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Abstract—In this paper, we focus on the computational
offloading problem among unmanned aerial vehicles (UAVs)
acting as small flying cloudlets that receive compute-intensive
tasks from Internet-of-Things (IoT) devices. Different from
existing studies, we consider a network of capacitated UAV-
mounted cloudlets (NUMC) covering a region, where each
UAV is endowed with limited computational resources and
a restricted capacity providing edge computing services to
IoT users in that region. UAVs aim to optimize their energy
consumption while satisfying quality of services of IoT tasks.
We formulate the task offloading problem among UAVs as an
integer program, and introduce a novel offloading game to
model this problem. We prove the existence of pure-strategy
Nash equilibrium of our game, where none of the UAVs
has incentive to change its offloading decision. We propose
a strategic offloading algorithm to solve our proposed game
and find a Nash equilibrium. We evaluate the performance of
our proposed algorithm by extensive experiments. The results
show that a Nash equilibrium exists in NUMC and a desired
system performance is achieved as well.

Keywords-Edge Computing, Unmanned Aerial Vehicles,
Internet-of-Things, UAV-mounted Cloudlets, Energy Consump-
tion, Offloading Game, Nash Equilibrium.

I. INTRODUCTION

The growth of Internet of Things (IoT) will continue as
users enjoy the convenience of mobility and with the emer-
gence and progress of new technologies such as wearable
devices and autonomous vehicles. These smart connected
devices have limited computational capabilities due to being
restricted by weight, size, battery life, and heat dissipation,
and they cannot run complex applications requiring intensive
computation (such as embedded speech recognition, real-
time face recognition, and augmented reality) through rely-
ing on their local resources. Hence, offloading computation
is becoming the most promising solution to handle this
challenge.

Mobile edge computing (MEC) can be leveraged to bridge
the gap between the increasing computational demand of
the IoT devices and their limited computational capabilities.
MEC has been recently introduced as a new computing
paradigm [1] that optimizes cloud computing systems to
provide a distributed computing solution at the edge of the
network, where mobile users utilize computing resources

in their vicinity (e.g., cloudlets). Instead of moving a large
amount of raw data from IoT user devices to a distant cloud,
MEC enables processing data closer to the end users, where
data has been produced locally. IoT users can offload their
intensive applications to a cloudlet or a remote cloud for
the purpose of reducing energy consumption and execution
latency. However, deploying cloudlet infrastructure at the
edge of the network in MEC is expensive and may not
be feasible in many situations (e.g., disaster situations,
emergency rescue, unexpected surge in user demand) and
regions with only limited or no infrastructure of wireless
access points (e.g., remote rural areas, existing massive
obstacles).

For these situations, an emerging method considering Un-
manned Aerial Vehicles (UAVs) as computational cloudlets
is proposed due to their inherent attributes such as aerial
mobility, low operating costs, flexible deployment, and
wireless communication ability [2]. UAV-mounted cloudlets
can provide the edge computing services and enhance the
quality-of-service (QoS). To be more precise, IoTs can
offload their intensive tasks to UAV-mounted cloudlets by
virtue of the wireless communications between the IoTs
and the cloudlets. Application offloading to these UAVs has
been investigated in several studies [3], [4]. However, these
studies only investigate that single UAV can either process
all incoming tasks locally or offload them to a static base
station or a distant cloud.

In this paper, we focus on offloading tasks among a swarm
of UAVs acting as aerial capacitated cloudlets pooling their
computational resources to execute tasks from the ground
IoT devices in their coverage. UAVs’ goal is to reduce
their energy consumption, while guaranteeing QoS for the
IoT users. We introduce a novel framework, a network of
capacitated UAV-mounted cloudlets (NUMC), to deal with
the task offloading problem among UAVs. 1 UAVs can
choose other UAVs to offload their tasks for computation
or execute the tasks locally based on their own interests.
We design an optimal offloading mathematical model, and
then propose a novel game theoretic solution and a Strategic

1We use the terms UAV and cloudlet interchangeably.



Offloading Algorithm (SOA) to optimize the computation
offloading problem in the proposed NUMC. We prove that
our proposed game is an exact potential game and achieves
a pure-strategy Nash equilibrium at which not any UAV can
individually change its strategy to reduce its cost. To the best
of our knowledge, this is the first work that addresses the
computation offloading problem among a swarm of UAVs
via exploiting game theory.

Challenges and Contributions. The main challenges of com-
putation offloading in NUMC are as follows: IoT users and
UAVs have their own interests. Enabling each UAV to attain
a mutually satisfactory solution while satisfying desired
requirements for IoT tasks, is challenging. Coordinating
computation offloading of multiple tasks via multiple UAVs
is more complex than that of a single cloud or a UAV, where
the decision is whether to offload or not. In NUMC, however,
each UAV has several offloading decisions. In order to cope
with these challenges, we design a decentralized offloading
approach by exploiting game theory, and our contributions
include:
• The feasibility of computation migration among a

swarm of capacitated UAVs with the objective of mini-
mizing their energy consumption, while satisfying QoS
requirements of IoTs is studied. The outcome of this
study can be used in extreme situations, where the base
stations and the cloud are unavailable.

• A novel capacitated offloading game is proposed con-
sidering the incentives of UAVs and IoTs. We prove
that our game is an exact potential game.

• A decentralized Strategic Offloading Algorithm is pro-
posed, and we prove that the algorithm always admits a
pure-strategy Nash equilibrium when a feasible solution
exists.

• The numerical results demonstrate the proposed SOA
in NUMC can further improve the system performance
compared to non-deterministic offloading and local
computing strategy profiles.

II. RELATED WORK

Most prior studies on intensive computation offloading
from IoTs to a cloud or a cloudlet aim to optimize energy
consumption or response time or both for the users [3],
[5], [6]. Only a few studies exploit possibility of having
UAVs as flying base stations or even as a part of the
cloud computing system. Jeong et al. [3] proposed a UAV-
based mobile cloud computing system in which a single
UAV is endowed with computational capabilities to offer
computation service to ground users, and the system aimed
to optimize the transmission energy of ground users over
the bit allocation and UAV’s trajectory. Labidi et al. [5]
devised online learning approaches and deterministic offline
approaches for the energy savings of a single user. Huang
et al. [6] proposed a dynamic offloading algorithm based on

Lyapunov optimization to improve the performance in terms
of the energy saving while meeting the application deadline.

A few studies [4], [7]–[11], instead, designed decentral-
ized mechanisms to optimize the offloading problem by
exploiting game theory. Chen et al. [7] proposed a game
theoretic approach for solving the multi-user multi-channel
offloading to a cloud. Since computing a centralized optimal
solution is NP-hard, a distributed game theoretic approach
is adopted for achieving efficient computational offloading.
Chen et al. [8] again devised a decentralized computation
offloading game for both of homogeneous and heteroge-
neous mobile users. Their proposed formulated game admits
a Nash equilibrium, however, the mechanism only considers
one offloading strategy, the cloud. Messous et al. [4]
proposed a game theoretic approach to address the offloading
decision making problem for UAVs with three strategies
(i.e., local, offloading to a base station, and offloading to
the cloud) and proved the existence of a Nash equilibrium.
However, the offloading strategies among UAVs and the
computation capacity of UAVs were not considered. Ma
et al. [9] focused on the distributed computation offloading
strategy of multiple users to a cloudlet via multiple access
points. All of the above-mentioned studies neglected the
possibility of offloading among UAVs, and they assumed that
each single cloudlet/UAV can either process all incoming
tasks locally or offload them to a distant cloud.

III. SYSTEM MODEL

In this section, we describe the system model with a
set of UAVs acting as computational cloudlets, where their
objective is to minimize their energy consumption by of-
floading their intensive IoT tasks to appropriate UAVs while
guaranteeing QoS of IoT tasks.

In NUMC, we consider a set of UAVs U = {u1, . . . , un},
where n denotes the number of UAVs. Each UAV ui has
a computation task. Let Fi be the CPU frequency (i.e.,
CPU cycles per second) of UAV ui, ei denotes the energy
consumption per CPU cycle of ui, and its capacity is
denoted by ucapi . UAV’s capacity is due to its physical-
architecture limitation. In fact, executing too many intensive
tasks on a UAV may have detrimental impacts on its battery
lifetime and tasks’ execution time. Thus, UAV ui can
simultaneously execute ucapi tasks at most. We define each
task k with (Ck, Sk), where Ck represents the number of
computational cycles required to obtain the outcome of the
task, and Sk denotes the data size of the task. Moreover, each
IoT task has its own QoS requirement, and thus we consider
that each task k of ui has a maximum tolerable execution
time Tmax

ik (execution latency). We assume each task can
be either computed locally on the UAV itself or offloaded
to another UAV. Following [12], [13], UAVs use frequency
division multiple access (FDMA) that enables each UAV to
offload tasks to other UAVs. In this technique, each UAV al-
locates equal bandwidth channels to other UAVs that offload



tasks to and each channel is assigned to one UAV to avoid
the channel interference. Using FDMA, IoT tasks can be
migrated to a swarm of UAVs without interference. Similar
to previous studies in mobile wireless networks [8], [14],
for tractability, we assume that the 3D positions of UAVs
remain fixed during each computation offloading process.
More details are presented in the following subsections.

A. Task Offloading Problem

Due to limited computational resources and available
battery of a UAV, executing tasks on a UAV locally might not
be efficient in terms of energy savings at the UAV. To tackle
this challenge, we introduce a novel approach in NUMC,
where the intensive tasks are transmitted via the FDMA
technique among UAVs to minimize their energy consump-
tion guaranteeing QoS of IoT tasks. In this subsection, we
present the communication and computation models.

1) Communication Model. FDMA requires that the total
bandwidth of UAV ui is equally allocated to all UAVs
offloading tasks to it. As a result, the transmission bandwidth
(data rate) of ui allocated to uj is computed by:

rji =
Bi

di
, (1)

where Bi is the total bandwidth of ui and di represents the
total number of UAVs communicating with ui.

2) Computation Model. We define xij ∈ {0, 1} as the
offloading decision variable as follows:

xij =

{
1 if task k is offloaded from ui to uj ,
0 otherwise.

This shows whether to offload task k from ui to uj or
not. Note that, the case j = i means the task k will be
executed on ui locally. Similar to [9], we set that every
UAV has a specific amount of computational capabilities,
and we assume that the computation capabilities of a UAV
are fairly assigned to the tasks running on this UAV. Thus,
the computation capabilities of ui to execute a task locally
is represented as:

fi =
Fi∑n

j=1 xji
(2)

In the following, we introduce the energy consumption
and execution time functions by taking into account both
computation and data transmission aspects of UAVs.

2.1) Energy Consumption for Local Computing. As a task
is executed locally rather than offloaded to other UAVs,
the energy consumption only depends on the computational
capabilities of the UAV and the total number of tasks
offloaded to this UAV. The energy consumption for local
computing hence can be computed by:

Ek
i→i = Ckei (3)

2.2) Energy Consumption for Offloading. The total energy
consumption for completing task k via offloading (which
is offloaded from ui to uj) consists of three components:
the transmission energy consumption from ui to uj , the
execution energy consumption at uj , and the backhaul
energy consumption of outcomes of computation from uj
to ui. Similar to many studies (e.g., [6], [8]), the backhaul
energy consumption of the outcomes is omitted in our
model. This is due to the fact that for many tasks, such as
image processing of face recognition, the size of outcome
generally is significantly smaller than that of the input data.
As a result, the total energy consumption for completing the
task via offloading is given by:

Ek
i→j =

SkPi

rij
+ Ckej , (4)

where Pi is the transmission power of ui, the value of SkPi

rij
denotes the total transmission energy required from ui to uj ,
and Ckej represents the total execution energy required
at uj . Thus, the energy consumption cost function for
computing task k is defined as:

Ek
i =

n∑
j=1,j 6=i

(
SkPi

rij
+ Ckej)xij + Ckeixii (5)

2.3) Total Execution Time. Likewise, the execution time
function for computing task k is defined as:

T k
i =

n∑
j=1,j 6=i

(
Sk

rij
+
Ck

fj
)xij +

Ck

fi
xii, (6)

where Sk

rij
+ Ck

fj
represents the total execution time of ui’s

task via offloading to uj , and Ck

fi
denotes the total execution

time of ui’s task via local computing. Thus, if a task
is offloaded from ui to uj , the required processing time
includes its transmission time from ui to uj via wireless
access and its execution time on uj .

B. Optimal Task Offloading Model

Minimizing both energy consumption on UAVs and ex-
ecution time of tasks leads to a complex multi-objective
optimization problem. One approach, investigated by [4],
[7]–[9], is to exploit a weighted method to measure the
importance of two or more objectives. However, the values
of energy and processing time cannot be always guaranteed
to be in the same numerical magnitude. Due to their largely
different magnitudes, a strict normalization is needed, which
instead increases the complexity of the objective function.
In this situation, a common method is to relax one objective
and make it a hard constraint. In this paper, we relax the ex-
ecution time by restricting it with a predetermined deadline
and satisfying it as the execution latency constraint. This
will guarantee that UAVs provide the computing services
based on QoS requirements of the IoT users. Note that we



allow each task to have a different execution deadline. We
formulate the energy optimization problem as an Integer
Program (IP), called IP-ENERGY, as follows:

Minimize Etotal =

n∑
i=1

Ek
i (7)

Subject to:
n∑

j=1

xij = 1, ∀i ∈ {1, . . . , n}, (8)

T k
i ≤ Tmax

ik , ∀i ∈ {1, . . . , n}, (9)
n∑

i=1

xij ≤ ucapj , ∀j ∈ {1, . . . , n}, (10)

xij ∈ {0, 1}, ∀i, j ∈ {1, . . . , n}. (11)

The objective function (7) is to minimize the total energy
consumption of all tasks in NUMC. Constraints (8) ensure
that each task is executed by only one UAV. Constraints (9)
guarantee that processing time of each task is not exceeding
its execution deadline Tmax

ik . Constraints (10) ensure that
the number of tasks received by uj including its own task
is not higher than its current capacity ucapj . Constraints (11)
guarantee that the decision variables are binary.

To solve IP-ENERGY, we propose a strategic offloading
game that will be introduced in the next section.

IV. CAPACITATED OFFLOADING GAME

According to Eq. (1-4), if many UAVs simultaneously
select the same UAV to offload their tasks, the data rate will
be lower, which in turn involves a higher transmission energy
consumption for offloading. Moreover, the execution energy
consumption on that UAV for each task will be decreased.

Definitely, each UAV’s offloading decision will directly
impact other UAVs in NUMC. To optimize the overall
system energy, it is important to make the best offloading
decision for the task on each UAV. We introduce a game
theoretic approach to model our problem using concepts
from exact potential games [15]. A main reason for selecting
the game theory approach to solve this problem is that each
UAV can be considered as an individual player with private
interests. UAVs need to evaluate offloading strategies in the
presence of congestion arising from the decisions made by
themselves and other UAVs. A strategic game is one of
the most promising solutions for our problem since it is
powerful to analyze the interactions among UAVs which act
in their own interests. The solution, where no player has
incentive to individually change its strategy, is called a Nash
equilibrium [16].

A. Offloading Game Formulation
According to Eq. (2-3), the total energy consumption of

executing task k locally on ui is:

Ek
i→i = Ckei = Ckγ(

Fi∑n
s=1 xsi

)2, (12)

where ei is approximately linearly proportional to the square
of computation frequency [3]. Thus, ei = γ(fi)

2, where γ is
the effective switched capacitance of the cloudlet processor,
and is set to 1.2× 10−28.

The total energy consumption of offloading task k from ui
to uj is:

Ek
i→j =

SkPi

Bj/dj
+ Ckγ(

Fj∑n
s=1 xsj

)2, i 6= j. (13)

We define yi ∈ {1, . . . , n} as ui’s strategy (decision).
Corresponding to other UAVs’ decisions, ui can choose any
UAV including itself for the task execution, where yi = i
represents to execute the task on ui locally and yi = j, i 6= j,
denotes to offload the task from ui to uj . Moreover, we
define y−i = (y1, . . . , yi−1, yi+1, . . . , yn) as the offloading
strategies of all UAVs except ui’s. Therefore, the cost
function of ui for task k, denoted as Zk

i (yi, y−i), considering
the feasibility constraints (Eq. (9-10)) is defined as:

Zk
i (yi, y−i) =

{
Ek

i→i, if yi = i,
Ek

i→j , if yi = j, i 6= j.
(14)

We now define the task offloading problem as a strategic
game, called Capacitated Offloading Game (COG):

Definition 1. A Capacitated Offloading Game is described
by G〈U, Y, Z〉, where U = {u1, u2, . . . , un} denotes
the set of UAVs (i.e., players), Y represents the set of
decisions of the UAVs, and Z is defined as the set of cost
functions for the UAVs. The game aims to minimize the
cost function Zk

i (yi, y−i) of every ui with respect to other
UAVs’ strategies:

minimize
yi

Zk
i (yi, y−i),

subject to yi ∈ {1, . . . , n}.
(15)

We now define the Nash equilibrium in COG:

Definition 2. A Nash equilibrium of COG G〈U, Y, Z〉 is
a strategy profile y∗ = {y∗1 , y∗2 , . . . , y∗n}, where no UAV ui
can do better by choosing an action yi different from y∗i ,
given that every other UAV uj adheres to y∗j . That is:

Zi(y
∗
i , y
∗
−i) ≤ Zi(yi, y

∗
−i), ∀yi, i ∈ {1, . . . , n}. (16)

According to this definition, the Nash equilibrium has a
stability property, that is no UAV has incentive to deviate
from its offloading decision if it is at the Nash equilibrium.
That means every UAV is at its best strategy once a Nash
equilibrium is reached. We next prove the existence of a
Nash equilibrium in our proposed COG.

B. Existence of Nash Equilibrium

In order to prove our proposed capacitated offloading
game has a Nash equilibrium, we need to show that COG
is an exact potential game by defining a potential function.
According to [15], a potential function Φ can be defined



on possible solutions by showing that any improving move
by one of the players to lower its own cost reduces the
value of Φ. Since the set of possible solutions is finite, any
sequence of improving moves leads to a pure-strategy Nash
equilibrium.

Definition 3. COG is an exact potential game if and only if
a potential function Φ(Y): Y 7→ {1, . . . , n} exists such that,
∀i ∈ {1, . . . , n} :

Zi(yi, y−i)− Zi(y
′
i, y−i) = Φ(yi, y−i)− Φ(y′i, y−i),

∀yi, y′i ∈ Yi,∀y−i ∈ Y−i,
(17)

where Yi and Y−i are the strategy spaces of UAV ui and
other UAVs, respectively.

That means, the change in a single UAV’s energy cost due
to its own strategy deviation causes exactly the same amount
of change in the potential function (i.e., ∆Zi = ∆Φ). We
define Φ(Y) as:

Φ(Y) =

n∑
i=1

(
Ckγ(

Fi∑n
j=1 I(yj = i)

)2I(yi = i)

)
+

n∑
i=1

n∑
j=1,j 6=i

(
SkPi

Bj

n∑
s=1,s 6=i

I(ys = j)+

Ckγ(
Fj∑n

s=1 I(ys = j)
)2
)
I(yi = j), (18)

where function I(yj = i) = 1 if and only if yj = i,
otherwise I(yj = i) = 0. Thus,

∑n
j=1,j 6=i I(yj = i)

indicates the number of UAVs offloading their tasks to ui.

Theorem 1. COG G〈U, Y, Z〉 with potential function Φ(Y)
defined in Eq. (18) is an exact potential game.

Proof: In order to prove COG is an exact potential
game, we need to prove our potential function Φ(Y), defined
in Eq. (18), is fully applicable in all possible cases as
follows:

1) ∀i, j ∈ {1, . . . , n}, if UAV ui chooses to change the
offloading decision from i (i.e., locally) to j, according
to Eq. (18), we obtain that:

Φ(i, y−i)− Φ(j, y−i)

=

[ n∑
i=1

(
Ck

i γ(
Fi∑n

m=1 I(ym = i)
)2I(yi = i)

)]
−[ n∑

i=1

n∑
j=1,j 6=i

(
Sk
i Pi

Bj

n∑
v=1,v 6=i

I(yv = j)+

Ck
i γ(

Fj∑n
m=1 I(ym = j)

)2
)
I(yi = j)

]
=

[
Ck

i γ(
Fi∑n

m=1 I(ym = i)
)2
]
−[

Sk
i Pi

Bj

n∑
v=1

I(yv = j) + Ck
i γ(

Fj∑n
m=1 I(ym = j)

)2
]

=[Ck
i γ(fi)

2]−
[
Sk
i Pi

Bj

n∑
v=1

I(yv = j) + Ck
i γ(fj)

2

]
=Zi(i, y−i)− Zi(j, y−i) (19)

2) Similarly, if UAV ui chooses to change the offloading
decision from j to i (i.e., locally), we obtain:

Φ(j, y−i)− Φ(i, y−i)

=

[
Sk
i Pi

Bj

n∑
v=1

I(yv = j) + Ck
i γ(

Fj∑n
m=1 I(ym = j)

)2
]
−[

Ck
i γ(

Fi∑n
m=1 I(ym = i)

)2
]

=

[
Sk
i Pi

Bj

n∑
v=1

I(yv = j) + Ck
i γ(fj)

2

]
− [Ck

i γ(fi)
2]

=Zi(j, y−i)− Zi(i, y−i) (20)

3) ∀i, h, l ∈ {1, 2, . . . , n}, if UAV ui chooses to change
the offloading decision from h to l, according to (18),
we can compute that:

Φ(h, y−i)− Φ(l, y−i)

=

[ n∑
i=1

n∑
j=1,j 6=i

(
Sk
i Pi

Bh

n∑
v=1,v 6=i

I(yv = h)+

Ck
i γ(

Fh∑n
m=1 I(ym = h)

)2
)
I(yi = h)

]
−[ n∑

i=1

n∑
j=1,j 6=i

(
Sk
i Pi

Bl

n∑
v=1,v 6=i

I(yv = l)+

Ck
i γ(

Fl∑n
m=1 I(ym = l)

)2
)
I(yi = l)

]
=

[
Sk
i Pi

Bh

n∑
v=1

I(yv = h) + Ck
i γ(

Fh∑n
m=1 I(ym = h)

)2
]
−[

Sk
i Pi

Bl

n∑
v=1

I(yv = l) + Ck
i γ(

Fl∑n
m=1 I(ym = l)

)2
]

=

[
Sk
i Pi

Bh

n∑
v=1

I(yv = h) + Ck
i γ(fh)2

]
−[

Sk
i Pi

Bl

n∑
v=1

I(yv = l) + Ck
i γ(fl)

2

]
=Zi(h, y−i)− Zi(l, y−i) (21)

Therefore, our COG is an exact potential game.

Theorem 2. COG G〈U, Y, Z〉 has a pure-strategy Nash
equilibrium.

Proof: It has been proved that every potential game
has a pure-strategy (deterministic) Nash equilibrium and it
possesses the finite improvement property [15], [17]. Mean-
ing that every unilateral better response update is finite and
will always terminate at a deterministic Nash equilibrium.
A better response of a player denotes to a strategy which



reduces player’s cost compared to the current strategy. Since
COG is a type of potential games, consequently it has a
(pure-strategy) Nash equilibrium.

Next, we describe our Strategic Offloading Algorithm to
obtain a deterministic Nash equilibrium solution.

V. STRATEGIC OFFLOADING ALGORITHM

In this section, we propose our Strategic Offloading Algo-
rithm (SOA) which allows each UAV to improve their own
offloading decisions such that all UAVs achieve a mutually
satisfactory result (i.e., Nash equilibrium), where no UAV
has incentive to change its strategy to other strategies to
reduce its cost. SOA runs iteratively in order to find the final
solution, and in any iteration it allows each UAV decides a
better response update. We now define the concept of better
response update in SOA:

Definition 4. An offloading strategy change of UAV ui
from yi to y′i is a better response update if and only if
its corresponding cost function decreases, i.e.,

Zi(y
′
i, y−i) < Zi(yi, y−i). (22)

Then, y′i is called a better strategy of ui compared to yi.
According to this property, we formulate the update rule of
SOA, where only one better strategy is arbitrarily selected as
the final updating decision at each iteration of the algorithm.
In addition, we define the best response of a UAV as the
strategy among the set of better strategies which minimizes
that UAV’s energy cost Z.

Lemma 1. Given the strategy profile Y−i of all other UAVs
except ui in COG, exploiting the better-response update will
always lead to at least an equal or better result in terms of
the total system energy cost, and the better-response update
of ui can be computed by:

yUD
i =


q, if yi = p and Ek

i→p > Ek
i→q,

no update, otherwise.

Proof: Let S(t) = (S1(t), . . . ,Sn(t)) denote the mul-
tiset of all better-response strategies Si (for all ui ∈ U )
at iteration t, where every element in Si(t) has a lower
energy cost than the previous energy cost at t − 1. To be
more precise, the better-response strategy means that if a
task of ui (i.e., k) is currently decided to be offloaded to up
but there exists any UAV uq such that Ek

i→p > Ek
i→q , then

changing the offloading strategy of ui from yi = p to yi = q
while satisfying the desired constraints leads to a reduced
cost (when other UAVs keep their strategies unchanged at
this time). As a result, yi = q is a better-response solution
for ui at this iteration and we save it into the subset Si(t)
of the multiset S(t). When all better-response solutions of
each UAV are computed, one is chosen as the only update
for the next iteration. Otherwise, ui will adhere to its current
decision at the next iteration. By implementing this update

Algorithm 1 Strategic Offloading Algorithm (SOA)

Input: G〈U, Y, Z〉, Tmax, ucap

1: t = 0
2: yi(0) = i,∀ui ∈ U {ui to execute its task locally}
3: di(0) = 0,∀ui ∈ U {none of UAVs are offloading to ui}
4: repeat
5: Y(t) ← current decision profile
6: S(t)← ∅
7: for each UAV ui do
8: Calculate di(t), di(t+1) {current & next capacity}
9: Calculate Ti(t), Ti(t + 1) {current & next exec.

time}
10: Calculate Zk

i (t), Zk
i (t+ 1) {current & next energy

cost}
11: Si(t)←filter all better-response strategies of ui
12: S(t)← S(t) ∪ Si(t)
13: select only one better response strategy from S(t) for

the next decision profile: yUD
h (t+ 1) = yh(t)

14: t = t+ 1
15: until S(t) = ∅
16: τ ← t
Output: Y∗ = Y(τ) =⇒ a Nash equilibrium

rule, the total system energy cost always remains unchanged
or is reduced.

The offloading decision profile of UAVs becomes stable
when a Nash equilibrium is achieved. We propose SOA in
virtue of the better response update (according to Lemma 1)
to reach a Nash equilibrium. SOA is given in Algorithm 1.
SOA sets the initial strategies of the UAVs to local comput-
ing (Line 2). It then calculates the better-response strategies
of the UAVs by finding the decision profile and the energy
consumption of all possible strategies of each UAV (Lines 7-
12). The set Si(t) contains the better-response strategies
for UAV ui (Line 11). Having a non-empty set S(t), SOA
selects one of them as the only update for the next iteration
(according to the Lemma 1). Iteratively, SOA converges to
a stable decision profile at which all UAVs are at their
own best offloading decisions. This happens after a finite
number of iterations τ due to holding the finite improvement
property.
Theorem 3. SOA always converge to a stable profile Y∗ =
{y∗1 , . . . , y∗n}, at which each strategy y∗i is the best response
of UAV ui, and this profile is a Nash equilibrium of COG.

Proof: We prove by contradiction. Assuming SOA
terminates after a finite number of iterations τ and at this
terminus Y(τ) is not a Nash equilibrium, then there exists a
UAV ui who can deviate from its current strategy yi(τ) to a
new strategy y′i(τ + 1) to reduce its energy cost. According
to the better response update property of Lemma 1, SOA
will continue to allow this change yi to y′i to improve the
energy cost. This contradicts the initial assumption and thus
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Figure 1: Performance Evaluation of SOA

yi(τ) = y∗i (τ).

VI. EXPERIMENTAL RESULTS

Experimental Setup. We have a set of heterogeneous UAVs.
For each UAV ui, its computation capability Fi is chosen
arbitrarily from [3.0, 6.0] GHz (0.5 incerements) and its task
capacity ucapi is randomly selected from [1, 10]. Tasks can
have different computation requirements. Here, we consider
the face recognition application in [18], where the compu-
tation task k has (Ck, Sk) = (3000, 420) with the units
of Megacycles and KB, respectively. Moreover, we set the
maximum tolerable execution time of each task Tmax

ik to
obey the uniform distribution U [2, 10] (seconds). As for
the wireless access, the transmission power Pi is randomly
selected from [0.05, 0.5] Watts (0.05 increments), and the
transmission bandwidth Bi obeys Gaussian distribution with
mean µi = 5 MHz and standard deviation σi = 0.15µi.
Each scenario has been repeated 100 times, and the average
results are reported.

Analysis of Results. In our experimental setup, we set that
each UAV initially chooses to execute its task locally, i.e.,
xii = 1, i ∈ {1, . . . , n}. To enable a tractable analysis,
we always select the best response update from the better-
response solutions as the only update at the next decision
making iteration in our proposed SOA.

We first show the performance of SOA in terms of
convergence of the potential function in Fig. 1a. This figure
presents that after a finite number of iterations, our proposed
SOA always converges to a stable point (decision profile) at
which the value of the potential function is minimized. The
minimum point is a Nash equilibrium of our game.

From the perspective of individual users, Fig. 1b shows
that SOA ensures UAV’s individual energy cost is reduced
or remains unchanged, and shows it converges to a Nash
equilibrium. Note that, some UAVs might not be able to
reduce their energy cost but keep it unchanged (e.g., UAV 4).

To study the scalability of SOA, we verify the perfor-
mance of SOA with different number of UAVs, and show

the average and maximum number of iterations for the
convergence to a Nash equilibrium. As shown in Fig. 1c,
the average number of iterations increases almost linearly
as the number of UAVs increases, which shows that SOA
scales well with the number of UAVs.

We perform sensitivity analysis on the system cost with
respect to three parameters. To evaluate the system cost
based on different number of UAVs, we compare the results
of SOA with those of two other approaches: Local Comput-
ing Approach and Randomly Offloading Approach, where
the former indicates all UAVs execute their tasks locally
and the latter selects a UAV randomly for offloading a task.
Fig. 2a shows that SOA outperforms Random Offloading
and Local Computing approaches in terms of the system
cost. The reason is that each UAV has more offloading
choices, and SOA is able to find the minimum system cost
by updating a best response strategy at each decision making
iteration.

We then analyze the performance of our proposed SOA
in terms of the overall system energy with respect to
computation cycles of the tasks. As shown in Fig. 2b, SOA
outperforms the Local Computing Approach. The reason is
that as the task computation cycles increase, more UAVs
prefer to offload their tasks to other UAVs in order to reduce
the energy consumption.

We also evaluate the performance of SOA with respect
to different task sizes (i.e., Sk). Fig. 2c shows that the
average system cost obtained by SOA is significantly less
than that of Local Computing Approach as the data size of
tasks increases. Owing to the property of potential games
and Eq. (13), as the task data size increases, the total trans-
mission energy consumption for offloading via the wireless
access increases. Thus, more UAVs choose to execute their
tasks locally to prevent a higher energy consumption caused
by offloading. Moreover, the average system cost obtained
by Local Computing Approach remains almost invariable,
as expected.

From the above results, we conclude that our proposed
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Figure 2: Sensitivity Analysis of Average System Cost

SOA is able to find stable solutions by converging to Nash
equilibria achieving satisfactory energy cost while ensuring
QoS for the IoT users.

VII. CONCLUSION

In this paper, a swarm of capacitated UAV-mounted
cloudlets provides computing services to IoT users. UAVs’
goal is to reduce their energy consumption of running tasks
satisfying their QoS. We formulated the problem as an opti-
mal integer programming model, and proposed an effective
capacitated offloading game (COG) to solve this problem.
We proved that COG has a Nash equilibrium and designed
a strategic offloading algorithm (SOA) to optimize the total
system cost and find a Nash equilibrium. Our experimental
analysis showed that SOA is scalable and converges to a
Nash equilibrium. In future work, we plan to consider the
impact of UAVs mobility on offloading decision makings.
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