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Abstract—One of the benefits of cloud computing is that
a cloud provider can dynamically scale-up its resource ca-
pabilities by forming a cloud federation with other cloud
providers. Forming cloud federations requires taking the data
privacy and security concerns into account, which is critical in
satisfying the Service Level Agreements (SLAs). The nature of
privacy and security challenges in clouds requires that cloud
providers design data protection mechanisms that work to-
gether with their resource management systems. In this paper,
we consider the privacy requirements when outsourcing data
and computation within a federation of clouds, and propose
a framework for minimizing the cost of outsourcing while
considering two key data protection restrictions, the trust and
disclosure restrictions. We model these restrictions as conflict
graphs, and formulate the problem as an integer program. In
the absence of computationally tractable optimal algorithms for
solving this problem, we design a fast heuristic algorithm. We
analyze the performance of our proposed algorithm through
extensive experiments.

Keywords-data protection; federation formation; virtual ma-
chine placement; cloud computing.

I. I NTRODUCTION

In recent years, many companies have been migrating
or building their business into clouds. One of the major
concerns for such companies and potential individual users
in adopting cloud services is their data protection. Therefore,
widespread adoption of cloud services depends on several
technological challenges such as guaranteeing data privacy
and security. Given the importance of data privacy, cus-
tomers’ fear of sensitive data leakage should be the primary
concern when providing cloud services.

Privacy regulations such as the Fair Information Prin-
ciples [1] are applicable to cloud services. In addition,
users project their expectations of confidentiality and control
in the Service Level Agreements (SLAs). However, cloud
providers are accountable for meeting the privacy expec-
tations of the users, and cloud providers should limit the
access to individuals’ confidential data and to companies’
commercially sensitive data.

One of the benefits of clouds is the possibility of dy-
namically enhancing their resource capabilities by forming
federations with other cloud providers in order to rapidly
scale-up when required. However, forming cloud federations
presents a host of new challenges resulting from the current
lack of efficient cloud federation formation mechanisms.

One of the major challenges is that a federation formation
mechanism needs to address the data protection concerns
that arise from outsourcing computations [2]. A key aspect
of cloud federations, however, is that their infrastructure is
shared among cloud providers and it is off the premises of
a single cloud provider. Therefore, there exists a significant
threat to data privacy and security associated with remote
storage and processing of data.

In this paper, we consider the privacy requirements when
outsourcing data and computation within a federation of
clouds. We design a data protection framework for cloud
federations that minimizes the cost of outsourcing. The
benefits of employing our framework on a cloud federation
are threefold. First, it helps align the cloud services withthe
users’ concerns regarding their data protection. Second, it
reduces the cost of upgrading the system software to support
future data protection needs. Third, it avoids future costsand
penalties resulting from leakage of sensitive data.

Virtualization is a major breakthrough enabling cloud
providers to abstract the physical infrastructure, and to
hide the complexity of underlying resources. On the other
hand, the ever-growing demand for cloud computing services
places the virtual machine (VM) management at the heart of
cloud providers decision making process. The cloud provider
creates a pool of virtualized resources which are offered
to clients as VM instances. When the demand exceeds the
capacity of available resources, the cloud provider can scale-
up by forming a cloud federation with other cloud providers,
and flexibly mapping and moving VMs (using VM migra-
tion technologies [3]) to the other cloud providers. In this
study, we focus on data protection when the computation is
outsourced to other cloud providers within the federation
via such VM migrations, and propose a framework to
minimize the total cost of outsourcing while considering two
restrictions, as follows. First, there are several limitations for
a cloud provider in assigning VMs to other cloud providers.
Such limitations could be due to trust and reliability issues,
or due to the geographical location of the other cloud
provider. The location of a cloud provider can arise privacy
and security issues since transferring a VM over to specific
regions (e.g., crossing national boundaries), raises legal
concerns. Therefore, we consider such restrictions, called
trust restrictions, during the VM assignment and migration.



The trust restrictions specify the VMs that should not be
assigned to specific cloud providers. Second, if several
VMs are co-located on the same cloud provider they can
reveal sensitive information. However, the user or the cloud
customer requires through agreements that such information
be accessible only to the main cloud provider and not to
others. The cloud provider is accountable for protecting
such information, and revealing it is against the agreement.
Therefore, we consider such restrictions on co-locating VMs,
called disclosure restrictions. These disclosure restrictions,
specify which VMs can never be co-located on the same
cloud provider when outsourcing the cloud services. This
represents another level of data protection (after the encryp-
tion level) which subsequently reduces the need to encrypt
all data.

A. Our Contribution

We propose a framework for data protection in a feder-
ation of clouds that considers the data privacy and security
restrictions while minimizing the cost of outsourcing the
computation to the cloud service providers that are part
of the federation. We model the two key data privacy
restrictions in cloud federations as two conflict graphs, one
graph representing the conflicts between VMs and cloud
providers, while the other, representing the conflicts among
VMs. We then formulate the data protection problem in
cloud federations as an integer program. In the absence of
computationally tractable optimal algorithms for solvingthis
problem, we design a fast heuristic algorithm. Our proposed
algorithm incorporates a novel VM placement strategy in
order to find close to optimal solutions, minimizing the
cost of outsourcing while satisfying the data protection
constraints. We provide a comprehensive assessment through
extensive performance analysis experiments and compare the
obtained solutions with the optimal solutions.

B. Related Work

A cloud architecture that allows a cloud to build a
federation with other clouds was introduced by Celesti et
al. [4]. Their model considers that a cloud provider is unable
to fulfill its users’ requests and forwards the requests to other
clouds. Mashayekhy and Grosu [5], addressed the problem
of federation formation in clouds and designed a coalitional
game-based mechanism that enables the cloud providers
to dynamically form a cloud federation maximizing their
profit. Mashayekhy and Grosu [6] investigated the problem
of federating resources in grids by employing coalitional
game theory. In addition, they studied the problem of
federating resources in grids considering trust relationship
among grid service providers [7]. Li et al. [8] investigated
profit maximization strategies in cloud federations, where
VMs are sold through auctions. They proposed a truthful
mechanism for trading VMs within a federation. Samaan [9]
proposed an economic model based on repeated games, to

regulate capacity sharing in a cloud federation, where each
provider aims at maximizing its profit. Bruneo [10] proposed
performance evaluation techniques based on stochastic re-
ward nets for federated clouds to predict and quantify the
cost-benefit of a strategy portfolio and the corresponding
quality of service (QoS) experienced by users. None of
the above mentioned studies considered the data protection
constraints in a federation of clouds. VM allocation in clouds
has been studied extensively. Bin et al. [11] proposed a
VM placement approach considering multiple data privacy
constraints without considering the cost of outsourcing.
In our previous studies [12], [13], we proposed truthful
mechanisms for VM allocation in clouds such that their
profit is maximized and the resources are utilized efficiently.
Although these studies considered the cost when allocating
the VM, they did not consider the data protection constraints.

Existing approaches to preserve privacy of stored data-sets
in clouds are mainly based on encryption and anonymiza-
tion. Data anonymization refers to hiding the privacy-
sensitive information such as identities. Zhou et al. [14]
proposed a framework called Prometheus, that automatically
separates sensitive data from nonsensitive data independent
of the specific applications. They proved that Prometheus
guarantees the privacy-preserving feature. Dou et al. [15]
proposed a privacy-aware cross-cloud service composition
method that protects the privacy such that a cloud is
not required to unveil all of its transaction records. Their
method uses history records associated with a service’s
past transactions. Zhang et al. [16] proposed a method for
protecting the data privacy in hybrid clouds, called Sedic.
Sedic automatically partitions a MapReduce computing job
in terms of data security levels, and then assigns nonsensitive
data to a public cloud. Encrypting all data-sets in clouds
is not only time consuming but also very costly. Zhang et
al. [17] proposed a privacy leakage upper bound constraint-
based approach to identify intermediate data-sets that need
encrypting. Zhang et al. [18] proposed a scalable two-phase
approach to anonymize large-scale data sets. In the first
phase, original data-sets are partitioned into a group of
smaller data-sets, where they are anonymized in parallel,
producing intermediate results. In the second phase, the
intermediate results are aggregated, and further anonymized
to achieve consistency. Our proposed framework provides
an additional layer of data protection by implementing the
restrictions related to data security and privacy and at the
same time minimizes the cost of outsourcing.

C. Organization

The rest of the paper is organized as follows. In Section II,
we describe the data protection problem in cloud federations.
In Section III, we present the proposed algorithm that solve
the data protection problem in federations of clouds. In Sec-
tion IV, we evaluate the properties of the proposed algorithm
by extensive experiments. In Section V, we summarize our



results and present possible directions for future research.

II. DATA PROTECTION IN CLOUD FEDERATIONS

PROBLEM

In this section, we describe the model of the system, and
the data protection problem.

A. System Model

We first describe the system model considering that a
cloud providerP0 wants to outsource its workload consisting
of a pool ofN VMs to other cloud providers. We consider
a federation of cloud providersF = {P0, P1, P2, . . . , PM}
that are available to provide services. Each cloud provider
Pj ∈ F has restricted computing capacity, denoted byRj ,
available to provide to other cloud providers. Each provider
Pj incurs cost when providing resources. For a cloud
providerPj , we denote bycj , the cost associated with each
VM instance executed onPj , and bymj , the cost associated
with VM migration from P0 to Pj .

Cloud providerP0 does not have enough resources to
fulfill the requested VMs, and needs to outsource some of the
requested VMs to other cloud providers within the federation
in order to execute the jobs and more importantly, to mini-
mize its cost while satisfying the data protection restrictions
imposed by the users. Therefore, the outsourcing decisions
have to be made considering both data protection restrictions
and cost minimization. As we mentioned in the introduction
section, there are two data protection restrictions that have
to be considered when outsourcing VMs within a federation
of cloud providers: (i) thetrust restrictions, specifying that
some VMs cannot be outsourced to specific cloud providers;
and, (ii) the disclosure restrictions, specifying that some
VMs cannot be outsourced to the same cloud provider. We
model these two restrictions as twoconflict graphs.

To model the trust restrictions, we consider a graphH(V ∪
F , A), where V and F are the sets of VMs and cloud
providers, respectively, representing the vertices in thegraph,
and A is a set of edges< i, j > representing the conflict
betweenV Mi ∈ V andPj ∈ F . If there is an edge between
a VM and a cloud provider, it specifies that the VM cannot
be assigned to that cloud provider.

To model the disclosure restrictions, we consider a
graphG(V,E), whereV is a set of VMs representing the
vertices in the graph, andE is a set of edges< i, j >

representing the conflict betweenV Mi and V Mj ∈ V .
If V Mi and V Mj cannot be assigned to the same cloud
provider, we consider them as a conflicting pair of VMs.
If there is no edge between two VMs, these VMs can be
assigned to the same provider. However, if there exists an
edge between two VMs, these two VMs should not be
assigned to the same provider.

B. Data Protection Problem

We define the data protection in cloud federations (DPCF)
problem as follows. We consider thatP0 is the cloud

provider that wants to outsourceN VMs to other cloud
providers part of the federation, in order to execute the
application of its users. The cloud provider’s goal is to
minimize its cost while allocating VMs to participating
clouds in the federation considering the trust and disclosure
restrictions, specified by the the conflict graphs defined in
the previous section.

We define an indicator variableδij , ∀i ∈ V,∀j ∈ F , that
characterizes the conflict between VMi and cloud provider
Pj , and implicitly characterizes the trust restrictions, as
follows:

δij =

{

1 if VM i can be assigned toPj ,

0 otherwise
(1)

If δij = 0, then it specifies that VMi should never be
assigned to cloud providerPj .

We define decision variablesxij andyj as follows:

xij =

{

1 if VM i is assigned toPj ,

0 otherwise.
(2)

yj =

{

1 if there is a VM assigned toPj ,

0 otherwise.
(3)

We formulate the DPCF problem as an Integer Program,
called IP-DPCF, as follows:

Minimize
N

∑

i=1

M
∑

j=1

cjxij +
M
∑

j=1

mjyj (4)

Subject to:
N

∑

i=1

xij ≤ yjRj , ∀j ∈ F \ P0 (5)

M
∑

j=1

δijxij = 1, ∀i = 1, . . . , N (6)

xij + xkj ≤ 1, ∀ < i, k >∈ E, j = 1, . . . ,M (7)

xij ≤ yj , ∀i = 1, . . . , N , ∀j ∈ F \ P0 (8)

xij = {0, 1}, ∀i = 1, . . . , N , ∀j ∈ F \ P0 (9)

yj = {0, 1}, ∀j ∈ F \ P0 (10)

Objective function (4) represents the total cost of outsourc-
ing all VMs to the federation. The total cost includes
the execution and migration costs of outsourced VMs.
Constraints (5) ensure that the allocation of VMs to each
provider does not exceed the available capacity of that
cloud provider. Constraints (6) guarantee that each VM
is assigned to exactly one cloud provider that does not
have any conflict with, according to the trust restrictions.
Constraints (7) ensure that VMs assigned to a cloud provider
do not have conflict, according to the disclosure restrictions.
Constraints (8) ensure that a cloud provider is a member of
the set of providers to which VMs are outsourced, that is,



there exists at least a VM that is assigned to that cloud
provider. Constraints (9) and (10) represent the integrality
requirements for the decision variables. IP-DPCF determines
the assignment of all VMs that cloud providerP0 wants
to outsource to the federation, minimizing the total cost
of outsourcing, while satisfying the trust and disclosure
restrictions.

III. A LGORITHM FOR SOLVING DPCF

In this section, we introduce our proposed algorithm that
solves the DPCF problem. We first describe our proposed
VM partitioning algorithm, called VMPA, which uses the
conflict graph of disclosure restrictions to determine a
partitioning of the VMs. We then describe our proposed
algorithm, called DPCFA, that solves the DPCF prob-
lem. DPCFA algorithm uses the VM partitioning algorithm
(VMPA) in order to minimize the cost of federation forma-
tion while satisfying the trust and disclosure restrictions.

A. VM Partitioning Algorithm

In this section, we propose the VM Partitioning Algorithm
(VMPA). VMPA partitions the VMs in a way that conflicting
VMs are not assigned to the same cloud provider. VMPA
uses a conflict graphG′(V ′, E′) which is a subgraph of
the conflict graphG, G′ ⊆ G, as an input. The algorithm
builds a max-heapV to order the VMs inV ′ based on their
number of conflicting VMs, denoted bydi. The max-heap
has two main functions associated with it: (i) enqueue(), that
inserts a VM along with its priority into the heap; and (ii)
extractMax(), that extracts the VM with the highest priority.
A VM with the highest priority, i.e., with the most conflicts
is always at the top of the heap. The algorithm also creates
a subsetS0 of VMs that do not have any conflicts (i.e.,
di = 0). ConsideringS0 is critical for the algorithm in order
to minimize cost. We will discuss this in more details in the
next subsection. The algorithm extracts the VM with the
highest priority (i.e., with the highest number of conflicts),
and assigns it toS1, whereK = 1 tracks the number of
current subsets without consideringS0. The assignment of
the rest of the VMs inV based on their priorities is as
follows: For each of the current subsets, it checks if there
exists any conflicting VMs. The algorithm assigns the VM
to the first subset that does not have any conflicting VMs.
If there is no subset without conflict, it exists, and creates
a new subset for that VM. The result of the partitioning
of the VMs is S0 along with other subsetsSi. Then, the
algorithm sorts the partitioned VMs based on the number
of VMs in each subset such thatS1 is the largest subset.
Finally, the algorithm returns the setsSi, which represent the
partitioning of the set of VMs. The VMs that are part of a set
Si do not conflict with each other, and can be assigned to the
same cloud provider. These sets will be used in our proposed
algorithm DPCFA, described in the next subsection.

Algorithm 1 VMPA: VM Partitioning Algorithm

1: Input: G′(V ′, E′)
2: Create an empty max heapV
3: for all i ∈ V ′ do
4: di ← the number of connected VMs to VMi
5: if di > 0 then
6: V.enqueue(i, di)
7: else
8: S0 ← S0 ∪ {i}
9: (i, di) = V.extractMax()

10: S1 = {i}
11: K = 1
12: while V is not emptydo
13: (i, di)← V.extractMax()
14: flag← FALSE
15: for all k = 1, . . . , K do
16: for all j, < i, j >∈ E′, j ∈ Sk do
17: flag← TRUE
18: break
19: if ! flag then
20: Sk ← Sk ∪ {i}
21: break
22: if flag then
23: K = K + 1
24: SK = {i}
25: Sort S1, . . . , SK based on descending order of their size
26: Output: S0, S1, . . . , SK

B. Algorithm for Solving DPCF

In this section, we propose the Data Protection for Cloud
Federations Algorithm, called DPCFA. DPCFA requires the
two conflict graphs as input. First,G(V,E) represents the
conflict graph for the disclosure restrictions, whereV is the
set of VMs andE is the set of conflict edges between two
VMs. If < i, j > exists, thenV Mi and V Mj ∈ V cannot
be assigned to the same provider. Second,H(V ∪ F , A)
represents the conflict graph for the trust restrictions, where
V ∪F is the set of vertices representing the VMs and cloud
providers, andA is the set of conflicting edge between a
VM and a cloud provider. If< i, j > exists, thenV Mi ∈ V

can be assigned toPj ∈ F .
We define the cost metricγj for cloud providerPj based

on its VM execution cost along with its average migration
cost as follows:

γj = cj +
mj

Rj

(11)

Besides the actual VM execution cost, the cost metric should
consider the estimated migration cost. In doing so, our
proposed cost metric considers the average migration cost
for each VM based on the available capacityRj of the cloud
provider. This is due to the fact that when migrating a batch
of VMs, the cloud provider pays only once for the migration
cost. As a result, the average migration cost is a reasonable
estimate.

DPCFA creates a min-heapFq, in order to keep the cloud
providers ordered based on their cost metric,γj . The min-



Algorithm 2 DPCFA: Data Protection for Cloud Federations
Algorithm

1: Input: Conflict graphsG(V, E) andH(V ∪ F , A)
2: Create an empty min-heapFq

3: for all j ∈ F \ P0 do
4: γj = cj +

mj

Rj

5: Fq.enqueue(j, γj)
6: R̂j = Rj

7: while V is not emptydo
8: if Fq is emptythen
9: Infeasible solution

10: break
11: (j, γj)← F

q.extractMin()
12: G′(V ′, E′)← non-conflicting VMs withPj based on

the updated graphH
13: {S0, S1, . . . , SK}=VMPA(G′)
14: if |S1|+ |S0| > 0 then
15: yj = 1
16: else
17: continue
18: if Rj − |S1| ≥ 0 then
19: for all i ∈ S1 do
20: xij = 1
21: Removei’s adjacent edges fromE
22: V = V \ S1

23: R̂j = Rj − |S1|
24: while R̂j > 0 and |S0| > 0 do
25: i← a VM ∈ S0

26: xij = 1
27: R̂j = R̂j − 1
28: S0 = S0 \ {i}
29: V = V \ {i}
30: Removei’s adjacent edges fromE
31: else
32: S̄ ← choose the firstRj VMs in S1

33: for all i ∈ S̄ do
34: xij = 1
35: Removei’s adjacent edges fromE
36: V = V \ S̄

37: R̂j = 0
38: Output: x,y

heap has two main functions associated with it: enqueue()
and extractMin(), where the former inserts a cloud provider
along with its cost metric into the heap, and the latter extracts
the cloud provider with the minimum cost metric. A cloud
provider with the minimum cost is always at the top of the
heap.

The algorithm starts the assignment process of VMs to
cloud providers by choosing a cloud providerPj with the
minimum value for the cost metricγj . Then, it creates
G′(V ′, E′) based on non-conflicting VMs withPj in H.
DPCFA calls the VMPA algorithm (described in the previous
subsection) to partition the VMs inV ′ such that within each
subset there is no conflicting VMs. Note thatS1 is always
the largest subset. If cloud providerPj has enough capacity
to host the VMs inS1, the algorithm assignsS1 to Pj , and
updates the current available capacity ofPj . DPCFA assigns

S0 considering the updated remaining capacities of the cloud
provider. Note that VMs inS0 do not have conflicts with any
other VMs. This feature of our proposed algorithm makes
use of the remaining capacities of the cloud providers with
less cost. This novel VM placement leads to close to optimal
solutions for the DPCF problem since it tries to assign
as many VMs as possible to the cloud providers with the
lowest cost. Note that in each iteration, DPCFA createsS0

specific to each cloud provider to make the most use of
VMs not having trust restrictions for that cloud provider,
while those VMs do not have any disclosure restrictions.
If cloud provider Pj does not have enough capacity, the
algorithm assigns all capacity ofPj to the firstRj VMs in
S1, and removes them fromV . Note that assigning the first
Rj VMs is critical in obtaining close to optimal solutions
since in VMPA the VMs are added to the subsets in order of
their number of conflicting VMs. That means, a VM with the
highest number of conflicts is considered first. Removing the
first Rj VMs from the set of VMs makes the partitioning of
the remaining VMs effective. Finally, the algorithm returns
the assignment of VMs to the cloud providers as an output.

The time complexity of DPCFA is polynomial in the
number of VMs, the number of cloud providers, and the
number of conflicts among VMs and between VMs and
cloud providers.

IV. EXPERIMENTAL RESULTS

We perform extensive experiments in order to investi-
gate the properties of the proposed algorithm, DPCFA. We
compare the performance of DPCFA with that of OPT,
where OPT obtains the optimal solution by solving IP-DPCF
(Equations (4) to (10)). We implemented OPT using IBM
ILOG CPLEX Optimization Studio Multiplatform Multilin-
gual eAssembly. Since IBM ILOG CPLEX could not find
solutions for DPCF instances with large numbers of VMs
and cloud providers, we present two classes of experiments,
small-scale and large-scale, to analyze the performance of
the proposed DPCFA algorithm. In the small-scale experi-
ments, we compare the results of DPCFA and OPT for DPCF
instances with small number of cloud providers participating
in the federation and small number of VMs that need to be
outsourced. In the large-scale experiments, we compare the
results of DPCFA and OPT for DPCF instances with large
number of cloud providers participating in the federation
and large number of VMs that need to be outsourced.
DPCFA and OPT algorithms are implemented in C++ and
the experiments are conducted on AMD 2.93GHz hexa-core
dual-processor systems with 90GB of RAM which are part
of the Wayne State Grid System. In this section, we describe
the experimental setup and analyze the experimental results.

A. Experimental Setup

To analyze the performance of our proposed algorithm, we
use a random graph model, the Erdös-Ŕenyi model [19], for
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Figure 1: DPCFA vs OPT (small-scale experiments): (a) Costs; (b) Execution time.

the conflict graphG. An Erdös-Ŕenyi graph(m, p) is a graph
constructed by connecting nodes randomly, where the graph
hasm nodes. The probability of having an edge in the graph
is p for any pair of nodes, and it is independent from every
other edge. That means, all graphs withm nodes ande edges
have equal probability. Based on the parameterp ∈ [0, 1],
the graph can be sparse or complete. Since the Erdös-Ŕenyi
graph is a connected graph, leading to a conflict graph with
all VMs having conflicts, we generate a smaller graph for
the conflicted VMs and add the rest of the VMs. For the
small-scale experiments, we consider instances of DPCF
having the total number of VMs,N = {50, 70, 90, 110}
and eight cloud providers, wherem = {30, 50, 70, 90} is
the number of conflicted VMs for each case, respectively,
and p = 0.05. For the large-scale experiments, the number
of VMs are N = {1000, 2000, 3000, 4000}, the number of
cloud providers is 32, wherem = 60% of the VMs have
conflicts, andp = 0.05. The values of the execution costs
and migration costs, are drawn from a uniform distribution
over the Microsoft Azure prices [20]. In all cases, we
choose the extra large VM configurations of Microsoft Azure
for our experiments, with 8 cores and 14 GB RAM. The
execution cost of a VM is between[0.7, 1.1]$, while the
migration cost is between[2, 8]$. The capacity of the cloud
providers available within the federation are generated based
on the number of VMs. For the small-scale experiments,
we use a uniform random distribution with variance 50 and
mean 90, 90, 135, 180. For example, for an experiment
with 50 VMs, the cloud providers’ capacities are generated
within the range[40, 140]. For the large-scale experiments,
we use a uniform random distribution with variance 160
and mean 320, 640, 1280, and 2560, to generate the cloud
providers’ capacities. Note that the size of one VM is 8. For
the small-scale experiments, we create the conflict graphH

by choosing a random number between 0 and 3 to represents
the number of conflicts between a VM and cloud providers.
For example, a VM with 3 conflicts means that it cannot be

assigned to 3 out of the 8 cloud providers. For the large-scale
experiments, we create the conflict graphH by choosing a
random number between 0 and 8 to represents the number
of conflicts between a VM and the cloud providers.

B. Analysis of Results

In the following, we analyze the results for each of the
two classes of experiments.

1) Small-scale experiments:We analyze the performance
of DPCFA and OPT by considering instances of DPCF with
8 cloud providers and four small sets of VMs that need to
be outsourced (N = 50, 70, 90, and 110).

Fig. 1a shows the total cost that the cloud provider incurs
for outsourcing all the VMs to the federation. As shown in
the figure, the cost achieved by using DPCFA is very close
to that achieved when using OPT. For example, for 70 VMs,
the total cost obtained by OPT is $81.53 while the total cost
obtained by DPCFA is $86.59. This results in 6% optimality
gap.

Fig. 1b shows the execution time of the algorithms.
DPCFA is very fast, being three to four orders of magnitude
faster than OPT, while obtaining close to optimal costs.

We analyze the results of the smallest instance with
50 VMs in more details. In Fig 2, we present the VM
placement on each cloud provider and their cost for the
case of 50 VMs available for outsourcing. Fig. 2a shows
the cost that the cloud provider should pay to each cloud
provider participating in the federation. Fig. 2b shows the
number of VMs allocated to the cloud providers participating
in the federation. Note that the cloud providers are sorted
based on the cost metric on horizontal axis, i.e.,P8 is the
cloud provider with the smallest cost metric, whileP2 is the
provider with the largest cost metric. As a result, DPCFA
chooses all lowest cost cloud providers to assign the VMs
with the exception ofP4, where the remaining set of VMs
has conflicts with it. Note that DPCFA and OPT choose
the same allocation to the first two cloud providers with the
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Figure 2: DPCFA vs OPT with 50 VMs: (a) Costs; (b) VMs allocated.
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(*OPT was not able to determine the allocation when the number of VMs are 2000, 3000, and 4000 in feasible time, and thus, thereare no
bars in the plots for those cases)

lowest cost, and do not assign any VMs to the cloud provider
with the highest cost.

2) Large-scale experiments:OPT could not find the solu-
tions even after 8 hours for DPCF instances with 2000, 3000,
and 4000 VMs. As a result, we are not able to compare the
results of DPCFA with that of optimal solution for those
cases.

Fig. 3a shows the total cost of the VM placement. For
1000 VMs, OPT finds the optimal assignment of VMs with
total cost of $1010.89, while DPCFA obtains the total cost
of $1017.68. The results show that DPCFA performs very
well when the problem scales. The optimality gap in this
case is less than 0.2%. Fig. 3b shows the execution time of
DPCFA and OPT. For the obtained results, DPCFA is four
orders of magnitude faster than OPT.

From all the above results, we conclude that DPCFA
determines VM placements that give solutions close to the
optimal while satisfying the trust and disclosure restrictions.
It also requires small execution times, making it a suitable

candidate for deciding the outsourcing and placement of
VMs within a federation of clouds.

V. CONCLUSION

The benefits from using cloud services should not come
at the cost of compromising the privacy and security of
users’ data. Data protection in terms of legal compliance
and user trust are major issues in clouds, and they should
be a top priority when designing cloud systems. On the
other hand, the ever-growing demand for cloud services
along with the demand dynamics require cloud providers to
scale-up when needed. A practical platform to cope with
such demand is the cloud federation. In this paper, we
proposed a data protection framework for cloud federations
that minimizes the cost of outsourcing the computation
under data protection constraints. We proposed to represent
the data protection restrictions as conflict graphs, and model
the data protection problem as an integer program. In the
absence of computationally tractable optimal algorithms for
solving this problem, we designed a fast heuristic algorithm



incorporating a novel VM placement strategy in order to
find close to optimal solutions. The results from extensive
performance analysis for small-scale and large-scale setsof
experiments showed that our proposed algorithm is capable
of finding close to optimal solution very fast. For future
work, we plan to extend this study and integrate it into
existing online dynamic federation formation mechanisms.
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