPCFA performs Veryscaie_up when needed. A practicai piatform to cope with
well when the problem scales. The optimality gap in thissych demand is the cloud federation. In this paper, we
case is less than 0.2%. Fig. 3b shows the execution time ¢roposed a data protection framework for cloud federations
DPCFA and OPT. For the obtained results, DPCFA is foulthat minimizes the cost of outsourcing the computation
orders of magnitude faster than OPT. under data protection constraints. We proposed to represen
From all the above results, we conclude that DPCFAthe data protection restrictions as conflict graphs, andeinod
determines VM placements that give solutions close to thehe data protection problem as an integer program. In the
optimal while satisfying the trust and disclosure resiits.  absence of computationally tractable optimal algorithors f
It also requires small execution times, making it a suitablesolving this problem, we designed a fast heuristic algorith

results of DPCFA with that of optimal solution for those
cases.



incorporating a novel VM placement strategy in order to[14] Z. Zhou, H. Zhang, X. Du, P. Li, and X. Yu, “Prometheus:
find close to optimal solutions. The results from extensive
performance analysis for small-scale and large-scalea$ets

experiments showed that our proposed algorithm is capabl@S]

of finding close to optimal solution very fast. For future
work, we plan to extend this study and integrate it into

existing online dynamic federation formation mechanisms. [16]
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