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Abstract—In order to execute large scale applications pro- a trust value to another GSP based on their past interactions
grams in grids, several Grid Service Providers (GSPs) pool Trust is based on direct interactions of GSPs. However, some
their resources together by forming Virtual Organizations (VOS). ¢ the GSPs may not have had direct interactions in the past.

Forming such VOs is a challenging problem especially when the . - - .
trust relationships among GSPs have to be considered. In this A GSP that did not have past interactions with another GSP

paper, we model the formation of VOs in grids by considering May use the reputation of that GSP to evaluate how likely it
the trust and reputation of the participating GSPs. We design a is to provide the requested resources. We define reputagion a
mechanism for VO formation that enables the GSPs with high the opinion of other GSPs that have had direct interactions
reputation to organize into a VO reducing the cost of execution with both GSPs to evaluate how likely they are to provide
and guaranteeing the maximum profit for the participating GSPs. th ted Al f GSP define its alobal
Furthermore, the mechanism guarantees that the formed VO ¢ req_ues e reSOL_Jrces: S_O' ora ! V\_’e eline Its globa
is stable, that is, the GSPs that are part of the VO do not reputation as how likely is this GSP to provide the requested
have incentives to break away from it. We perform extensive resources based on the opinion of all GSPs. We propose
simulation experiments using real workload traces to characterize g mechanism for VO formation that takes into account the
the properties of the proposed mechanism. The results show that reputation of each of the GSPs that form the VO. We also
the mechanism produces stable VOs composed of GSPs with high - . .
describe a framework for calculating the global reputafimn

reputation that obtain high individual profits. o . .
) ) ) ) each GSP considering direct trust and reputation.
Keywords-grid computing; VO formation; reputation

A. Related Work

There are several studies on how to measure reputation
Grid computing systems are composed of heterogenedndifferent domains. These studies model different pnolsle
resources (CPUs, storage, etc.) owned by autonomous ongsing graphs in which the weight associated with each edge
nizations. These systems provide essential resourcefer aepresents the value of trust. One approach makes use of trus
ducting cutting-edge science and engineering resear@rérh propagation to find the reputation [1]. If two nodes are not
source management in such open distributed environmeats &djacent, each node can evaluate the value of trust to anothe
very complex problem. Efficient resource management irsgridne using an existing path between them based on the trust

leads to efficient utilization of resources and faster etienu transitivity property. That is, ifA trusts B and B trusts C,
of applications. One important aspect of resource managemthen A trustsC to some extent. Hangt al. [1] defined three
in grids is how Grid Service Providers (GSPs) pool thewperators, aggregation, concatenation, and selectioarder
resources together to execute large scale applicatioreseThto improve the accuracy of trust propagation. They also con-
GSPs collaborate and form Virtual Organizations (VOs). % kesidered the selection of the path with the highest propdgate
element in the formation of Virtual Organizations is the GSPtrust value in cases in which multiple paths exist betweem tw
reliability of executing the requested program. In someesas participants. A social trust inference algorithm was desd
a GSP agrees to provide some resources, but it fails to deliby Kuter and Golbeck [2] to estimate the confidence in the
the promised resources to a VO. As a result, the applicatitmst. This algorithm is based on probabilistic reasonirgre
program could not be executed by that VO. Selecting hightiie confidence is calculated based on the preference similar
trusted GSPs to be part of the VO may avoid this probler@onfidence and trust values are propagated over the entire
Therefore, considering the trust among GSPs based on thestwork. Another approach proposed by Agrawbhl. [3] is
previous behaviour would avoid these problems in the VBased on the use of the network flow to find the reputation.
formation. GSPs desire to build VOs with the most trusteldany reputation systems are designed based on graph cen-
GSPs and obtain high profits. In addition, if a GSP does nipality measures [4]. These studies focused on the cefytrali
have any past interactions with another GSP, it can use d@fsnodes within a graph. The centrality of a node determines
reputation in the network, that is, the reputation basedhen tthe reputation of the node among all nodes. Various cetytrali
opinions of the other GSPs that have direct trust to that GSRetrics were defined such as degree centrality, betweenness
In this paper, we define trust as how likely is a GSP toentrality, closeness centrality, and eigenvector cétytrib],
provide the requested resources to another GSP. A GSP sissifh [7], [8].

I. INTRODUCTION



Trust is one major concern when establishing sharing rexperiments using real workload traces from the Parallel
lationships among the GSPs in a grid system. Azzedin akébrkloads Archive [14]. The results show that the proposed
Maheswaran [9] proposed a trust model for grid systems thaechanism determines a stable VO that not only guarantees
considers the trust between GSPs and users. Their moaiihel highest reputation among its participating GSPs, &d al
assumed that the trust and the reputation decay with time. Thaximizes the individual payoffs of its members.
amount of trust between two participants is a weighted sum of
the direct trust and reputation. They used trust in threeisti  C. Organization

mapping algorithms: minimum completion time, Min-min, The rest of the paper is organized as follows. In Section I,
and Sufferage. The simulation results showed improvemept describe the system model, the VO trust model, and the VO
in the overall quality of the schedules in terms of utilivati {5mation framework. In Section IIl, we present the propbse
and average completion time. However, the assumption @bchanism and characterize its properties. In Section B/, w
decaying trust and reputation with time limits the applas ey g|uate the mechanism by extensive simulation expersnent

of this method in grids. This method converges to a state i ection V, we summarize our results and present possible
which the formation of new VOs is not possible. GSPs forgirections for future research.

VOs and as a result would tend to just trust the members of
their respective VOs. Lin and Huai [10] proposed a method 1. VO FORMATION FRAMEWORK
in which a GSP decides to allocate resources based on the . ) )
combination of the trust value and the bidding price of a N this section, we describe the model of the system, the
requester. Their proposed method, QGrid, is based on ¥ trust model, and the VO formation framework.
learning techniques that balance the relative importarfce R
trust and price. QGrid is a distributed method for computing’
the reputation. We first describe the system model which considers that
The combination of reputation and global trust was useduser wants to execute a large-scale application program
to build a grid reputation management framework calleebnsisting ofn independent task§7i,7»,...,7,} on the
GridEigenTrust [11], [12]. Reputation in GridEigenTrust i available set of grid service providers (GSPs) by a giveridea
determined using the eigentrust algorithm proposed by Kafine d. Application programs consisting of several independent
var et al. [13], while the global trust is computed usingtasks are representative for a wide range of problems inceie
the method proposed by Azzedin and Maheswaran [9]. &md engineering [15], [16], [17]. Each ta8ke 7 composing
GridEigenTrust, a GSP selects trusted resources and G®Rsapplication program is characterized by its workladd"),
to satisfy the requirements of the application based onwdich can be defined as the amount of floating-point opera-
hierarchical process. Each organization has a set of esitititions required to execute the task. Executing the apptinati
resources, GSPs, and users. A VO is a set of organizationgptegram? requires a large number of resources which cannot
some parts of organizations (i.e., subset of entities inrga-o be provided by a single GSP. Thus, several GSPs pool their
nization). A hierarchy consists of entities, organizasioand resources together to execute the application. We consider
VOs. A reputation is assigned to each entity. The reputatienset ofm GSPs,G = {G1,Gs,...,Gy}, are available and
of the organization is computed based on the reputationeof tare willing to provide resources for executing programsietie
entities that are part of the organization. Finally, theutaion we assume that the GSPs are driven by incentives in the
of a VO is computed based on the reputations of its compon@&ense that they will execute a task only if they make some
organizations. However, the VO formation problem was ngrofit out of it. More specifically, the GSPs are assumed to be
considered by the authors. To the best of our knowledge, @gif-interested and welfare-maximizing entities. Eacivise
paper is the first to take into account the global trust of thovider G € G owns several computational resources which

System Model

GSPs in the VO formation process. are abstracted as a single machine with spééf. The speed
o s(G@) gives the number of floating-point operations per second
B. Our Contribution that can be executed by GSP Therefore, the execution time
We address the problem of VO formation in grids conef taskT at GSPG is given by th((aTgaxecution time function

sidering the trust relationships among GSPs. We designt a7 x G — R*, wheret(T', G) = <= . We also assume that
mechanism that allows the GSPs to make their own decisiaprsce a task is assigned to a GSP, the task is neither preempted
to participate in VOs. The mechanism provides a stable VOor migrated.

that is, none of the GSPs has incentives to leave the VO andA GSP incurs cost for executing a task. The cost incurred
to collaborate with other GSPs outside the current VO. Thwyy GSPG € G when executing task” € 7 is given by the
mechanism determines the mapping of the tasks to each of tlest function,c : 7 x G — R*. Furthermore we assume that
VOs that minimizes the cost of execution by using a branch-GSP has zero fixed costs and its variable costs are given by
and-bound method. As a result, in each step of the mechanira functione. A user is willing to pay a price” less than her

the mapping provides the maximum individual payoffs for thavailable budge®3 if the program is executed to completion
participating GSPs. We analyze the properties of our preghosby deadlined. If the program execution exceedsthe user is

VO formation mechanism and perform extensive simulatiamot willing to pay any amount that ig? = 0.



Since a single GSP does not have the required resourtiad the reputation between GSKg and G;, G; uses its
for executing the program, GSPs form VOs in order to haveeighbors opinions about; by weighting their opinions using
the necessary resources to execute the program and ntheetrustG; places on them:
importantly, to maximize their profits. The profit is simply
defined as the difference between the payment received by a TG, = Z (arj)" - 2%, _a, (3)
GSP and its execution costs. If the profit is negative. (a GreG

loss), the GSP will choose not to participate. .
) P P This method aggregates the local trust values of all GSPs and

B. VO Trust Model computes the reputation of GSPs using the transitive ptpper

GSPs desire to form VOs with the most trusted GSPs. ¥ the trust. As a result, the power method facilitates trust
GSP assigns a trust value to another GSP based on tféfiPagation and trust aggregation. In trust propagatibe, t
interactions. We model the trust relationship among GSRs aansitivity of trust is considered, and in the trust aggtéem
weighted directed grapfg, E), whereg is a set of GSPs that the trust transitivity of different pgths is aggregated.lsTh
represents the vertices in the graph diids a set of edges procedure_ can be done for the neighbors of nelgh_bors, and
(i,7). The weightu;; associated with edgéi, j) represents so on. This improves the accuracy of trust propagation.
the amount of trust thaf’; assigns ta~;, whereG;,G; € G.

The weightu;; is the strength of the trust relationship from . T g1

G; to G; which is based on past interactions among them. Ta,—G; = Z (ak;)" - 26, a, (4)

Trust can be an asymmetric relationshipulf = 0 then G; Greg

distrustsGG; completely. This can happen if they did not have q . .

any interaétions in the past 6f; did not provide the requested Let x, denote the vector that contains all the reputation
scores thatG; assigns to the other GSPs usiggGSPs. In

resources tas; in past interactions. Direct trust is based Ong’lel’ words, the Iength of a path frof; to other GSPs in

past interactions between two GSPs, but if the two GSPs (? © graph is;. Using the matrix notation, equation (4) for all
not have any interactions in the past, they can rely on t graph 1. 9 &

observations of the other GSPs. PsG;, i =1,...,m can be written as follows:
To form a VO,G; should be able to select; based not only
on their direct trustu;; but also on the trust the other GSPs xl, = (A7) xi L )

have onG;. As a result, we need to consider the reputation
of GSPs rather than their direct trust. To do so, we need to

) . . . f ¢ is large,G; will assign a reputation score to each GSP
define a metric that characterizes the reputation of each G%(I)Jnsidering the opinion of all GSPs. In addition, if all athe

This metric measures how likely is the GSP to provide ﬂESPS do the same to find the reputation scores of all GSPs,

requ_ested resources based on all other- GSPs’ opinions. they will find the same reputation scores axfn . As a result,
Direct trust can be used for local ratings. That means that converges to thglobal reputationof the GsPs (i.e., the

ZSSG;S”P aragii S Isnrc:t?:r gsg gg‘;ec: eon t:\r;ellrocdelllret?tjsttr uvsat1i u%l bal reputation vectox). This vector is the left principal
9 Ing* 9 ) o : eigenvector ofA4, that is, it satisfies:
the normalization of the direct trust is used in such a way

that the values of local trust are between 0 and 1. We define ax = (AT) - x (6)
a;; € [0,1] to be thenormalized trusthat G, assigns ta5;.
In addition, for eachi = 1,--- ,m, }./, a;; = 1, wherem \yhere ) is the eigenvalue ofd. As a result, the procedure

is the number of GSPs. Each GSP computes the normalizgdermines the global reputation of each GSP. By using this
trust values by dividing the local trusi; by the sum of the method, we convert the trust values between each pair of GSPs
local trust values assigned to all its neighbor GSPs aswsllo jhig a global reputation for each GSP. Thtéh component:;
_ Uij ) of the eigenvectok then gives the global reputation score of

> ken, Wik G;. Using this method, a GSP has high reputation to the extent
that the GSP is connected to others who have high reputation
19], [20]. Here, the eigenvectat determines theentrality
of the GSPs based on their reputation.

We also define theverage global reputatiorior a set of
GSPsg as follows:
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where,N; = {G;|3(, j) € E} is the set ofG;’s neighbors.
In the following we describe a procedure for determining t
global reputation of each GSP within a given sebf GSPs.
This procedure is called thpower method18]. We denote
by quﬁGj the trustG; assigns toG; based on the opinion

of ¢ GSPs. The procedure start by determinh@ﬁ@ the ISR |
local trustG; assigns taG; as follows: 7(9) = 161 Gzeg i (7)

The average reputation will be used in the next sections as a
Let A be the matrix of normalized trust of the grapfi, E), metric to characterize the aggregate reputation of the reesnb
wherea;; € [0,1] represents thaormalized trust valuesto of a VO.



C. VO Formation Model

We model the VO formation problem as a coalitional game. Z Z oc(T,G)e(T,G) < P, (VG € C andVT € T)
A coalitional gamd21] is defined by the paifG, v), whereG oy bt ’ AT ’

is the set of players (in our case GSPs) and a real-valued (10)
function called thecharacteristic functiondefined onC C G
such that : C — R* andv(0) = 0. In our model, the players

are the GSPs that form VOs which are coalitions of GSPs. In Z oc(T,GIT,G) < d, (VG €C), a1
this work, we use the terms VO and coalition interchangeably TeT

Each subset C G is a coalition. If all the players form
a coalition, it is called thegrand coalition A coalition has Y 0e(T,G) =1, (VT € T), 12)
avaluegiven by the characteristic functiarn(C) representing Gec
the profit obtained when the members of a coalition work as
a group. To maximize the value of a VO, a GSP prefers to Z oc(T,G) > 1, (VG € C), (13)
join a VO with higher value and members of a VO prefer to Ter
join with GSPs that have higher reputation scores. As at,esul
the formation of a VO not only depends on profit, but it also oe(T,G) € {0,1}, (VG € C andVT € T). (14)

depends on how much trust the GSPs that are part of the VO

have on each other. The reputation of GSPs in a VO meanshe objective function (9) represents the costs incurred
how much reputation each GSP has based on the opiniondasfexecuting the prograrir on C under the mapping. Con-

all GSPs in that VO. The trust graph among the GSPs instraints (10) ensure that the sum of the cost of execution the
VO has an impact on the formation of the VO. We define programZ onC under the mapping is less than or equal to the
subgraph(C, £) of (G, E), where( is the set of GSPs in the payment. Constraints (11) ensure that each GSP can ex&ute i
VO and € is a set of edges among GSPsdn We denote assigned tasks by the deadline. Constraints (12) guardrdee
by A the matrix containing the trust values of the GSPs ieach taskl” € 7 is assigned to exactly one GSP. Constraints
C. We define the reputation in a VO using the subgrapl¥. (13) ensure that each GSPe< C is assigned at least one task.
We model the VO formation based on reputation as a coaliti@onstraints (14) represent the integrality requiremenitgHe
formation problemCoalition formation[22] is the partitioning decision variables.

of the players into disjoint sets. A coalition structuif& = We define the following characteristic function for our
{51, 85,,...,5,} forms a partition such that each player iproposed VO formation game:

a member of exactly one coalitionge., S; N.S; = 0 for all ) ] .
i andj wherei # j and g, ccsSi = G- In our proposed () — {0 if [C| =0 or IP is not feasible,
VO formation game only one of the coalitions in the coalition P—C(T,S) if|C|>0 and IP is feasible,
structure is selected to execute the application prograuos, t (15)
the formation of the rest of the coalitions is not important.
The reason for that is the rest of the GSPs which al?e not\'lwerew| is the cardinality ofC, and thaty(C) satisfies the
the final coalition can participate again in another caatiti constraintu () = 0.

formation process for executing another application pogr hT?e trus_t amfong\jlg STPhS inbf"‘ V_O i_S an fim dpor:tant factﬁr in
For each VO composed of GSPs frofh there exists a the formation of a VO. The objective is o find the \Dsuc

mappingre : T — C, which assigns task € T to GSPG & that its members have the highest average global reput@tson

C. To make sure that a VO is able to execute the progfgm Qef_in_ed in Segtion .”'B) and the VO provides the maximum
we need to find a mapping of all the tasks on the members'ij'VIdual profit for its members.

the VO in such a way that the mapping satisfies all constraintsTh?re are differe_nt ways to_divide .t.h e profit earned by
This problem is known as the task assignment problem. coalition C among its members. Traditionally, th&hapley

The task assignment problem finds a mapping ofithasks value [23] would be employed, but computing the Shapley

of the application tok GSPs in VOC wherek — |C|. We value requires iterating over every partition of a coalifian
consider the following decision variables: ' exponential time endeavor. Another rule for payoff divisio

is equal sharingof the profit among members. Equal sharing
1 if ne(T) =G, provides a tractable way to determine the shares and has been

oc(T,G) = 0 if 7e(T) # G (8) successfully used as an allocation rule in other systemsewhe

’ tractability is critical €.g, [24]). For this reason we adopt here

We formulate the task assignment problem as an integhe equal sharing of the profit as the payoff division rule. A

program (IP) as follows: VO divides the profit equally among its members.

L Due to their welfare-maximizing behavior, the GSPs prefer
Minimize C(7.,C) = Z Z ac(T.G)e(T, G), (9) to form a low profit coalition if their profit divisions are Higr
TeT Gec than those obtained by participating in a high profit coaiti

Subject to: Also, the GSPs will prefer a VO with the highest average



reputation for its members. Therefore, a GGPdetermines payoff of any coalition is not greater than the sum of payoffs

its preferred VOC, whereG € C, by solving: of its members in the grand coalition. The core contains ffayo
P—C(T,C) vectors that make the players want to form the grand coalitio
max —————— (16) The existence of a payoff vector in the core shows that the
© Cl grand coalition is stable. Therefore, a payoff divisionrighe
and core if no player has an incentive to leave the grand coalitio
Sicice Ti to join a_nother coalition in order to obtain higher profit. In
H(ngT (17) our previous work [25], we showed that the core of the VO

formation game(G,v) can be empty. If the grand coalition
where z; is the reputation score off; as computed by the does not form, independent and disjoint coalitions woutdnfo
power method presented in Section 1I-B.

This is a bicriteria optimization problem in which the GSP Il. VO FORMATION MECHANISM
goal is to maximize the profit share that it obtains from the VO In this section, we describe our proposed trust-based mech-
and at the same time maximize the average global trust it hasism for VO formation and characterize its properties.
within the VO. Minimizing the costC (7, C) by solving the IP . .
problem implicitly maximizes the profit? — C(7,C), earned A- Trust-based VO Formation Mechanism (TVOF)
by a VO. That means, a VO finds the maximum profit, then The proposed trust-based VO formation mechanism (TVOF)
the profit is divided among participating GSPs. As a result,ist given in Algorithm 1. The mechanism is executed by a
GSP prefers a VO that provides the highest profit among ailisted party that also facilitates the communication agnon
possible VOs. VOs/GSPs.

Since a GSP has to solve a bicriteria optimization problem TVOF uses a sef containing feasible VOs. We initialize
(defined by equations (16) and (17)) we will asses the opti- with the set of all GSPs, that is, all GSPs form a VO
mality of the solutions using the conceptRdireto optimality initially. In every iteration, TVOF executes a branch-and-
In our case Pareto optimality refers to the set of solutidns bound method (IP-B&B) to solve the integer programming
the bicriteria problem defined above that are not dominayed tmodel given in equations (9) to (14) in order to find an optimal
other solutions in both criteria. Here the two criteria dne t allocation for the application prograffi onC. If the IP-B&B
individual payoff and the average reputation. Thus, a smiut finds a feasible mapping that assigns all tagks 7 to C
C yielding an individual payoff ofr and an average reputationsatisfying the deadline (all constraint€)js added tol. Then,
of z is Pareto optimal if there is no other solution (in our caseVOF calculates the reputation values of all GSPs in the VO
VO) C’ with both a higher payoffr’ and a higher average using the power method (described in Section IIl) by calling
reputationz’ (i.e., 7’ > = andz’ > ). The Pareto optimal Algorithm 2. The power method is one of many eigenvalue
solutions are not unique and they form a set of Pareto Optinadjorithms that can be used to find the largest eigenvector of
solutions. In the next section, we will show that our progbsehe trust matrix,Ac representing the trust relationships among
mechanism obtains one such solution from the set of Par¢ghe GSPs inC. Algorithm 2 starts by assigning the same

optimal solutions. reputation score to all GSPs in the O Then, it recomputes
The payoff or the share of GSP G part of coalitionC, the reputation scores of each GSP as the weighted sum of the
denoted byy(C) is given by scores of all GSPs in a GSP’s neighborhood. The algorithm
P—C(T,C) repeats the;e steps until the average relative error betwee
Ya(C) = T’ (18) x7t! andx? is smaller than the given threshaddThat means

x? does not change significantly any more and it represents the
Thus, the payoff vectop(G) = (v¢, (9),- -+ , %, (G)) gives global reputation of the GSPs (h The algorithm returns the
the payoff divisions of the grand coalition. A solution cept eigenvector representing the reputation of GSPs partioipa
for coalitional games is a payoff vector that allocates tha the VO.
payoff among the players in some fair way. The primary In every iteration, TVOF selects a GSP, with the lowest
concern for any coalitional game is stability. One of theeputation in the VOC using x. Then, TVOF removes it
solution concepts used to asses the stability of coalitisnsfrom the VO. If more than one GSPs have the same lowest
the core In order to define the core we need to introduceeputation, the mechanism chooses one of them randomly. Thi
first the concept of imputation. Aimputation is a payoff changes the grapl€(£) by removing not onlyG, but also all
vector such that)c(G) > v(G) for all GSPSG € G, and edges with direct trust t@s. This is a greedy choice for a
> ceg ¥a(G) = v(G). The first condition says that by formingVO since in each step a VO removes a GSP with the lowest
the grand coalition the profit obtained by each member reputation.
participating in the grand coalition is not less than the one The mechanism recalculates the reputation scores for all
obtained when acting alone. The second condition says thataining GSPs in the VO in every iteration. The recalcatati
the entire profit of the grand coalition should be dividedtep is necessary since the reputation of the VO members
among its members. Theore is a set of imputations suchshould be based on their opinion about the participatingsGSP
that) .. 4 ¥a(G) > v(S),¥S C G, i.e., for all coalitions, the in the VO. The opinion of the GSP with the lowest reputation



Algorithm 1 Trusted VO Formation Mechanism (TVOF) C\{G;} =, Cforall j ecC.

1 L=10 In other words, a V@ is individually stable if no GSF; € C

2 €=g can leavel without making at least one GSF € C unhappy.

i' rey:ﬁ:;tg — TRUE Theorem 1:TVOF produces VOs that are individually sta-
5. Map program7 on C using IP-B&B ble.

6: if FEASIBLE then Proof: (Sketch) We consider two cases to show that
7 L—LUC TVOF forms an individually stable VO. First, if7 is the

Bf flag — FALSE GSP that has the lowest reputation among all GSPs in the
15()).: ing gEPUTAﬂON(C,S) VO C, then TVOF checks thi_s case by rer_noviﬂg Thqs,

11:  Find a GSPG with the lowest reputation ix we have two cases where either the VO is not feasible or
122 C=C\G the individual profit of GSPs is not as much as the individual
13: until flag profit of GSPs inC. As a result, leaving= as part of the VO

14: Find k = arg maxc, ez {v(Ci)/|Ci|} makes other GSPs il unhappy. Second, if is not the GSP

15: Map and execute program on VO Cx that has the lowest reputation among all GSPs in the(YO

then removing decreases the total reputation of GSP€ jn

Algorithm 2 REPUTATION(, €) thus the participating GSPs would be unhappy becausg of
1: Input: Trust graph:(C, &) leaving the VO. As a result, the formed VO is individually
2: Ac = adjacency matrix ofC, &) stable. n

. .0 1 . .. .
2; Lo th forall G; € C Another important characteristics of the solution prodlice
5 re‘ﬁ,% — ATx? by TVOF is the optimality of the VO in terms of both profit
6 0 |IxTT - xI|| and reputation. We now show that the VO produced by TVOF
7: until § <e is a Pareto optimal solution for the VO formation problem.
8: return x*! Theorem 2:TVOF produces a Pareto optimal solution to

the VO formation problem.

Proof: (Sketch) The setl in the description of TVOF
should not affect the value of the reputation of the otheontains the feasible VOs formed by TVOF. Based on the
GSPs. This recalculation affects GSPs’ reputations inmitiese definition of Pareto optimality in Section 1I-C, we need to
VO. As a result, TVOF considers only the opinions of thghow that the resulting VO € £ from TVOF is not dominated
participating GSPs when calculating the global reputatibat by other VOs in both its individual payoff;, and its average
is, the opinions of GSPs outside the VO do not have any effgeputation,z. Since in each step of the mechanism, TVOF
on the reputation of the VO’s members. removes a GSP with the lowest reputation, the high reputable

These iterations continue until TVOF finds a VO that coul&SPs are always in the VO. As a result, the GSPs outside the
not execute the program. At the end, TVOF chooses a WD are not able to form a VO with higher average reputation
Cr from L that yields the highest individual payoff for itsthan z. That means, there is no VO' ¢ £ wherez’ > z.
members. The program is executed by ¥ a trusted subset However, there may be other V@¥ < £ that have higher
of G. This VO contains members with high reputation andverage reputation. Those VOs do not have a higher individua
yields the highest individual payoff for them. payoff thanz, since TVOF select€ which has the highest
individual payoff among all VOs inC. As a result, the VO
formed by TVOF is a Pareto optimal solution. ]

Since only one VO forms and executes the program, the
formation of other VOs with GSPs outside of the selected VO IV. EXPERIMENTAL RESULTS
is not important. We will be interested in characterizing th We perform a set of simulation experiments which allows
stability of the VO obtained by TVOF. In order to do thisus to investigate how effective the proposed trust-based VO
we will formally define the stability concept that will be wbe formation mechanism is in producing stable VOs.
in this paper. We define th€O preference relatior+-; for )
each membe€;. This allowsG; to compare two VOs and to A- Experimental Setup
indicate its preference to be a part of one of thein-; B We consider 16 GSPs which is a reasonable estimation of
implies thatG; prefers to be a member of V@ than to be the number of GSPs in real grids. The number of GSPs is small
a member of VOB, or at least it prefers both VOs equally.since each GSP is a provider and not a single machine. We use
In addition, A ~; B indicates thatG; strictly prefers to be a real workloads from the Parallel Workloads Archive [27K]1
member ofA than a member oB. We define a new concept ofto drive our simulation experiments. More specifically we us
stability similar to the stability of a coalition structudefined the logs from the Atlas cluster at Lawrence Livermore Nadlon
in the context of the hedonic games [26]. We call this notiooaboratory (LLNL). This log consists of traces (collectedrfi
individual stabilityand we define it as follows. November 2006 to Jun 2007) that contain a good range of job

Definition 1 (Individual stability): A coalition C is indi- sizes from 8 to 8832. We used the cleaned log LLNL-Atlas-
vidually stableif there is no memberG; € C such that 2006-2.1-cln.swf which has 43,778 jobs. We selected 21,915

B. Stability and efficiency



TABLE [: Simulation Parameters

Param. Description Value(s)

m Number of GSPs 16

n Number of tasks [8,8832]

s GSP’s speedsnt x 1 vector) 4.91 x[16, 128] GFLOPS

w Tasks’ workload © x 1 vector) [17676,1682922.14]
GFLOP

t Execution time matrix.: x n) 2 seconds

c Cost matrix (n x n) 1, pp X ¢r]

d Deadline [0.3,2.0] x Runtime x
n /1000 seconds

P Payment [0.2,0.4] X maz. X n
units

bp Maximum baseline value 100

br Maximum row multiplier 10

Runtime | Runtime of a job from Parallel Work{ > 7200 seconds

loads Archive
maze Maximum amount of cost b X G

for the task allocation.

Based on the speed vector and the workload vector, the ex-
ecution time of each task; on each GSH7; is obtained. The
execution time matrix is consistent if GSP; that executes
any taskT; faster than GSK-;, executes all tasks faster than
GSPGy, [29]. The generated time matrix is consistent due to
the fact that for every task; € 7, w(T) is fixed for all GSPs
G, € g, thus, for any task; if ¢(T;,G;) < t(T}, Gx) is true,
then we haves(G;) > s(Gy) which meansG; is faster than
Gy. As aresultt(T,, G,) > t(T,, G;) is satisfied for all tasks
T,€T.

Each cost matrix is generated using the method described
by Braunet al. [29]. First, a baseline vector of size is
generated where each element is a random uniform number
within [1, ¢3]. Then, the rows of the cost matrix are generated
based on the baseline vector. Each elemjeint row i of the

jobs that completed successfully out of the total jobs of thgatrix. c(i,§), is generated by the elemenbf the baseline

log. About 13% of the total completed jobs are large jobgcior multiplied by a uniform random number within ¢, ],
having runtimes greater than 7200 seconds.

The Atlas cluster [28] contains 1152 nodes, each with @ultipliers. As a result, each element in the cost matrix is

processors which makes 9,216 processors in total. Each pighin the rangell, ¢y X ]

a row multiplier. Therefore, one row requires different row

cessor is an AMD dual-core Opteron with a clock speed of 2.4\we consider that the costs of GSPs are unrelated to
GHz. The theoretical system peak performance of the Atlggch other, i.e., ifs(Gi) > s(Gy), for any taskT}, either
cluster is 44.24 TFLOPS (Tera FLoating-point OPeratiorrs PE(T;, G;) < (T, Gy) of ¢(T;,Gy) < c(Tj,G;) is true. This
Second). As a result, the peak performance of each procesgaiue to GSPs policies. However, we consider that the costs

is 4.91 GFLOPS (GigaFLOPS).

are related to the workload of the tasks, i.e., for two taBks

We selected six different application program sizes from tlanqu wherew(T;) > w(T,), we havec(T}, G;) > (T, G;)
Atlas log, ranging from 256 to 8192 tasks. For each programr all G; € G. A task with the smallest workload has the
the number of allocated processors the job uses gives Hieapest cost on all GSPs.
number of tasks, and the average CPU time used in secondg/e use the Erls-Renyi model to generate random trust
gives the the average runtime of a task. We used the pegliphs connecting the GSPs [30]. An BseéRenyi graph
performance of a processor to convert the runtime to wockIO@WP) is a graph constructed by connecting nodes randomly
for each task. We generated the values of the other parane{ghere the graph has: nodes. The probability of having
based on the extracted data from the Atlas log. The parasetgh edge in the graph is for any pair of nodes, and it is
and their values are listed in Table I. The values for deadlilhdependent from every other edge. That means, all graphs
and payment were generated in such a way that there existgigh 1 nodes and: edges have equal probability. Based on

feasible solution in each experiment.

the parametep € [0, 1], the graph can be sparse or complete.

Each task has a workload expressed in Giga Floating-pointthese experimentsp = 16 is the number of GSPs, and
Operation (GFLOP). To generate a workload, we extract the= 0.1. We use the ILOG Concert Technology APIs in
runtime of a job (in seconds) from the Parallel Workloads++ to solve the IP problem by CPLEX solver provided
Archives, and multiply that by the performance (GFLOPSjy IBM ILOG CPLEX Optimization Studio for Academics
of a processor in the Atlas system. This number gives thgitiative [31].
maximum amount of giga floating-point operations for a task. )

We assume that the workload of each task iin, 1.0] of the B. Analysis of Results

maximum GFLOP of the job. The workload vecter, contains

the workload of each task of the application program.
The speed vectors is generated relative to the AtlasRandom VO Formation (RVOF). The RVOF mechanism is

We compare the performance of our trust-based VO for-
mation mechanism (TVOF) with that of another mechanism,

system. Each GSP has a speed chosen within the ratige same as TVOF, but instead of removing a GSP with the
4.91 x [16,128] GFLOPS. This is due to the fact that eacliowest reputation score from a VO, RVOF removes a GSP
GSP can have several processors capable of perforinffig without considering its reputation score. As a result, inhea
GFLOPS. The reason that we chose this range is that #tep a GSP is removed from a VO randomly. Both mechanisms
number of processors in the Atlas is 9,216. If &fi GSPs use the branch-and-bound method to find the mapping of the
have the highest performance 18 x 4.91, we would have tasks to GSPs in a VO. This allows us to focus on the VO
2048 processors that is 22.2 percent of the power of the Atflasmation and not on the choice of the mapping algorithms.
system. As a result the deadline is generated at most 16 tirvés performed a series of ten experiments for each case, and
larger than the runtime to make sure there is a feasibleisnlutwe represented the average of the obtained results.
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In Fig. 1, we show the performance of TVOF and RVOReputation of the members of the VOs obtained by RVOF. In
in terms of the individual GSP’s payoffs in the final VO, as addition, TVOF tries to keep the average reputation scores
function of the number of tasks. Both mechanisms select a \ffile same for all VOs. By considering the individual payoff
with the highest individual payoff as the final VO to execute Fig. 1, the results show that TVOF not only provides the
the application program. The figure shows that on averapmghest average reputation for GSPs in the VO, but also it
both mechanisms lead to the same amount of payoff for theovides reasonable individual payoff for them.

GSPs participating in the final VO. This is due to the fact that Fig. 4 shows the individual payoff of GSPs participating in
both TVOF and RVOF select the VO that yields the higheshe VO obtained by TVOF. We select 10 different programs
individual payoff for the GSPs. In addition to selecting @ with 256 tasks. TVOF selects the VO that provides the
yelding the highest individual profit, TVOF also guarantedsighest individual payoff. In addition, this figure showseth

that the selected VO is composed of GSPs with the highéstiividual payoff of GSPs in the VO with the highest product
average global reputation. of individual payoff and average reputation among the VOs

In Fig. 2, we show the size of the final VO obtained byn the list £ maintained by TVOF. That means, we find a VO
TVOF and RVOF. This figure shows that as the number tiiat has the highest product of individual payoff and averag
tasks increases the size of the VO obtained by TVOF increaseputation among all VOs iC. For that VO, we show the
This means that the more tasks the more GSPs pool thiedividual payoff for its members. Comparing these two sase
resources to form a VO in order to execute the program. Thee results show that in most cases, TVOF not only finds the
VOs formed by TVOF do not necessary have smaller size th&® with the highest individual payoff, but also the obtained
the VOs obtained by RVOF. VO has the highest average reputation score. As a result, the

In Fig. 3, we show the average global reputation of the GSPYOF mechanism provides the Pareto optimal VO.
in the final VO obtained by TVOF and RVOF. This figure The Pareto optimality of the achieved results can also be
shows that TVOF forms VOs composed of more reputab&een from Fig. 5 and Fig. 6. In these figures, we show the
GSPs. The average global reputation of the members of fleemation of VOs for two programsi and B consisting of
VOs produced by TVOF is higher in all cases than the averagg6 tasks. Both figures show the results of all iterations of
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TVOF mechanism. The VO formed by all 16 GSPs has tigoduct of individual payoff and average global reputation
lowest individual payoff for them (left vertical axis) antsa Comparison of Fig. 5 and Fig. 7 for progra# and Fig. 6 and
has the lowest average global reputation (right verticid)ax Fig. 8 for programB, shows the effectiveness of our proposed
By reducing the size of a VO and removing a GSP with theVOF mechanism.

lowest reputation score, the average global reputationegal Fig. 9 shows the execution time of TVOF and RVOF. The
increase. In the case of progras shown in Fig. 5, a VO TVOF's execution time is reasonable given that the appboat
with 4 GSPs is the final VO obtained by TVOF that provideBrogram would require several hours to execute. The reason
the highest individual payoff and the highest average dlobf@r getting higher execution times for 4096 and 8192 tasks is
reputation. In the case of prograf, shown in Fig. 6, a VO that finding the mapping takes more time.

with 7 GSPs is the final VO obtained by TVOF that provides From the above results, we conclude that the proposed VO
the highest individual payoff. The final VO does not have tH@rmation mechanism is able to form stable VOs that ensure
highest average global reputation, but it provides the ésgh the program is completed before its deadline and provide the
product of individual payoff and average global reputation highest individual payoff for the GSPs.

We should mention again that TVOF selects the final VO
with the highest individual payoff, but this VO is the onettha
also has the highest average reputation. This is due to th&Ve proposed a novel mechanism for VO formation in
fact that in each step, TVOF removes a GSP with the lowagtids considering the trust relationships among grid servi
reputation among all GSPs in a VO. providers. In the proposed mechanism, GSPs cooperate to

We show the formation of VOs using RVOF for the saméorm VOs with high reputation GSPs in order to execute
programsA and B in Fig. 7 and Fig. 8, respectively. Bothapplication programs. We modeled the problem as a coddition
figures show the results of all iterations. The average globgame and derived a centralized VO formation mechanism. To
reputation changes in all iterations, but it does not ineeeafind the optimal configuration of all the tasks on participat-
since GSPs are removed randomly. Selecting a VO wiithg GSPs in a VO, we used an branch-and-bound method.
the highest individual payoff does not provide the highe$te showed that our proposed mechanism produces a stable

V. CONCLUSION
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coalition in terms of reputation and individual payoff. Weg17]
performed extensive experiments with the data extracted fr
real workload traces to investigate its properties. Experital
results showed that the VO obtained by TVOF maximizes the
reputation of the participating GSPs. In addition, mosthaf t [19]
time TVOF determines the final VO with the highest individual
payoffs for its members. The mechanism’s execution timgy)
is reasonable given that applications programs would requi
several hours to execute. We believe that this research WAft
encourage grid service providers to adopt trust-based V£
formation mechanisms and use them to pool their resources
together in order to execute application programs. In aitul?e
work, we would like to consider the task dependencies in
our VO formation model and design new mechanisms for V{24]
formation.
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