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Abstract—In order to execute large scale applications pro-
grams in grids, several Grid Service Providers (GSPs) pool
their resources together by forming Virtual Organizations (VOs).
Forming such VOs is a challenging problem especially when the
trust relationships among GSPs have to be considered. In this
paper, we model the formation of VOs in grids by considering
the trust and reputation of the participating GSPs. We design a
mechanism for VO formation that enables the GSPs with high
reputation to organize into a VO reducing the cost of execution
and guaranteeing the maximum profit for the participating GSPs.
Furthermore, the mechanism guarantees that the formed VO
is stable, that is, the GSPs that are part of the VO do not
have incentives to break away from it. We perform extensive
simulation experiments using real workload traces to characterize
the properties of the proposed mechanism. The results show that
the mechanism produces stable VOs composed of GSPs with high
reputation that obtain high individual profits.
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I. I NTRODUCTION

Grid computing systems are composed of heterogeneous
resources (CPUs, storage, etc.) owned by autonomous orga-
nizations. These systems provide essential resources for con-
ducting cutting-edge science and engineering research. The re-
source management in such open distributed environments isa
very complex problem. Efficient resource management in grids
leads to efficient utilization of resources and faster execution
of applications. One important aspect of resource management
in grids is how Grid Service Providers (GSPs) pool their
resources together to execute large scale applications. These
GSPs collaborate and form Virtual Organizations (VOs). A key
element in the formation of Virtual Organizations is the GSPs’
reliability of executing the requested program. In some cases,
a GSP agrees to provide some resources, but it fails to deliver
the promised resources to a VO. As a result, the application
program could not be executed by that VO. Selecting highly
trusted GSPs to be part of the VO may avoid this problem.
Therefore, considering the trust among GSPs based on their
previous behaviour would avoid these problems in the VO
formation. GSPs desire to build VOs with the most trusted
GSPs and obtain high profits. In addition, if a GSP does not
have any past interactions with another GSP, it can use its
reputation in the network, that is, the reputation based on the
opinions of the other GSPs that have direct trust to that GSP.

In this paper, we define trust as how likely is a GSP to
provide the requested resources to another GSP. A GSP assigns

a trust value to another GSP based on their past interactions.
Trust is based on direct interactions of GSPs. However, some
of the GSPs may not have had direct interactions in the past.
A GSP that did not have past interactions with another GSP
may use the reputation of that GSP to evaluate how likely it
is to provide the requested resources. We define reputation as
the opinion of other GSPs that have had direct interactions
with both GSPs to evaluate how likely they are to provide
the requested resources. Also, for a GSP, we define its global
reputation as how likely is this GSP to provide the requested
resources based on the opinion of all GSPs. We propose
a mechanism for VO formation that takes into account the
reputation of each of the GSPs that form the VO. We also
describe a framework for calculating the global reputationfor
each GSP considering direct trust and reputation.

A. Related Work

There are several studies on how to measure reputation
in different domains. These studies model different problems
using graphs in which the weight associated with each edge
represents the value of trust. One approach makes use of trust
propagation to find the reputation [1]. If two nodes are not
adjacent, each node can evaluate the value of trust to another
one using an existing path between them based on the trust
transitivity property. That is, ifA trustsB andB trustsC,
thenA trustsC to some extent. Hanget al. [1] defined three
operators, aggregation, concatenation, and selection, inorder
to improve the accuracy of trust propagation. They also con-
sidered the selection of the path with the highest propagated
trust value in cases in which multiple paths exist between two
participants. A social trust inference algorithm was designed
by Kuter and Golbeck [2] to estimate the confidence in the
trust. This algorithm is based on probabilistic reasoning where
the confidence is calculated based on the preference similarity.
Confidence and trust values are propagated over the entire
network. Another approach proposed by Agrawalet al. [3] is
based on the use of the network flow to find the reputation.
Many reputation systems are designed based on graph cen-
trality measures [4]. These studies focused on the centrality
of nodes within a graph. The centrality of a node determines
the reputation of the node among all nodes. Various centrality
metrics were defined such as degree centrality, betweenness
centrality, closeness centrality, and eigenvector centrality [5],
[6], [7], [8].



Trust is one major concern when establishing sharing re-
lationships among the GSPs in a grid system. Azzedin and
Maheswaran [9] proposed a trust model for grid systems that
considers the trust between GSPs and users. Their model
assumed that the trust and the reputation decay with time. The
amount of trust between two participants is a weighted sum of
the direct trust and reputation. They used trust in three heuristic
mapping algorithms: minimum completion time, Min-min,
and Sufferage. The simulation results showed improvement
in the overall quality of the schedules in terms of utilization
and average completion time. However, the assumption of
decaying trust and reputation with time limits the applications
of this method in grids. This method converges to a state in
which the formation of new VOs is not possible. GSPs form
VOs and as a result would tend to just trust the members of
their respective VOs. Lin and Huai [10] proposed a method
in which a GSP decides to allocate resources based on the
combination of the trust value and the bidding price of a
requester. Their proposed method, QGrid, is based on Q-
learning techniques that balance the relative importance of
trust and price. QGrid is a distributed method for computing
the reputation.

The combination of reputation and global trust was used
to build a grid reputation management framework called
GridEigenTrust [11], [12]. Reputation in GridEigenTrust is
determined using the eigentrust algorithm proposed by Kam-
var et al. [13], while the global trust is computed using
the method proposed by Azzedin and Maheswaran [9]. In
GridEigenTrust, a GSP selects trusted resources and GSPs
to satisfy the requirements of the application based on a
hierarchical process. Each organization has a set of entities:
resources, GSPs, and users. A VO is a set of organizations or
some parts of organizations (i.e., subset of entities in an orga-
nization). A hierarchy consists of entities, organizations, and
VOs. A reputation is assigned to each entity. The reputation
of the organization is computed based on the reputation of the
entities that are part of the organization. Finally, the reputation
of a VO is computed based on the reputations of its component
organizations. However, the VO formation problem was not
considered by the authors. To the best of our knowledge, our
paper is the first to take into account the global trust of the
GSPs in the VO formation process.

B. Our Contribution

We address the problem of VO formation in grids con-
sidering the trust relationships among GSPs. We design a
mechanism that allows the GSPs to make their own decisions
to participate in VOs. The mechanism provides a stable VO,
that is, none of the GSPs has incentives to leave the VO and
to collaborate with other GSPs outside the current VO. The
mechanism determines the mapping of the tasks to each of the
VOs that minimizes the cost of execution by using a branch-
and-bound method. As a result, in each step of the mechanism
the mapping provides the maximum individual payoffs for the
participating GSPs. We analyze the properties of our proposed
VO formation mechanism and perform extensive simulation

experiments using real workload traces from the Parallel
Workloads Archive [14]. The results show that the proposed
mechanism determines a stable VO that not only guarantees
the highest reputation among its participating GSPs, but also
maximizes the individual payoffs of its members.

C. Organization

The rest of the paper is organized as follows. In Section II,
we describe the system model, the VO trust model, and the VO
formation framework. In Section III, we present the proposed
mechanism and characterize its properties. In Section IV, we
evaluate the mechanism by extensive simulation experiments.
In Section V, we summarize our results and present possible
directions for future research.

II. VO FORMATION FRAMEWORK

In this section, we describe the model of the system, the
VO trust model, and the VO formation framework.

A. System Model

We first describe the system model which considers that
a user wants to execute a large-scale application programT
consisting ofn independent tasks{T1, T2, . . . , Tn} on the
available set of grid service providers (GSPs) by a given dead-
line d. Application programs consisting of several independent
tasks are representative for a wide range of problems in science
and engineering [15], [16], [17]. Each taskT ∈ T composing
the application program is characterized by its workloadw(T ),
which can be defined as the amount of floating-point opera-
tions required to execute the task. Executing the application
programT requires a large number of resources which cannot
be provided by a single GSP. Thus, several GSPs pool their
resources together to execute the application. We considerthat
a set ofm GSPs,G = {G1, G2, . . . , Gm}, are available and
are willing to provide resources for executing programs. Here,
we assume that the GSPs are driven by incentives in the
sense that they will execute a task only if they make some
profit out of it. More specifically, the GSPs are assumed to be
self-interested and welfare-maximizing entities. Each service
providerG ∈ G owns several computational resources which
are abstracted as a single machine with speeds(G). The speed
s(G) gives the number of floating-point operations per second
that can be executed by GSPG. Therefore, the execution time
of taskT at GSPG is given by the execution time function
t : T ×G → R

+, wheret(T,G) = w(T )
s(G) . We also assume that

once a task is assigned to a GSP, the task is neither preempted
nor migrated.

A GSP incurs cost for executing a task. The cost incurred
by GSPG ∈ G when executing taskT ∈ T is given by the
cost function,c : T × G → R

+. Furthermore we assume that
a GSP has zero fixed costs and its variable costs are given by
the functionc. A user is willing to pay a priceP less than her
available budgetB if the program is executed to completion
by deadlined. If the program execution exceedsd, the user is
not willing to pay any amount that is,P = 0.



Since a single GSP does not have the required resources
for executing the program, GSPs form VOs in order to have
the necessary resources to execute the program and more
importantly, to maximize their profits. The profit is simply
defined as the difference between the payment received by a
GSP and its execution costs. If the profit is negative (i.e., a
loss), the GSP will choose not to participate.

B. VO Trust Model

GSPs desire to form VOs with the most trusted GSPs. A
GSP assigns a trust value to another GSP based on their
interactions. We model the trust relationship among GSPs asa
weighted directed graph(G, E), whereG is a set of GSPs that
represents the vertices in the graph andE is a set of edges
(i, j). The weightuij associated with edge(i, j) represents
the amount of trust thatGi assigns toGj , whereGi, Gj ∈ G.
The weightuij is the strength of the trust relationship from
Gi to Gj which is based on past interactions among them.
Trust can be an asymmetric relationship. Ifuij = 0 thenGi

distrustsGj completely. This can happen if they did not have
any interactions in the past orGj did not provide the requested
resources toGi in past interactions. Direct trust is based on
past interactions between two GSPs, but if the two GSPs did
not have any interactions in the past, they can rely on the
observations of the other GSPs.

To form a VO,Gi should be able to selectGj based not only
on their direct trustuij but also on the trust the other GSPs
have onGj . As a result, we need to consider the reputation
of GSPs rather than their direct trust. To do so, we need to
define a metric that characterizes the reputation of each GSP.
This metric measures how likely is the GSP to provide the
requested resources based on all other GSPs’ opinions.

Direct trust can be used for local ratings. That means that
a GSP rates another GSP based on their direct trust. To
assign a single rating to a GSP, i.e., the local trust value,
the normalization of the direct trust is used in such a way
that the values of local trust are between 0 and 1. We define
aij ∈ [0, 1] to be thenormalized trustthatGi assigns toGj .
In addition, for eachi = 1, · · · ,m,

∑m
j=1 aij = 1, wherem

is the number of GSPs. Each GSP computes the normalized
trust values by dividing the local trustuij by the sum of the
local trust values assigned to all its neighbor GSPs as follows:

aij =
uij

∑

k∈Ni
uik

(1)

where,Ni = {Gj |∃(i, j) ∈ E} is the set ofGi’s neighbors.
In the following we describe a procedure for determining the

global reputation of each GSP within a given setG of GSPs.
This procedure is called thepower method[18]. We denote
by xq

Gi→Gj
the trustGi assigns toGj based on the opinion

of q GSPs. The procedure start by determiningx0
Gi→Gj

the
local trustGi assigns toGj as follows:

x0
Gi→Gj

= aij (2)

Let A be the matrix of normalized trust of the graph(G, E),
whereaij ∈ [0, 1] represents thenormalized trust values. To

find the reputation between GSPsGi and Gj , Gi uses its
neighbors opinions aboutGj by weighting their opinions using
the trustGi places on them:

x1
Gi→Gj

=
∑

Gk∈G

(akj)
T · x0

Gi→Gk
(3)

This method aggregates the local trust values of all GSPs and
computes the reputation of GSPs using the transitive property
of the trust. As a result, the power method facilitates trust
propagation and trust aggregation. In trust propagation, the
transitivity of trust is considered, and in the trust aggregation
the trust transitivity of different paths is aggregated. This
procedure can be done for the neighbors of neighbors, and
so on. This improves the accuracy of trust propagation.

x
q
Gi→Gj

=
∑

Gk∈G

(akj)
T · xq−1

Gi→Gk
(4)

Let x
q
Gi

denote the vector that contains all the reputation
scores thatGi assigns to the other GSPs usingq GSPs. In
other words, the length of a path fromGi to other GSPs in
the graph isq. Using the matrix notation, equation (4) for all
GSPsGi, i = 1, . . . ,m can be written as follows:

x
q
Gi

= (AT ) · xq−1
Gi

(5)

If q is large,Gi will assign a reputation score to each GSP
considering the opinion of all GSPs. In addition, if all other
GSPs do the same to find the reputation scores of all GSPs,
they will find the same reputation scores as inx

q
Gi

. As a result,
x

q
Gi

converges to theglobal reputationof the GSPs (i.e., the
global reputation vectorx). This vector is the left principal
eigenvector ofA, that is, it satisfies:

λx = (AT ) · x (6)

whereλ is the eigenvalue ofA. As a result, the procedure
determines the global reputation of each GSP. By using this
method, we convert the trust values between each pair of GSPs
into a global reputation for each GSP. Thei-th componentxi

of the eigenvectorx then gives the global reputation score of
Gi. Using this method, a GSP has high reputation to the extent
that the GSP is connected to others who have high reputation
[19], [20]. Here, the eigenvectorx determines thecentrality
of the GSPs based on their reputation.

We also define theaverage global reputationfor a set of
GSPsG as follows:

x̄(G) =
1

|G|

∑

i:Gi∈G

xi (7)

The average reputation will be used in the next sections as a
metric to characterize the aggregate reputation of the members
of a VO.



C. VO Formation Model

We model the VO formation problem as a coalitional game.
A coalitional game[21] is defined by the pair(G, v), whereG
is the set of players (in our case GSPs) andv is a real-valued
function called thecharacteristic function, defined onC ⊆ G
such thatv : C → R

+ andv(∅) = 0. In our model, the players
are the GSPs that form VOs which are coalitions of GSPs. In
this work, we use the terms VO and coalition interchangeably.

Each subsetC ⊆ G is a coalition. If all the players form
a coalition, it is called thegrand coalition. A coalition has
a valuegiven by the characteristic functionv(C) representing
the profit obtained when the members of a coalition work as
a group. To maximize the value of a VO, a GSP prefers to
join a VO with higher value and members of a VO prefer to
join with GSPs that have higher reputation scores. As a result,
the formation of a VO not only depends on profit, but it also
depends on how much trust the GSPs that are part of the VO
have on each other. The reputation of GSPs in a VO means
how much reputation each GSP has based on the opinions of
all GSPs in that VO. The trust graph among the GSPs in a
VO has an impact on the formation of the VO. We define a
subgraph(C, E) of (G, E), whereC is the set of GSPs in the
VO and E is a set of edges among GSPs inC. We denote
by AC the matrix containing the trust values of the GSPs in
C. We define the reputation in a VOC using the subgraphS.
We model the VO formation based on reputation as a coalition
formation problem.Coalition formation[22] is the partitioning
of the players into disjoint sets. A coalition structureCS =
{S1, S2, . . . , Sh} forms a partition such that each player is
a member of exactly one coalition,i.e., Si ∩ Sj = ∅ for all
i and j where i 6= j and

⋃

Si∈CS Si = G. In our proposed
VO formation game only one of the coalitions in the coalition
structure is selected to execute the application program, thus,
the formation of the rest of the coalitions is not important.
The reason for that is the rest of the GSPs which are not in
the final coalition can participate again in another coalition
formation process for executing another application program.

For each VO composed of GSPs fromG, there exists a
mappingπC : T → C, which assigns taskT ∈ T to GSPG ∈
C. To make sure that a VO is able to execute the programT ,
we need to find a mapping of all the tasks on the members of
the VO in such a way that the mapping satisfies all constraints.
This problem is known as the task assignment problem.

The task assignment problem finds a mapping of then tasks
of the application tok GSPs in VOC where k = |C|. We
consider the following decision variables:

σC(T,G) =

{

1 if πC(T ) = G,

0 if πC(T ) 6= G.
(8)

We formulate the task assignment problem as an integer
program (IP) as follows:

Minimize C(T , C) =
∑

T∈T

∑

G∈C

σC(T,G)c(T,G), (9)

Subject to:

∑

T∈T

∑

G∈C

σC(T,G)c(T,G) ≤ P, (∀G ∈ C and∀T ∈ T ),

(10)

∑

T∈T

σC(T,G)t(T,G) ≤ d, (∀G ∈ C), (11)

∑

G∈C

σC(T,G) = 1, (∀T ∈ T ), (12)

∑

T∈T

σC(T,G) ≥ 1, (∀G ∈ C), (13)

σC(T,G) ∈ {0, 1}, (∀G ∈ C and∀T ∈ T ). (14)

The objective function (9) represents the costs incurred
for executing the programT on C under the mapping. Con-
straints (10) ensure that the sum of the cost of execution the
programT on C under the mapping is less than or equal to the
payment. Constraints (11) ensure that each GSP can execute its
assigned tasks by the deadline. Constraints (12) guaranteethat
each taskT ∈ T is assigned to exactly one GSP. Constraints
(13) ensure that each GSPG ∈ C is assigned at least one task.
Constraints (14) represent the integrality requirements for the
decision variables.

We define the following characteristic function for our
proposed VO formation game:

v(C) =

{

0 if |C| = 0 or IP is not feasible,

P − C(T , S) if |C| > 0 and IP is feasible,
(15)

where |C| is the cardinality ofC, and thatv(C) satisfies the
constraintv(∅) = 0.

The trust among GSPs in a VO is an important factor in
the formation of a VO. The objective is to find the VOC such
that its members have the highest average global reputation(as
defined in Section II-B) and the VO provides the maximum
individual profit for its members.

There are different ways to divide the profit earned by
coalition C among its members. Traditionally, theShapley
value [23] would be employed, but computing the Shapley
value requires iterating over every partition of a coalition, an
exponential time endeavor. Another rule for payoff division
is equal sharingof the profit among members. Equal sharing
provides a tractable way to determine the shares and has been
successfully used as an allocation rule in other systems where
tractability is critical (e.g., [24]). For this reason we adopt here
the equal sharing of the profit as the payoff division rule. A
VO divides the profit equally among its members.

Due to their welfare-maximizing behavior, the GSPs prefer
to form a low profit coalition if their profit divisions are higher
than those obtained by participating in a high profit coalition.
Also, the GSPs will prefer a VO with the highest average



reputation for its members. Therefore, a GSPG determines
its preferred VOC, whereG ∈ C, by solving:

max
(C)

P − C(T , C)

|C|
(16)

and

max
(C)

∑

i:Gi∈C xi

|C|
(17)

wherexi is the reputation score ofGi as computed by the
power method presented in Section II-B.

This is a bicriteria optimization problem in which the GSP
goal is to maximize the profit share that it obtains from the VO
and at the same time maximize the average global trust it has
within the VO. Minimizing the costC(T , C) by solving the IP
problem implicitly maximizes the profit,P −C(T , C), earned
by a VO. That means, a VO finds the maximum profit, then
the profit is divided among participating GSPs. As a result, a
GSP prefers a VO that provides the highest profit among all
possible VOs.

Since a GSP has to solve a bicriteria optimization problem
(defined by equations (16) and (17)) we will asses the opti-
mality of the solutions using the concept ofPareto optimality.
In our case Pareto optimality refers to the set of solutions of
the bicriteria problem defined above that are not dominated by
other solutions in both criteria. Here the two criteria are the
individual payoff and the average reputation. Thus, a solution
C yielding an individual payoff ofπ and an average reputation
of x̄ is Pareto optimal if there is no other solution (in our case
VO) C′ with both a higher payoffπ′ and a higher average
reputationx̄′ (i.e., π′ ≥ π and x̄′ ≥ x̄). The Pareto optimal
solutions are not unique and they form a set of Pareto Optimal
solutions. In the next section, we will show that our proposed
mechanism obtains one such solution from the set of Pareto
optimal solutions.

The payoff or the share of GSPG part of coalition C,
denoted byψG(C) is given by

ψG(C) =
P − C(T , C)

|C|
. (18)

Thus, the payoff vectorψ(G) = (ψG1
(G), · · · , ψGm

(G)) gives
the payoff divisions of the grand coalition. A solution concept
for coalitional games is a payoff vector that allocates the
payoff among the players in some fair way. The primary
concern for any coalitional game is stability. One of the
solution concepts used to asses the stability of coalitionsis
the core. In order to define the core we need to introduce
first the concept of imputation. Animputation is a payoff
vector such thatψG(G) ≥ v(G) for all GSPsG ∈ G, and
∑

G∈G ψG(G) = v(G). The first condition says that by forming
the grand coalition the profit obtained by each memberG

participating in the grand coalition is not less than the one
obtained when acting alone. The second condition says that
the entire profit of the grand coalition should be divided
among its members. Thecore is a set of imputations such
that

∑

G∈S ψG(G) ≥ v(S),∀S ⊆ G, i.e., for all coalitions, the

payoff of any coalition is not greater than the sum of payoffs
of its members in the grand coalition. The core contains payoff
vectors that make the players want to form the grand coalition.
The existence of a payoff vector in the core shows that the
grand coalition is stable. Therefore, a payoff division is in the
core if no player has an incentive to leave the grand coalition
to join another coalition in order to obtain higher profit. In
our previous work [25], we showed that the core of the VO
formation game(G, v) can be empty. If the grand coalition
does not form, independent and disjoint coalitions would form.

III. VO F ORMATION MECHANISM

In this section, we describe our proposed trust-based mech-
anism for VO formation and characterize its properties.

A. Trust-based VO Formation Mechanism (TVOF)

The proposed trust-based VO formation mechanism (TVOF)
is given in Algorithm 1. The mechanism is executed by a
trusted party that also facilitates the communication among
VOs/GSPs.

TVOF uses a setL containing feasible VOs. We initialize
C with the set of all GSPs, that is, all GSPs form a VO
initially. In every iteration, TVOF executes a branch-and-
bound method (IP-B&B) to solve the integer programming
model given in equations (9) to (14) in order to find an optimal
allocation for the application programT on C. If the IP-B&B
finds a feasible mapping that assigns all tasksT ∈ T to C
satisfying the deadline (all constraints),C is added toL. Then,
TVOF calculates the reputation values of all GSPs in the VO
using the power method (described in Section III) by calling
Algorithm 2. The power method is one of many eigenvalue
algorithms that can be used to find the largest eigenvector of
the trust matrix,AC representing the trust relationships among
the GSPs inC. Algorithm 2 starts by assigning the same
reputation score to all GSPs in the VOC. Then, it recomputes
the reputation scores of each GSP as the weighted sum of the
scores of all GSPs in a GSP’s neighborhood. The algorithm
repeats these steps until the average relative error between
x

q+1 andx
q is smaller than the given thresholdǫ. That means

x
q does not change significantly any more and it represents the

global reputation of the GSPs inC. The algorithm returns the
eigenvector representing the reputation of GSPs participating
in the VO.

In every iteration, TVOF selects a GSP,G, with the lowest
reputation in the VOC using x. Then, TVOF removes it
from the VO. If more than one GSPs have the same lowest
reputation, the mechanism chooses one of them randomly. This
changes the graph (C, E) by removing not onlyG, but also all
edges with direct trust toG. This is a greedy choice for a
VO since in each step a VO removes a GSP with the lowest
reputation.

The mechanism recalculates the reputation scores for all
remaining GSPs in the VO in every iteration. The recalculation
step is necessary since the reputation of the VO members
should be based on their opinion about the participating GSPs
in the VO. The opinion of the GSP with the lowest reputation



Algorithm 1 Trusted VO Formation Mechanism (TVOF)

1: L = ∅
2: C = G
3: repeat
4: flag ← TRUE
5: Map programT on C using IP-B&B
6: if FEASIBLE then
7: L ← L ∪ C
8: flag ← FALSE
9: end if

10: x = REPUTATION(C, E)
11: Find a GSPG with the lowest reputation inx
12: C = C \G
13: until flag
14: Find k = arg maxCi∈L {v(Ci)/|Ci|}
15: Map and execute programT on VO Ck

Algorithm 2 REPUTATION(C, E)

1: Input: Trust graph:(C, E)
2: AC = adjacency matrix of(C, E)
3: x0

G ←
1

|C|
for all Gi ∈ C

4: repeat
5: x

q+1 ← AT
C x

q

6: δ ← ||xq+1 − x
q||

7: until δ < ǫ
8: return x

q+1

should not affect the value of the reputation of the other
GSPs. This recalculation affects GSPs’ reputations in the entire
VO. As a result, TVOF considers only the opinions of the
participating GSPs when calculating the global reputation, that
is, the opinions of GSPs outside the VO do not have any effect
on the reputation of the VO’s members.

These iterations continue until TVOF finds a VO that could
not execute the program. At the end, TVOF chooses a VO
Ck from L that yields the highest individual payoff for its
members. The program is executed by VOCk, a trusted subset
of G. This VO contains members with high reputation and
yields the highest individual payoff for them.

B. Stability and efficiency

Since only one VO forms and executes the program, the
formation of other VOs with GSPs outside of the selected VO
is not important. We will be interested in characterizing the
stability of the VO obtained by TVOF. In order to do this
we will formally define the stability concept that will be used
in this paper. We define theVO preference relation�i for
each memberGi. This allowsGi to compare two VOs and to
indicate its preference to be a part of one of them.A �i B

implies thatGi prefers to be a member of VOA than to be
a member of VOB, or at least it prefers both VOs equally.
In addition,A ≻i B indicates thatGi strictly prefers to be a
member ofA than a member ofB. We define a new concept of
stability similar to the stability of a coalition structuredefined
in the context of the hedonic games [26]. We call this notion
individual stabilityand we define it as follows.

Definition 1 (Individual stability):A coalition C is indi-
vidually stable if there is no memberGi ∈ C such that

C \ {Gi} �j C for all j ∈ C.
In other words, a VOC is individually stable if no GSPG ∈ C
can leaveC without making at least one GSPG′ ∈ C unhappy.

Theorem 1:TVOF produces VOs that are individually sta-
ble.

Proof: (Sketch) We consider two cases to show that
TVOF forms an individually stable VO. First, ifG is the
GSP that has the lowest reputation among all GSPs in the
VO C, then TVOF checks this case by removingG. Thus,
we have two cases where either the VO is not feasible or
the individual profit of GSPs is not as much as the individual
profit of GSPs inC. As a result, leavingG as part of the VO
makes other GSPs inC unhappy. Second, ifG is not the GSP
that has the lowest reputation among all GSPs in the VOC,
then removingG decreases the total reputation of GSPs inC,
thus the participating GSPs would be unhappy because ofG

leaving the VO. As a result, the formed VO is individually
stable.

Another important characteristics of the solution produced
by TVOF is the optimality of the VO in terms of both profit
and reputation. We now show that the VO produced by TVOF
is a Pareto optimal solution for the VO formation problem.

Theorem 2:TVOF produces a Pareto optimal solution to
the VO formation problem.

Proof: (Sketch) The setL in the description of TVOF
contains the feasible VOs formed by TVOF. Based on the
definition of Pareto optimality in Section II-C, we need to
show that the resulting VOC ∈ L from TVOF is not dominated
by other VOs in both its individual payoff,π, and its average
reputation,x̄. Since in each step of the mechanism, TVOF
removes a GSP with the lowest reputation, the high reputable
GSPs are always in the VO. As a result, the GSPs outside the
VO are not able to form a VO with higher average reputation
than x̄. That means, there is no VOC′ 6∈ L where x̄′ ≥ x̄.
However, there may be other VOsC′ ∈ L that have higher
average reputation. Those VOs do not have a higher individual
payoff thanπ, since TVOF selectsC which has the highest
individual payoff among all VOs inL. As a result, the VO
formed by TVOF is a Pareto optimal solution.

IV. EXPERIMENTAL RESULTS

We perform a set of simulation experiments which allows
us to investigate how effective the proposed trust-based VO
formation mechanism is in producing stable VOs.

A. Experimental Setup

We consider 16 GSPs which is a reasonable estimation of
the number of GSPs in real grids. The number of GSPs is small
since each GSP is a provider and not a single machine. We use
real workloads from the Parallel Workloads Archive [27], [14]
to drive our simulation experiments. More specifically we use
the logs from the Atlas cluster at Lawrence Livermore National
Laboratory (LLNL). This log consists of traces (collected from
November 2006 to Jun 2007) that contain a good range of job
sizes from 8 to 8832. We used the cleaned log LLNL-Atlas-
2006-2.1-cln.swf which has 43,778 jobs. We selected 21,915



TABLE I: Simulation Parameters

Param. Description Value(s)
m Number of GSPs 16
n Number of tasks [8, 8832]
s GSP’s speeds (m × 1 vector) 4.91×[16, 128] GFLOPS
w Tasks’ workload (n × 1 vector) [17676, 1682922.14]

GFLOP
t Execution time matrix (m × n) w

s
seconds

c Cost matrix (m × n) [1, φb × φr]
d Deadline [0.3, 2.0] × Runtime×

n/1000 seconds
P Payment [0.2, 0.4]× maxc × n

units
φb Maximum baseline value 100
φr Maximum row multiplier 10
Runtime Runtime of a job from Parallel Work-

loads Archive
≥ 7200 seconds

maxc Maximum amount of cost φb × φr

jobs that completed successfully out of the total jobs of the
log. About 13% of the total completed jobs are large jobs
having runtimes greater than 7200 seconds.

The Atlas cluster [28] contains 1152 nodes, each with 8
processors which makes 9,216 processors in total. Each pro-
cessor is an AMD dual-core Opteron with a clock speed of 2.4
GHz. The theoretical system peak performance of the Atlas
cluster is 44.24 TFLOPS (Tera FLoating-point OPerations per
Second). As a result, the peak performance of each processor
is 4.91 GFLOPS (GigaFLOPS).

We selected six different application program sizes from the
Atlas log, ranging from 256 to 8192 tasks. For each program,
the number of allocated processors the job uses gives the
number of tasks, and the average CPU time used in seconds
gives the the average runtime of a task. We used the peak
performance of a processor to convert the runtime to workload
for each task. We generated the values of the other parameters
based on the extracted data from the Atlas log. The parameters
and their values are listed in Table I. The values for deadline
and payment were generated in such a way that there exists a
feasible solution in each experiment.

Each task has a workload expressed in Giga Floating-point
Operation (GFLOP). To generate a workload, we extract the
runtime of a job (in seconds) from the Parallel Workloads
Archives, and multiply that by the performance (GFLOPS)
of a processor in the Atlas system. This number gives the
maximum amount of giga floating-point operations for a task.
We assume that the workload of each task is in[0.5, 1.0] of the
maximum GFLOP of the job. The workload vector,w, contains
the workload of each task of the application program.

The speed vectors is generated relative to the Atlas
system. Each GSP has a speed chosen within the range
4.91 × [16, 128] GFLOPS. This is due to the fact that each
GSP can have several processors capable of performing4.91
GFLOPS. The reason that we chose this range is that the
number of processors in the Atlas is 9,216. If all16 GSPs
have the highest performance of128 × 4.91, we would have
2048 processors that is 22.2 percent of the power of the Atlas
system. As a result the deadline is generated at most 16 times
larger than the runtime to make sure there is a feasible solution

for the task allocation.
Based on the speed vector and the workload vector, the ex-

ecution time of each taskTj on each GSPGi is obtained. The
execution time matrix is consistent if GSPGi that executes
any taskTj faster than GSPGk, executes all tasks faster than
GSPGk [29]. The generated time matrix is consistent due to
the fact that for every taskTj ∈ T , w(Tj) is fixed for all GSPs
Gi ∈ G, thus, for any taskTj if t(Tj , Gi) < t(Tj , Gk) is true,
then we haves(Gi) > s(Gk) which meansGi is faster than
Gk. As a result,t(Tq, Gk) > t(Tq, Gi) is satisfied for all tasks
Tq ∈ T .

Each cost matrixc is generated using the method described
by Braun et al. [29]. First, a baseline vector of sizen is
generated where each element is a random uniform number
within [1, φb]. Then, the rows of the cost matrix are generated
based on the baseline vector. Each elementj in row i of the
matrix, c(i, j), is generated by the elementi of the baseline
vector multiplied by a uniform random number within[1, φr],
a row multiplier. Therefore, one row requiresm different row
multipliers. As a result, each element in the cost matrix is
within the range[1, φb × φr].

We consider that the costs of GSPs are unrelated to
each other, i.e., ifs(Gi) > s(Gk), for any taskTj , either
c(Tj , Gi) ≤ c(Tj , Gk) or c(Tj , Gk) ≤ c(Tj , Gi) is true. This
is due to GSPs policies. However, we consider that the costs
are related to the workload of the tasks, i.e., for two tasksTj

andTq wherew(Tj) > w(Tq), we havec(Tj , Gi) > c(Tq, Gi)
for all Gi ∈ G. A task with the smallest workload has the
cheapest cost on all GSPs.

We use the Erd̈os-Ŕenyi model to generate random trust
graphs connecting the GSPs [30]. An Erdös-Ŕenyi graph
(m, p) is a graph constructed by connecting nodes randomly
where the graph hasm nodes. The probability of having
an edge in the graph isp for any pair of nodes, and it is
independent from every other edge. That means, all graphs
with m nodes ande edges have equal probability. Based on
the parameterp ∈ [0, 1], the graph can be sparse or complete.
In these experiments,m = 16 is the number of GSPs, and
p = 0.1. We use the ILOG Concert Technology APIs in
C++ to solve the IP problem by CPLEX solver provided
by IBM ILOG CPLEX Optimization Studio for Academics
Initiative [31].

B. Analysis of Results

We compare the performance of our trust-based VO for-
mation mechanism (TVOF) with that of another mechanism,
Random VO Formation (RVOF). The RVOF mechanism is
the same as TVOF, but instead of removing a GSP with the
lowest reputation score from a VO, RVOF removes a GSP
without considering its reputation score. As a result, in each
step a GSP is removed from a VO randomly. Both mechanisms
use the branch-and-bound method to find the mapping of the
tasks to GSPs in a VO. This allows us to focus on the VO
formation and not on the choice of the mapping algorithms.
We performed a series of ten experiments for each case, and
we represented the average of the obtained results.



 0

 200

 400

 600

 800

 1000

 1200

 1400

256
512

1024
2048

4096
8192

In
di

vi
du

al
 p

ay
of

f

Number of tasks

TVOF
RVOF

Fig. 1: GSP’s Individual Payoff

 0

 2

 4

 6

 8

 10

 12

 14

 16

256
512

1024
2048

4096
8192

N
um

be
r 

of
 G

S
P

s 
in

 th
e 

V
O

Number of tasks

TVOF
RVOF

Fig. 2: Size of Final VO

In Fig. 1, we show the performance of TVOF and RVOF,
in terms of the individual GSP’s payoffs in the final VO, as a
function of the number of tasks. Both mechanisms select a VO
with the highest individual payoff as the final VO to execute
the application program. The figure shows that on average
both mechanisms lead to the same amount of payoff for the
GSPs participating in the final VO. This is due to the fact that
both TVOF and RVOF select the VO that yields the highest
individual payoff for the GSPs. In addition to selecting theVO
yelding the highest individual profit, TVOF also guarantees
that the selected VO is composed of GSPs with the highest
average global reputation.

In Fig. 2, we show the size of the final VO obtained by
TVOF and RVOF. This figure shows that as the number of
tasks increases the size of the VO obtained by TVOF increases.
This means that the more tasks the more GSPs pool their
resources to form a VO in order to execute the program. The
VOs formed by TVOF do not necessary have smaller size than
the VOs obtained by RVOF.

In Fig. 3, we show the average global reputation of the GSPs
in the final VO obtained by TVOF and RVOF. This figure
shows that TVOF forms VOs composed of more reputable
GSPs. The average global reputation of the members of the
VOs produced by TVOF is higher in all cases than the average
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reputation of the members of the VOs obtained by RVOF. In
addition, TVOF tries to keep the average reputation scores
the same for all VOs. By considering the individual payoff
in Fig. 1, the results show that TVOF not only provides the
highest average reputation for GSPs in the VO, but also it
provides reasonable individual payoff for them.

Fig. 4 shows the individual payoff of GSPs participating in
the VO obtained by TVOF. We select 10 different programs
with 256 tasks. TVOF selects the VO that provides the
highest individual payoff. In addition, this figure shows the
individual payoff of GSPs in the VO with the highest product
of individual payoff and average reputation among the VOs
in the listL maintained by TVOF. That means, we find a VO
that has the highest product of individual payoff and average
reputation among all VOs inL. For that VO, we show the
individual payoff for its members. Comparing these two cases,
the results show that in most cases, TVOF not only finds the
VO with the highest individual payoff, but also the obtained
VO has the highest average reputation score. As a result, the
TVOF mechanism provides the Pareto optimal VO.

The Pareto optimality of the achieved results can also be
seen from Fig. 5 and Fig. 6. In these figures, we show the
formation of VOs for two programsA andB consisting of
256 tasks. Both figures show the results of all iterations of
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Fig. 6: ProgramB: Results of TVOF iterations

TVOF mechanism. The VO formed by all 16 GSPs has the
lowest individual payoff for them (left vertical axis) and also
has the lowest average global reputation (right vertical axis).
By reducing the size of a VO and removing a GSP with the
lowest reputation score, the average global reputation values
increase. In the case of programA, shown in Fig. 5, a VO
with 4 GSPs is the final VO obtained by TVOF that provides
the highest individual payoff and the highest average global
reputation. In the case of programB, shown in Fig. 6, a VO
with 7 GSPs is the final VO obtained by TVOF that provides
the highest individual payoff. The final VO does not have the
highest average global reputation, but it provides the highest
product of individual payoff and average global reputation.

We should mention again that TVOF selects the final VO
with the highest individual payoff, but this VO is the one that
also has the highest average reputation. This is due to the
fact that in each step, TVOF removes a GSP with the lowest
reputation among all GSPs in a VO.

We show the formation of VOs using RVOF for the same
programsA andB in Fig. 7 and Fig. 8, respectively. Both
figures show the results of all iterations. The average global
reputation changes in all iterations, but it does not increase
since GSPs are removed randomly. Selecting a VO with
the highest individual payoff does not provide the highest
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product of individual payoff and average global reputation.
Comparison of Fig. 5 and Fig. 7 for programA, and Fig. 6 and
Fig. 8 for programB, shows the effectiveness of our proposed
TVOF mechanism.

Fig. 9 shows the execution time of TVOF and RVOF. The
TVOF’s execution time is reasonable given that the application
program would require several hours to execute. The reason
for getting higher execution times for 4096 and 8192 tasks is
that finding the mapping takes more time.

From the above results, we conclude that the proposed VO
formation mechanism is able to form stable VOs that ensure
the program is completed before its deadline and provide the
highest individual payoff for the GSPs.

V. CONCLUSION

We proposed a novel mechanism for VO formation in
grids considering the trust relationships among grid service
providers. In the proposed mechanism, GSPs cooperate to
form VOs with high reputation GSPs in order to execute
application programs. We modeled the problem as a coalitional
game and derived a centralized VO formation mechanism. To
find the optimal configuration of all the tasks on participat-
ing GSPs in a VO, we used an branch-and-bound method.
We showed that our proposed mechanism produces a stable
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coalition in terms of reputation and individual payoff. We
performed extensive experiments with the data extracted from
real workload traces to investigate its properties. Experimental
results showed that the VO obtained by TVOF maximizes the
reputation of the participating GSPs. In addition, most of the
time TVOF determines the final VO with the highest individual
payoffs for its members. The mechanism’s execution time
is reasonable given that applications programs would require
several hours to execute. We believe that this research will
encourage grid service providers to adopt trust-based VO
formation mechanisms and use them to pool their resources
together in order to execute application programs. In future
work, we would like to consider the task dependencies in
our VO formation model and design new mechanisms for VO
formation.
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